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Notation

The notation is standard and follows mainly that of [3]. In particular, If G is a group, and
H is a subset of G, then

• |H| denotes the cardinality of H

• H ≤ G means that H is a subgroup of G

• H < G means that H is a proper of G

• H ◁G means that H is a normal subgroup of G

• |G : H| the index of H in G

• H ≤f G means that H is a subgroup of G of finite index.

• CG(H) the centralizer of H in G, that is CG(H) := {x ∈ G |xh = hx, h ∈ H}

• Z(G) the centre G, that is Z(G) := CG(G).

• [x, y], the commutator of x, y ∈ G, that is [x, y] := x−1y−1xy

• For H,K ⊆ G, [H,K] is the subgroup generated by all the commutators [x, y], x ∈ H
and y ∈ K.

If G is a topological group, then

• H is the topological closure of H, i.e., the intersection of all the closed subsets of G
containing H

• H ≤o G (resp. H ≤c G) signify that H is an open (resp. closed) subgroup of G.

• Similarly, H ◁o G and H ◁c G have their obvious meaning.
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Introduction

Let G be a finitely generated group. It is well-known that for every integer n ≥ 1, G has only
finitely many subgroups of index n, the number that we shall denote an(G) (note that we
could have an(G) <∞ for all n, without assuming G finitely generated). The investigation
of the interplay between the structure of G and the behaviour of the sequence (an(G)),
known as the subgroup growth of G, has flourished in the last thirty years. If R denotes
the intersection of all subgroups of finite index in G, then R◁G, and an(G) = an(G/R); thus
there is no loss of generality if we assume that R = 1, that is G is residually finite. Hence,
studying subgroup growth may be restricted to the category of finitely generated residually
finite groups. This leads us naturally to the category of (topologically) finitely generated
profinite groups, since every group G in the previous category has a canonical embedding
in its profinite completion Ĝ = lim←−G/N , where N runs over the finite index subgroups of
G, and we have moreover an(G) = an(Ĝ), where an(Ĝ) has its obvious topological sense,
i.e. the number of closed subgroups of Ĝ of finite index (now, we know, thanks to Segal
and Nikolov (2008), that all the subgroups of Ĝ of finite index are closed!).

This work deals with the subgroup growth in p-adic analytic pro-p groups, i.e., pro-p
groups that admit a structure of a Lie group over the field of p-adic numbers Qp (instead
of R). The latter can be characterized as the pro-p groups Γ having polynomial subgroup
growth, that is to say an(Γ) ≤ nc for some positive constant c, and all n.

The above result was very important in characterizing all the groups having polynomial
subgroup growth (PSG). More precisely, a finitely generated residually finite group G has
PSG if, and only if, it is virtually soluble of finite rank. The proof of the latter involves the
classification of finite simple groups, and serious algebraic geometry and number theory.

An interesting related subject that we’ll not discuss is that of zeta functions of groups.
For a group G, we define such a function as the Dirichlet series ζG(s) =

∑
n≥1 an(G)n

−s,
s ∈ C. Observe that for G = Z, we recover the Riemann zeta function ζ(s) =

∑
n≥1 n

−s,
so the subject can be viewed as a sort of non-commutative number theory. Note also that
ζG(s) is particularly interesting when G is PSG; it is exactly the case where ζG(s) has a
finite convergence abscissa.

The thesis is divided into two chapters. In the first one, we remind some basic results on
finite p-groups, inverse systems of groups and projective limits, and the notions of profinite
and pro-p groups. The basic notions related to subgroup growth are discussed in the third
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section. The more serious things are discussed in the second chapter. As the introduction of
the theory of powerful p-groups, by A. Lubotzky and A. Mann (1987), simplified notably the
treatment of p-adic analytic groups, the first and the second sections are devoted to discuss
the main properties of powerful p-groups, as well as powerful pro-p groups, being in principle
inverse limits of powerful p-groups. We discuss the p-adic analytic pro-p groups in the third
section, and we characterize them in terms of their subgroups growth as mentioned above.
We give further perspectives, mainly the characterization of groups having polynomial
subgroup growth (PSG), in the remaining sections.
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Chapter 1

Preliminaries

1.1 Basic definitions

1.1.1 Groups
Definition 1.1 We call group every set G together with an operation (x, y) 7→ xy, from
G×G to G, which saisfies the following axioms:

(i) For all x, y, z ∈ G, we have (xy)z = x(yz). (Associativty)

(ii) G has an identity element, i.e., an element e so that xe = ex = x, for all x ∈ G.

(iii) Every x ∈ G has an inverse, that is an element x′ ∈ G such that xx′ = x′x = e.

If G is a group, an identity element e ∈ G is unique as if e′ is another one, then e′ = ee′ = e.
We shall denote this identity element by 1 if the law of G is written multiplicaively, and by
0 if it is denoted additively (i.e., by the symbol +).

For instance, Z is a group under the usual addition. For any commutative ring K, the
set GLn(K) of the n × n invertible matrices with coefficients in K is a group under the
usual multiplication of matrices. This group is called the general linear group of degree n
over K.

Definition 1.2 Let G be a group. A subgroup of G is non empty subset H of G which
satisfies xy−1 ∈ H for all x, y ∈ H.

The above definition amounts to saying that 1 ∈ H, xy ∈ H and x−1 ∈ H whenever
x, y ∈ H. Note that this means that H is itself a group under the law induced by that of
G. We write H ≤ G to indicate that H is a subgroup of G. If in addition H 6= G, then we
say that H is proper subgroup of G, and we write H < G.
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Exemple 1 1. For all n ∈ N, the subset nZ = {nx|x ∈ Z} is a subgroup of the additive
group Z. Conversely, one sees easily that every subgroup of Z has the form nZ for
some non negative integer n.

2. If we consider the additive group Z6 = {0, 1, 2, 3, 4, 5} of the integers modulo 6, then
H = {0, 2, 4} is a subgroup of Z6.

3. For a commutative ring K, the set SLn(K) = {A ∈Mn(k) | detA = 1} is a subgroup
of the general linear group SLn(K); it is known as the special linear group of degree
n over K.

The intersection of any family of subgroups of G is likewise a subgroup. Hence, if X ⊆ G,
then the intersection of all the subgroups of G containing X is the smallest subgroup
containing X. We call the latter the subgroup generated by X, and we denote it 〈X〉.

Definition 1.3 Let G and G′ be two groups and ψ : G → G
′ be a map. We say that ψ is

a group homomorphism (or just a homomorphism) if ψ(xy) = ψ(x)ψ(y) for all x, y ∈ G.

A bijective group homomorphism is called an isomorphism. An isomorphism fromG to itself
is called an automorphism of G; we denote by Aut(G) the set of these automorphisms. It
is readily seen that Aut(G) is a subgroup of the permutation group on G, that is Aut(G)
form a group under the usual composition of maps.

For every g ∈ G, we have a canonical homomorphism τg : G→ G where τg(x) = xg for
all x ∈ G (where xg denotes g−1xg). We call the latter the inner automorphism induced by
g (it is indeed an automorphism as it admits τg−1 as an inverse). The map g 7→ τg, from
G to Aut(G) is a group homomorphism whose kernel is known as the center of G, usually
denoted Z(G). Clearly Z(G) is formed by all the g ∈ G so that gx = xg for all x ∈ G. The
image of τ is called the group of inner automorphisms of G, and denoted Inn(G).

Let H ≤ G. We say that H is normal (resp. characteristic) if it is invariant under all
the inner automorphisms (resp. automorphisms) of G, that is to say g−1hg ∈ H for all
h ∈ H and x ∈ G (resp. ha ∈ H for all h ∈ H and a ∈ Aut(G). We write H◁G to indicate
that H is a normal subgroup of G.

If H◁G, the set G/H of left cosets xH, x ∈ G, can be endowed with a group structure
by setting :

(xH)(yH) = xyH.

It is readily seen that the latter operation is well defined, for which the group axioms are
fulfilled. Note that the canonical projection x 7→ xH, from G to G/H is a surjective group
homomorphism.
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1.1.2 Commutators
Let G be a group. If x, y ∈ G, the commutator [x, y] is defined as [x, y] = x−1y−1xy. If
X,Y ⊆ G, we define [X,Y ] as the subgroup generated by all the commutators [x, y], with
x ∈ X and y ∈ Y .

For g ∈ G, we have clearly [x, y]g = [xg, yg]. It follows in particular that if H,K ◁ G,
then so is [H,K].

Sometimes we denote [G,G] simply by G′, and we call it the commutator subgroup of
G. It has the following important property:

Proposition 1.1 The quotient G/G′ is abelian; and if H◁G so that G/H is abelian, then
G′ ≤ H. In other words, G/G′ is the largest abelian quotient of G.

Indeed, if x, y ∈ G, then by definition [x, y] ∈ G′; hence the class [x, y] mod G′ is trivial, so
[x, y] = 1 in G/G′, and so G/G′ is abelian. If N◁G has an abelian quotient , then [x, y] = 1
mod N , or equivalently [x, y] = N . It follows that N contains all the commutators [x, y],
with x, y ∈ G, so N contains G′ as desired.

The following identities can be checked by straightforward calculation:

(i) [x, y] = [y, x]−1

(ii) [x, y, z] = [x, z]y[y, z] = [x, z][x, z, y][y, z]

(iii) [x, yz] = [x, z][x, y]z = [x, z][x, y][x, y, z]

(iv) [[x, y−1], z]y[[y, z−1], x]z[[z, x−1], y]x = 1 (the Hall-Witt identity).

We shall write simply [x, y, z] for [[x, y], z], and more generally [x1, . . . , xn] instead for
[[. . . [x1, x2], . . . , xn−1], xn].

1.1.3 Finite p-groups
Definition 1.4 We say that a group G is a p-group if its order is a power of p, that is
|G| = pn for some positive integer n.

The most fundamental property of a p-group G is that Z(G) 6= 1 if G is non trivial.
Indeed, if G 6= 1 is p-group, then by letting G act on itself by conjugation, the classes
equation gives

|G| = |Z(G)|+
∑
i

|G : CG(gi)|

where the gi’s are representatives of the non trivial conjugacy classes; since p divides |G| and
|G : CG(gi)| for all i, it follows that p divides |Z(G)|, and since 1 ∈ Z(G), then necessarily
|Z(G)| > 1 as desired.
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If we define by induction Z0(G) = 1, and Zn+1(G) to be the unique subgroup satisfying
Zn+1(G)/Zn(G) = Z(G/Zn(G)), then it follows that G = Zc(G) for some integer c whenever
G is a p-group (a group that satisfies the latter property is termed nilpotent); hence every
p-group is nilpotent.

Proposition 1.2 Let G be a nilpotent group. For every proper subgroup H of G we have
H < NG(H) (where NG(H) is formed by the g ∈ G that normalize H, that is g−1Hg ⊆ H).

To see that, consider H < G, and let n be the smallest positive integer such that Zn(G) ⊈ H
(if no such integer exists then all the terms Zl(G) are in H, and since G is nilpotent,
one should have H = G, a contradiction). Pick g ∈ Zn(G) \ H; then by definition
h−1hg ⊆ Zn−1(G) for all h ∈ H, and by the minimality of n, Zn−1 ⊆ H, thus g ∈ NG(H)\H;
this completes the proof.

It follows for instance that if G is a p-group and M is a maximal subgroup of G, then
M ◁ G, and M has index p. Indeed, we have M < NG(M), so by the previous result
NG(M) = G, which proves that M is normal in G. Moreover, G/M is a simple group, with
nontrivial center, so certainly G/M ∼= Z/pZ normal and has index p in G.

Definition 1.5 The Frattini subgroup Φ(G) of a group G is the intersection of all maximal
subgroups of G.

For the case where G has no maximal subgroups, the above is defined as Φ(G) = G. This
is the case for example of G = (Q,+), or G is a Prüfer p-group, i.e. the group of all the
pn-th roots of unity in C, with n runs over N.

The Frattini subgroup has the following interesting property:

Proposition 1.3 Let G be a group in which every proper subgroup is contained in a maximal
subgroup of G. If we have X ⊆ G such that 〈X ∪ Φ(G)〉 = G, then 〈X〉 = G.

Note that the above proposition holds in particular for the finite groups. To prove it,
let X ⊂ G such that 〈X ∪ Φ(G)〉 = G; if 〈X〉 is a proper subgroup of G, then it can be
embedded by assumption in a maximal subgroup, M say, but Φ(G) ⊆M , so X∪Φ(G) ⊆M ,
and then 〈X ∪ Φ(G)〉 ≤M , a contradiction.

Proposition 1.4 Let G be a finite p-group. Then

(i) Φ(G) = G′Gp, where Gp = 〈xp | x ∈ G〉.

(ii) If X ⊆ G and XΦ(G) generates G/Φ(G) then X generates G.

(iii) G/Φ(G) ∼= Fn
p where d is the minimal cardinality of any generating set for G.
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Proof. As we have already seen, if M is a maximal subgroup of G, then M ◁ G and
G/M ∼= Z/pZ. In particular, [x, y], xp ∈M for all x, y ∈ G; this shows that M contains all
the generators of G′ and Gp, so it contains both of them, that is G′Gp ⊆ M . The latter
is true for all the maximal subgroups M of G, thus G′Gp ⊆ Φ(G). Conversely, G/G′Gp

can be viewed as a vector space over the field of p elements, and the maximal subgroups
of G correspond to the hyperplane in the latter quotient; as the hyperplane has trivial
intersection, it follows that Φ(G) ⊆ G′Gp.

The second statement follows at once from the previous proposition, and the third one
from (i) and (ii).

It follows that every minimal generating set X of G (i.e., X generates G and no proper
subset of X does) has cardinality d(G), where d(G) = dimFp G/Φ(G). This last statement
is known as the Burnside basis theorem.

We define the rank of G, denoted rk(G) as the maximum among the d(H), where H ≤ G.
We shall use this notion extensively in the next chapter.

1.2 Pro p-groups

1.2.1 Inverse systems; inverse limits
Let Λ be a poset (partially ordered set). We say that Λ is directed if for all α, β ∈ Λ, there
exists γ ∈ Λ such that γ ⩾ α and γ ⩾ β.

Note that we can view each poset Λ as a category whose objects are the elements of Λ,
and for any two objects α, β ∈ Λ, there is a unique morphism α→ β if α ⩽ β, and none of
them otherwise. We suppose in the sequel that Λ is a directed poset.

Let C be a category. We call an inverse system (or projective system ) in C, indexed by
Λ, every family (Xα)α∈Λ of objects in C together with a family of morphisms fαβ : Xβ → Xα

defined whenever β ⩾ α, which satisfy the following conditions:

(i) For all α, β, γ ∈ Λ such that γ ⩾ β ⩾ α, the two morphisms Xγ

fβγ−→ Xβ

fαβ−→ Xα and
Xγ

fαγ→ Xα coincide, that is fαβ ◦ fβγ = fαγ.

(ii) For all α ∈ Λ, the morphism Xα
fαα−→ Xα is the identity morphisme Xα, that is

fαα = 1Xα .

We shall denote such a system simply by (Xα, fαβ).
One sees immediately that the inverse systems in C indexed by Λ are exactly the contra-

variant functors from the category Λ to C. It follows that these systems form a category
which we denote Mor(Λop, C); its morphisms are the natural transformations: if (Xα, fαβ)
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and (Yα, gαβ) are two objects in Mor(Λop, C), a morphism from the first to the second is a
family of morphisms (φα : Xα → Yα)α∈Λ in C such that for all β ⩾ α, the following diagram
commutes

We shall be mainly interested in the category of finite groups, p-groups (we see them as
well as subcategories of that of discrete topological groups).

Let G be a group. We write N ⊴f G to indicate that N is a normal subgroup of G of
finite index. The set of the latter subgroups is ordered by reverse inclusion ”≽”: N ≽ M
means N ⊆ M for N,M ⊴f G. This set is directed since M ∩N ≽ M and N , and plainly
M ∩N ⊴f G. Let N,M ⊴f G be such that N ≽M , then the assignment xN 7→ xM defines
a group morphism G/N → G/M . It follows that the family (G/N)N⊴fG together with the
above canonical morphisms is an inverse system of finite groups (i.e. in the category of
finite groups). We can view each G/N as a discrete topological group, so we have in fact
an inverse system of topological groups.

Note that we can replace the finite quotients of G by the one which are finite p-groups,
so the above example yields an inverse system of finite p-groups.

Let (Xα, fαβ) be an inverse system in a category C. We call an inverse limit of this
system every object X ∈ C together with family a {πα : X → Xα}α∈Λ that is compatible
with the morphisms fαβ (i.e. whenever α ≥ β we have fαβ ◦ πα = πβ) and satisfies the
following universal property:

For any family {φα : Y → Xα}α∈Λ of morphisms in C which is compatible with the
fαβ’s, there is a unique morphism φ : X → Y such that πα ◦ φ = φα for all α ∈ Λ.

The forgoing universal property guarantees that if an inverse limit of the system (Xα, fαβ)
exists, then it is unique up to isomorphism. We may hence denote it by lim←−α∈ΛXα.

Assume C is the category of toplogical groups, so (Xα, fαβ) is an inverse system of
topological groups. The inverse limit of such a system always exists and can be constructed
as follows:

Consider the direct product
∏

α∈ΛXα endowed with the product topology, so it is a
topological group in a natural way, and consider next the subspace:

X = {(xα) ∈
∏
α∈Λ

Xα | xβ = fαβ(xα) for all α ≥ β}.

It is readily seen that X is a subgroup of
∏

α∈ΛXα, so it is a topological group; the canonical
projections πλ : X → Xλ, πλ(xα) = xλ, are compatible with the fαβ’s, and it follows easily
from the universal property of the product

∏
α∈ΛXα that X = lim←−α∈ΛXα.
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1.2.2 Pro-p groups: definition and basic properties
Definition 1.6 We call a pro-p group every inverse limit of finite p-groups (each endowed
with the discrete topology).

We may define likewise a profinite group to be an inverse limit of finite groups.

The following is a useful characterization of the pro-p groups.

Proposition 1.5 For a topological group G to be pro-p, it is necessary and sufficient that
G be Hausdorff, compact, and admits a basis for the neighbourhoods of 1 formed by normal
subgroups of p-power index.

Assume first that G is a pro-p group, so G = lim←−α
Gα for some inverse system (Gα, fαβ)

of p-groups. As we have seen above, we may identify G as:

G = {(xα) ∈
∏
α

Gα | xβ = fαβ(xα) for all α ≥ β}.

Now, the product
∏

αGα is Hausdorff, and compact by the well-known Tychonoff’s theorem.
It follows that G is Hausdorff, and to see that it is compact it suffices to show that G is a
closed subset in

∏
αGα. Let x = (xα) be in

∏
αGα \G; hence there exist α ≥ β such that

fαβ(xα) 6= xβ. Let U =
∏

λ Uλ , where Uα = {xα}, Uβ = {xβ} and Uλ = Gλ otherwise.
Plainly, U is open

∏
αGα, and if (gλ) ∈ U , then in particular gα = xα and gβ = xβ; therefore

fαβ(gα) 6= gβ, and so g /∈ G. This proves that U ⊆ (
∏

αGα) \ G; so (
∏

αGα) \ G is open
in

∏
αGα. Thus G is a closed subset, as desired. Now, for each finite set of indices ω,

define Nω to be
∏

λAλ, where Aλ = {1} if λ ∈ ω and Aλ = Gλ for λ 6= α. Plainly, Nω

is an open normal subgroup of G, and (
∏

αGα)/Nω
∼=

∏
α∈ω Gα, so Nω has p-power index

in
∏

αGα. Moreover, by definition of the product topology, each neighbourhood of 1 in∏
αGα contains one of these Nω. It follows now that the family (G ∩ Nω)ω, where ω runs

over all the finite subsets of indices, form a basis for the neighbourhood of 1 in G, and has
the desired properties.

Conversely, assume that G is a Hausdorff compact topological group, and that there
exists a basis N for the neighbourhoods of 1 formed by open normal subgroups of p-power
index. Clearly, N is a directed poset under reverse inclusion, and for all N,M ∈ N satisfy-
ing M ⊆ N , we have a canonical morphism G/N → G/M , sending each xN to xM ; so we
have an obvious inverse system (G/N)N∈N of p-groups, and consequently the pro-p group
Ĝ = lim←−N∈N G/N . The canonical projections G→ G/N , N ∈ N , are obviously compatible
with our inverse system, so they induce a continuous group homomorphism j : G→ Ĝ (ex-
plicitly, j(x) = (xN)N∈N , for all x ∈ G). We claim that j is an isomorphism of topological
groups (so in particular G is pro-p). We have ker j =

∩
N∈N N , and the latter is equal to the

intersection of all the neighbourhoods of 1, hence ker j = 1 since G is Hausdorff. Now, as
G is compact, and Ĝ is Hausdorff, it follows that G is isomorphic to j(G) (in the category
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topological groups), so it remains only to see that j is surjective. Let (xNN) ∈ Ĝ; since
every N ∈ N is closed in G (N is open, so all its cosets are, but G\N is a union of cosets of
N ; this justifies why N is closed), the xNN are closed subsets of G. If

∩
N∈N xNN is empty,

then since G is compact, we can find a finite subset ω ⊂ N such that
∩

N∈ω xNN = ∅; now
let M =

∩
N∈ωN , so M ∈ N , and by definition, xMN = xNN for all N ∈ ω; in particular

xM ∈
∩

N∈ω xNN , a contradiction. Thus
∩

N∈N xNN 6= ∅; let x be an element of the lat-
ter, so xN = xNN for all N , and thus j(x) = (xNN). This completes the proof of prop. 1.5.

We have a similar characterization of the profinite groups, namely a topological group
G is profinite if, and only if, G is Hausdorff, compact, and its identity element has a basis
for its neighbourhoods formed by normal subgroups of finite index. To see this, we could
imitate the above proof verbatim, replacing only ”p-group” by ”finite group”.

More generally, for every group G, we can consider the inverse system (G/N)N∈N , where
N denotes the collection of the normal subgroups of G of finite index (resp. p-power index)
ordered by reverse inclusion, and consider hence the inverse limit lim←−N∈N G/N , which we
denote Ĝ (resp. Gp̂), and call the profinite completion (resp. the pro-p completion) of
G. We have a canonical group homomorphism j : G → Ĝ (resp. j : G → Gp̂), sending
every x ∈ G to (xN)N∈N . This morphism is injective if, and only if, G is residually finite
(resp. residually-p), that is the intersection of normal subgroups of G of finite index (resp.
p-power index) is the trivial subgroup. Moreover, j(G) is dense in Ĝ (resp. Gp̂), that is
j(G) = Ĝ (resp. j(G) = Gp̂). The latter morphism, allows us to carry over problems on
abstract groups to ones on profinite or pro-p groups.

If G is a profinite group, then every closed subgroup H of G of finite index is open, and
vice versa (this holds in fact in every compact topological group). Indeed, if H ≤c G, and
H has fi finite index, then G \H is a union of finitely many cosets xH, each being closed
in G since for the left translations g 7→ xg are homeomorphisms of G onto itself; thus H is
open in G. Conversely, if H ≤o G, then since the cosets of H form an open (irredundant)
cover of G, this cover should be finite as G is compact; so H has only finitely many cosets,
that is H has finite index, and plainly H is closed as the cosets of H are open.

Note also that every closed subgroup H of a pro-p group G is likewise pro-p. Indeed,
such an H is necessarily Hausdorff, and compact since it is closed, and if (Nα) is a basis
for the neighbourhoods of 1 ∈ G formed by normal subgroups of p-power index, then so is
(H ∩Nα) for H. One sees similarly, that if N ◁c G, then G/N , endowed with the quotient
topology, is a pro-p group. The fact that N is closed is necessary to assure that G/N is
Hausdorff (equivalently, {N} is closed in G/N); the remaining conditions can be checked
easily.
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Let G be a profinite group. We say that X ⊆ G generates G topologically if the
subgroup 〈X〉 is dense in G. Define

d(G) = min{|X| | X ⊆ G which generates G topologically}.

We say that G is finitely generated if d(G) is finite; in this case d(G) is in fact the minimal
number of generators of G. For example, if G is a finitely generated, then so is its profinite
completion (pro-p completion) since G is dense in Ĝ (in Gp̂).

Proposition 1.6 Let G be a profinite group, and X ⊆ G. Then X generates G topologically
if, and only if, XN/N generates G/N , for all N ◁o G.

Indeed, letN◁oG. We have 〈X〉N/N ⊆ (〈X〉N/N), so if 〈X〉 = G, then (〈X〉N/N) = G/N ;
but every such N has finite index, so G/N is discrete; it follows that (〈X〉N/N) = 〈X〉N/N ,
so XN/N generates G/N . Conversely, if the latter holds, then in particular, 〈X〉N = G
for all N ◁o N , that is

∩
N◁oG

〈X〉N = G; but clearly
∩

N◁oG
XN = 〈X〉. Q.E.D.

We define the Frattini subgroup Φ(G) of G as the intersection of all (proper) maximal
open subgroups of G. As every open subgroup of G is closed, it follows in particular that
Φ(G)◁c G.

Proposition 1.7 Let G be a pro-p group. Then
1. Φ(G) = [G,G]Gp.

2. G is finitely generated if and only if Φ(G) is open in G (equivalently, Φ(G) has finite
index in G).

Indeed, if M is an open maximal subgroup of G, then M contains some N ◁o G, and it
follows that M/N is a maximal subgroup of the p-group G/N , thus [G,G]Gp ⊆ M , as we
have seen for p-groups; subsequently, [G,G]Gp ⊆ Φ(G), and so [G,G]Gp ⊆ Φ(G) as Φ(G)
is closed. For the reverse inclusion, observe that for every N ◁o G containing /[G,G]Gp,
G/N is elementary abelian, and in particular Φ(G) ⊆ N ; but Φ(G) is the intersection of
all these N ’s; this proves the first assertion.

If G is finitely generated, say by d elements , then in particular G/[G,G]Gp is. As indi-
cated above, if N ◁oG containing Φ(G), G/N is elementary abelian, hence |G : N | ≤ pd. It
follows that the intersection of all these N has finite index, but the former is just Φ(G), so
Φ(G) is a closed subgroup of finite index in G; this shows that Φ(G) is open. Conversely,
if the latter holds, then we can find a finite set, say X, such that X ∪ Φ(G) generates
G (as an abstract group). If N ◁o G, then by the first part, Φ(G/N) = Φ(G)N/N . As
(X ∪ Φ(G))N/N generates G/N , it follows that XN/N generates G/N ; the results is ob-
vious now by Proposition 1.6. Q.E.D.

Define inductively, P1(G) = G, and Pn+1(G) = [Pn(G), G]P (G)p for n ≥ 1. One can see
in the similar way that the Pn(G) are all open provided that G is finitely generated.
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1.3 Subgroup growth
Let G be a group. For every positive integer n we define an(G) to be the number of
subgroups of G of index n. We may define likewise sn(G) to be the number of subgroups
of G of index at most n, that is sn(G) =

∑n
i=1 ai(G).

For example, if G = Z, then there is exactly one subgroup of index n ≥ 1, namely nZ,
so an(Z) = 1 for all n ≥ 1. It follows at once that sn(Z) = n.

It may happen that an(G) =∞, although, we have:

Proposition 1.8 If G is finitely generated, then G has only finitely many subgroups of
index n, for every positive integer n.

Proof. Every subgroupH of index n inG gives rise to a homomorphism ρ : G→ SG/H = Sn

(we identify H with 1 ∈ {1, . . . , n}), where ρ(g) maps every class xH to (gx)H. Observe
that H ⊆ G is characterized by the property of being the stabilizer of {1, . . . , n}. As every
homomorphism from G to Sn is completely determined by its values on a generating set of
G, if G = 〈x1, . . . , xd〉, then there are at most (n!)d homomorphism from G to Sn, so there
are only finitely many stabilizers of 1 in G; thus there are only finitely many of such H.

Thus if G is finitely generated, then an(G) < ∞, and we can safely speak about the
subgroup growth G. Note, although, that we could have an(G) <∞ for all n, without the
assumption that G is finitely generated (for instance, when G = Q, we have an(G) = 0
for all n). Note also that J. Wilson proved that if G satisfies the maximal conditions on
normal subgroups (i.e. every ascending sequence of normal subgroups of G is stable), then
an(G) < ∞. In the sequel, we focus our interest on finitely generated groups. While we
have far-reaching results on the subgroup growth of the latter groups, much remains to do
for infinitely generated ones.

Denote by R the intersection of all normal subgroups of G of finite index. If H ≤f G,
then H has only finitely many conjugates Hg; thus

∩
g∈GH

g is a normal subgroup of G of
finite index, and consequently R ⊆

∩
g∈GH

g ⊆ H; thus R is contained in all the H ≤f G.
Since we have a one-to-one correspondence between the subgroups of G containing R and
the subgroups of G/R, it follows at once that an(G/R) = an(G). So we lose nothing in
this context if we assume that R = 1, that is to say G is residually finite. Henceforth, un-
less otherwise stated, all the groups that we shall consider will be supposed residually finite.

If we have a profinite group Γ, we define an(Γ) (resp. sn(Γ)) to be the number of
closed subgroups of Γ of index n (reps. index ≤ n). Since every H ≤c Γ of finite index
is open, and vice versa; it that an(Γ) is in fact the number of open subgroups of Γ of index n.
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Consider now the canonical map from G to its profinite completion Ĝ; the assumption
that G is residually finite implies that the latter map is injective, so we may identify G with
its image in Ĝ. We have then, G = Ĝ as mentioned previously. This suggests to consider
the map H 7→ H from the set of finite index subgroups of G to that of the open subgroups
of Ĝ. We claim that |G : H| = |Ĝ : H| for all H ≤ G. Note that once this is proved, then
it follows immediately that

an(G) = an(Ĝ), for all n ≥ 1.

To prove our claim, observe only that G∩H = H, so the map G/H → Ĝ/H sending every
xH to xH, is a well-defined bijection.
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Chapter 2

Subgroup growth in p-adic analytic
groups

The introduction of the theory of powerful p-groups, by A. Lubotzky and A. Mann (1987)
simplified notably the treatment of p-adic analytic groups, i.e. the analogues of Lie groups
over the field of p-adic numbers Qp (instead of R). One may compare the exposition of
the theory in [3] with that of Lazard’s [2], to realize the advantages. The first and the
second section are devoted to discuss the main properties of powerful p-groups, as well as
powerful pro-p groups, being in principle inverse limits of powerful p-groups. We discuss
the p-adic analytic pro-p groups in the third section, and we characterize them in terms of
their subgroups growth, and give further perspectives in the remaining sections.

2.1 Powerful p-groups
Definition 2.1 Let G be a p-group and N ⊴G. We say that N is powerfully embedded in
G, if [N,G] ⊆ Np (forp = 2 we require that [N,G] ≤ N4). We say that G is poweful if it is
powerfully embedded in itself.

If N is powerfully embedded in G, we write N p.e. G. Obviously, N p.e G implies that N
is normal in G.

The previous definition is equivalent to saying that N p.e G if and only if [N,G] ⊆ N2p.

Lemma 2.1 Let G be a nilpotent group, and N,M ⊴G. If N ⊆M [N,G], then N ⊆M .

Proof. We proceed by induction on n to show that

N ⊆M [N,nG], pour tout entier n > 0. (2.1)
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The latter is trivial for n = 1. Let x ∈ M , y ∈ [N,nG] and g ∈ G; we have [xy, g] =
[x, g]y[y, g]; since [M,G]⊴G, we have [x, g]y ∈ [M,G], hence

[xy, g] ∈ [M,G][N,n+1G],

it follows that
[M [N,nG], G] = [M,G][N,n+1G].

By induction we have N ⊆M [N,nG], so

[N,G] ⊆ [M,G][N,n+1G];

as [M,G] ⊆M ,
N ⊆M [N,G] ⊆ [M,G][N,n+1G];

and (2.1) follows. Since G is nilpotent, there exists n > 0 such that [N,nG] = {1}; the
result now is immediate from (2.1).

Remark 1 Let N ◁G, and set G = G/[N,G,G] and N = N/[N,G,G]. For N to be p.e.
in G, it is necessary and sufficient that N be p.e. in G. Indeed, the property [N,G] ⊆ N

2p

is equivalent to [N,G] ⊆ N2p[N,G,G]; but by the previous lemma, the latter is equivalent
to [N,G] ⊆ N2p.

Hence, to prove that N p.e G, we can always assume that [N,G,G] = {1}; in other
words, we can replace G and N by G/[N,G,G] and N/[N,G,G].

To fix the ideas, we assume in the sequel that p > 2. The arguments for p = 2 need
slight modifications, cf. [3].

Proposition 2.1 Let N,M ≤ G. If N and M are p.e. in G, then the same is true for
Np, [N,M ], et NM .

Proof.

(i) Np p.e G.
We can assume by the previous remark that [Np, G,G] = 1. Since N p.e G, we
have [N,G] ⊆ Np, so [N,G,G,G] = {1}, the latter means that [N,G,G] ⊆ Z(G).
Let x ∈ N and g ∈ G; the last property implies at once that t 7→ [x, g, t] is a
homomorphism from G to Z(G); in particular

[x, g, tj] = [x, g, t]j pour tout entier j ≥ 0. (2.2)

It follows easily by induction on n that

[xn, g] = [x, g]x
n−1

[x, g]x
n−1 · · · [x, g];
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in particular

[xp, g] =

p∏
i=1

[x, g]x
p−i

=

p∏
i=1

[x, g][x, g, xp−i]. (2.3)

It follows from the fact that [x, g, xp−i] ∈ Z(G), and the property (2.2) that

[xp, g] = [x, g]p
p∏

i=1

[x, g, x]p−i = [x, g]p[x, g, x](
p
2
). (2.4)

As p > 2, we have
(
p
2

)
is divisible by p; the last equation implies then [xp, g] ∈ [N,G]p.

An element of Np is a product of elements of the form xp, x ∈ N ; hence by the left
distributivity of commutators we have [Np, G] ⊆ [N,G]p; mbut, [N,G]p ⊆ (Np)p; the
result follows.

(ii) [N,M ] p.e. G.
We will show that

[Np,M ] ⊆ [N,M ]p. (2.5)
Once this is proved , we obtain by symmetry [Mp, N ] ⊆ [M,N ]p. Thus,

[N,G,M ] ⊆ [Np,M ] ⊆ [N,M ]p,

and
[G,M,N ] ⊆ [Mp, N ] ⊆ [N,M ]p;

the three subgroups lemma implies then

[N,M,G] ⊆ [N,M ]p,

which proves the result. To prove (2.5) we may suppose that [N,M,G,G] = {1}, and
so [N,M,G] ⊆ Z(G). On can hence apply the formulae (2.2), (2.3) and (2.4), for
x ∈ N and g ∈M . It follows immediately that [Np,M ] ⊆ [N,M ]p.

(iii) NM p.e G.
It is readily seen that [NM,G] = [N,G][M,G]; the fact that M andN are p.e. in G
implies that

[N,G][M,G] ⊆ NpMp,

and obviously, NpMp ⊆ (NM)p; the result follows.

For every p-group G, the lower p-central series is defined inductively by P1(G) = G, and
Pn+1(G) = Pn(G)

p[Pn(G), G] for n ≥ 1. We define similarly Π1(G) = G, and Πn+1(G) =
Πn(G)

p for n ≥ 1.
The following result is immediate from prop. 2.1.
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Proposition 2.2 Let G be a powerful p-group. Then the subgroups γn(G), G(n), and Pn(G)
are p.e. in G, for all integers n ≥ 1.

Note that it is straightforward to see by induction that if G is powerful, then Pn(G) =
Πn(G) for all n ≥ 1.

Lemma 2.2 If G = 〈a1, . . . , ad〉 is a powerful p-group, then Gp = 〈ap1, . . . , a
p
d〉

Proposition 2.3 In a powerful p-group G, the {xpn , x ∈ G} is a subgroup, for all n ≥ 1.

Now the power structure of G can be described in some detail.

Theorem 2.1 Let G be a powerful p-group minimally generated, say, by x1, . . . , xd, and
set Pi = Pi(G). Then

(i) Pi p.e. G.

(ii) Pi+k = Pk+1 (Gi) = Gpk

i for each k ≥ 0, and in particular Pi+1 = Φ(Pi).

(iii) Pi = P pi−1
=

{
xp

i−1 | x ∈ G
}
=

⟨
xp

i−1

1 , . . . , xp
i−1

d

⟩
.

(iv) The map x 7→ xp
k induces a homomorphism from Pi/Pi+1 onto Pi+k/Pi+k+1, for all i

and k.

The following property represents one of the most important properties of powerful p-
groups. For a proof we refer the reader to [3, Theorem 2.9], in which a short argument due
to A. Caranti is given.

Theorem 2.2 If G is a powerful p-group, then d(H) ≤ d(G) for every H ≤ G. In other
words, rk(G) = d(G).

The last result has a converse; more precisely, if G is a p-group and r denotes its
rank, then G contains a characteristic powerful subgroup N whose index is ≤ pf(r), for
some integer f(r) depending only on r (f(r) is given explicitly below). To this end, it is
convenient to introduce the following definition:

For every integer d > 0, let V (G, d) be the intersection of the kernels of all the homo-
morphisms ρ : G → GL(d, p)). It is readily seen that V (G, d) is a characteristic subgroup
of G, i.e., stable under all the automorphisms of G. Note that we can replace GL(d, p)
with T1(d, p) the group of upper uni-triangular matrices over Fp; indeed, the latter is a
Sylow p-subgroup in GL(d, p)), so the image of every ρ : G→ GL(d, p)) lies in T1(d, p) up
to an appropriate conjugation. For g ∈ G to be in V (G, d), it is necessary and sufficient
that for every linear representation W of dimension d of G, g fixes all the elements in W .
Equivalently g ∈ V (G, d) if and only if g acts trivially in every action of G on a vector space
over Fp of dimension d. First, let us prove the following useful fact about the T1(d, p).
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Lemma 2.3 The group T1(d, p) has a subnormal series with elementary abelian factors of
length at most λ(d), where λ(d) is the unique integer satisfying 2λ(d)−1 < d ≤ 2λ(d).

To see that, we proceed by induction on d. For d = 1, the result is trivial. Assume
d ≥ 2, and let r be the smallest integer ≥ d/2. The map:(

A C
0 B

)
7→ (A,B)

from T1(d, p) to T1(r, p) × T1(d − r, p), is a well-defined group morphism, surjective, and
whose kernel is isomorphic to the additive group Fr(d−r)

p . Now, T1(r, p) and T1(d−r, p) have
subnormal series (Hi) and (Ki) of length at most λ(r) with elementary abelian factors; so
(Hi ×Ki) is likewise a subnormal series in T1(r, p)× T1(d− r, p) with elementary abelian
factors and length ≤ λ(r). Thus T1(d, p) has a similar series of length ≤ λ(r) + 1; but λ(r)
satisfies 2λ(r)−1 < d/2 ≤ 2λ(r), hence 2λ(r) < d ≤ 2λ(r)+1, that is λ(r) + 1 = λ(d). Q.E.D.

Proposition 2.4 Let G be a p-group, d > 0 an integer, and N ⊴ G such that d(N) ≤ d.
Let V = V (G, d).

(i) If p > 2 and N ≤ V (G, d), then N is p.e. in V .

(ii) If p = 2 and N ≤ V 2, then N is p.e. in V 2.

We can now prove our claimed converse of Theorem 2.2.

Theorem 2.3 Let G be a p-group of rank r. Then G has a characteristic powerful subgroup
N such that |G : N | ≤ prλ(r) (for p = 2, the latter bound reads 2r+rλ(r)).

Proof. Let V = V (G, r). By definition, G/V can be embedded in a direct product of
copies of T1(d, p); it follows from Lemma 2.3 that G/N has a subnormal series of length
≤ λ(r) with elementary abelian factors, but since G/V has rank r, the order of each of
these factors is at most pr, thus |G : V | ≤ prλ(r). Now, take N = V if p > 2, and N = V 2 if
p = 2, and observe that |V : V 2| ≤ 2r in the last case. The result follows at once from the
last proposition.

2.2 Powerful pro-p groups
Definition 2.2 Let G be a pro-p group, and N ≤ G. We say that N is powerfully embedded
in G, and write N p.e. G for short, if p is odd and [N,G] ≤ Np, or if p = 2 and [N,G] ≤ N4.
We say that G is powerful if G if it is powerfully embedded in itself.
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Clearly, G is powerful if, and only if, G/Gp is abelian (G/G4 is abelian, for p = 2). Also,
if N p.e. G, then N ◁G and N is powerful.

The following criterion clarifies the relation between the powerful (finite) p-groups and
pro-p groups.

Proposition 2.5 Let G be a pro-p group and N ≤o G. Then N p.e. G if and only if
NK/K p.e. G/K for every K ◁o G.

Indeed, letK◁oG. Note first that [NK/K,G/K] = [N,G]K/K and (N/K)2p = N2pK/K =
N2pK/K. Hence, if N p.e. G, then we have [N/K,G/K] ⊆ N2pK/K, that is NK/K p.e.
G/K. Conversely, if NK/K p.e. G/K holds for every K ◁oG, then [N,G] ⊆ N2pK for all
K ◁cG. Since G/N2p is Hausdorff, and N2pK/N2p is a basis for the neighbourhoods of its
identity element N2p, it follows that

∩
K◁cG

N2pK = N2p; thus [N,G] ⊆ N2p, as desired.

As a first consequence, the above with Proposition 2.2 yield:

Proposition 2.6 Let G be a powerful pro-p group. Then the subgroups γn(G), G(n), and
Pn(G) are p.e. in G, for all integers n ≥ 1 (where each of those subgroups is interpreted
topologically, i.e., we take the topological closure of the abstract analogue).

By observing that each pro-p group G is isomorphic to lim←−N◁oG
G/N , the following is

immediate.

Corollary 2.1 A group G is a powerful pro-p group if and only if G is the inverse limit of
an inverse system of powerful p-groups in which all the morphisms are surjective.

Proof. Assume G is a powerful pro-p group. Then G ∼= lim←−G/N , where N runs over the
open normal subgroups of G, and clearly each G/N is a powerful p -group. Conversely,
suppose G = lim←−Gα where each Gα is a powerful p-group, and all the morphisms Gα → Gβ,
α ≥ β, are surjective. Obviously, G is a pro-p group, and the latter property assures that
for every K◁cG, G/K is a quotient of some Gα, in particular G/K is powerful. The result
follows now at once from the previous proposition.

The last results permits to carry out the results on poweful p-groups to the (finitely
generated) pro-p groups.

Proposition 2.7 Let G be a powerful finitely generated pro-p group. Then every element
in Gp is a p-th power, and Gp = Φ(G) is open in G. If p = 2, then G4 is open in G.

Proof. Let g ∈ Gp, and N ◁o G. We have gN ∈ (G/N)p, so by prop. 2.3, gN is a p-th
power in G/N . It follows that g is a p-th power in G. Hence Gp ≤ Gp, and so Gp = Gp

consists of p th powers. Now, since [G,G] ≤ Gp, it follows that Gp = Φ(G) = P2(G), and
Φ(G) is open by Proposition 1.7. If p = 2, a similar argument shows that P3(G) ≤ G4 = G4,
which proves that G4 is open.
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Theorem 2.4 Let G = 〈x1, . . . , xd〉 be a finitely generated powerful pro-p group, and write
Pi for Pi(G). Then

(i) Pi p.e. G.

(ii) Pi+k = Pk+1 (Pi) = P pk

i for each k ≥ 0, and in particular Pi+1 = Φ(Pi).

(iii) Pi = Gpi−1
=

{
xp

i−1 | x ∈ G
}
=

⟨
xp

i−1

1 , . . . , xp
i−1

d

⟩
.

(iv) the map x 7→ xp
k induces a homomorphism from Pi/Pi+1 onto Pi+k/Pi+k+1, for all i

and k.

Proof. The above follow from Theorem 2.1 applied to the finite p -groups G/Gpn for
sufficiently large n.

Theorem 2.5 Let G be a powerful finitely generated pro-p group and H a closed subgroup.
Then d(H) ≤ d(G).

Indeed, let H ≤c G. For every N ◁o G, HN/N is a subgroup of the powerful p-group
G/N ; by Theorem 2.2 we have d(HN/N) ≤ d(G/N) ≤ d(G). But by Proposition 1.6,
d(H) = supN◁oGHN/N ; the theorem follows.

Similar to Proposition 2.4 , we have:

Proposition 2.8 Let G be a finitely generated pro-p group, N ◁o G, and r be a positive
integer. Put V = V (G, r). If d(N) ≤ r, and N ⊆ V (N ≤ V 2 for p = 2.); then N p.e. V
(N p.e. V 2 if p = 2).

Now, imitating the proof of Theorem 2.3, yields the following important result.

Theorem 2.6 Let G be a finitely generated pro-p group, and suppose that r = supN◁oG d(N)
is finite. Then G has a powerful characteristic open subgroup of index at most prλ(r) (the
latter reads 2r+rλ(r) if p = 2).

(Recall that λ(r) is the integer defined by 2λ(r)−1 < r ≤ 2λ(r)).

2.3 p-Adic analytic pro-p-groups
Let G be a profinite group. We define the rank of G, denoted rk(G) to be the supremum of
the d(H), where H runs over all the closed subgroups of G (we refer the reader to §1.2.2,
for the meaning of d(H)). The latter can be expressed in terms of finite groups as follows:

rk(G) = sup
N◁oG

rk(G/N).
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Indeed, write r for the member on the right. It should be clear that rk(G/N) ≤ rk(G) for
all N ◁o G, so r ≤ rk(G). Conversely, if H ≤c G, then d(HN/N) ≤ rk(G/N) ≤ r, so
supN◁oG d(HN/N) ≤ r; but by Proposition 1.6, supN◁oG d(HN/N) = d(H). It follows that
d(H) ≤ r for all H ≤c G, and subsequently rk(G) ≤ r, which completes the proof.

Definition 2.3 We say that a pro-p group G is p -adic analytic group if G has finite rank,
that is to say rk(G) <∞.

In fact, saying that a topological group G is a p-adic analytic group, means naturally that
G has the structure of a p-adic analytic manifold (say a manifold over the field of p-adic
numbers Qp instead of R) such that the function µ : G×G→ G defined by (x, y) 7→ xy−1 is
analytic. For the general theory of analytic groups over arbitrary (complete) valued fields,
we refer the reader to Serre’s ”Lie algebras and Lie groups”. The theory of Lie groups over
Qp has been developed by Lazard in 1965 (see [2]). After the introduction of powerful
p-groups in 1987, the theory became more close to abstract group theory. The formulation
of the definition as above emerged from the following more general result (which may be
viewed as a solution of the Hilbert’s fifth problem for p-adic Lie groups).

Theorem 2.7 A topological group G has the structure of a p-adic analytic group if and
only if G has an open subgroup which is a powerful finitely generated pro-p group.

By Theorem 2.5, every finitely generated powerful pro-p group has finite rank. Conversely, if
G is a pro-p group of finite rank r, then by Theorem 2.6, G contains a powerful characteristic
subgroup N of index bounded in terms of r. Thus the above theorem can be stated as
follows:

A topological group G has the structure of a p-adic analytic group if and only if G has
an open subgroup which is a pro-p group of finite rank.

The latter justifies the definition we gave for p-adic analytic pro-p groups. A theory of
Lie algebras of p-adic Lie group can be as well developed using mainly the powerful pro-p
groups (or merely, the uniformly powerful ones). We have to note also that every p-adic
analytic pro-p group can be embedded as a closed subgroup of GLn(Zp), for some n, where
Zp denotes the ring of p-adic integers (the pro-p completion of Z). Proofs for all of the
previous statements, and more, can be found in [3].

2.4 Subgroup growth in p-adic analytic groups
The following is the main result in this thesis. It gives a characterization of the p-adic
analytic pro-p groups in terms of subgroup growth; the result is due to Mann and Lubotzky
(1991).
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Theorem 2.8 Let G be a pro-p group. Then, G is analytic p-adic if, and only if, G has
polynomial subgroup growth, i.e., there exists constants c > 0 such that an(G) ≤ nc for all
n ≥ 1.

Note that since an(G) = 0 if n is not a power of p, the last statement is equivalent to
that apn(G) ≤ pcn for all n. The above amounts also to saying that sn(G) grows at most
polynomially.

The remaining part of this section is devoted to prove the previous theorem.
Assume first that G has finite rank, say r. For every H ≤o G, the quotient H/Φ(H)

is elementary abelian (see Proposition 1.7) of rank ≤ r. Thus H contains at most (pr −
1)/(p − 1) < pr subgroups of index p. For each n ≥ 0, every open subgroup of index pn+1

is contained in some open subgroup of index pn, hence apn+1(G) ≤ prapn(G). Now, by
induction, apn(G) ≤ prn for all n ≥ 0. This proves that the p-adic analytic pro-p groups
have polynomial subgroup growth.

Conversely, as Φ(G) is the intersection of open sub-groups of index p in G, and by
assumption there there are at most pc of those, it follows that Φ(G) has finite index in G;
equivalently, Φ(G) is open in G. Thus G is finitely generated (see Proposition 1.7). We
claim now that there exists a bound β > 0 such that

d(N) ≤ β, for all N ◁o G (∗)

For every positive integer r, define Sr = {N ◁o G | d(H) ≥ r}. Assume that Sr 6= ∅, and
pick N ∈ Sr such that G/N has the minimal possible order. Thus for every M ◁o G such
that |G : M | < |G : N |, we have d(M) ≤ r − 1. In particular G/N has rank ≤ r − 1.
Consider the action of G on N/Φ(N) by conjugation, i.e., the one defined by xg = xg for
all x ∈ G/N and g ∈ G. Set d = d(N), so N/Φ(N) is actually a vector space of dimension
d over the finite field Fp, and our action induces a group homomorphism G → T1(d, p).
Denote by K the kernel of this action; thus G/K can be embedded in T1(d, p). Since
[N,N ] ⊆ Φ(N), N ≤ K, and in particular G/K has rank ≤ r − 1. It follows from Lemma
2.3 that |G : K| ≤ prλ(d).

We have in fact N = K, as if N < K, then K/N is a non trivial normal subgroup
of G/N , hence it intersects Z(G/N) non trivially. If we pick g ∈ G \ N such that gN be
in the latter intersection, then L = N〈g〉 is a normal open subgroup of G which satisfies
[L,L] = [L,N ] ≤ Φ(N). Hence L/Φ(N) is abelian of rank ≥ r as it contains N/Φ(N). This
contradicts the minimality of G/N . Now, we have |G : N | ≤ prλ(d).

Let s = d/2 if d is even, or s = (d − 1)/2 if d is odd. The vector space N/Φ(N) has
exactly (pd−1) · · · (ps+1−1)/(ps−1) · · · (p−1) subspaces of codimension s. One check easily
that the last number is at least p(d−1)2/4; hence G has at least p(d−1)2/4 closed subgroups of
index ≤ prλ(d)+s. As G has polynomial subgroup growth, it follows that

p(d−1)2/4 ≤ pc(rλ(d)+s) for some constant c > 0.
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The above implies that d is bounded in terms of c, and since r ≤ d, r is likewise bounded
in term of c. This shows that Sr = ∅ for all r large enough, hence (∗) holds true.

Finally, let r = supN◁oG d(N). We know from (∗) that r is finite. Let H = V (G, r)
(H = V (G, r)2 if p = 2). Clearly, H is an open normal subgroup of G, so d(H) ≤ r.
Proposition 2.8 implies that H is powerful; thus G has finite rank. This completes the
proof.

2.5 Further results
First, let G be a pro-p group. A. Shalev (cf. [5]) proved that if an(G) ≤ nc logp n, for some
c < 1

8
and all n large enough, then G is p-adic analytic. In other words, if an(G) ≤ nc logp n

(c < 1
8
) for all n large enough, then an(G) ≤ nc for some constant c > 0. Hence, for every

ε > 0, every prop-group G should satisfies an(G) ≥ n( 1
8
−ε) logp n for infinitely many n, or

G should have polynomial subgroup growth. We may say here that there is a gap for the
growth type spectrum of pro-p groups. This sort of ”gap theorems” occurs for other classes
of groups.

It is worth noting that for every c ≥ 2, there exists a pro-p groups G satisfying
an(G) ≤ nc logp n, for all n large enough, but G is not p-adic analytic (cf. [5]). One may
wonder here what is the smallest value of c for which the ’gap theorem’ holds.

One of the breakthroughs in studying subgroup growth, known as the ’PSG theorem’
characterizes all the finitely generated groups having polynomial subgroup growth (PSG).
More precisely:

Theorem 2.9 A finitely generated residually finite group G satisfies sn(G) ≤ ns, for some
s, if and only if G is virtually soluble of finite rank.

The result has been established by A. Lubotzky, A. Mann, and D. Segal (cf. e.g., [4, Chapter
5]). One implication in the ’PSG theorem’ is relatively easy to prove. The reverse impli-
cation involves various sophisticated techniques: The classification of finite simple groups;
’Linearization’ or in other words finding conditions assuring that some infinite groups are
linear over some field; techniques for reducing problems on linear groups to ones on arith-
metic subgroups in semi-simple algebraic groups (’strong approximation’); counting lattices
in arithmetic groups, and even the Prime Number Theorem (the number of primes not ex-
ceeding some number x is approximately x/ log x).

We refer the reader to the brilliant book [4] for a proof of the last theorem, and other
interesting results in this direction.
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Abstract. The aim of the present thesis is to show that analytic p-adic pro-p groups are
exactly the ones having polynomial subgroup growth.

Keywords: p-adic groups; pro-p groups; subgroup growth.

Résumé. Le but principal de cette thèse est de montrer que les pro-p groupes analy-
tiques p-adiques sont exactement les pro-p groupes dont la croissance des sous-groupes est
polynomiale.

Keywords: Groupes p-adiques; pro-p groupes; croissance des sous-groupes.
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