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Introduction

Many problems in various journals can be successfully formulated using fractional dif-

ferential rates, such as theoretical physics, biology, viscosity, electrochemistry, and other

physical processes. In the last decade, the fractional differential equation has attracted the

attention of mathematicians, physicists, and engineers. Likewise, the exact methods of sol-

ving equation differential are challenging research these days. There are many analytical

methods. There are also many numerical methods used to solve differential equation equa-

tions of fractional order. The purpose of this note is to study the existence and the uniqueness

of fractional equations containing the Caputo-Hadamard derivatives. Many mathematicians

contributed to the development of the theory of fractional calculus until the middle of the

last century, including Laplace(1812), Fourier(1822), Liouville(1832-1873), Riemann(1847).

this work is divided into three chapters :

The first chapter is devoted to the basic concepts and fractional tools used in this work.

In the second chapter, we give the notions and preliminary properties related to the most

important approaches of fractional derivation : the approach of Riemann-Liouville, Caputo,

Hadamard, and Caputo-Hadamard. we expose in the second part, some results of existence

and uniqueness of the solution for a class of model fractional differential equation, the results

are based on some versions of the fixed point theory.

In the last chapter, we consider a fractional differential problem of the Caputo-Hadamard

type we prove the existence and uniqueness result. These results are given by applying some

classical fixed-point theorems for the existence and uniqueness of solutions, end this chapter

with an illustrative example.
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Chapitre 1
Preliminaries

1.1 Special function

In this chapter, some basic theory of the special functions that are used in the other

chapters is given. We give here some information on the gamma and beta function, the

MItallag-Laffer functions ; these functions play the most important role in the theory of

differentiation of arbitrary order and the theory of fractional differential equations.

1.1.1 The Gamma function

Undoubtedly ,one the basic function of the fractional calculus is Euler’s gamma function

Γ(z), which generalizes the factorial n! and allows n to take also non-integer and even

complex values . We will recall in this section some results on the gamma function which

are important for other parts of this work.

Definition 1.1.1. The gamma function Γ(z) is defined by the integral

Γ(z) =

∫ ∞
0

e−ttz−1dt, (1.1)

which converges in the right half of the complex plane Re(z) > 0. Indeed, we have

Γ(x+ iy) =

∫ ∞
0

e−ttx−1+iydt =

∫ ∞
0

e−ttx−1 exp(iy log(t))dt

=

∫ ∞
0

e−ttx−1
[

cos(y log(t)) + i sin(y log(t))
]
dt.

(1.2)
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The expression in the square brackets in 1.2 is bounded for all t, convergence at infinity is

provided by e−t, and for the convergence at t = 0 we must have x = Re(z) > 1.

1.1.2 Some properties of the Gamma function

One of the basic properties of the Gamma function is that it satisfies the following

functional equation

Γ(z + 1) = zΓ(z), (1.3)

which can be easily proved by integrating by parts :

Γ(z + 1) =

∫ ∞
0

tze−tdt =
[
−tze−t

]+∞
0

+ z

∫ ∞
0

e−ttz−1 = zΓ(z)

Obviously, Γ(1) = 1,and using 1.3 we obtain for z = 1, 2, 3, ... :

Γ(2) = 1.Γ(1) = 1 = 1!,

Γ(3) = 2.Γ(2) = 2.1! = 2!,

Γ(4) = 3.Γ(3) = 3.2! = 3!,

... ......

Γ(n+ 1) = n.Γ(n) = n(n− 1)! = n!.

Lemma 1.1.1. [3] For all z ∈ C, Re(z) > 0, n ∈ N we have :

1. Γ(n) = (n− 1)!

2. Γ(n+ 1
2
) (2n)!

√
π

4nn!

1.1.3 The Beta function

In many cases it is more convenient to use the so-called beta function instead of a certain

combination of values of the gamma function.

Definition 1.1.2. .[3] The beta function is usually defined by :

β(z, w) =

∫ 1

0

τ z−1(1− τ)w−1dτ, (Re(z) > 0, Re(w) > 0). (1.4)
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To establish the relationship between the Gamma function defined by 1.1 and the Beta

function 1.4, we will use the laplace transform . Let us consider the following integral

hz,w(t) =

∫ t

0

τ(z − 1)(1− τ)w−1dτ. (1.5)

Obviously hz,w(t) is a convolution of the function tz−1 and tw−1 and hz,w(1) = β(z, w) .

Because the Laplace transform of a convolution of two function is equal to the product of

their laplace transform , we obtain :

Hz,w(s) =
Γ(z)

sz
.
Γ(w)

sw
=

Γ(z)Γ(w)

sz+w
. (1.6)

where Hz,w(s) is the laplace transform of the function hz,w(t). On the other hand, since

Γ(z)Γ(w) is a constant , it is possible to restore the original function hz,w(t) by the inverse

Laplace transform of the right hand side of 1.6. Due to the uniduenness of the laplace

transform, we therefore obtain :

hz,w(t) =
Γ(z)Γ(w)

Γ(z + w)
tz+w−1, (1.7)

and taking t = 1 we obtain the following expression for the beta function :

β(z, w) =
Γ(z)Γ(w)

Γ(z + w)
, (1.8)

from which it follows that

β(z, w) = β(w, z). (1.9)

1.1.4 The Mittag -leffler function

The exponential function ez plays a very important role in the theory of integer order

differential equation

Definition 1.1.3. the function of Mittag-leffler Eα(z) is defined by :

Eα(z) =
∑+∞

n=0
zn

Γ(nα+1)
(z ∈ C, α > 0)
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Its one-parameter generalization , the function which is now denoted by

Eα,β(z) =
+∞∑
n=0

zn

Γ(nα + β)
α, β > 0 (1.10)

Example 1. for special values of α and β we have :

E1(z) = ez

E2(z) = cosh(
√
z)

E1,2(z) =
ez − 1

z

E1,3(z) =
ez − z − 1

z2

1.2 Some important theorems

for solving differential and integral equations fixed point theorems are extremely useful

tools. Indeed,these theorems provide sufficient conditions for which a given function admits

a fixed point, so we ensure the existence of the solution of a given problem by transforming

it into a fixed point problem, and we possibly determine these points fixed which are the

solutions to the problem posed . in this section we will present the theorems of the fixed

points that we will in order to obtain results of existence and uniqueness.[4] let J = [0, T ],T >

0 . note C(J,R) is the banach space of the defined continuous functions of J in R , endowed

with norm

‖ x ‖∞= sup{| x(t) |, t ∈ J}.

Definition 1.2.1. let T be an applications of a set E in itself we call the fixed point of T

any point t ∈ E such that

T (t) = t

Theorem 1.1. Let E be a Banach space and T : E 7−→ E a contracting operator them T

admits a single fixed point

∃!t ∈ E such that T (t) = t

The following fixed point theorem determine only the existence of the fixed point.
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Theorem 1.2. (Schauder fixed point theorem)

Let (E, d) be a complete metric space, let U be a convex and closed part of E, and let

T : U 7−→ U an application such that the set {T (t) : t ∈ U} is relatively compact in E. then

T has at least one fixed point .

Theorem 1.3. (Leray-Schauder’s nonlinear alternative) Let E be a Banach space, B a

closed and convex subset of E, U an open subset of C and 0 ∈ U . As well as, let P : Ū → C

be a continuous and compact map. Then either

(a) P has a fixed point in Ū , or

(b) There is an element u ∈ ∂U (the boundary of U) and a constant λ ∈ (0, 1) so that

u = λP(u).

Theorem 1.4. [5] (Theorem of Ascoli-Arzila)

let A ⊂ C([a, b],Rn). A is relatively compact (i.e, Ā is compact ) if and if :

1. A is uniformly bounded .

2. A is equicontinous .
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Chapitre 2
Derivatives and Fractional integrals

2.1 Fractional Riemann-Liouville integrals and deriva-

tives

2.1.1 Fractional Riemann-liouville integrals

In this section, we present fractional integration which generalizes all of the above

Riemann-Liouville fractional intgrals as follows :

Definition 2.1.1. [6] The Riemann-Liouville fractional integral of order α of function f is

given by

(Iαa f)(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt,

note that the function f is defined from (a,∞) to R

Theorem 2.1. Let f be continous on [a, b] for α > 0, β > 0 and x ∈ [a, b]

Iαa
[
(Iβa f)(x)

]
= Iα+βf(x)

Démonstration.

Iαa
[
(Iβa f)(x)

]
=

1

Γ(α)Γ(β)

∫ x

a

(x− t)α−1
[ ∫ t

a

(t− u)β−1F (u)du
]
dt

The integrals exist,and by fubini’s theorem, obtaining :

Iαa
[
(Iβa )f(x)

]
=

B(α, β)

Γ(α)Γ(β)

∫ x

a

(t− u)β−1f(u)du = Iα+β
a f(x).
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Lemma 2.1.1. for any function f ∈ C([a, b]), the fractional integral has ownership of the

shelf space

Iα(λf(x) + g(x)) = λIαf(t) + Iαg(t), α ∈ R+ and λ ∈ C

Démonstration.

Iαa
[
λf(x) + g(x)

]
=

1

Γ(α)

∫ x

a

(x− t)α−1[λf(t) + g(t)]dt,

=
λ

Γ(α)

∫ x

a

(x− t)α−1f(t)dt+
1

Γ(α)

∫ x

a

(x− t)α−1

g(t)dt,

= λIαa f(x) + Iαa g(x).

Proposition 2.1.1. We have the following properties :

1. I0f(t) = f(t).

2.
d

dx
(Iαa f)(x) = (Iα−1f)(x)

Example 2. let f(x) = (x− a)β for some β > −1 and (α > 0) then

Iαa f(t) =
Γ(β + 1)

Γ(α + β + 1)
(x− a)β+α

Démonstration. Using a change in variable s = a+ (t− a)x you get

Iαa f(t) =
(x− a)β+α

Γ(α)

∫ 1

a

(1− x)α−1xβdx

=
β(α, β + 1)

Γ(α)
(x− a)β+α

=
Γ(α)Γ(β + 1)

Γ(α)Γ(α + β + 1)
(x− a)β+α

Hence

Iαa f(t) =
Γ(β + 1)

Γ(α + β + 1)
(x− a)β+α
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2.1.2 Fractional Riemann-liouville derivatives

Definition 2.1.2. The Riemann-Liouville derivative of fractional order α of function f(x)

is given as :

RLDαf(x) =
1

Γ(n− α)

(
d

dt

)n ∫ x

0

f(s)

(x− t)β∗−n+1
dt,

where n = [α∗] + 1, [α] denotes the integer part of real number α, provided the right-hand

side is point-wise defined on (0,∞)

Example 3. Let f(x) = (x− α)β for some β > −1 and α > 0 then

RLDα(x− a)β =
1

Γ(n− α)

dn

dxn
(x− a)n−β+α

∫ 1

0

(1− s)n−α−1sβds

=
Γ(n+ β + α + 1)β(n− α, β + 1)

Γ(n− α)
(x− a)β−α

=
Γ(n+ β + α + 1)Γ(n− α)Γ(β + 1)

Γ(n− α)Γ(n− α + 1)Γ(n+ β − α + 1
(x− a)β−α

=
Γ(β + 1)

Γ(n− α + 1)
(x− a)β−α

Theorem 2.2. Let f and g be two functions for which Riemann-Liouville’s fractional de-

rivatives exist, for λ and µ ∈ R, then : RLDα(λf + µg) exist, and we have

RLDα(λf + µg)(x) = λRLDαf(x) + µRLDαg(x)

Démonstration. For the demonstration one will use the linearity of the fractional integral

and the linearity of the classical derivation (Dn).

RLDα(λf + µg)(x) = DnIn−α(λf + µg)(x)

= Dn(λIn−αf(x) + µIn−αg(x))

= λDnIn−αf(x) + µDnIn−αg(x)

= λRLDαf(x) + µRLDαg(x).
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2.2 Fractional derivative of Caputo

Definition 2.2.1. Let α > 0 and n = [α] + 1. If f ∈ Cn([a, b]), then the Caputo fractional

derivative of order α defined by

CDα0+f(x) =
1

Γ(n− α)

∫ x

0

(x− t)n−α−1fn(t)dt

exists almost everywhere on [a, b], [α] is the integer part of α.

Proposition 2.2.1. the derivative of a constant function is zero .

CDαa c = 0.

Example 4. Let f(x) = (x− a)β and for β > n− 1, a > 0 and n− 1 < a < n, we get :

CDαa f(t) = 1
Γ(n−α)

∫ t
a
(t− s)n−α−1f (n)(s)ds

fn(s) =
Γ(β + 1)

Γ(β − n+ 1)
(s− a)β−n.

The change of variable s = a+ τ(t− a), (0 ≤ τ ≤ 1) we’ll have :

CDαa f(t) =
1

Γ(n− α)

Γ(β + 1)

Γ(β − n+ 1)
(t− a)β−α

∫ 1

0

(1− τ)n−α−1τβ−ndτ

=
Γ(β + 1)β(n− α, β − n+ 1)

Γ(n− α)Γ(β − n+ 1)
(t− a)β−α

=
Γ(β + 1)

Γ(β − α + 1)
(t− a)β−α

2.3 Comparison between the Caputo and Rieman-liouville

fractional derivatives

In this section, a comparison between the fractional derivatives of Riemann-Liouville

and Caputo.

Lemma 2.3.1. Let f be a function such that the two operators Dαf(t) and CDαf(t) exist,

with n− 1 < α < n , n ∈ N , so we’ve got :

Dαf(t) 6=C Dαf(t).

14



Example 5. The differentiation of the constant function for the Caputo operator is :

CDαc = 0, c = const

. and for Riemann-Liouville :

CDα =
c

Γ(1− α)
t−α 6= 0

.

Proposition 2.3.1. Let’s say n− 1 < α < n , then :

lim
α→n
Dαf(t) = lim

α→n
CDαf(t) = f (n)(t).

Remark 2.3.1. Let f be the function f(t) such that f s(0) = 0, s = 0, 1, 2...,m, then the two

fractional derivatives of Riemann-Liouville and caputo are commutative withe the derivative

of order m,m ∈ N.

DmDαf(t) = Dα+mf(t) = DαDmf(t)

and

CDαDmf(t) =C Dα+mf(t) = Dm CDαf(t)

Proposition 2.3.2. let f be the function such that f s(0) = 0, s = 0, 1, 2, ..., n− 1, then the

two fractional derivatives of Riemann-Liouville and Caputo coincide :

CDαf(t) = Dαf(t)

2.4 Caputo-Hadamard fractional derivative

2.4.1 Hadamard fractional integral and derivative

Definition 2.4.1. (Hadamard fractional integral) The left-sided Hadamard fractional inte-

gral of order α > 0 of a function f : (a, b)→ R is given by

HIαa+f(t) =
1

Γ(α)

∫ t

a

(
log

t

s
)α−1f(s)

ds

s
, (2.1)

provided the right integral converges.
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Proposition 2.4.1. For each κ1, κ2 ∈ R+, we have

1- HI0
a+(f(t)) = f(t)

2- HIκ1

a+(HIκ2

a+f(t)) = HIκ1+κ2

a+ f(t)

3- HIκ1

a+(ln t
a
)κ2 = Γ (κ2+1)

Γ (κ1+κ2+1)
(ln t

a
)κ1+κ2 for t > a

4- HIκ1

a+1 = 1
Γ (κ1+1)

(ln t
a
)κ1 for any t > a

Definition 2.4.2. The left-sided Hadamard fractional derivative of order α > 0 of a conti-

nous function f : (a, b)→ R is given by

HDαa+f(t) =
1

Γ(n− α)

(
t
d

dt
)n
∫ t

a

(
log

t

s
)n−α−1f(s)

ds

s
, (2.2)

where n = [α] + 1, and [α]denotes the integer part of the real number α.

The right integral converges were supplied. There is a recent generalization introduced

in[11] by Jarad et al, where the authors describe the generalization of fractional derivatives

of Hadamard and the present properties of such derivatives. This latest generalization is

now known as the fractional derivatives of Caputo-Hadamard

2.4.2 Caputo-Hadamard fractional derivative

Definition 2.4.3. Assume that κ ≥ 0. The Caputo–Hadamard fractional derivative of order

κ for f ∈ ACnR([a, b]) is represented by

CHDκa+

(
f(t)

)
=

1

Γ (n− κ)

∫ t

a

(
ln
t

s

)(n−κ−1)(
t
dt

t

)n
f(s)

ds

s

with n− 1 < κ∗ ≤ n

Proposition 2.4.2. Assume that f ∈ ACnR([a, b]) and n− 1 < κ ≤ n.

1− If CHDκ∗a+(f(t)) = 0 we have f(t) =
∑n−1

j=0 m
∗
j(ln

t
a
)j,

2− HIκa+

(CHDκ∗a+f(t)
)

= f(t) +m0 +m1

(
ln t

a

)
+m2

(
ln t

a

)2

+ · · ·+mn−1

(
ln t

a

)n−1
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Chapitre 3
Solutions of the boundary problem for

differential order in the Caputo-Hadamard

sense

3.1 Introdution

On a fractional Caputo–Hadamard problem with boundary value conditions via different

orders of the Hadamard

Position problems


CHDk1+u(t) = Υ̂

(
t, u(t)

)
, (t ∈ [1, T ], k ∈ (2, 3]),

u(1) = 0, CHDγ1+u(T ) = δ1,
HIq1+u(T ) = δ2,

(3.1)

where 0 ≤ γ < k, q ∈ R+. Also, CHDα1+ denotes the Caputo-Hadamard fractional derivative

of order α ∈ {k, γ}, HIq1+ denotes the Hadamard fractional integral of order q and the map

and Υ̂ : [1, T ]R→ R is continuous.

Lemma 3.1.1. let h continuous function. Then a function u0 is a solution for the Caputo-

17



Hadamard fractional differential equation.
CHDk1+u(t) = h(t), (t ∈ [1, T ], k ∈ (2, 3]),

u(1) = 0, CHDγ1+u(T ) = δ1,
HIq1+u(T ) = δ2,

(3.2)

if and only if u0 is a solution for the Hadamard fractional integral equation

u0(t) =
1

Γ(k)

∫ t

1

(ln
t

$
)k−1h($)

d$

$

+
ln(t)k−1

Θ

[
Λ4
HIk−γ1

1+ h(T )− Λ2
HIk+q1

1+ h(T )

− δ1Λ4 + δ2Λ2

]
+

ln(t)k−2

Θ∗

[
− Λ3

HIk−γ1

1+ h(T )

+ Λ1
HIk+q1

1+ h(T ) + δ1Λ3 − δ2Λ1

]
where :

Λ1 =
Γ(k)

Γ(k − γ1)
ln(T )k−γ1−1, Λ2 =

Γ(k)

Γ(k − γ1 − 1)
ln(T )k−γ1−2

Λ3 =
Γ(k)

Γ(k + q1)
ln(T )(k+q1−1), Λ4 = µ2

Γ(k)

Γ(k + q1 − 1)
ln(T )k+q1−2

Θ = Λ2Λ3 − Λ1Λ4

Proof 3.1.1. Assume, first that u0 is a differential equation solution (3.2). Then the

constants c0, c1, and c3 ∈ R exist, such that the constants are c0, c1, and c3 ∈ R

u0(t) =
1

λ
HIk1+h(t) + c0 ln(t)k−1 + c1 ln(t)k−2 + c3 ln(t)k−3 (3.3)

The first boundary condition of (3.1), since 2 < k ≤ 3, means that c3 = 0.

Applying the fractional derivative of Caputo-Hadamard and the integral of Hadamard of

order γ, q, tively such that 0 < γ < k, we have

CHDγ1+u0(t) = HIk−γ1+ h(t) + c1
Γ(k)

Γ(k − γ)
ln(t)(k−γ−1)

+ c2
Γ(k)

Γ(k − γ)
ln(t)(k−γ−2)

HIq1+u0(t) = HIk+q
1+ h(t) + c1

Γ(k)

Γ(k + q)
ln(t)(k+q−1)

+ c2
Γ(k)

Γ(k + q)
ln(t)(k+q−2)
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Substituting the values CHDγ1+u0(t) and HIq1+u0(t) into the above relation and using the

second condition of (3.1), we obtain

c1 =
1

Λ2Λ3 − Λ1Λ4

[
Λ4
HIk−γ1+ h(T )− 0

µ2Λ2

λ
HIk+q

1+ h(T )− δ1Λ4 + δ2Λ2

]

c2 =
1

Λ2Λ3 − Λ1Λ4

[
− Λ3

HIk−γ1+ h(T ) + Λ1
HIk+q

1+ h(T ) + δ1Λ3 − δ2Λ1

]
Replacing the value of the c1 and c2 constants with (3.3). Via direct computation, the

converse follows. This completes the proof.

To obtain the existence of problems 3.1 by Lemma 3.1.1, the operator T is defined as

follows :

T u(t) =
1

Γ(k)

∫ t

1

(ln
t

$
)k−1Υ̂

(
t, u(t)

) d$

$

+
ln(t)k−1

Θ

[
Λ4
HIk−γ1+ hΥ̂

(
T, u(T )

)
− Λ2

HIk+q
1+ Υ̂

(
T, u(T )

)
− δ1Λ4 + δ2Λ2

]
+

ln(t)k−2

Θ

[
− Λ3

HIk−γ1+ Υ̂
(
T, u(T )

)
+ Λ1

HIk+q
1+ Υ̂

(
T, u(T )

)
+ δ1Λ3 − δ2Λ1

]
(3.4)

Therefore the presence of an integral solution of the (3.1) equations is equivalent to the

existence of a fixed point for the T operator. We are now proposing our key outcome on the

presence of solutions to the problem (3.1).

3.2 Existence and uniqueness results via Banach’s fixed

point theorem

Theorem 3.1. Assume that

(H1) There exist constants LΥ̂, such that for all u, u′ ∈ X ,

|Υ̂
(
t, u
)
− Υ̂

(
t, u′
)
| ≤ LΥ̂|u− u

′|,

19



If

LΥ̂Q < 1,

then problem 3.1 has a unique solution in [1, T ].

where

Q =
ln(T )k

Γ(k + 1)
+
( ln(T )k−1|Λ4|

Θ
+

ln(T )k−2|Λ3|
Θ

) ln(T )k−γ

Γ(k − γ + 1)

+
( ln(T )k−1|Λ2|

Θ
+

ln(T )k−2|Λ1|
Θ

) ln(T )k+q

Γ(k + q + 1)
(3.5)

Proof 3.2.1. We’re converting the 3.1 problem into a fixed point problem, u = T u. The

fixed points of the T operator are obviously solutions to the 3.1 problem. We shall demons-

trate that T has a fixed point using the Banach contraction principle.

Setting supt∈[1,T ] Υ̂(t, 0) = Z <∞ and choosing

QZ(
1−LΥ̂Q

) + ln(T )k−1

Θ∗
(

1−LΥ̂Q
)(|δ1Λ4|+ |δ2Λ2|

)
+ ln(T )k−2

Θ
(

1−LΥ̂Q
)(|δ1Λ3|+ |δ2Λ1|

)
≤ r

Br = {u ∈ X : ‖u‖ ≤ r}
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. For u ∈ Br, we have

|T u(t)| ≤

∣∣∣∣∣ 1

Γ(k)

∫ t

1

(ln
t

$
)k−1Υ̂

(
t, u(t)

) d$

$

+
ln(t)k−1

Θ

[
Λ4
HIk−γ1+ hΥ̂

(
T, u(T )

)
− Λ2

HIk+q
1+ Υ̂

(
T, u(T )

)
− δ1Λ4 + δ2Λ2

]
+

ln(t)k−2

Θ

[
− Λ3

HIk−γ
∗

1+ Υ̂
(
T, u(T )

)
+ Λ1

HIk+q
1+ Υ̂

(
T, u(T )

)
+ δ1Λ3 − δ2Λ1

]∣∣∣∣∣
≤ 1

Γ(k)

∫ t

1

(ln
t

$
)k−1

(
|Υ̂
(
t, u(t))− Υ̂

(
t, 0
)
|+ |Υ̂

(
t, 0
)
|

)
d$

$

+
ln(t)k−1

Θ

[
Λ4
HIk−γ1+

(
|Υ̂
(
T, u(T ))− Υ̂

(
T, 0

)
|+ |Υ̂

(
T, 0

)
|

)

− Λ2
HIk+q

1+

(
|Υ̂
(
T, u(T ))− Υ̂

(
T, 0

)
|+ |Υ̂

(
T, 0

)
|

)
− δ1Λ∗4 + δ2Λ2

]

+
ln(t)k−2

Θ

[
− Λ3

HIk−γ1+

(
|Υ̂
(
T, u(T ))− Υ̂

(
T, 0

)
|+ |Υ̂

(
T, 0

)
|

)

+ Λ1
HIk+q

1+

(
|Υ̂
(
T, u(T ))− Υ̂

(
T, 0

)
|+ |Υ̂

(
T, 0

)
|

)
+ δ1Λ3 − δ2Λ1

]
≤ (LΥ̂‖u‖+ Z)Q+

ln(T )k−1

Θ

(
|δ1Λ4|+ |δ2Λ2|

)
+

ln(T )k−2

Θ

(
|δ1Λ3|+ |δ2Λ1|

)
≤ (LΥ̂r + Z)Q+

ln(T )k−1

Θ

(
|δ1Λ4|+ |δ2Λ2|

)
+

ln(T )k−2

Θ

(
|δ1Λ3|+ |δ2Λ1|

)
Hence, we obtain

‖T (u)‖ ≤ r

which proves that T (B) ⊂ B Now let u, u′ ∈ X . Then, for t ∈ [0, T ], we have

‖T (u)− T (u′)‖ ≤ (LΥ̂Q)‖u− u′‖

That implies that a contraction is T . By the Banach contraction principle, the problem (3.1)

has a unique solution.
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3.3 Existence results via Leray-Schauder’s nonlinear

alternative

Theorem 3.2. Let Υ̂ : [1, T ]R→ R be continuous and there exist nondecreasing continuous

function Ψ : [0,∞)→ (0,∞) and Φ ∈ CR+([1, T ]) such that |Υ̂(t, u)| ≤ Φ(t)Ψ(‖u‖) for each

(t, u) ∈ [1, T ]R. Moreover, suppose that there is a constant M > 0 so that

M
MZ + Ψ(M)‖Φ‖Q+ ∆1

> 1, (3.6)

where Q are represented by (3.5), and ∆1 defined by

∆1 =
ln(T )k−1

Θ
(|δ2Λ2 − δ1Λ4|) +

ln(T )k−2

Θ
(|δ1Λ3 − δ2Λ1|) (3.7)

then the problem 3.1 has at least one solution.

Proof 3.3.1. Consider the T operator formulated by (3.4). We plan to check that T maps

bounded sets into X bounded subsets. Select the necessary ρ > 0 constant and construct the
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Bρ = {u ∈ X : ‖u‖ ≤ ρ} boundary ball in X . Then we have t ∈ [1, T ] for every t ∈ [1, T ],

|T u(t)| ≤ sup
t∈[1,T ]

∣∣∣∣∣ 1

Γ(k)

∫ t

1

(ln
t

$
)k−1Υ̂

(
$, u($)

) d$

$

+
ln(t)k−1

Θ

[
Λ4
HIk−γ1

1+ Υ̂
(
T, u(T )

)
− Λ2

HIk+q
1+ Υ̂

(
T, u(T )

)
− δ1Λ4 + δ2Λ2

]
+

ln(t)k−2

Θ

[
− Λ3

HIk−γ1+ Υ̂
(
T, u(T )

)
+ Λ1

HIk+q
1+ Υ̂

(
T, u(T )

)
+ δ1Λ3 − δ2Λ1

]∣∣∣∣∣
≤ sup

t∈[1,T ]

∣∣∣∣∣ 1

Γ(k)

∫ t

1

(ln
t

$
)k−1Φ(t)Ψ(‖u‖) d$

$

+
ln(T )k−1

Θ

[
Λ4
HIk−γ1+ Φ(T )Ψ(‖u‖)− Λ2

HIk+q
1+ Φ(T )Ψ(‖u‖)

− δ1Λ4 + δ2Λ2

]
+

ln(T )k−2

Θ

[
− Λ3

HIk−γ1+ Φ(T )Ψ(‖u‖)

+ Λ1
HIk+q

1+ Φ(T )Ψ(‖u‖) + δ1Λ3 − δ2Λ1

]∣∣∣∣∣
≤ ‖Φ‖Ψ(‖u‖)Q+ ∆1 (3.8)

and consequently

‖T (t)‖ ≤ ‖Φ‖Ψ(‖u‖)Q+ ∆1.

Now, we continue the proof to prove that the operator T maps bounded sets (balls) into
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equi-continuous sets of X . Assuming t1, t2 ∈ [1, T ] with t1 < t2 and u ∈ Vρ, we have

|T (t2)− (T (t1)|

≤
∣∣∣ 1

Γ(k)

∫ t2

1

(ln
t2
$

)k−1Υ̂
(
$, u($)

) d$

$
− 1

Γ(k)

∫ t1

1

(ln
t1
$

)k−1Υ̂
(
$, u($)

) d$

$

∣∣∣
+
| ln(t2)k−1 − ln(t1)k−1|

|Θ|

{∣∣∣µ1Λ4

λ
HIk−γ1

1+ Υ̂
(
T, u(T )

)∣∣∣+
∣∣∣Λ2
HIk+q

1+ Υ̂
(
T, u(T )

)∣∣∣}

+
∣∣∣ ln(t1)k−2 − ln(t2)k−2

Θ

∣∣∣{∣∣∣Λ3
HIk−γ1+ Υ̂

(
T, u(T )

)∣∣∣+
∣∣∣Λ1
HIk+q

1+ Υ̂
(
T, u(T )

)∣∣∣}

≤
(‖Φ‖Ψ(‖u‖)
λΓ(k + 1)

)(
2
∣∣(ln t2

t1
)k|+ |(ln t1)k − (ln t2)k|

)
+
| ln(t2)k−1 − ln(t1)k−1|

|Θ|

{∣∣∣Λ4
HIk−γ1+ Υ̂

(
T, u(T )

)∣∣∣+
∣∣∣Λ2
HIk+q

1+ Υ̂
(
T, u(T )

)∣∣∣
+ |δ1Λ4|+ |δ2Λ2|

}
+
∣∣∣ ln(t1)k−2 − ln(t2)k−2

Θ

∣∣∣{∣∣∣Λ3
HIk−γ1+ Υ̂

(
T, u(T )

)∣∣∣
+
∣∣∣Λ1
HIk+q

1+ Υ̂
(
T, u(T )

)∣∣∣+ |δ1Λ3|+ |δ2Λ1|

}
If t1 − t2 → 0, the latter inequality, irrespective of u ∈ Bρ, approaches 0. This implies

the equivalence of T and therefore the relative compactness of T to Bρ. The Arzelá-Ascoli

theorem therefore follows that T is absolutely continuous and that T on Bρ is compact. The

desired result will be completed from the Leray-Schauder theorem 3.2 once the limits of the

set of solutions for the equation u = T u can be checked for some ∈ (0, 1). Let us assume

that u is a solution to the above equation in order to achieve this goal. For any t ∈ [1, T ],

we obtain

|u(t)| ≤ ‖Φ‖Ψ(‖u‖)Q+ ∆1

and so
‖u‖

Ψ(‖u‖)‖Φ‖Q+ ∆1

< 1.

Select M with ‖u‖ 6= M as the constant. Please specify U = {x ∈ X : ‖u‖ < M}. The

operator T : Ū → X can then be realized to be continuous and absolutely continuous. There

is no u ∈ ∂U satisfying u = T u for any ∈ (0, 1), by considering the option of U . Using the

Leray-Schauder theorem, it is therefore inferred that T is an operator with a u ∈ Ū fixed

point, which is a solution to the nonlinear Caputo-Hadamard fractional BVP (3.1).
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3.4 Example

We review our theoretical results in this section of the paper by providing a numerical

example to illustrate the applicability of the empirical findings.

Example 6. Consider the fractional integro-differential equation.
CHD2.68

1+ u(t) =
1

49 + exp (t2 − 1)

( |u|
25 + |u|

)
+

2020

2021
, t ∈ [1, 6

5
],

u(1) = 0, CHD0.6
1+u(6

5
) = 1

5
, HI0.05

1+ u(6
5
) = 1

12
,

(3.9)

Here k = 2.68, γ = 0.6, q∗ = 0.5, δ1 = 1
16

, δ2 = 5
12
,, and T = 6

5
.

We can find that

Λ1 ≈ 0.1814, Λ2 ≈ 1.2534, Λ3 ≈ 0.0371, Λ4 ≈ 0.3885

Θ ≈ 0.0240, Q ≈ 0.0517, (3.10)

Consider the continuous function Υ̂ : [1, 6
5
]R→ R defined by

Υ̂(t, u(t)) =
1

49 + exp (t2 − 1)

( |u|
25 + |u|

)
+

2020

2021

. We have ∣∣∣Υ̂(t, u(t)
)
− Υ̂

(
t, u′(t)

)∣∣∣ ≤ 1

2
‖u(t)− u′(t)‖,

with LΥ̂ =
1

2
. We have

LΥ̂Q ≈ 0.0259 < 1

By Theorem 3.1 boundary value problem (3.1) has a unique solution
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Conclusion

In this memoir, solutions of the boundary problem for differential order in the Caputo-

Hadamard sense with local and integral conditions were presented. These results have been

obtained by applying the standard fixed point theorem and Leray-Schauder’s nonlinear

alternative.
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Résumé

Dans ce mémoire, nous étudions l’existence de solutions pour des équations différentielles

fractionnaires impliquant une dérivée fractionnaire de Caputo-Hadamard d’ordre 2 < α ≤ 3.

Nos résultats reposent sur un théorème de virgule fixe standard. Un exemple est fourni pour

illustrer la théorie. Mots-Clés : Intégrale fractionnaire, Dérivée fractionnaire de type Caputo-

Hadamard, Existence, Unicité, Théorèmes de point fixe

Abstract
In this memoir, we study the existence of solutions for fractional differential equations

involving fractional Caputo-Hadamard derivative of order 2 < α ≤ 3. Our results rely on a

standard fixed point theorems. An example is provided to illustrate the theory.

Keys Words : Fractional, Fractional derivative of Caputo-Hadamard type, Existence, Uniqueness,

Fixed point theorems.
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