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Introduction

The topic of fractional calculus ( the calculus of arbitrary, real, or complex integrals and

derivatives) has achieved considerable popularity and interest over the prior three decades,

essentially due to its demonstrated applications in several years. various fields of science and

engineering.

It gives several potentially serviceable tools for resolving differential and integral equations,

as well as many other problems including special functions of mathematical physics, as well

as their extensions and generalizations.

The idea of fractional calculus generally considered to derive from a question posed in 1695

by the Marquis de L’hôpital (1661-1704) to Gottfried Wilhelm Leibniz (1646-1716), who

sought to explain the purpose of Leibniz (currently popular ) notation
dny

dxn
for the deriva-

tive of the order n ∈ N0 := {0, 1, 2, ...} when n =
1

2
.
(

And what would happen if n =
1

2
?
)
.

In his response dated September 30, 1695, Leibniz wrote to L’Hôpital as follows : ”.. It is

an apparent paradox from which, one day, useful conclusions will be drawn...”

A later mention of fractional derivatives was made, by (for example) Euler in 1730, Lagrange

in 1772, Laplace in 1812, Lacroix in 1819, Fourier in 1822, Liouville in 1832, Riemann in

1847, Greer 1859, Holmgren in 1865, Griinwald in 1867, Letnikov in 1868, Sonin in 1869,

Laurent in 1884, Nekrassov in 1888, Krug in 1890 and Weyl in 1917.

The theories of differential, integral, and integro-differential equations and special func-

tions of mathematical physics, as well as their extensions and generalizations in one or

more variables, here are some examples of current applications of fractional calculus : fluid
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circulation, rheology, process dynamics in self-similar and porous structures, diffusion-like

transport, electrical networks, probabilities and statistics, dynamic systems control theory,

viscoelasticity, corrosion electrochemistry, chemical physics, optics, and signal processing,

etc.

This work is divide into three chapters.

• In the first chapter, we will present some definitions and theories that we have used

in this thesis, and we will mention the concepts of some special functions.

• In the second chapter, we will mention integrals and fractional derivatives of Riemann-

Liouville and Caputo and fractional Caputo and Riemann-Liouville conformable as

well as some of their characteristics and the relationship between them.

• In the third chapter, we will mention the existence and uniqueness for boundary value

problems involving Caputo conformable derivative with multi-order fractional integral-

derivative conditions of the Riemann-Liouville comfortable type.
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General Notations

We will use the following notations throughout this work :

sets

R set of real numbers.

R+ set of positive real numbers.

R∗+ set of strictly positive real numbers.

N set of natural numbers.

N∗ set of natural numbers excluding zero.

C set of complex numbers.

C0([a, b]) ≡ C([a, b]) the space of functions f continuous on [a, b] with real values.

Lp([a, b]) space of functions u measurable on [a, b] and satisfying

∫ b

a

| u(t) |p dt <∞.

AC([a, b]) space of absolutely continuous functions on [a, b]

(= {u ∈ C([a, b]);u
′ ∈ L1([a, b])})

Functions

Γ(α) The Gamma function.

B(x, y) The Beta function

.Eα(x) the Mittag-Le function ffler with one parameter.

Eα,β(z) the two-parameter Mittag-Le ffler function.

Derivative and integral

3



Abreviations

R− L Riemann-Liouville.

M − L Mittag-Le ffler.
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Chapitre 1
Préliminaires

1.1 Spaces of continuous and absolutely functions conti-

nue

Definition 1.1.1. [2] Let Ω = (a, b)(−∞ ≤ a < b ≤ ∞) a finite or infinite interval of R

and 1 ≤ p ≤ ∞ .

1. If 1 ≤ p ≤ ∞, the space Lp(Ω) Lp(Ω) =
{
f : Ω −→ R; f measurable and

∫
Ω
|

f(x) |p dx <∞
}
.

2. For p =∞ , the space L∞(Ω) is the space of measurable functions , f bounded almost

everywhere on Ω , we notice supx∈Ω ess | f(x) |= inf
{
C ≥ 0; | f(x) |≤ C p.p on Ω

}
.

Definition 1.1.2. [2] Let [a, b] (−∞ < a < b <∞) a finite interval. We denote by AC[a, b]

the space of the primitive functions of the integrable functions in the sense of Lebesgue

f ∈ AC[a, b]⇔ f(x) = c+

∫ x

a

ϕ(t)dt
(
ϕ(t) ∈ L(a, b)

)
and we call AC[a, b] the space of absolutely continuous functions on [a, b].

Definition 1.1.3. [2] For n ∈ N , we denote by ACn[a, b] the function space f having

derivatives to order (n− 1) continue on [a, b] such a f (n−1) ∈ AC[a, b]

ACn[a, b] =
{
f : [a, b]→ C and f (n−1) ∈ AC

(
[a, b]

)}
In particular AC1[a, b] = AC[a, b] .
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1.2 Some properties of real analysis

Definition 1.2.1. (The continuity) [3] :

Let f : R→ R an application. We say that f is continuous if it is continuous at any point

of R. In other words , f : R→ R is continuous in a if

∀a ∈ R,∀ε ∈ R∗+, ∃α ∈ R∗+,∀x ∈ R, | x− a |< α⇒| f(x)− f(a) |< ε.

Definition 1.2.2. (Uniformly continuous applications) [3] :

Let (X, d) and (X
′
, d
′
) metric spaces. An application f : X → X

′
is said to be uniformly

continuous if for all ε ∈ R∗+, it exists α ∈ R∗+ such as

∀(x, y) ∈ XX, d(x, y) < α⇒ d
′(
f(x), f(y)

)
< ε

Definition 1.2.3. (Lipschitzian) [4] :

Let G a part of R2 , f : G → R an application and A a positive real number. We say that

f is A−lipschitzienne compared to y if : ∀(t, y) ∈ G, | f(t, y1)− f(t, y2) |≤ A | y1 − y2 | .

where A is called the Lipschitz constant.

• If 0 ≤ A < 1 , we say that f is contracting.

Proposition 1.2.1. All Lipschitzian applications are continuous.

Definition 1.2.4. (Uniform convergence) [3] :

They say that the sequence of functions fn uniformly converges to the function f , when n

tending to +∞ , if ∀ε > 0,∃m ∈ N,∀x ∈ E,∀n > m :| fn(x)− f(x) |6 ε.

Definition 1.2.5. (bounded function) :

A function f : G ⊂ R→ R is bounded if m ∃M > 0, ∀t ∈ G :| f(t) |6M.

Definition 1.2.6. (Convex function) [3] :

The application f is convex if and only if, for all x, y, z ∈ I ⊂ R with x 6 y 6 z , for

y = tx+ (1− t)z , , we have f(y) 6 tf(x) + (1− t)f(z)

Definition 1.2.7. (Exponential order function α) [10] It is said that the function f(t)

is exponential α , if there are two positive constants M and T such

e−αt | f(t) |≤M for all t > T

6



Definition 1.2.8. (Gauss integral) :

A Gaussian integral is the integral of a Gaussian function on the set of reals.∫ +∞

−∞
e−αx

2

dx =

√
π

α

Definition 1.2.9. (Convolution product) [3] :

The convolution product of two real or complex functions f and g that can be integrated is :

(f ∗ g)(x) =

∫ +∞

−∞
f(x− t)g(t)dt =

∫ +∞

−∞
f(t)g(x− t)dt.

Proposition 1.2.2. (Dirichlet formula) [5] :

Let F be a continuous function and λ, µ, ν are positive numbers. So∫ t

a

(t−x)µ−1dx

∫ x

a

(y−a)λ−1(x−y)ν−1F (x, y)dy =

∫ t

a

(y−a)λ−1dy

∫ t

y

(t−x)µ−1(x−y)ν−1F (x, y)dx.

Definition 1.2.10. (Lebesgue dominated convergence theorem) [6] :

Let E be a measurable set in R et let {fn} a series of measurable functions such as

• lim
n→∞

fn(x) = f(x) p.p on E

• For each n ∈ N, | fn(x) |6 g(x) p.p on E where g is integrable in the sense of Lebesgue

on E. So lim
n→∞

∫
E

fn(x) =

∫
E

f(x)

Proof 1.2.1. See [7]

Theorem 1.1. (Fubini) [8]

Let f(x, y) be a summable function on the product of measurable spaces (X,µ) and (Y, ν) .

We then have the following assertions :

1. For µ-almost all the x ∈ X the function f(x, y) is summable on Y and its integral on

Y is a summable function on X .

2. For ν-almost all the y ∈ Y the function f(x, y) is summable on X and its integral on

X is a summable function on Y

. We have
∫
XY

f(x, y)d(µν)(x, y) =
∫
X

( ∫
Y
f(x, y)dν(y)

)
dµ(x) =

∫
Y

( ∫
X
f(x, y)dµ(x)

)
dν(y)

Proof 1.2.2. See [8]
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1.3 Some elements of topology

Definition 1.3.1. (norm) :

Let E be a vector space on R . We call a norm on E any application ‖ . ‖: E → R+ checked :

• ∀x ∈ E :‖ x ‖= 0⇔ x = 0.

• ∀λ ∈ R,∀x ∈ E :‖ λx ‖=| λ |‖ x ‖ .

• ∀x, y ∈ E :‖ x+ y ‖6‖ x ‖ + ‖ y ‖ ”triangular inequality”.

Example 1. The space C(J ;R) provided with the norm ‖ y ‖∞:= sup{| y(t) ||: t ∈ J.

Definition 1.3.2. (Banach space) [9] :

We call Banach space any vector complete normed space on the body K = R or C

Example 2. C(J ;R) space of continuous functions on J and with values in R is of Banach.

Definition 1.3.3. (Open Parts) [9] :

Let E be a metric space. A part A of E is called open if each time it contains a point of E,

it contains at least one open ball (of radius > 0) having its point at its center , that is to say

(∀x ∈ A)(∃ρ > 0) : B0(x, ρ) ⊂ A.

Definition 1.3.4. (Closed parties) [9] We call the closed part of E any part of E whose

complement is open.

Example 3. Any closed ball is a closed part.

Definition 1.3.5. (Compact parts) [8] :

It is said that C ⊂ R is compact if for any covering of C by openings one can extract

a finished underlaying. This translates as follows : if (Ui)i∈I is an open family such as

C ⊂ (Ui)i∈I then there is a finite subset J ⊂ I, C ⊂
⋃
i∈J Ui

Definition 1.3.6. (Relatively compact parts) [3] :

We say that A is a relatively compact part of a metric space X if its adhesion is a compact

part of X.
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Definition 1.3.7. (Convex parts) [6] :

Let C be a part of E. We say that C is convex in E if , for all x, y ∈ C and all t ∈ [0, 1] ,

we have (1− t)x+ ty ∈ C.

Definition 1.3.8. (Operator) [4] :

Let E be a normed space vector ; a linear mapping A to E in itself is called a linear operator

in E . We call domain of A and we denote it by DA , or DA = {x ∈ E,AX ∈ E}.

Definition 1.3.9. (Continuous operator) :

Operator A is continuous, if for all ε > 0 , it exists δ > 0 such as inequality

(x
′
, x
′′ ∈ DA) :‖ x′ − x′′ ‖< δ ⇒‖ Ax′ − Ax′′ ‖< ε.

Definition 1.3.10. (Bound Linear Operators) [4] :

Let E be a normed vector space ; we call bounded linear operator. Any continuous linear map

from E to E.

• If A is a bounded linear operator, then

(∀x ∈ DA) : ‖ Ax ‖≤‖ A ‖ . ‖ x ‖ .

where the norm of A being defined by

‖ A ‖= sup
‖x‖61

‖ Ax ‖= sup
x∈DA

‖ Ax ‖
‖ x ‖

.

Definition 1.3.11. (Compact operator) [8] :

Operator A is said to be compact if the image of set X ⊂ R by A that is to say the set A(X)

is relatively compact.

1.4 Useful functions

The Gamma function, the Beta function and the Mittag-Leffler function are called special

functions. These functions play a very important role in the theory of fractional calculus.
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1.4.1 The Gamma function

Euler’s Gamma function is a function that naturally extends the factorial to real num-

bers, and even to complex numbers. For x ∈ C/{0,−1,−2, ...} such as <e(x) > 0 [11].

Definition 1.4.1. We define the Gamma function by : [11]

Γ(x) =

∫ +∞

0

tx−1e−tdt ;x ∈ C and <e(x) > 0, (this integral is convergent). (1.1)

Proposition 1.4.1. :[11]

1. Γ(x+ 1) = xΓ(x) in particular Γ(n+ 1) = n!,∀n ∈ N.

2. Γ(1) = 1 and Γ(−m) = ±∞ for all m ∈ N.

3. Γ(1
2
) =
√
π

4. Γ(−n+ 1
2
) = (2n)!

√
π

4nn!
and for negative values Γ(n+ 1

2
) = (−1)n2n

1.3.5.....(2n−1)

√
π.

5. The Gamma function can be represented by the limit :

Γ(x) = lim
n→∞

n!nx

x(x+ 1)......(x+ n)
,<e(x) > 0.

Proof 1.4.1. 1.
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• Using part integration we get :

Γ(x+1) =

∫ +∞

0

e−ttxdt =
[
−txe−t

]+∞

0
+x

∫ +∞

0

e−ttx−1dt = x

∫ +∞

0

e−ttx−1dt = xΓ(x)

• We have Γ(1) = 0! = 1 and the property Γ(x+ 1) = Γ(x) , we obtain :

Γ(2) = 1Γ(1) = 1!

Γ(3) = 2Γ(2) = 2!

· · · · · · · · ·

Γ(n+ 1) = nΓ(n) = n!

2. We have Γ(1) =
∫ +∞

0
e−t =

[
− e−t

]+∞

0
= 1 and Γ(x) =

Γ(x+ 1)

z
, so Γ(0+) = +∞.

3. With the change of variable s =
√
t we get :

Γ
(

1
2

)
=
∫ +∞

0

e−t√
t
dt.

= 2
∫ +∞

0
e−s

2
ds.

= 2
(√

π
2

)
(from the integral of Gauss)

=
√
π

4. As can easily prove by induction the following property :

Γ
(
n+

1

2

)
=

(2n)!
√
π

4nn!
, for n ∈ N

• For n = 0 , we have Γ
(
0 + 1

2

)
=
√
π .

• Suppose that the formula is verified for (n− 1) and show it for n :

we have Γ
(
(n− 1) + 1

2

)
=

(2(n− 1))!
√
π

4n−1(n− 1)!
, is verified. So

Γ
(
n+ 1

2

)
=
(
n− 1

2

)
Γ
(
n− 1

2

)
=
(
n− 1

2

)(2(n− 1))!
√
π

4n−1(n− 1)!

=
(

2n−1
2

)(2(n− 1))!
√
π

4n−1(n− 1)!

= 2n
2n

2n−1
2

(2(n− 1))!
√
pi

4n−1(n− 1)!
.

Γ
(
n+ 1

2

)
=

(2n)!
√
π

4nn!
.

And the same demonstration for the second expression.
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5. See [11]

Example 4. • Γ(−3
2

) = 4
3

√
π ' 2.363271801207.

• Γ(−1
2

) = −2
√
π ' −3.544907701811.

• Γ(3
2
) = 1

2

√
π ' 0.886226925453.

• Γ(5
2
) = 3

4

√
π ' 1.329340388179.

• Γ(7
2
) = 15

8

√
π ' 3.323350970448.

1.4.2 The beta function

The beta function is called an Euler integral of the first type.

Definition 1.4.2. The beta function is defined by [11]

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt, (<e(x) > 0,<e(y) > 0). (1.2)

For example to find :

B(2, 3) =
∫ 1

0
t(1− t)2dt

=
∫ 1

0
(t− 2t2 + t3)dt

=
1

12
.

Proposition 1.4.2. The relationship between the Gamma function and the Beta function

are given by : [11]

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
, (x, y ∈ C,<e(x) > 0,<e() > 0). (1.3)

Proof 1.4.2. [9]

Γ(x)Γ(y) =
∫ +∞

0

∫ +∞
0

tx−1
1 ty−1

2 e−t1e−t2dt1dt2.

=
∫ +∞

0
tx−1
1

(
ty−1
2 e−(t1+t2dt2

)
dt1.

By change of variable t
′
2 = (t1 + t2. We find

Γ(x)Γ(y) =

∫ +∞

0

tx−1
1 dt1

∫ +∞

0

(t
′

2 − t1)y−1e−t
′
2dt

′

2.

=

∫ +∞

0

e−t
′
2dt

′

2

∫ +t1

0

(t
′

2 − t1)y−1tz−1
1 dt1.
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If we put t
′
1 = t1

t
′
2

, we arrive at :

=

∫ +∞

0

e−t
′
2dt

′

2

(∫ 1

0

(t
′

1t
′

2)z−1(t
′

2 − t
′

1t
′

2)y−1t
′

2dt
′

1

)
.

=

∫ +∞

0

e−t
′
2dt

′

2

(
(t
′

2)x+y−1B(z, y)
)
.

=

∫ +∞

0

e−t
′
2(t
′

2)x+y−1dt
′

2B(x, y).

= Γ(x+ y)B(x, y).

Which gives the desired result.

Corollary 1.1. [10] Beta is symmetrical : B(x, y) = B(y, x)

Proof 1.4.3. We have : B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
=

Γ(y)Γ(x)

Γ(y + x)
= B(y, x)

1.4.3 Mittag-Leffler function

The Mittag-Leffler function plays a very important role in the theory of whole order

differential equations, and it is found widely used in solving fractional differential equations.

This function was presented by G. M. Mittag-Leffler, and studied by A. Wiman.

Definition 1.4.3. [10] The Mittag-Leffler function Eα(x) is defined by :

Eα(x) =
+∞∑
n=0

xn

Γ(nα + 1)
, (x ∈ C, α > 0), (1.4)

and the generalized Mittag-Leffler function Eα,β(z) is defined as follows :

Eα,β(x) =
+∞∑
n=0

xn

Γ(nα + β)
, (α, β > 0), (1.5)

_20200910_231043.jpg

13



Example 5. [10] For special values given to α and β we have :

E1,1(x) =
∞∑
n=0

zk

Γ(k + 1)
=
∞∑
n=0

xk

k!
= ex.

E1,2(x) =
∞∑
n=0

xk

Γ(k + 2)
=
∞∑
n=0

xk

(k + 1)!
=

1

x

∞∑
n=0

xk+1

(k + 1)!
=
ex − 1

x
.

E1,3(x) =
∞∑
n=0

xk

Γ(k + 3)
=
∞∑
n=0

xk

(k + 2)!
=

1

x2

∞∑
n=0

xk+2

(k + 2)!
=
ex − 1− x

x2
.

1.5 Fixed point theorems

1.5.1 Fixed point

Definition 1.5.1. Let T be an application of a set S in it itself. We call fixed point of T

any point s ∈ S such that T (s) = s.

1.5.2 Banach contraction principle

Theorem 1.2. [11] Let S be a complete metric space and let T : S → S be a contracting ap-

plication, i.e. there exists 0 < k < 1 such that d(Tx, Ty) ≤ k(x, y),∀x, y ∈ S. Then T admits

a single fixed point s ∈ S. We have limn→∞ T
n(s) = s, and d(T n(s), s) ≤ kn

1− k
d(s, T (s)).

Proof 1.5.1. See [11]

1.5.3 Arzela-Ascoli

Theorem 1.3. [8] Let C(X) be the normed space of real continuous functions on a compact

metric space X of norm ‖ f ‖= supx∈X | f(x) |. For a family A ⊂ C(X) to be relatively

compact, it is necessary and sufficient that it be :

• Uniformly bounded :

∃C :| f(x) |≤ C, ∀f ∈ A,∀x ∈ X.

• Equicontinues :

∀ε > 0,∃δ > 0, | x− y |< δ ⇒| f(x)− f(y) |< ε,∀f ∈ A.
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Proof 1.5.2. See [8]

1.5.4 Leray-Schauder’s nonlinear alternative

Theorem 1.4. [?] Let X∗ be a Banach space, B∗ a closed and convex subset of X∗, U an

open subset of C and 0 ∈ U . As well as, let P : Ū → C be a continuous and compact map.

Then either

(a) P has a fixed point in Ū , or

(b) there is an element u ∈ ∂U (the boundary of U) and a constant τ ∗ ∈ (0, 1) so that

u = τ ∗P(u).

Proof 1.5.3. See [?]
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Chapitre 2
Derivation and fractional integration

In this chapter we present some of the definitions, results, theories and main properties

concerning the integral and the fractional derivative in the Riemann-Liouville sense and the

caputo sense and the fractional caputo and Riemann-Liouville conformable operators. (see

[2], [13] , [14])

2.1 Fractional integral of Riemann-Liouville

Let be a continuous function on the interval [a, b] we consider the integral

I(1)(t) =

∫ t

a

(r)dr. (2.1)

I(2)(t) =

∫ t

a

dt1

∫ t1

a

(r)dr,

according to the Fubini theorem we find ;

I(2)(t) =
1

1!

∫ t

a

(t− r)2−1(r)dr. (2.2)

By repeating the same operation n times we get :

I(n)(t) =

∫ t

a

dt1

∫ t1

a

dt2

∫ t2

a

∫ t2

a

.....

∫ tn−1

a

(t− r)n−1(r)dr

=
1

(n− 1)!

∫ t

a

(t− r)n−1(r)dr.

for any integer n.

This formula is called Cauchy’s formula and as we have (n− 1)! = Γ(n), Riemann realized
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that the last expression could have a meaning even when n taking non-enters values, so it

was natural to define the fractional integration operator as following :

Definition 2.1.1. Let ∈ L1[a,+∞[ , a ∈ R and α ∈ R∗+ the Riemann-Liouville fractional

integral of order α of the lower bound function is defined by :

Iαa+(t) =
1

Γ(α)

∫ t

a

(t− r)α−1(r)dr, −∞ 6 a < t < +∞ (2.3)

Particular case I0
a+(t) (i.e I0

a+ is the identity operator )

remark 2.1.1. To simplify the writing, we will note below I0
a+ by Iα.

remark 2.1.2. By the simple change of variable s = t−r , we notice that Iαa+ can be written

in the following form :

I0
a+(t) =

1

Γ(α)

∫ t−a

0

sα−1(t− s)ds. (2.4)

(other definition of the integral of R-L )

2.1.1 Fractional integrals in the sense of R-L of some usual func-

tions

1. Let (t) = (t− a)β with a ∈ R and β > −1 :

Iαa+(t) =
1

Γ(α)

∫ t
a
(t− r)α−1(r − a)βdr, using variable change r = a+ (t− a)s where s

varies from 0 to 1 then the beta function, we get :

Iαa+(t) =
1

Γ(α)

∫ 1

0

[t− a− (t− a)s]α−1[s(t− a)]β(t− a)ds

=
1

Γ(α)
(t− a)α+β

∫ 1

0

sβ(1− s)α−1ds

=
1

Γ(α)
(t− a)α+ββ(β + 1, α)

=
Γ(β + 1)

Γ(α + β + 1)
(t− a)α+β.

So ;

Iαa+(t− a)β =
Γ(β + 1)

Γ(α + β + 1)
(t− a)α+β. (2.5)

For a = 0, we have

Iα0+t
β =

Γ(β + 1)

Γ(α + β + 1)
tα+β. (2.6)
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2. The constant function (t) = C

Iαa+C =
1

Γ(α)

∫ t

a

(t− r)α−1Cdr

=
C

Γ(α)

∫ t

a

(t− r)α−1dr

=
C

Γ(α)

[−(t− r)α

α

]t
a

=
C

αΓ(α)
(t− a)α

=
C

Γ(α + 1)
(t− a)α.

Hence the result ;

Iαa+C =
C

Γ(α + 1)
(t− a)α. (2.7)

3. The exponential function (t) = exp(kt). For k > 0, and α > 0, α /∈ N. Using the

formula (2.4) of the integral of R-L with a = −∞, we obtain ;

Iα−∞ exp(kt) =
1

Γ(α)

∫ +∞

0

sα−1 exp(k(t− s))ds

=
exp(kt)

Γ(α)

∫ +∞

0

sα−1 exp(−ks))ds
(2.8)

By changing the variable x = ks, we deduce that, therefore

Iα−∞ exp(kt) =
exp(kt)

Γ(α)

∫ +∞

0

(x
k

)α−1

exp(−x)
dx

k

= k−α
exp(kt)

Γ(α)

∫ +∞

0

xα−1 exp(−x)dx

= k−α
exp(kt)

Γ(α)
Γ(α)

= k−α exp(kt)

So ;

Iα−∞ exp(kt) = k−α exp(kt) (2.9)

2.1.2 Main properties of the fractional integral within the mea-

ning of R-L

Theorem 2.1. For ∈ C[a, b], the fractional integral of Riemann-Liouville has the following

semi-group property :

Iαa+(Iβa+)(t) = Iα+β
a+ (t), (2.10)
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for α > 0 and β > 0.

Proof 2.1.1. Let ∈ C[a, b], α > 0 and β > 0 so ;

Iαa+(Iβa+)(t) =
1

Γ(α)

∫ t

a

(t− r)α−1(Iβa+)(r)dr

=
1

Γ(α)

∫ t

a

(t− r)α−1
[ 1

Γ(β)

∫ r

a

(τ − s)β−1(s)ds
]
dr

=
1

Γ(α)Γ(β)

∫ t

a

(t− r)α−1
[ ∫ r

a

(r − s)β−1(s)ds
]
dr

According to Dirichlet’s formula we find :

Iαa+(Iβa+)(t) =
B(β, α)

Γ(α)Γ(β)

∫ t

a

(t− s)α+β−1(s)ds

=
Γ(α)Γ(β)

Γ(α + β)Γ(α)Γ(β)

∫ t

a

(t− s)α+β−1(s)ds

=
1

Γ(α + β)

∫ t

a

(t− s)α+β−1(s)ds

= Iα+β
a+ (t)

remark 2.1.3. The fractional integral of Riemann-Liouville can in particular be written in

the form of a convolution product of the power function hα(t) =
tα−1

Γ(α)
and (t) : Iαa+(t) =∫ t

a

hα(t− r)(r)dr = (hα∗)(t).

Proposition 2.1.1. (The operator integral Iαa+ is linear).

Indeed, if and g are two functions such that Iαa+ and Iαa+g exist, then for c1 and c2 two

arbitrary reals we will have

Iαa+(c1f + c2g)(t) =
1

Γ(α)

∫ t

a

(t− r)α−1(c1 + c2g)(r)dr

=
c1

Γ(α)

∫ t

a

(t− r)α−1(r)dr +
c2

Γ(α)

∫ t

a

(t− r)α−1g(r)dr

= c1I
α
a+(t) + c2I

α
a+g(t).

Proposition 2.1.2. Let ∈ C0([a, b]). So we have

1.
d

dt
(Iαa+)(t) = (Iα−1

a+ )(t), α > 1 .

2. limα→0+(Iαa+)(t) = (t), α > 0 .
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Proof 2.1.2. 1. Apply Leibniz 2.40 derivation rule, we get,

d

dt
(Iαa+)(t) =

d

dt

( 1

Γ(α)

∫ t

a

(t− r)α−1(r)dr
)

=
α− 1

Γ(α)

∫ t

a

(t− r)(α−1)−1(r)dr

=
α− 1

Γ(α− 1 + 1)

∫ t

a

(t− r)(α−1)−1(r)dr

=
α− 1

(α− 1)Γ(α− 1)

∫ t

a

(t− r)(α−1)−1(r)dr

=
1

Γ(α− 1)

∫ t

a

(t− r)(α−1)−1(r)dr = (Iα−1
a+ )(t)

2. For the last identity, we consider the function ∈ C0([a, b]), we have

Iαa+(t) =
1

Γ(α

∫ t

a

(t− r)α−1(r)dr.

According to relation (2.5) we can write :

Iαa+1 =
(t− a)α

Γ(α + 1)
→ 1

when α→ 0+. So for a certain δ > 0, we will have∣∣∣Iαa+(t)− (t− a)α

Γ(α + 1)
(t)
∣∣∣ =

∣∣∣ 1

Γ(α)

∫ t

a

(t− r)α−1(τ)dr − 1

Γ(α)

∫ t

a

(t− r)α−1(t)dr
∣∣∣

≤ 1

Γ(α)

∫ t

a

(t− r)α−1 | (r)− (t) | dr

=
1

Γ(α)

∫ t−δ

a

(t− r)α−1 | (r)− (t) | dr

+
1

Γ(α)

∫ t

t−δ
(t− r)α−1 | (r)− (t) | dr

(2.11)

On the one hand, we have is continuous on [a, b then,

∀ε > 0,∃δ > 0,∀t, r ∈ [a, b] :| r − t |< δ ⇒| (r)− (t) |< ε

which leads to : ∫ t

t−δ
(t− r)α−1 | (r)− (t) | dr ≤ ε

∫ t

t−δ
(t− r)α−1dr =

εδα

α
(2.12)

On the other hand,∫ t

t−δ
(t− r)α−1 | (r)− (t) | dr ≤ 1

Γ(α)

∫ t

t−δ
(t− r)α−1(| (r) | + | (t) |)dr

≤ 2 sup
ξ∈[a,b]

| (ξ) |
∫ t

t−δ
(t− r)α−1dr,∀t ∈ [a, b]

= 2M
((t− a)α

α
− δα

α

)
,∀t ∈ [a, b]

(2.13)
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where M = sup
ξ∈[a,b]

| (ξ) |.

A combination of (2.11), (2.12) and (2.13) gives us :∣∣∣Iαa+(t)− (t− a)α

Γ(α + 1)
(t)
∣∣∣ ≤ 1

αΓ(α)
[εδα + 2M((t− a)α − δε)],

let us tend α towards 0+, we obtain : | Iαa+(t)− 1(t) ≤ ε

Γ(α + 1)
,∀ε > 0 |

which shows that lim
α→0+

Iαa+(t)− (t) = 0

Theorem 2.2. If ∈ L1[a, b] and α > 0 so Iαa+(t) exists for almost any t ∈ [a, b] and we get

Iαa+ ∈ L1[a, b]

Proof 2.1.3. Let ∈ L1[a, b], we get :

Iαa+(t) =
1

Γ(α)

∫ t

a

(t− r)α−1(r)dr =

∫ +∞

−∞
g(t− r)h(r)dr with −∞ ≤ a < t < +∞ such as :

g(u) =


uα−1

Γ(α)
, 0 < u ≤ b− a

0, u ∈ R− (0, b− a]

and h(u) =

 (u), a ≤ u ≤ b

0, u ∈ R− [a, b]

like g, h ∈ L1(R), then Iαa+ ∈ L1[a, b].

Theorem 2.3. Let α > 0 and let (n)∞n=1 be a sequence of uniformly convergent continuous

functions on [a, b], then the sequence (Iαa+n)∞n=1 is uniformly convergent and we can invert

the Riemann-Liouville fractional integral and the limit as follows :(
lim

n→+∞
Iαa+n

)
(t) =

(
Iαa+ lim

n→+∞ n

)
(t)

Proof 2.1.4. Let be the limit of the sequence (n), then is continuous on [a, b] because the

convergence is uniform, then :

| Iαa+n(t)− Iαa+(t) | =
∣∣∣ 1

Γ(α)

∫ t

a

(t− r)α−1[n(r)− (r)]dr
∣∣∣

≤ 1

Γ(α)
displaystyle

∫ t
a
(t− r)α−1 |n (r)− (r) | dr

≤ 1

Γ(α + 1)
‖n − ‖∞ (b− a)α,

from where, the uniform convergence of the sequence (Iαa+n)∞n=1 towards Iαa+ on [a, b].
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2.2 Riemann-Liouville fractional derivative

Definition 2.2.1. Let ∈ L1[a,+∞[, a ∈ R and α ∈ R∗+, n ∈ N , the Riemann-Liouville

fractional derivative of order α of lower bound a is defined by :

Dαa+(t) =
1

Γ(n− α)

dn

dtn

∫ t

a

(t− r)n−α−1(r)dr = Dn{In−αa+ (t)} (2.14)

where Dn =
dn

dtn
is derived from whole order n = [α] + 1.

Particular case :

1. D0
a+(t) = D1{I1

a+f(t)} = (t) (D0
a+ is the identity operator).

2. For α = n where n is an integer, the operator gives the same result as the classical

differentiation of order n.

Dna+(t) = Dn+1In+1−n
a+ (t) = Dn+1I1

a+(t) = Dn(t).

remark 2.2.1. if α < 0, we agree to take Dαa+(t) = D−αa+ (t).

remark 2.2.2. To simplify the writing, we will note below Dα0+ by Dα.

Lemma 2.2.1. Let α ∈ R+ and let n ∈ N such as n > α so ; Dαa+ = DnIn−αa+

Proof 2.2.1. The assumption on n implies that n ≥ [α] + 1. So

DnIn−αa+ = (D[α]+1Dn−[α]−1)(I [α]+1−α
a+ In−[α]−1

a+ )

= D[α]+1(Dn−[α]−1In−[α]−1
a+ )I [α]+1−α

a+

= D[α]+1I [α]+1−α
a+ = Dαa+

because Dn−[α]−1In−[α]−1
a+ = I (the identity operator)

Theorem 2.4. Let and g two functions whose fractional derivatives of RiemannLiouville

exist, for c1 and c2 ∈ R so :Dαa+(c1 + c2g) exists, and we have :

Dαa+(c1(t) + c2g(t)) = c1D
α
a+(t) + c2Dαa+g(t).
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2.2.1 Fractional derivatives in the sense of R-L of some usual

functions

1. Let (t) = (t− a)β with β > −1. Just apply definition 2.2.1 and the result (2.5)

Dαa+(t− a)β =
dn

dtn
(In−αa+ (t− a)β)

=
dn

dtn

( Γ(β + 1)

Γ(β + n− α + 1)
(t− a)β+n−α

)
=

Γ(β + 1)

Γ(β + n− α + 1)

dn

dtn
(t− a)β+n−α

(2.15)

we know that

dn

dtn
(t− a)β+n−α = (β + n− α)(β + n− α− 1)....(β − α + 1)(t− a)β−α. (2.16)

And as we have :

Γ(β + n− α + 1) = (β + n− α)(β + n− α− 1)....(β − α + 1)Γ(β − α + 1) (2.17)

By substitution of (2.16 ) and (2.17) in (2.15) we obtain :

Dαa+(t− a)β =
Γ(β + 1)(β + n− α)(β + n− α− 1)...(β − α + 1)(t− a)β−α

(β + n− α)(β + n− α− 1)....(β − α + 1)Γ(β − α + 1)

=
Γ(β + 1)

Γ(β − α + 1)
(t− a)β−α.

So ;

Dαa+(t− a)β =
Γ(β + 1)

Γ(β − α + 1)
(t− a)β−α. (2.18)

In the case where a = 0 we have :

Dαa+t
β =

Γ(β + 1)

Γ(β − α + 1)
tβ−α. (2.19)

A very important particular case to mention is that :

Corollary 2.1. Dα0+t
β = 0,for everything β = α − i with i = 1, 2, 3, ......, n (n is the
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smallest integer ≥ α), indeed

Dα0+t
β =

1

Γ(n− α)

dn

dtn

∫ t

0

(t− r)α−n+1τβdr

=
dn

dtn
(In−α0+ tβ)

=
dn

dtn

( Γ(β + 1)

Γ(β + n− α + 1)
tβ+n−α

)
=

dn

dtn

( Γ(β + 1)

Γ(β + n− α + 1)
tn−i

)
=

Γ(β + 1)

Γ(β + n− α + 1)

dn

dtn
(tn−i) = 0

2. The constant function (t) = C

Dαa+C =
dn

dtn
(In−αa+ C)

=
dn

dtn

( C

Γ(n− α + 1)
(t− a)n−α

)
=

C

Γ(n− α + 1)

dn

dtn
(t− a)n−α

(2.20)

We have ;
dn

dtn
(t− a)n−α = (n− α)(n− α− 1)....(1− α)(t− a)−α (2.21)

and as we have ;

Γ(n− α + 1) = (n− α)(n− α− 1)....(1− α)Γ(1− α). (2.22)

By substitution of (2.21) and (2.22) in (2.20) we obtain :

Dαa+C =
C(n− α)(n− α− 1)...(1− α)(t− a)−α

(n− α)(n− α− 1)...(1− α)Γ(1− α)

=
C

Γ(1− α)
(t− a)−α

So

Dαa+ =
C

Γ(1− α)
(t− a)−α (2.23)

That is to say that the derivative in the sense of Riemann-Liouville a constant is not

zero.

3. Exponential function (t) = exp(kt) For k > 0, and α > 0, α /∈ N.
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Using the formula (2.14) in a = −∞ and the result (2.9) a gives ;

Dα−∞ exp(kt) =
dn

dtn
In−α−∞ exp(kt)

=
dn

dtn
(kα−n exp(kt)))

= kα−nkn exp(kt)

= kα exp(kt).

So ;

Dα−∞ exp(kt) = kα exp(kt). (2.24)

Lemma 2.2.2. Let α > 0 and ∈ L1[a, b] then equality : Dαa+Iαa+(t) = (t), is true for almost

everything on [a, b].

Proof 2.2.2. Using definition 2.2.1 and Theorem 2.4 we will have :

Dαa+Iαa+(t) = DnIn−αa+ (Iαa+(t))

= Dn(In−αa+ (Iαa+)(t)

= DnIna+(t) = (t).

2.2.2 Mixed compositions

Theorem 2.5. Let α, β two real such as n− 1 ≤ α < n, m− 1 ≤ β < m with (n,m ∈ N∗)

then :

1. If 0 < β < α then for ∈ L1[a, b] the equality : Dβa+(Iαa+)(t) = Iα−βa+ (t) is true almost

everywhere on [a, b].

2. If 0 < α ≤ β and the fractional derivative Dβ−αa+ then exists : Dβa+(Iαa+)(t) = Dβ−αa+ (t).

3. If there is a function g ∈ L1[a, b] such that = Iαa+g then : Iαa+Dαa+(t) = (t) for almost

all t ∈ [a, b].

4. For α > 0, k ∈ N∗. If the fractional derivatives Dαa+ and Dk+α
a+ exist, then :

Dk(Dαa+(t)) = Dk+α
a+ (t).

Proof 2.2.3. Using definition 2.2.1 and Theorem 2.4 we get :
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1. For 0 < β < α we have :

Dβa+(Iαa+)(t) = DnIn−βa+ (Iαa+)(t)

= Dn(In+α−β
a+ )(t)

= DnIna+(Iα−βa+ )(t)

= Iα−βa+ (t).

2. For 0 < α ≤ β we have :

Dβa+(Iαa+)(t) = DmIm−βa+ (Iαa+)(t)

= DmIm−(β−α)
a+ (t)

= Dβ−α(t)

3. From Lemma 2.2.2

Iαa+Dαa+(t) = Iαa+Dαa+(Iαa+g(t))

= Iαa+g(t)

= (t).

4. We have :

Dk(Dαa+(t)) = DkDnIn−αa+ (t)

= Dk+nIn−α+k−k(t)

= Dk+nIk+n−(k+α)(t)

= Dk+α
a+ (t).

Lemma 2.2.3. suppose that h ∈ L1(0,+∞), α > 0 and Dαa+h(t) ∈ L1(0,+∞).

So Iα0+Dα0+h(t) = h(t) +
n∑
i=1

cit
α−i Where ci ∈ R and n = [α] + 1.

Indeed, Dα0+t
α−i = 0.

(t) Iαa+(t) Dαa+(t) specifications

(t− a)β Γ(β+1)
Γ(α+β+1)

(t− a)α+β Γ(β+1)
Γ(β−α+1)

(t− a)β−α a ∈ R, α > 0, β > −1

tβ Γ(β+1)
Γ(α+β+1)

tα+β Γ(β+1)
Γ(β−α+1)

tβ−α a = 0, α > 0, β > −1

C C
Γ(α+1)

(t− a)α C
Γ(1−α)

(t− a)−α a a ∈ R, α > 0, C ∈ R

exp(kt) k−α exp(kt) kα exp(kt) a = −∞, α > 0, k > 0

Integrals and derivatives of some usual functions (results)
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2.3 The fractional derivation in the sense of Caputo

2.3.1 Definitions and Examples

Definition 2.3.1. ([2] , [15] , [16])

Let α > 0with n − 1 ≤ α ≤ n, (n ∈ N∗). and a function such that
dn

dtn
∈ L1([a, b]). The

fractional derivative of order α of in the sense of Caputo on the left and on the right are

defined by

cDαa+(t) =
1

Γ(n− α)

∫ t

a

(t− r)n−α−1(n)(r)dr (2.25)

and

cDαb−(t) =
1

Γ(n− α)

∫ t

a

(r − t)n−α−1(n)(r)dr (2.26)

respectively.

remark 2.3.1. Taking into account definition (2.3.1), we have :

cDαa+(t) = (In−αa+ Dn)(t) (2.27)

and

cDαb−(t) = (−1)n(In−αb− D
n)(t) (2.28)

In particular, if 0 < α < 1,we have

cDαa+(t) = (I1−α
a+ D1)(t) (2.29)

and

cDαb−(t) = (−1)(I1−α
b− (t)) (2.30)

where Dn =
dn

dtn

Example 6. 1. The derivative of a constant function in the sense of Caputo.

The derivative of a constant function in the sense of Caputo is zero

cDαC := 0 (2.31)
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2. The derivative of (t) = (t − a)β in the sense of Caputo. Let α be an integer

and 0 ≤ n− 1 < α < n with β > n− 1, then, we have

(n)(t) =
Γ(β + 1)

Γ(β − n+ 1)
(t− a)β−n (2.32)

Hence

cDα(t− a)β =
Γ(β + 1)

Γ(n− α)Γ(β − n+ 1)

∫ t

a

(t− r)n−α−1(r − a)β−ndr (2.33)

By performing the change of variable r = a+ s(t− a), we obtain

cDα(t− a)β =
Γ(β + 1)

Γ(n− α)Γ(β − n+ 1)

∫ t

a

(t− r)n−α−1(r − a)β−ndr

=
Γ(β + 1)

Γ(n− α)Γ(β − n+ 1)
(t− a)β−α

∫ 1

a

(1− s)n−α−1sβ−nds

=
Γ(β + 1)B(n− α, β − n+ 1)

Γ(n− α)Γ(β − n+ 1)
(t− a)β−α

=
Γ(β + 1)Γ(n− α)Γ(β − n+ 1)

Γ(n− α)Γ(β − n+ 1)Γ(β − α + 1)
(t− a)β−α

=
Γ(β + 1)

Γ(β − α + 1)
(t− a)β−α

2.3.2 Properties of the fractional derivation within the meaning

of Caputo

Theorem 2.6. ([2] , [15] , [16])

Let α > 0 and n = [α] + 1 such that n ∈ N∗ then, the following equalities

1.

cDαIαa = (2.34)

2.

Iαa (cDα(t)) = (t)−
n−1∑
k=0

(k)(a)(t−a)k

k!
(2.35)

are true almost for all t ∈ [a, b].

Proof 2.3.1. 1. By (2.27) and the use of the semi-group property (2.10), we find

(cDαIαa )(t) := (In−αa DnIαa )(t) = I0
a .
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2.

(Iαa (cDα))(t) := (Iαa In−αa Dα)(t)

according to property (2.10), we have

(Iαa )In−αa Dα)(t) = Iαa Ina I−αa Dn(t) = InaDn(t) (2.36)

and like,

(InaDn)(t) = (t)−
n−1∑
k=0

(k)(a)

k!
(t− a)k (2.37)

we find

Iαa (cDα(t)) = (t)−
n−1∑
k=0

(k)(a)

k!
(t− a)k (2.38)

So Caputo’s bypass operator is an inverse to the left of the fractional integration ope-

rator, but it is not an inverse to the right.

2.4 Comparison between the derivative in the sense of

RiemannLiouville and the derivative in the sense

of Caputo

In mathematical modeling, the use of fractional derivatives in the sense of R−L leads to

initial conditions containing the limit values of the fractional derivatives at the lower limit

of the interval. Caputo used an approach to avoid this problem. For 0 ≤ n − 1 ≤ α < n,

and a function f such that
dn

dtn
∈ L1[a, b]. The fractional derivative in the sense of Caputo

of order α ∈ R∗+ of a function f is given by :

cDαa+(t) = In−αa+

dn

dtn
(t) =

1

Γ(n− α)

∫ t

a

(t− r)n−α−1 d
n

dtn
(r)dr.

with n−1 ≤ α ≤ n, n ∈ N. And the relationship between the Riemann-Liouville and Caputo

derivatives is given as follows :

suppose that is a function such as Dαa+(t), cDαa+(t) exist, then

Dαa+(t) =c Dαa+(t) +
n−1∑
k=0

(t− a)k−α

Γ(k − α + 1)

(k)

(a)
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The two derivatives are equal in the case where (k)(a) = 0 for k = 0, 1, ..., n− 1.

• The main advantage of Caputo’s approach is that the initial conditions of the frac-

tional differential equations with Caputo derivatives accept the same form as for the

differential equations of whole order, that is to say, contains the limit values of the

derivatives d integer order of unknown functions in lower bound x = a .

• Another difference between the definition of Riemann and that of Caputo is that the

derivative of a constant is zero by Caputo, on the other hand by Riemann-Liouville it

is
C

Γ(1− α)
(t− a)−α.

• Graphically, we can say that the path followed to arrive at the fractional derivative in

the sense of Caputo is also the reverse when we follow the other direction (Riemann-

Liouville), that is to say to find the fractional derivative of order α where n−1 < α < n

by the Riemann-Liouville approach, we first start with the fractional integration of

order (n − α) for the function (x) and then we derive the result obtained at l’order

integer m, but to find the fractional derivative of order α where n − 1 < α < n by

Caputo’s approach we start with the derivative of integer m of the function (x) and

then we integrate it fractional order (n− α).

2.5 General properties of fractional derivatives

We are interested in this section in the properties of integration and fractional differen-

tiation, which are most often used in the classical derivative.
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2.5.1 Linearity

Fractional differentiation and integration are linear operators :

Dα(λ(t) + µg(t)) = λDα(t) + µDαg(t) (2.39)

2.5.2 Leibniz rule

For an integer n we have

dn

dtn
((t)g(t)) =

n∑
k=0

 n

k

(k)

(t)g(n−k)(t). (2.40)

The generalization of this formula gives us

Dα((t)g(t)) =
n∑
k=0

 α

k

(k)

(t)Dαg(α−k)(t) +Rα
n(t) (2.41)

Where n ≥ α + 1 and

Rα
n(t) =

1

n!Γ(−α)

∫ t

a

(t− s)−α−1g(s)ds

∫ t

s

(n+1)(ξ)dξ (2.42)

With limn→∞R
α
n(t) = 0.

If and g are continuous in [a, t] as well as all their derivatives, the formula becomes :

Dα((t)g(t)) =
n∑
k=0

 α

k

(k)

(t)Dαg(α−k)(t) (2.43)

Where Dα is the fractional derivative in the sense of Riemann-Liouville.

2.6 Fractional Caputo and Riemann-Liouville confor-

mable operators

We are now reviewing some fundamental and auxiliary concepts and characteristics of

the newly defined fractional operators conforming to Caputo and Riemann-Liouville. Then
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the fractional conformable integral of the Riemann-Liouville type for a function w of order

k∗ with % ∈ (0, 1] is formulated by follows

RCIk
∗,%
t0 w(t) =

1

Γ(k∗)

∫ t

t0

(
(t− t0)% − (r − t0)%

%

)k∗−1

w(r)
dr

(r − t0)1−%

if the value of integral exists. One can easily observe that if we take t0 = 0 and % = 1,

then RCIk
∗,%
t0 w(t) reduces to the standard operator named the Riemann-Liouville integral

RIk∗0 w(t). As well as, the conformable derivative of the Riemann-Liouville type for a function

w of order k∗ with % ∈ (0, 1] is illustrated as follows

RCDk
∗,%
t0 w(t) = Dn,%t0

(
RCIn−k

∗,%
t0 w

)
(t)

=
Dn,%t0

Γ(n− k∗)

∫ s

t0

(
(t− t0)% − (r − t0)%

%

)n−k∗−1

w(r)
dr

(r − t0)1−%

provided that n = [Re(k∗)] + 1 and Dn,%t0 =

n times︷ ︸︸ ︷
D%t0 D

%
t0 . . . D

%
t0 where D%t0 stands for the left

conformable derivative with % ∈ (0, 1]. In the similar manner, it is obvious that if we take

t0 = 0 and % = 1, then RCDk
∗,%
t0 w(t) reduces to the standard operator named the Riemann-

Liouville derivative RD%0w(t). In this position, to formulate the similar concept in the Caputo

setting, we construct

L%(t0) :=
{
ϕ : [s0, b]→ R : I%t0ϕ(s) exists for any s ∈ [t0, b]

}
for % ∈ (0, 1] and set

Iυ([t0, b]) :=
{
w : [t0, b]→ R : w(t) = I%t0ϕ(t) + w(t0), for some ϕ ∈ L%(t0)

}
,

where I%t0ϕ(t) =

∫ t

t0

ϕ(r) dυ(r, t0) =

∫ t

t0

ϕ(r)
dr

(r − t0)1−% is the left conformable integral of

ϕ. For n = 1, 2, . . . , we represent Cnt0,%([t0, b]) :=
{
w : [t0, b] → R : Dn−1,%

t0 w ∈ Iυ([t0, b])
}

.

Then, the conformable derivative operator of the Caputo type for a function w ∈ Cnt0,υ([t0, b])

of order k∗ with % ∈ (0, 1] is demonstrated by

CCDk
∗,%
t0 w(t) = RCIn−k

∗,%
t0

(
Dn,%t0 w

)
(t)

=
1

Γ(n− k∗)

∫ t

t0

(
(t− t0)% − (r − t0)%

%

)n−k∗−1

Dn,%t0 w(r)
dr

(r − t0)1−%
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so that n = [Re(k∗)] + 1 ([?]). Evidently, CCDk
∗,%
t0 w(t) = CDk∗0 w(t) if we take t0 = 0 and

% = 1. In the sequel, some fundamental properties of the Riemann-Liouville and Caputo

fractional conformable operators can be regarded in two next lemmas.

Lemma 2.6.1. Suppose that Re(k∗) > 0, Re($) > 0 and Re(β) > 0. Then for % ∈ (0, 1]

and for any t > t0, the following four statements are valid :

(L1) RCIk
∗,%
t0

(
RCI$,%t0 w

)
(t) =

(
RCIk

∗+$,%
t0 w

)
(s),

(L2) RCIk
∗,%
t0 (t− t0)%(β−1)(z) =

1

%k∗
Γ(β)

Γ(β + k∗)
(z − t0)%(β+k∗−1),

(L3) RCDk
∗,%
t0 (t− t0)%(β−1)(z) = %k

∗ Γ(β)

Γ(β − k∗)
(z − t0)%(β−k∗−1),

(L4) RCDk
∗,%
t0

(
RCI$,%t0 w

)
(t) =

(
RCI$−k

∗,%
t0 w

)
(t),

(
Re(k∗) < Re($)

)
.

Lemma 2.6.2. ([?]) Let n− 1 < Re(k∗) ≤ n and w ∈ Cnt0,%([t0, b]). Then for % ∈ (0, 1], we

have

RCIk
∗,%
t0

(
CCDk

∗,%
t0 w

)
(t) = w(t)−

n−1∑
j=0

Dj,%t0 w(t0)

υjj!
(t− t0)j%.

In the light of the above lemma, one can verify that the general solution of the linear

homogeneous equation (CCDk
∗,%
t0 w)(t) = 0 is computed by

w(t) =
n−1∑
j=0

bj(t− t0)j% = b0 + b1(t− t0)% + b2(s− s0)2% + · · ·+ bn−1(t− t0)(n−1)%,

so that n− 1 < Re(k∗) ≤ n and b0, b1, . . . , bn−1 ∈ R.
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Chapitre 3
Existence and uniqueness for boundary value

problems involving Caputo conformable

derivative

3.1 Introdution

We check some existence of solutions in this part by applying some analytical techniques

based on the theory of the fixed point.
CCDk

∗,%
t0 u(t) = Υ̂(t, u(t)), (t ∈ J̃ , k∗ ∈ (2, 3]),

u(t0) = 0, CCDγ
∗,%
t0 u(T ) = δ1,

RCIq
∗,%
t0 u(T ) = δ2,

(3.1)

Let 0 ≤ t0 < T , 0 < γ∗ < k∗ and q∗ ∈ R+ and take J̃ = [t0, T ].Then one can readily, set

that X∗ = C(J̃ ,R) is a Banach space of continuous mappings provide by the norm

‖u‖ = sup
t∈J̃
|u(t)|

.

Lemma 3.1.1. Let Υ̂ ∈ X∗. Then a map ũ∗0 is a solution for the fractional BVP
CCDk

∗,%
t0 u(t) = Υ̂(t), (t ∈ J̃ , k∗ ∈ (2, 3]),

u(t0) = 0, CCDγ
∗,%
t0 u(T ) = δ1,

RCIq
∗,%
t0 u(T ) = δ2,

(3.2)
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if and only if ũ∗0 is as a solution for the Riemann-Liouville conformable integral equation

u(t) =
1

Γ(k∗)

∫ t

t0

(
(t− t0)% − (r − t0)%

%

)k∗−1

Υ̂(r)
dr

(r − t0)1−k∗

+
(t− t0)%

Θ∗

[
∆4

RCIk
∗−γ∗,%
t0 Υ̂(T )−∆2

RCIq
∗+k∗,%
t0 Υ̂(T )− δ1∆4 + ∆2δ2

]
+

(t− t0)2%

Θ∗

[
−∆3

RCIk
∗−γ∗,%
t0 Υ̂(T ) + ∆1

RCIq
∗+k∗,%
t0 Υ̂(T ) + δ1∆3 − δ2∆1

]
(3.3)

provided that

∆1 = %γ
∗ 1

Γ(2− γ∗1)
(T − t0)%(1−γ∗), ∆2 = %γ

∗
1

2

Γ(3− γ∗)
(T − t0)%(2−γ∗),

∆3 =
1

%q∗
1

Γ(2 + q∗)
(T − t0)%(1+q∗),

∆4 =
1

%q∗
2

Γ(3 + q∗)
(T − t0)%(2+q∗),

Θ∗ = ∆2∆3 −∆1∆4. (3.4)

Proof 3.1.1. Let ũ∗0 be the solution to the problems involving Caputo conformable fractional

BVP (3.2) in the beginning. Then one can write according to the characteristics of the

fractional conformable operators in both Riemann-Liouville and Caputo settings, one can

write

ũ∗0(t) = RCIk
∗,%
t0 Υ̂(t) + c̃∗0 + c̃∗1(t− t0)% + c̃∗2(t− t0)2%, (3.5)

where c̃∗0, c̃∗1 and c̃∗2 are arbitrary constants. From the first condition, we get c̃∗0 = 0. By

taking the Caputo conformable derivative of order γ, we obtain

(CCDγ,%t0 ũ
∗
0)(t) = RCIk

∗−γ,%
t0 Υ̂(t) + c̃∗1%

γ 1

Γ(2− γ)
(t− t0)%(1−γ)

+ c̃∗2%
γ 2

Γ(3− γ)
(t− t0)%(2−γ). (3.6)

Moreover, by taking the Riemann-Liouville conformable integral of order q∗, we obtain

(RCIq,%t0 ũ
∗
0)(t) = RCIq+k

∗,%
t0 Υ̂(t) +

c̃∗1
%q

1

Γ(2 + q)
(t− t0)%(1+q)

+
c̃∗2
%q

2

Γ(3 + q)
(t− t0)%(2+q). (3.7)
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By combining Equations (3.6) and (3.7) with boundary conditions, we get

c̃∗1 =
1

∆2∆3 −∆1∆4

[
∆4

RCIk
∗−γ∗,%
t0 Υ̂(T )−∆2

RCIq
∗+k∗,%
t0 Υ̂(T )− δ1∆4 + ∆2δ2

]
and

c̃∗2 =
1

∆2∆3 −∆1∆4

[
−∆3

RCIk
∗−γ∗,%
t0 Υ̂(T ) + ∆1

RCIq
∗+k∗,%
t0 Υ̂(T ) + δ1∆3 − δ2∆1

]
.

Finally, if we substitute the c̃∗0, c̃∗1 and c̃∗2 constants for (3.5), the Riemann-Liouville

conformable integral equation (3.3) is reached. Finally, if the constants c̃∗0 and c̃∗1 and c̃2∗

are substituted with (3.5), then the Riemann-Liouville conformable integral equation (3.3) is

reached. In the opposite direction, since ũ∗0 approaches the Riemann-Liouville conformable

integral equation (3.3), it can easily be checked that ũ∗0 is considered a solution for the four-

point multi-order linear Caputo conformable fractional BVP (3.2).

Centered on the calculations that have been implemented in Lemma 3.1.1,, we define

the operator F̃∗ : X∗ → X∗ in the following framework

F̃∗u(t) =
1

Γ(k∗)

∫ t

t0

(
(t− t0)% − (r − t0)%

%

)k∗−1

Υ̂(r)
dr

(r − t0)1−k∗ (3.8)

+
(t− t0)%

Θ∗

[
∆4

RCIk
∗−γ∗,%
t0 Υ̂(T )−∆2

RCIq
∗+k∗,%
t0 Υ̂(T )− δ1∆4 + ∆2δ2

]
+

(t− t0)2%

Θ∗

[
−∆3

RCIk
∗−γ∗,%
t0 Υ̂(T ) + ∆1

RCIq
∗+k∗,%
t0 Υ̂(T ) + δ1∆3 − δ2∆1

]
It should be remembered that the four-point multi-order Caputo compatible fractional BVP

has a ũ∗0 solution if and only if, ũ∗0 is a fixed point for the F̃∗ self-map. We use the following

simpler notations for the sake of simplicity in writing.

W =
1

Γ(k∗ + 1)

(
(T − t0)%

%

)k∗
+

(T − t0)%

|Θ∗|

[
∆4

Γ(k∗ − γ∗ + 1)

(
(T − t0)%

%

)k∗−γ∗
(3.9)

+
∆2

Γ(q∗ + k∗ + 1)

(
(T − t0)%

%

)q∗+k∗]
+

(T − t0)2%

|Θ∗|

[
∆3

Γ(k∗ − γ∗ + 1)

(
(T − t0)%

%

)k∗−γ∗

+
∆1

Γ(q∗ + k∗ + 1)

(
(T − t0)%

%

)q∗+k∗]
.
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3.2 The study of existence and uniqueness

Theorem 3.1. Let the real-valued mapping Υ̂ : J̃R → R be continuous and there is a

constant L∗ > 0 such that |Υ̂(t, u) − Υ̂(t, u′)| ≤ L∗|u − u′| for all t ∈ J̃ and u, u′ ∈ R. If

L∗W < 1, then the problems 3.1 has a unique solution, where W illustrated by 3.9.

Proof 3.2.1. Put supt∈J̃ |Υ̂(t, 0)| = N ∗ <∞. We choose R∗ > 0 so that

|Θ∗|N∗W2 + (T − t0)2%(|δ1∆3|+ |δ2∆1|) + (T − t0)%(|δ1∆4|+ |δ2∆2|)
|Θ∗|(1− L∗W)

≤ R∗,

where ∆j (j = 1, 2, 3, 4) are illustrated by (3.4). Next, construct the set B∗R∗ = {u ∈ X∗ :

‖u‖ ≤ R∗}. In this case, we verify that F̃∗B∗R∗ ⊂ B∗R∗. To observe this, for each u ∈ B∗R∗,

we may write

|F̃∗u(t)| ≤ 1

Γ(k∗)

∫ t

t0

(
(t− t0)% − (r − t0)%

%

)k∗−1(∣∣Υ̂(r, u(r))− Υ̂
(
r, 0
)∣∣+ |Υ̂

(
r, 0)

∣∣) dr

(r − t0)1−%

+
(T − t0)%

|Θ∗|

[
∆4

RCIk
∗−γ∗,%
t0

(∣∣Υ̂(T, u(T ))− Υ̂
(
T, 0

)∣∣+ |Υ̂
(
T, 0)

∣∣)
+ ∆2

RCIq
∗+k∗,%
t0

(∣∣Υ̂(T, u(T ))− Υ̂
(
T, 0

)∣∣+ |Υ̂
(
T, 0)

∣∣)+ |δ1∆4|+ |∆2δ2|
]

+
(T − t0)2%

|Θ∗|

[
∆3

RCIk
∗−γ∗,%
t0

(∣∣Υ̂(T, u(T ))− Υ̂
(
T, 0

)∣∣+ |Υ̂
(
T, 0)

∣∣)
+ ∆1

RCIq
∗+k∗,%
t0

(∣∣Υ̂(T, u(T ))− Υ̂
(
T, 0

)∣∣+ |Υ̂
(
T, 0)

∣∣)+ |δ1∆3|+ |δ2∆1|
]

≤ (L∗‖u‖+N ∗)W +
(T − t0)2%

|Θ∗|
(|δ1∆3|+ |δ2∆1|) +

(T − t0)%

|Θ∗|
(|δ1∆4|+ |δ2∆2|)

≤ L∗WR+N ∗W +
(T − t0)2%

|Θ∗|
(|δ1∆3|+ |δ2∆1|) +

(T − t0)%

|Θ∗|
(|δ1∆4|+ |δ2∆2|)

≤ R∗.

Thus, we reach the inequality ‖F̃∗u‖ ≤ R∗ which means that F̃∗B∗R∗ ⊂ B∗R∗. In the next
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stage, let us assume that u, u′ ∈ X∗. For any t ∈ J̃ , one can write

|F̃∗u(t)− F̃∗u′(t)|

≤ 1

Γ(k∗)

∫ t

t0

(
(t− t0)% − (r − t0)%

%

)k∗−1(∣∣Υ̂(r, u(r))− Υ̂
(
r, u′(r)

)∣∣) dr

(r − t0)1−%

+
(T − t0)%

|Θ∗|

[
∆4

RCIk
∗−γ∗,%
t0

(∣∣Υ̂(T, u(T ))− Υ̂
(
T, u′(T )

)
|
)

+ ∆2
RCIq

∗+k∗,%
t0

(∣∣Υ̂(T, u(T ))− Υ̂
(
T, u′(T )

)∣∣)]

+
(T − t0)2%

|Θ∗|

[
∆3

RCIk
∗−γ∗,%
t0

(∣∣Υ̂(T, u(T )
)
− Υ̂

(
T, u′(T )

)∣∣)
+ ∆1

RCIq
∗+k∗,%
t0

(∣∣Υ̂(T, u(T )
)
− Υ̂

(
T, u′(T )

)∣∣)]
≤ L∗‖u− u′‖W

= L∗W‖u− u′‖.

This represents ‖F̃∗u−F̃∗u′‖ ≤ (L∗W)‖u−u′‖ which implies that F̃∗ is a contraction since

L∗W < 1. Hence with due attention to the Banach principle, the operator F̃∗ has a unique

fixed point which means that the problems (3.1) has a unique solution.

3.3 The study of existence

Here, we provide another criterion for the existence of solutions to the proposed (3.1)

problem, with due attention to the Leray-Schauder theorem.

Theorem 3.2. Let Υ̂ : J̃R → R be continuous and there exist nondecreasing continuous

function Ψ : [0,∞) → (0,∞) and Φ ∈ CR+(J̃) such that |Υ̂(t, u)| ≤ Φ(t)Ψ(‖u‖) for each

(t, u) ∈ J̃R. Moreover, suppose that there i3.s a constant Q∗ > 0 so that

Q∗|Θ∗|
+Ψ(Q∗)‖Φ‖|Θ∗|W + (T − t0)2%(|δ1∆3|+ |δ2∆1|) + (T − t0)%(|δ1∆4|+ |δ2∆2|)

> 1, (3.10)

where W is represented by (3.9), respectively. Then the problem BVP (3.1) has at least one

solution.
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Proof 3.3.1. we define the operator F̃∗ by (3.8). We plan to check that F̃∗ maps bounded

sets into X∗ bounded subsets.

Choose the necessary constant ρ∗ > 0 and construct the ball Bρ∗∗ = {u ∈ X∗ : ‖u‖ ≤ ρ∗}

in X∗. Then we have t ∈ J̃ for every one of them,

|F̃∗u(t)| ≤ sup
t∈J̃

∣∣∣∣∣ 1

Γ(k∗)

∫ t

t0

(
(t− t0)% − (r − t0)%

%

)k∗−1

Υ̂(r)
dr

(r − t0)1−k∗

+
(t− t0)%

Θ∗

[
∆4

RCIk
∗−γ∗,%
t0 Υ̂(T )−∆2

RCIq
∗+k∗,%
t0 Υ̂(T )− δ1∆4 + ∆2δ2

]

+
(t− t0)2%

Θ∗

[
−∆3

RCIk
∗−γ∗,%
t0 Υ̂(T ) + ∆1

RCIq
∗+k∗,%
t0 Υ̂(T ) + δ1∆3 − δ2∆1

]∣∣∣∣∣
≤ ‖Φ‖Ψ(‖u‖)W +

(T − t0)2%

|Θ∗|
(|δ1∆3|+ |δ2∆1|) +

(T − t0)%

|Θ∗|
(|δ1∆4|+ |δ2∆2|)

and consequently

‖F̃∗(t)‖ ≤ ‖Φ‖Ψ(‖u‖)W +
(T − t0)2%

|Θ∗|
(|δ1∆3|+ |δ2∆1|) +

(T − t0)%

|Θ∗|
(|δ1∆4|+ |δ2∆2|).

Now we prove that the operator F̃∗ maps bounded sets (balls) to equally continuous sets

of X ∗ ∗. If t1, t2 ∈ J̃ and t1 < t2 and u ∈ Bρ∗∗ are assumed, we have

|F̃∗u(t2)− F̃∗u(t1)| ≤
Φ(t)Ψ(‖u‖)

(
2|((t2 − t0)% − (t2 − t0)%)k

∗ |+ |(t2 − t0)%k
∗ − (t1 − t0)%k

∗|
)

λ∗Γ(k∗ + 1)

+

∣∣(t2 − t0)% − (t1 − t0)%
∣∣∣∣Θ∗∣∣
[∣∣µ∗1∆4

λ
RCIk

∗−γ∗1 ,%
t0 Υ̂

(
T, u(T )

)∣∣
+
∣∣µ∗2∆2

λ
RCIq

∗
1+k∗,%
t0 Υ̂

(
T, u(T )

∣∣)+
∣∣δ1∆4

∣∣+
∣∣∆2δ2

∣∣]

+

∣∣(t2 − t0)2% − (t1 − t0)2%
∣∣∣∣Θ∗∣∣
[∣∣µ∗1∆3

λ
RCIk

∗−γ∗1 ,%
t0 Υ̂

(
T, u(T )

)∣∣
+
∣∣µ∗2∆1

λ
RCIq

∗
1+k∗,%
t0 Υ̂

(
T, u(T )

)∣∣+
∣∣∆1

λ
RCIk

∗+q∗2−θ∗,%
t0 u(ν)

∣∣+
∣∣δ1∆3

∣∣+
∣∣δ2∆1

∣∣].
If t1 → t2, the above inequality RHS approaches 0 regardless of u ∈ Bρ∗∗. This implies

a consistency similar to F̃∗, and hence a relative compactness of F̃∗ to Bρ∗∗. Therefore,

according to the Arzelá-Ascoli theorem, F̃∗ is fully continuous and therefore F̃∗ is compact

39



with Bρ∗∗. The desired result will be completed from the Leray-Schauder theorem 1.4 once

the limits of the set of solutions for the equation u =∗ F̃∗u can be checked for any ∗ ∈ (0, 1).

Let us assume that u is a solution to the above equation in order to achieve this objective.

For any t ∈ J̃ , we obtain

|u(t)| ≤ ‖Φ‖Ψ(‖u‖)W +
(T − t0)2%

|Θ∗|
(|δ1∆3|+ |δ2∆1|) +

(T − t0)%

|Θ∗|
(|δ1∆4|+ |δ2∆2|)

and so

‖u‖|Θ∗|
Ψ(‖u‖)‖Φ‖|Θ∗|W + (T − t0)2%(|δ1∆3|+ |δ2∆1|) + (T − t0)%(|δ1∆4|+ |δ2∆2|)

< 1.

Select a Q∗ constant with ‖u‖ 6= Q∗. Put the command U = {x ∈ X∗ : ‖u‖ < Q∗∗}. The

operator F̃∗ : Ū → X∗ can then be shown to be continuous and fully continuous. No u ∈ ∂U

satisfies u =∗ F̃ ∗ u for any ∗ ∈ (0, 1). There is no u ∈ ∂U when considering the option of

U . Using the Leray-Schauder theorem, it is therefore inferred that F̃∗ is an operator with a

fixed point u ∈ Ū which is a solution of the problem BVP (3.1).

3.4 Example

We are formulating two illustrative examples in this section of the current paper to affirm

the correctness of theoretical results from the computational aspects. Indeed, we consider

two cases with different parameters and functions in the proposed BVPs in the following

examples.

Example 7. We build the following problem involving Caputo conformable fractional with

due regard to the proposed problem (3.1).

CCD
57
20
,0.9

1
10

u(t) = Υ̂(t, u(t)), (t ∈ [0,
1

5
]),

u(
1

10
) = 0,

CCD
7
15
,0.9

1
10

u(
1

5
) =

1

100
,

RCI
4
3
,0.9

1
10

u(
1

5
) =

1

50
,

(3.11)
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where% = 0.9, k∗ = 57/20, γ∗ = 7/15, q∗ = 4/3, δ1 = 1/100, δ2 = 1/50, t0 = 0 and T = 1.2.

If we define a continuous function Υ̂ : [0, 1.2]R→ R as follows

Υ̂(t, u(t)) = t2(
|u(t)|

1 + |u(t)|
) sin(u(t)),

then we get |Υ̂(t, u(t))−Υ(t, u′(t))| ≤ 1.44|u(t)− u′(t)| with L∗ = 1.44. As well as, we have

|Υ̂(t, u(t))| ≤ t2 = V(t). Besides, we obtain the following values

∆1 ≈ 0.1352, ∆2 ≈ 0.5544, ∆3 ≈ 0.0010, ∆4 ≈ 0.0179,

Θ∗ ≈ 0.0018, W1 ≈ 0.8593, W2 ≈ 0.0354.

Hence, it is clear that L∗W ≈ 0.0509 < 1. Therefore by considering the assumptions of

Theorem 3.1, the fractional BVP (3.11) has a unique solution
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Conclusion

In recent years, due to developments in the tools and methods of solving fractional differential equations,

fractional calculus has become more useful and powerful. The origin of fractional calculus lies almost as

far back as the classical calculus itself, and in this work, we have presented some results of the existence

and uniqueness of problem solutions for fractional orders differential equations with the type of Caputo

conformable with local and integral conditions. These results were obtained by applying the fixed point

theory
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Abstract

The main objective of this work is to study the Existence and uniqueness for boundary value problems

involving Caputo conformable derivative with multi-order fractional integro-derivative conditions of the

RiemannLiouville conformable type by applying some fixed point theories.

keys Words : Fractional integral, Fractional derivative of Caputo type, existence and uniqueness of

solutions, fixed point theorems.

Résumé

L’objectif principal de ce travail est d’étudier l’existence et l’unicité des problèmes fractionnaires Contient

une dérivée conforme de Caputo avec des conditions intégro-dérivées fractionnaires multi-ordres de type

conformable de Riemann-Liouville en appliquant certaines théories de point fixe.

Mots-Clés : Intégrale fractionnaire, Dérivée fractionnaire de type Caputo, existence et unicité des

solutions, théorèmes de point fixe
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