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1. INTRODUCTION

For several years, the environmental protection has
caused much attention, and consequently, several
technologies are developed. It’s the case of the wind
power. Nowadays, this source of energy is still used for
water pump but it’s mainly used for electricity
production and this without any harmful impact to the
environment.  The high costs of exploitation of the
nuclear, thermal power stations and the fossil fuels also,
made possibility of wind power being more competitive.

Today, the rate of penetration of wind farms
becomes increasingly significant in the electrical
network. However, several problems of instability are
generated at the time of the connection of these farms to
the network, because so far it does not participate to the
ancillary system (voltage regulation, frequency
regulation, black-start, operation in islanding).
Following these problems of instability of the electrical
network; ones procedure of obliteration must be
necessarily planned by the manager of network, which
causes a forced disconnection of the wind generators
based on the network instability, furthermore, the
supervision of the wind farms is considered to be
necessary in order to connect them to the electrical
network without disregarding the quality of electric
power produced.

The recent research tasks in the field of wind Farms
are directed to design supervision algorithms for wind
farm with the aim of distributing the references of active
and reactive powers on different wind generators. In this
context, several algorithms were proposed
[2][13][16][25] and can be classified mainly in three
categories:

The first algorithms are based   on Proportional integral
regulators PI, this class of algorithms regulates the
problem of the supervision by using a simple PI
regulator [8]. Two algorithms can be distinguished; the
first uses this regulator to regulate the power-factor
[15][21], while the second one regulates the active and
reactive power directly [1] [16] [27], but the risk of the
wind generators saturation is presented as the major
problem of these algorithms, because the information on
the maximum available active and reactive powers of
each wind generators are not taken into consideration
[8]. The second Algorithms are based on optimization of
the objective function, which is used for the optimal
active and reactive powers references distribution on the
wind generators [13][23][25]. This function must
formulate objectives, it is optimized by a mathematical
equation which takes account of several parameters [8],
it needs optimization methods like: genetic algorithm
[18], neurons networks [10],[17], particles swarm
optimization [4][11], and methods which combines the
latter with fuzzy logic [13][24]. The last supervision
Algorithms which are based on proportional distribution,
were developed to distribute the power references in
proportional way. From a safety point of view, these
algorithms ensure that each wind generator works
always far from its limits defined by the (P,Q)
diagram[1][2][8]. They determine the references of the
active and reactive powers of each wind generators

refWGP _ , refWGQ _ from the global active and
reactive power references required by the network

system operator refWFP _ . refWFQ _ [8] [19] [20] [6].
Nevertheless, the implementation of this strategy is a
little bit complex since it needs information on the
available aerodynamic power of all the wind generators
[20].
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This paper proposes a model of forecasting the
aerodynamic power based on artificial neural network
[ANN]. Considering the wind speed, it direction and
other factors. Taking into account the linear approximate
relationship between a wind speed and the aerodynamic
power generated, in order to improve PD algorithms for
wind farm supervision by avoiding the problem of
estimation the aerodynamic power presented in different
wind generators mentioned previously and ensure the
electrical network connection.

2. PROBLEM DESCRIPTION

The study described in this paper develops a simple and
robust algorithm that describes short-term wind power
forecasting. As wind energy varies during day time
depending on the wind speed hitting the generator
blades, the possibility of predicting wind energy
production in the following hour becomes crucial for
wind farm owners in order to work efficiently on the
electricity market. These predictions will help producers
take decisions for the sale of energy and thus to increase
production and profits. If an accurate prediction of the
wind speed for the following hour can be evaluated, the
total amount of active power that can be produced by
each generator on a wind farm can be determined and
therefore, the amount of energy that could be sold during
the next hour would be known too.

In order to analyse the amount of energy that is going
to be produced by a generator (produced active power),
the wind speed prediction and some aero-dynamical test
results of the generator are needed. So, it is important to
consider the mechanical power (Paer), developed by a
wind turbine , which depends directly on the blade
radius, the power coefficient and the wind speed hitting
the blades of the generator.
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Where V is the wind speed ( 1. sm ),  is the air density

( 3/ mkg ), R is the rotor radius ( m ), and pC is the

power co-efficiency of the wind turbine.

3. FORECASTING THE AERODYNAMIC
POWER

In this part, we suggest giving the estimation of wind
power in advance, a new method based on the ANN is
proposed. With the historical data of wind speed are
used. The main study in this paragraph is as follows: the
prediction model of wind speed is constructed by ANN,
which gives the predicted data of wind power.
Considering the fact that wind power relates to wind
speed.

3.1 Wind Speed Prediction Model

In this study, artificial neural networks (ANN) were
applied to predict the hours monthly wind speed of any
target station, using the hours monthly wind speeds of
Adrar region (in Algerian) station which is indicated as
reference data. Hourly wind speed data, collected by the
Algerian Meteorological office (AMO) at measuring
data located in the region of Adrar were used. The wind
data, containing hourly wind speeds, directions and
related information, covered the period between 1995
and 2004. These data were divided into two sections.
Data for the period 1995-2003 have been used to train a
neural network, where the data for the year 2004 were
used for validation; the hours monthly wind speeds of
reference station were used and also corresponding
months were specified in the input layer of the network.
On the other hand, the hours monthly wind speed of the
target station was utilized in the output layer of the
network. Artificial neural network (ANN) testing
algorithm was applied in the present simulation.

3.2. Artificial Neural Network (ANN)

Kalogirou [9] stated that during the past years there
has been a substantial increase in the interest of the
ANN. Researchers have been applying the ANN method
successfully in various fields of mathematics,
engineering, medicine, economics, meteorology,
psychology, neurology, in the prediction of mineral
exploration sites, in electrical and thermal load
predictions and in adaptive and robotic control and many
other subjects. This method learned from given examples
by constructing an input–output mapping in order to
perform predictions [12]. In other words, to train and test
a neural network, input data and corresponding output
values are necessary [26]. ANNs can be trained to
overcome the limitations of the conventional approaches
to solve complex problems that are difficult to model
analytically [22]. Fundamental processing element of a
neural network is a neuron. The network usually consists
of input layers, hidden layers and output layer [22]. The
model of a neuron is shown in Fig. 8. A neuron j may be
mathematically described with the following pair of
equations [3][7]:





p

i
ijij ywu

0

(2)

The artificial neuron receives a set of inputs or signals
y with weight w , calculates a weighted average of

them ( u ) using the summation function and then uses
some activation function j to produce an output y .
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Figure. 1. Nonlinear model of a neuron [3].
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The use of threshold y has the effect of applying an

affine transformation to the output u of the linear
combiner in the model of Fig. 8. [22][7].
The sigmoid logistic nonlinear function is described with
the following equation:
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3.3 ANN Architecture

ANN architecture used in this study for Adrar
meteorological station which is selected as a target
station is shown in Fig. 9. This network consists of an
input layer, two hidden layers and an output layer. The
hours monthly wind speeds of reference data and
corresponding month were used in the input layer of the
network. The wind data, containing hourly wind speeds,
cover the period between 1995 and 2003 considering as
reference data were used in output layer. The most
significant point in the selection of these reference data
is that there is a good relation with high correlation
coefficient between the target and reference data, the
number of the neurons in the hidden layers of the
network and the number of patterns in the training and
testing procedures are given in Table 1. train learning
algorithm was used in the present simulation. Neurons in
the input layer have no transfer function. Logistic
sigmoid transfer function (logsig) and linear transfer
function (purelin) were used in the hidden layers and
output layer of the network as an activation function,
respectively. Simulations were performed to estimate the
hours monthly wind speed of target station.

Fig.2. ANN architecture.

Table 1. Characteristic of ANN used

Target

station

Number of
neurons

in hidden

layers

Number of
patterns

in training

Number of
patterns

in testing

ADRAR 12-6 200 900

IV.1.4 Results and discussion

In the present study, it is realized that ANN is a
convenient method to apply for the prediction of the
wind speed. The mean absolute percentage error
(MAPE) was used to see the convergence between the
target and the output values. This parameter is defined as
Follows [22]:
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where t is the target value, o the output value, n the
total number of months,

Figure. 3. Comparison between prediction of ANN and
actual results for Adrar meteorological station

February 2004.
The values determined by ANN model were compared

with the actual data. The maximum mean absolute
percentage error was found to be 14.13% for Adrar
meteorological station.
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3.4. Wind Power Prediction [Fen 11]

Wind power can be calculated by wind speed-power
conversion formula, which is computed in equation (1).
which is based on the above predicted wind speed by
ANN, i.e. fig.. 12.
Different steps of prediction wind power shown in
following Flow chart:

Figure.4. Flow chart of prediction wind power

Figure.5. Wind Power Prediction

4. POWER SYSTEM CONFIGURATION

The total diagram of an inter-connected electrical
network which has several electrical devices is presented
on fig.1, the wind farm is connected to HTA 20KV buses
through a transformer of 20KV/690V.Differents fixed
and variables loads are connected to the same bus with
another transformer. A central unit of wind farm
supervision is installed in order to control the exchanges
(

WFP , WFQ ) powers with the electrical network [8].

The objective of this unit is a management of the total
active and reactive powers of the wind farm according to
a plan of production required by the system operator. On
the hand, A central supervisory control level decides the
active and reactive power references ( refWFP  refWFQ  ) for
each wind generators local control level, based on
received production orders (maximum production or
power regulation ( maxWFP , maxWFQ ) from the system
operator in other hand.
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Figure.6 Power System Configuration [28]

5. IMPROVED PD ALGORITHM FOR WIND
FARM SUPERVISION USING THE

AERODYNAMIC POWER PREDICTION

In order to enhance PD algorithms for wind farm
supervision by avoiding its problem presented in the
different wind generators and ensuring your connection
in electrical network. We propose a forecasting model of
aerodynamic power based on the artificial neural
network [ANN] to obtain the information on available
active and reactive powers fig.7.

Figure.7.Modified PD algorithm for wind
farm supervision
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5.1. Control algorithm

As the wind farm active power generation is closely
related to the wind speed, it is important to maintain the
active power levels while ensuring are active power
generation absorption. In consequence, it is important
maintain the necessary power factor to achieve the
correct electric parameters of the electric grid that the
farm is connected to. Once the active and reactive power
set points are defined, it is necessary to develop the
control-law that will guide the system. There are
different ways to design the control-law but the one
presented in this paper is based on a proportional
distribution of the active and reactive powers that the
farm must generate, taking into account that the
generated active power must be always the maximum
obtained in each moment from the wind.
The designed control-law takes into account the machine
operating limits and tries to follow the set point defined
for the farm. This law appears in (6)(7).

iWG
WF

refWF
irefWG P

P

P
P max__

max_

_
__  (6)

iWG
WF

refWF
irefWG Q

Q

Q
Q max__

max_

_
__  (7)

Where,
irefWGP __ irefWGQ __

, are the active and reactive
powers that each (i) machine must generate;

iWGP max__
,

iWGQ max__
, are the maximum active and reactive

power that each machine can generate in one specific
moment and

refWFP _
,

refWFQ _
, are the active and reactive

power set point for the farm.
The procedure followed to implement the control law

is described below:
1. Measurement of the active and active power produced
in the farm
2. Read of the active and reactive power needed to
maintain the electric parameters of the grid,
(

refWFP _
,

refWFQ _
,).

3. Measurement of the active power generated by each
machine and its reactive power limit (

iWGP max__
,

iWGQ max__
)

4. Apply (1) (2) to calculate the active and reactive
power that each machine (

irefWGP __ irefWGQ __
) must

generate and send it to the machine as the active and
reactive power sets points to follow.
5. Measurement of the active and reactive power
generated by the overall farm.
6. Comparison between the sets points
( refWFP _ , refWFQ _ ,) and the obtained active, reactive
power and return to 2

5.2. Combined Prediction Wind Power with PD
Algorithm for Wind Farm Supervision.

If we know ahead the available aerodynamic power
for each wind generators of the wind farm, we have the
possibility of cured the major problem of PD Algorithm
for Wind Farm Supervision, i.e. estimation aerodynamic
power on the level of the wind generators. By
considering into account the maximum active and
reactive powers to calculate this algorithm.

Thus the controller of each wind generators
received a consign in active and reactive powers has to
leave the system of centralized supervision the wind
farm and the limits in active and reactive powers
according to its diagram (P, Q). If the reference is
inferior to extreme in active power also for reactive
power the wind generator must be produced this
instruction. On the contrary case the wind generator is
sufficient to produce its maximum in active or reactive
powers.
The following flow chart in figure.8 illustrates the
context of this modification:

Figure.8: Flow chart of the management of the active
power on the level a local wind generator controller

5.3. Simulation Results and Discussion

The validation of this type of supervision was made
on the model of a wind farm of three wind generators
situated in different wind profiles.
In order to observe the behavior of this regulation we

applied to our system different level of active and
reactive powers. Supposing that the wind generators of
the wind farm are worked in "MPPT".
We have two scenarios of simulation:
 The first one used an proportional

distribution of the active and reactive powers references
not considering disconnection the wind generators
[Fig.9, Fig.10].
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The simulation results show a good performance of the
control system. The specified references both for the
active and reactive power are achieved properly [Fig.9,
Fig.10].

Fig.10.Simulation Results the centralized supervision
of the reactive power [PD].Normal case.

(a) active Power of the wind farm

(b) active power the first wind generator

(c) active power the second wind generator

(d) active power the third wind generator

Figure .9.Simulation Results the centralized supervision of
the active power [PD]:.Normal case.

(a) reactive Power of the wind farm

(b) reactive power the first wind generator

(c) reactive power the second wind generator

(d) reactive power the third wind generator
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 In the second scenario with the distribution
of different references in Active and reactive powers
we take into account the disconnection of each wind
generators during the defects (saturation, short-
circuits,). Figures [Fig.11, Fig.12] Show the
dynamics of this control.

In order to demonstrate the performance of the wind
farm Controller, it is considered that at the moments of
[40 s .Fig.11] for the active power and [50 s .Fig.12] for
the reactive power the first wind generator is
disconnected from the farm, being thus unable to
contribute with both active and reactive power, I.e.

Figure.12.Simulation Results the centralized supervision
of the active power [PD]: disconnection the first wind

generator.

(a) active Power of the wind farm

(b) active power the first wind generator

(c) active power the second wind generator

(d) active power the third wind generator

Figure .11.Simulation Results the centralized supervision of the
active power [PD]: disconnection the first wind generator.

(a) reactive Power of the wind farm
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 Fig.11(a),Fig.12(a)illustrates both  the available
active power, actual active and reactive powers at the
wind farm level, namely in the PCC of the wind farm.
The disconnection of the first wind generator is
illustrated as a step to another level of the available
power. Noticed that the wind farm controller manage to
keep the required 2 MW actual active power and 0.8
Mvar actual reactive power, in both cases before and
after the disconnection of the first wind generator.
 Fig.11 (b, c, d), Fig. 12 (b ,c ,d) illustrates the

Simulation results at the wind generators control level.
At the moment of disconnection of the first wind
generator, its active and reactive power reference signals
becomes zero. The dispatch function block fig.7
recomputed then the references for the remaining two
wind generators in order to maintain the 2 MW active
power and the 0.8 MVar reactive power in the PCC.
Noticing that the wind farm keeps the required 2 MW
active power very smoothly (see Fig. 11.a), although the
active power varies at the individual wind generators
(see Fig.12 (b, c, d)). Noticing that the production of the
active power and the absorption of reactive power from
the two remaining wind generators increase to
compensate the disconnected a first wind generator.

6. CONCLUSION

In this paper, improvement of Pd algorithm for wind
farm supervision has been presented. The attention is
mainly drawn on prediction of the available wind power
at the level of each wind generator of wind farm based
on [ANN] artificial neural network. In order to avoid the
major problem of PD supervision algorithm which is the
estimation aerodynamic power of different wind
generator. Central supervisory algorithms are
implemented and tested by simulation, under Matlab-
Simulink software, on a wind farm of three wind
generators. The simulation results illustrate good
performance of this modification.
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