N° Série : 19201443/2020

Université Kasdi Merbah Ouargla

Faculté des hydrocarbures energies renouvelables et science de la terre et de l'univers

Département de Production des Hydrocarbures

MEMOIRE

Pour obtenir le Diplôme de Master

Option : Production Professionnelle

Présenté Par :

GUESMI Djamel Eddine, DHIF El-Moatez Bellah, ADAMOU Haidar

-THEME-

MODELISATION DU RESEAU DE DESSERTE GAZ HAUT PRESSION HP (SANS GAZ-LIFT)

Soutenue le : 21 / 09 / 2020 devant la commission d'examen

Jury :

Président : GUREH Salim	Maître de conférences A	Univ. Ouargla
Rapporteur : MAHASSOUEL Ammar	Maître de conférences A	Univ. Ouargla
Examinateurs : KHABAZ Mohamed Elghali	Maître assistant A	Univ. Ouargla

Remerciement et Dédicace

Au premier temps, je tiens à remercier le bon dieu, qui m'a donné la force et le courage pour continuer ce modeste travail, et pour sa grâce tout au long de notre vie professionnelle et personnelle.

Je dédie ce modeste travail à mes chers parents qui m'ont soutenu et contribué pleinement dans l'aboutissement et la réussite de mon parcours scolaire.

Nous tenons à exprimer nos vifs remerciements a: Mr MEHSASSOUEL Ammar et Mr BAHI Djaballah, Antre consultant pour notre encadrement et pour tous les efforts fournis durant ce travail.

Nous témoignons notre profonde gratitude aux les professeurs de

Université Kasdi-Merbah. Ouargla., Aussi je dédie ce travail à tous mes chers amis.

Enfin, tous mes remerciements vont à ma famille et à tous mes amis qui ont été nombreux à m'aider et qui m'ont porté un soutien moral.

ملخص

تتمثل نمذجة الشبكات في جمع المعطيات إنطلاقا من مراكز المعالجة (مراكز الضغط) إلى غاية آبار الحقن. ثم إنشاء نموذج ؛ تتضمن نمذجة الشبكة جمع البيانات الضرورية للحصول على سيناريو لتحسين حقن الغاز. **الكلمات المفتاحية**: النمذجة ، النموذج ، الأداء ، الشبكة ، السيناريو ، التحسين

Summary

Network modeling involves collecting data from processing centers (compression centers) to the injector wells. Then creating a model; Network modeling encompasses collecting necessary data, to obtain a gas injection optimization scenario.

Keywords: modeling, model, performance, network, scenario, optimization.

Résumé

La modélisation des réseaux consiste à collecter des données fournées à partir des centres de traitements (centres de compression) jusqu'aux puits injecteur. Puis la création d'un modèle ; la modélisation de réseau englobe à collecter des données nécessaires, pour obtenir un Scénario d'optimisation d'injection du gaz.

Mots Clés : modélisation, modèle, performance, réseau, scénario, optimisation.

Table des Matières

Liste des abréviations	5
Liste des tableaux	6
Liste des figures	7
Liste des annexes	8
Introduction générale	9
Chapitre 1: Description du champ Hassi Messaoud	10
 1.1 Historique du champ hassi messaoud	11 11 12 14 15 16 16 17 17 18
Chapitre 2 : Généralité sur réseau de desserte	21
 2.1 Particularités des lignes de desserte	$\begin{array}{c}21 \\21 \\23 \\24 \\25 \\25 \\26 \\26 \\26 \\27 \\28 \end{array}$
Chapitre 3 : Généralité sur les écoulements du fluide	29
 3.1 Pertes de charge	29 30 33 33 33 34 35 35 36 36 36

 3.5.2 Longueurs droites équivalentes 3.6 Aperçu sur le logiciel d'optimisation (pipesim) 3.6.1 Méthode d'une création d'un projet avec pipesim 3.6.2 Sensibilité	37 38 38 40
Chapitre 4: Modélisation de réseau de desserte gaz HP	
4.1 Problématique	41
4.2 Description du réseau desserte	41
4.2.1 Les lignes de banalisation entre les champs	42
4.2.2 LA distribution des puits injecteur par zone	42
4.3 Etats des puits injecteur	43
4.4 Analyse chromatographique de gaz injectée	43
4.5 L'organigramme de modélisation :	44
4.6 Résultats de modélisation:	45
4.6.1 Diagnostique du système :	49
4.6.2 Interprétation d'un exemple des résultats et des graphes d'un cas typiq	ue:54
Conclusion générale	57

Bibliographie 59

Annexe : généralités sur la modélisation	60
5.1 Distribution des puits injecteur	60
5.2 Les étapes de modélisation	60
5.2.1 Collecte les données	60
5.2.2 Organisée les données dans un tableau Excel	62
5.2.3 Création de modèle dans le logiciel	63
5.3 Information sur la longueur des pipes	64
5.4 Fiche technique de puits injecteur	65

Liste des abréviations

P _{inj} ou P _t : Pression tête	bar
P _{line} ou P _p	bar
Q _{inj} : Debit d'injection	s m³/day
ρ: la masse volumique en	kg/m ³ .
μ: la viscosité dynamique en	cp.
D : le diamètre intérieur de la conduite en	m.
V : la vitesse de fluide	m/s.
$\Delta \mathbf{P}_{f}$: Perte de charge en	Pa.
L : Longueur de conduite en	m
K : Coefficient de résistance de l'accessoire	
Re ; Le nombre de Reynolds	
\mathbf{f} : Nombre sans dimension appelé facteur de frottement ou coefficient de friction	1
CINA et CIS : sont des unités de traitement de brute et compression de gaz injec	cteur

Mfd : manifold

JN : jonction nord

JS: jonction sud

Liste des tableaux

Tableau 3.1 :.les rugosités du quelque matériaux
Tableau 4.1 : Etat des puits injecteur
Tableau 4.2 : Analyse chromatographique de gaz injecté
Tableau 4.3 : Les paramètres pétro-physique de gaz injecte
Tableau 4.4 : comparaison entre les pressions calculées et les pressions réelles avant la
calibration
Tableau 4 .5 : comparaison entre les pressions calculées et les pressions réelles après la calibration
Tableau 4 .6 : les branches ont un risque de corrosion interne40
Tableau 4 .7 : les branches ont cors de formation holdup42
Tableau 4 .8 : les branches acceptables

Liste des figures

Figure 1.1 : Situation géographique du champ Hassi Messaoud	4
Figure 1.2 :Situation géologique du champ de Hassi Messaoud	5
Figure 1.3 :Carte de zonage du champ de Hassi Messaoud	6
Figure1.4 :Coupe géologique du champ de Hassi Messaoud	7
Figure 1.4 :Coupe géologique du champ de Hassi Messaoud	8
Figure 1.6 :Distribution des paramètres pétro-physiques dans les différents drains	
au niveau du champ Hassi Messaoud	10
Figure 2.1:Schéma d'un Manifold gaz des puits injecteur	14
Figure 2.2: La protection cathodique	16
Figure 2.3: Schéma d'un SKID	17
Figure2.4: Joint isolant à bride	18
Figure 2.5: Joint isolant à bride	19
Figure 3.1 : Écoulement laminaire des fluides visqueux	22
Figure 3.2 : L'évolution des pertes de charge d'écoulement laminaire	22
Figure 3.3 :L'écoulement turbulent des fluides visqueux.	23
Figure 3.4 : L'évolution des pertes de charge d'écoulement turbulent	23
Figure 3.5 : choix du système désunîtes	30
Figure 4.1 : distribution des puits par zone	33
Figure 4 .2 : L'organigramme de la modélisation	35
Figure 4.3 : la variation de pression en fonction de la longueur de pipe	45
Figure 4 .4 : la variation de vitesse en fonction de la longueur de pipe	46
Figure 4 .5 :la branche MFD CINA_JOMO75	47

Liste des annexes

Annexe A : généralités sur la modélisation......60

Introduction générale

Le gisement pétrolier de Hassi Messaoud est considéré comme l'un des plus grands au monde en termes de ses dimensions et ses réserves, Il s'étend sur une superficie d'environ 4200 Km² produisant ainsi de l'huile dans le réservoir Cambro-Ordovicien.

Il se présente comme un vaste dôme anticlinal orienté ''Nord/Nord Est-Sud/Sud-Ouest'', situé dans la partie centrale du bassin triasique, à environ 650 km au Sud-Est d'Alger et à 350 Km de la frontière tunisienne.

Ce réservoir gréseux est caractérisé par une hétérogénéité qui se traduit par les variations extrêmes des propriétés pétro-physiques entraînant la variation de la production d'une zone à une autre et d'un puits à un autre. L'étendue de ce champ implique une variabilité de la production dans ses différentes parties, ceci est nettement attesté par l'histoire de la production cumulée à ce jour.

Le champ de Hassi Messaoud a atteint un degré de déplétion très élevé mais pas encore définitif. Ces dernières années, plusieurs techniques d'exploitation sont tracées pour soutirer plus de pétrole. Parmi les procédés mis en service, on cite : l'injection d'un fluide (eau, gaz) permettant le balayage ou le drainage des quantités d'huile récupérable dans les réservoirs, dénommé en d'autres termes : la récupération secondaire, cette injection nécessite la mise en place d'un réseau d'acheminement en surface bien dimensionné pour cet effet ; tenant compte à la fois des prévisions et des contraintes d'exploitation.

Cette étude a pour but de modéliser le réseau desserte gaz en haute pression (HP) dans la région de Hassi Messaoud (champ complet : Nord – Sud) pour prédire l'état des pipelines au cours du temps, ce qui va nous permettre déterminer les anomalies qui existent, afin de proposer des solutions adéquates efficace et économique.

Cette étude s'articule autour des objectifs qui sont : une description de réseau de desserte, ses éléments constitutifs, son principe de fonctionnement et enfin une modélisation des faites à base du logiciel « PIPESIM » avec des conclusions et recommandations.

Chapitre1 : Description du champ Hassi Messaoud

Introduction

Le champ de Hassi Messaoud est considéré comme l'un des plus grands au monde ; il apparaît comme un vaste anticlinal aplatit près de la terminaison nord orientale du bassin triasique sud algérien.

Le réservoir de ce champ correspond aux grès quartzitiques du Cambrien érodé sous la discordance hercynienne et couvert par le Trias argilo-salifère. Quatre unités constituent de bas en haut le réservoir principal Cambrien (R3, R2 et R1) avec une épaisseur totale des formations productives qui oscille entre 175 et 240 m.

Depuis sa mise en production en 1958, le champ de Hassi Messaoud pose des problèmes importants généralement liés à l'hétérogénéité de la distribution des paramètres pétrophysiques et pétrographiques.

Il est tellement compliqué qu'il est à considérer comme une mosaïque de gisements délimités par des barrières de perméabilité avec des porosités variables permettant des régimes de production différents dans les divers compartiments. Au vu de cette hétérogénéité, le schéma d'exploitation du champ est subdivisé en 25 blocs, le maintien d'une certaine pression de couche se fait grâce au complexe de puits d'injection se trouvant sur la périphérie des blocs ; par contre les puits d'exploitation forés dans les parties centrales, caractérisent la nette amélioration de la qualité réservoir.

1.1 Historique du champ Hassi Messaoud

- Le gisement de Hassi Messaoud fut découvert le 16 Janvier 1956 par la société nationale de la recherche pétrolière en Algérie (SN REPAL). Le premier sondage Messaoud 1 (Md1) a rencontré une accumulation d'huile dans le réservoir Cambrien Ra à 3338 m de profondeur.
- En 1957, la compagnie française du pétrole en Algérie (C.F.P.A) à la suite de l'obtention de la partie septentrionale du champ confirmait ce résultat par le forage OM1 situé à environ 7 Km au Nord - Nord Ouest du puits MD1.
- La mise en production avait commencé en 1958 avec 20 puits d'exploitation. Depuis la découverte du gisement de Hassi Messaoud, plusieurs travaux lui ont été et lui sont encore consacrés.
- En 1970, A.Balduchi et G.Pommer ont précisé la structure de Hassi Messaoud en la plaçant dans un contexte régional.
- En 1972, J.Gautier, D.Massa et al. ont étudié la fracturation du réservoir du champ, retraçant ainsi les grandes phases tectoniques qui ont affecté la région.
- En 1979, L' IFP a réalisé plusieurs travaux qui ont abouti à la délimitation dans le champ de Hassi Messaoud de 25 zones productives.

Il existe également des travaux internes de la SONATRACH. On peut citer :

- L'étude réalisée par R. Kerdali et N.Hadibi sur les Quartzites de Hamra en Novembre 1996.

1.2 Situation géographique

Le champ de Hassi Messaoud est un important gisement d'hydrocarbure. Il contribue pour plus de 50 % de la production algérienne. Il se situe à 650 km Sud – Sud-Est d'Alger, à 350 km de la frontière tunisienne, et à 80 Km à l'Est de Ouargla (**Figure. 1**).

Ses coordonnées Lambert sont :

- X:790.000 @ 840.000 EST
- Y:110.000 @ 150.000 Nord

1.3 Situation géologique

La structure de Hassi Messaoud correspond au prolongement vers le Nord du môle d'Amguid-El Biod, elle occupe la partie centrale de la province triasique (**Figure. 2**).

Ce gisement est limité :

- Au Nord, par la structure Djemâa-Touggourt.
- Au Sud, par le haut-fond d'Amguid-El Biod.
- A l'Est, par les dépressions de Dahar et de Ghadamès.
- A l'Ouest, par la dépression d'Oued Mya.

Figure I.1. Situation géographique du champ Hassi Messaoud.

Figure I.2.Situation géologique du champ de Hassi Messaoud.

1.4 Zonage du champ et numérotation des puits

L'évolution des pressions des puits en fonction de la production a permis de subdiviser le gisement de Hassi Messaoud en 25 zones, dites de production, d'extension variable. Ces zones sont relativement indépendantes et correspondent à un ensemble de puits communiquant entre eux et non pas avec ceux des zones avoisinantes, Elles ont chacune un comportement propre du point de vue pression de gisement. Les puits d'une même zone drainent conjointement une quantité d'huile en place bien établie. Toutefois il est important de souligner que le facteur de pression ne peut être le seul critère de caractérisation des zones (**Figure I.3**).

Figure I.3.Carte de zonage du champ de Hassi Messaoud

Le champ de Hassi Messaoud est divisé en deux parties distinctes : la zone Nord et la zone Sud, chacune ayant sa propre numérotation établie par les premières sociétés détectrices du champ.

Champ Nord : comporte une numérotation géographique complétée par une numérotation chronologique, exemple : Omn 43.

O : Majuscule, permis d'Ouargla.

m : Minuscule, carré de 1600 km².

n : Minuscule, carré de 100 km².

4 : Abscisse, et 3 : ordonnée.

Champ Sud : il est principalement chronologique complété par une numérotation géographique basée sur des abscisses et des ordonnées d'intervalle égale à 1,250 km et harmonisée avec les coordonnées Lambert. Ex: Md10 (33) – (15).

1.5 Stratigraphie du champ

La série stratigraphique du champ de Hassi Messaoud reposant sur le socle a environ 4393m d'épaisseur. Elle est marquée par l'absence du Silurien, Dévonien, Carbonifère et Permien ; elle est de ce fait incomplète. La discordance hercynienne est manifestement plus accentuée au centre de la structure, où les dépôts argilo-gréseux et salifères du Trias reposent directement sur le Cambrien. En allant vers la périphérie, cette discordance tronque des termes ordoviciens de plus en plus récents (**Figure.4 et 5**).

(Sonatrach / Division Production - Rapport interne 1998).

Figure I.4.Coupe géologique du champ de Hassi Messaoud

(Sonatrach / Division Production – Rapport interne 1998).

Figure I.5.Bloc diagramme de l'écorché géologique sous la discordance hercynienne du champ Hassi Messaoud

1.6 Aspect pétrolier

1.6.1 La roche mère

Siluruen :

Les argiles du Silurien constituent la roche mère, source génératrice des hydrocarbures à l'échelle de toute la plate forme saharienne. Cette source est représentée par les argiles noires, carbonatées et radioactives, très riches en matière organique, d'une épaisseur qui varie de 20 à 70 m.La matière organique est de nature amorphe. La présence de Tasmanacés confirme l'origine marine de cette matière et son apport pétrolier est évident.

Actuellement, on peut dire qu'après la dismigration des hydrocarbures générés au Paléozoïque, il y a eu une deuxième phase de génération plus importante qui a cessé à

la fin du Crétacé suite à la diminution de la subsidence.Le Silurien est préservé au Nord du champ de Hassi Messaoud, à l'Ouest (dans le bassin d'Oued Mya), au Sud-Ouest (bassin de Mouydir) et à l'Est (Bassin de Berkine).

1.6.2 La roche couverture

La couverture des réservoirs ordoviciens est assurée respectivement par l'épanchement des roches éruptives ainsi que par les épaisses séries d'évaporites d'âges triasique ou jurassique.

1.6.3 Les pièges

Les pièges désignent les zones les plus favorables à la présence des accumulations d'hydrocarbures, caractérisés par une faible pression et une plus basse température que celle des roches mères, et par une barrière qui oblige les hydrocarbures à s'accumuler. Il existe trois types de pièges :

1.6.3.1 Pièges structuraux

Ces pièges sont le résultat de mouvements tectoniques tels que les anticlinaux ou pièges par failles.

1.6.3.2 Pièges stratigraphiques

C'est la combinaison de deux milieux différents correspondant au passage d'unmilieu perméable à un autre imperméable tel que les lentilles gréseuses et les biseaux.

1.6.3.3 Pièges mixtes

Ils sont à la fois structuraux et stratigraphiques, comme par exemple la structure de Hassi Messaoud (anticlinal tronqué par la discordance Hercynienne).

Au niveau du bassin d'Oued Mya au Nord-Est de Hassi Messaoud, les pièges reconnus, jusqu'à présent, sont de type stratigraphique et structural (mixtes)

1.6.3.4 Caractéristiques des fluides et paramètres pétro-physiques

- Huile légère.
- Densité moyenne en surface : do = 0.8.

- La pression de gisement est variable : Pg = 120-400 Kgf /cm2
- La température du gisement est de : T°=118°C
- Le rapport Gaz / Huile : GOR = 219 m3/m3.
- La porosité est faible : $\phi = 5-10\%$
- La perméabilité est très variable.
- La viscosité : $\mu = 0.2$ Cp.
- Le facteur volumétrique de fond : Bo = 1,7 m3/m3.

(Sonatrach / Division de production / Rapport interne - 2000).

Figure I.6.Distribution des paramètres pétro-physiques dans les différents drains

au niveau du champ Hassi Messaoud

1.7 Description des drains

La notion de drains a pris naissance à raison d'une correspondance sédimentologie et diagraphique et à la qualité du réservoir. Le terme de drains, qualifiants des zones ou unités faiblement cimentées

à caractéristiques relativement constantes sur l'étendue du champ, coïncident bien avec les trois zones préférentielles du réservoir.

Rappelons que les grès de Hassi Messaoud (le réservoir cambrien) ont été subdivisés au début de la reconnaissance du gisement en quatre niveaux :

Niveau R3 : généralement aquifère, sans aucun intérêt pétrolier.

<u>Niveau R2</u>: ne présentant que rarement des qualités réservoirs, dans sa partie supérieure. (19% des réserves). Il ne produit pas directement dans les puits forés dans son toit, mais il alimente le réservoir Ra par un important un flux vertical d'huile. Il se divise en deux sous niveaux ; le R2c et le R2ab, le premier sous-niveau se caractérise par une épaisseur moyenne non érodée de 80m, forme des fois l'aquifère, 17% d'argile en moyenne.la perméabilité est relativement meilleure dans le R2ab.

Niveau Ra: il constitue le réservoir principal de Hassi Messaoud où tous les puits produisent, il possède des caractéristiques petro-physiques aptes à la production. (68% des réserves). Du point de vue sédimentologique, ce niveau se subdivise en trois zones suivant les critères granulométriques :

- Zone grossière inférieure (Ra inférieure)
- Zone fine médiane (Ra moyen)
- Zone grossière supérieure (Ra supérieure)

La base du Ra s'individualise comme une zone grossière inférieure dans laquelle se développent quatre drains qui se distinguent par leurs paramètres granulométriques. Ce découpage peut être également validé par les particularités suivantes :

- D1 : Grès grossiers à stratifications de type oblique arqué dominantes, bien marquées et souvent à base micro-conglométriques, avec absence de tigillites.
- ID : Niveaux plus minces et fréquence plus grande des niveaux silteux, avec présence locale de tigillites. Il marque un passage très progressif entre le D1 et le D2.

• D2 : Grès grossiers mais bien classés à stratifications obliques tabulaires dominantes formant des méga-rides, avec présence de quelques intercalations de niveaux de silts à fines bioturbations.

Pour cette partie inférieure du Ra qui comporte les meilleurs niveaux réservoirs, il faut surtout remarquer l'extension progressive des zones d'érosion vers la zone centrale du champ.

- D3 : Il correspond à la zone fine médiane (granulométrie plus faible). La principale caractéristique de ce drain est l'abondance d'inter-lits silteux et de grès fins à très fortes bioturbations (des tigillites en particulier). Le caractère marin de ce drain est bien marqué. Il pourrait correspondre à un environnement de plateforme infra-littorale, composée de niveaux argilo-silteux bioturbés dans lesquels se développent des barres marines à influence tidale ou de tempêtes. Dans un tel environnement l'existence de barrières de perméabilité d'extension kilométrique est très probable ; BEICIP, FRANLAB. (1995).
- D4 : Il correspond à la zone grossière supérieure. Ce sont des grès à stratifications obliques tabulaires fréquentes formant des mégas- rides de un à plus de deux mètres d'épaisseur.

<u>Niveau Ri (D5)</u>: Grès fin isométrique, zone habituellement très compacte (13% des réserves), une épaisseur moyenne non érodée de 45m, un dépôt sur le Ra après une période d'érosion qui a pu éliminer environ 30% d'argile, une bonne continuité des couches a des faibles perméabilités.

Chapitre 2 : Généralité sur réseau de desserte

Introduction

Le terme Réseau de desserte désigne l'ensemble des conduites et des accessoires de ces conduites affectés au transport des effluents gaz entre les centres de compression et les puits injecteurs.

Le terme ligne de collecte s'applique à l'une de ces conduites prise individuellement.

2.1 Particularités des lignes de desserte

Elles transportent presque toujours un effluent monophasique et sont soumises de ce fait à des lois d'écoulement complexes. Ces phénomènes encore mal définis s'accompagnent toujours de perte de charge importante.

Les pressions des réseaux de la desserte toujours très élevées. Nécessitent un système de sécurité qu'assure la fermeture des vannes de sécurité au niveau de puits où les manifolds.

2.1.1 Le matériel tubulaire

2.1.1.1 Les normes API

La presque totalité des tubes couramment utilisés en générale dans l'exploitation pétrolière (production injection) répondent aux spécifications des normes américaines API 51 et 5xl qui définissent :

- Les modes de fabrication
- La composition chimique des aciers
- Les propriétés mécaniques requises
- Les conditions d'épreuve hydraulique
- Les poids, dimension et tolérances d'usinage
- Les normes d'assemblage par vissage et soudure
- Les méthodes d'inspection et contrôle
- Les marques d'identification.

2.1.1.2 Les normes américaines ANSI

Dans le standard ANSI B 36-10 on peut lire que l'épaisseur des tubes à extrémités lisses normalisée est reliée au nombre repère sans dimension appelé ''Schedule Number''(Sch).

Les Schedul Number

Sont définis par des nombres entiers sans dimension :10,20,30,40,60,80,100,120,140,160. Pour l'acier au carbone et faiblement allié

Figure 2.1. Figure représente les normes de pipe

2.1.1.3 Epaisseur des tubes

L'épaisseur des tubes est obtenue par un calcul faisant intervenir :

- Les conditions d'utilisation (pression, température)
- ➢ La nuance utilisée
- La surépaisseur de corrosion éventuelle
- La tolérance de fabrication

2.1.1.3.1 Epreuves de résistance hydraulique

Elles sont excitées après revêtement et descente en fouille de la ligne. On emplit d'abord la conduite de liquide en veillent à ce qu'il ne subsiste pas de poche d'air (emplissage par un point bas où avec refoulement d'un piston racleur).

On procède ensuite la mise en pression.

La pression d'éprouve sur chanté est inférieur à celle qui est applique en usine, elle varie d'ailleurs avec le classement administratif des zones qui travers la conduite en moyenne elle est égal 1.3 fois la pression maximale de service prévue (P.M.S), tandis que les preuves usine est égal 1.5 P.M.S.

Après mise en pression la conduit est isolées durant plusieurs heures et contrôle par manomètre enregistreur tout correction de température faite on ne doit pas constater de variation excédant les tolérances admises

2.1.1.4 Effets de la dilatation

Les lignes de desserte sont des conduites en compression, c'est le cas des conduites affectées au transport d'un fluide très chaud.la dilatation peut être tell que le tube s'arrache du sol et sorte de sa tranchée. Pour éviter cet accident, on adopte un tracé sinueux où des courbes successives procurent une aisance latérale suffisante. Dans les cas extrêmes, on peut placer des lyres de dilatation de loin en loin.

2.1.2 Liaisons par collecteurs

Les lignes qui sont connectées entre les manifolds où les centres avec les manifolds.

On installe des vannes pour contrôler l'injection de chaque puits. Les lignes individuelles des puits doivent être les plus courtes que possible.

Figure 2.2. Schéma d'un Manifold gaz des puits injecteurs

2.1.3 Dimensionnement des pipes de desserte

Le dimensionnement des pipes pour but de définir les diamètres et l'épaisseur des Canalisations chargées de transporter les effluents à partir de centre de traitement CIS et CINA Jusqu'aux manifolds (desserte). Ensuite les différents manifolds repartis à travers le champ jusqu'au puits injecteurs.

Le dimensionnement des lignes de desserte tient la nature des effluents à transporter- (huile ou gaz ou encore les deux dans un écoulement diphasique).

Les données (pression, débits et températures des fluides et leur composition) permettent le dimensionnement des lignes. Ces données proviennent de l'étude de réservoir qui définit le profil de desserte selon le scenario retenu pour le développement du champ. Le levé topographique ainsi que les profils en long des canalisations sont nécessaires pour

Compléter l'étude et permettre le positionnement et le choix des accessoires du réseau. Le choix de l'acier est défini selon la composition des effluents. Le calcul ainsi que l'optimisation d'un réseau de desserte se fait par l'utilisation des logiciels

2.2 Protection des réseaux contre les corrosions

Les canalisations enterrées doivent être enrobées dans un revêtement qui les protège contre les agents corrosifs du sol et surtout contre l'action des courants électriques vagabonds, générateurs de corrosions électrolytiques.

2.2.1 Protection passive

Elle consiste à isoler électriquement la conduite en l'enrobant dans un revêtement qui présente une bonne caractéristique diélectrique et en plaçant à chacune de ses extrémités un joint isolant.

Le revêtement classique consiste à appliquer un enduit d'impression après brossage énergique du métal et enrouler par-dessus une bande de feutre bitumé où de fibre de verre imprégnée de brai de houille fondu.

Il existe également sur le marché des bandes plastiques adhésives, applicables à froid, qui assurent une isolation convenable et sont d'un emploi très commode.

Le revêtement peut être exécuté en usine, en atelier de chantier où en ligne après soudure, dans les deux premier cas, l'enrobage des soudures est fait après coup, la qualité du revêtement est contrôlée au détecteur électrique et tous les défauts sont repris avant mise en fouille.

La protection passive seule est rarement suffisante, il est en effet pratiquement impossible de réaliser un que conserve indéfiniment toutes ses qualités. Tôt ou tard, apparaissant des fissures où se concentre la corrosion qui est alors très active

2.2.2 Corrosion électrique et protection cathodiques (active)

Des courants électriques naturels ou réés par l'homme circulent dans le sol. On peut citer par exemple les courants de retour voies ferrées électrifiées, particulièrement intenses

Lorsque l'éclissage des rails est défectueux, des courants d'origine mécanique ou chimique que l'on décèle même dans les zones désertiques.

Tous ces courant sont drainés par une conduite métallique non isolées qui, en offrant un milieu de moindre résistance, constitue une ligne de cheminement préférentiel.

Figure 2.3. La protection cathodique

2.3 Equipment de réseau

2.3.1 Définition de skid

C'est un équipement a été installée avant le puit injecteur gaz, qui Joux deux rôles principales

- > La filtration des grains solide qui contient dans le gaz à cause d'érosion de la pipe.
- > Point d'injection des produit chimiques pour.

Figure 2.4. Schéma d'un SKID

2.3.2 Les joints isolants

Leur rôle est d'isoler électriquement les lignes de collecte où desserte des installations auxquelles elles se raccordent (têtes de puits est enter le centre de compression), car il est plus facile d'assurer la protection cathodique sur des ensemble séparée. Les figures suivent schématisent deux types de joints isolants

2.3.2 A- joint isolant a brides

L'isolation est obtenue par interposition entre les deux brides d'un joint étanchéité torique en matériau isolant.

Il convient d'éviter, avec ce type de montage, l'emploi de peintures métallisées dont une application inconsidérée risque de shunter-le joint.

Il est également recommandé de protéger le raccord avec un single plastique appliqué en ceinture sur la tranche des brides.

On éviter ainsi la pénétration de terre où de sable qui avec l'humidité, pourraient amoindrir le pouvoir isolant.

Les joints isolants à brides sont fragiles et posent souvent des problèmes d'étanchéité à haut pression.

Figure 2.5. Joint isolant à bride

2.3.2 B manchon isolant

La pièce assemblée en usine est moins fragile que le raccord à brides.

Le montage sur la conduite est réalisé soit par brides, soit par soudure. Ce type de raccord est d'un prix plus élevé que le précédent.

Figure 2.6. Joint isolant (manchon isolant)

2.3.3 Flapeur valve et clapet anti retour

La flapeur valve et les clapets anti retour jouent le même rôle. Ils assurent automatiquement sous certaines conditions le passage d'un fluide dans un seul sens, et dans l'écoulement inverse il y a fermeture automatique par la pression d'écoulement.

NP: La Flapeur valve est utilisée dans le réseau gaz uniquement et ce pose au niveau de puits par contre le clapet qui trouve à la surface.

Chapitre 3 : Généralité sur les écoulements du fluide

3.1 Pertes de charge

On appelle fluide parfait un fluide pour lequel la viscosité dynamique est nulle. Ce modèle physique ne correspond pas à la réalité mais constitue un cas limite pouvant parfois être utilisé pour une première approche.

Tous les fluides ont en fait une certaine viscosité ; lors du déplacement des fluides des frottements apparaissent entre les différentes couches de fluide ou contre les parois de la canalisation ou d'un accident. Ces frottements entraînent donc une production de chaleur correspondant à une perte d'énergie pour le fluide. On parle de pertes de charge.

D'une manière générale, les pertes de charge sont fonction :

Pour une canalisation horizontale cette perte d'énergie se caractérise par une diminution de la pression dans le sens de l'écoulement.

Les pertes de charge sont un élément fondamental de l'écoulement des liquides car elles apparaissent pour tous les liquides. Elles se classent en deux types :

- ✓ Les pertes de charge dues aux simples frottements décrits plus haut : ce sont les pertes de charge générales dues à la seule présence d'une canalisation rectiligne sans accident.
- ✓ Les pertes de charge provoquées par la présence d'accidents sur la canalisation : rétrécissement, élargissement, vanne, coude, clapet, filtre, débitmètre, échangeur ... Ces accidents provoquent également des pertes d'énergie sous forme de frottements à cause des tourbillons créés par ces obstacles. On les nomme pertes de charges locales ou singulières.

3.2 Différents régimes d'écoulement

Comment caractériser le régime d'un écoulement ?

C'est le résultat des travaux de Reynolds :

Il a réalisé une étude systématique du régime d'écoulement en fonction des différents paramètres intervenant dans le problème :

Débit, viscosité, géométrie de la conduite

Il a ainsi montré que la transition du régime laminaire au régime turbulent ne dépend pas séparément de chacun des paramètres mais d'une seule grandeur les regroupant tous.

$$Re = \frac{\rho . V . D}{\mu}$$

Tel que :

 ρ : la masse volumique en kg/m³.

Le nombre de Reynolds

 μ : la viscosité dynamique en cp.

D : le diamètre intérieur de la conduite en m.

V : la vitesse de fluide m/s.

En régime laminaire, Re est inférieur à 20 00*;

En régime turbulent, Re est supérieur à 40 00*.

Lorsque Re est entre de 20 00 et 40 00, le régime est instable et oscille entre le laminaire et le turbulent.

Les écoulements industriels peuvent être rattachés à deux régimes principaux : **Régime laminaire** : chaque particule fluide se déplace parallèlement à l'axe du tube et avec une vitesse constante.

Figure III.1. Écoulement laminaire des fluides visqueux.

Le schéma ci-dessous illustre l'évolution des pertes de charge dans le cas d'un écoulement laminaire. A altitude constante (conduite horizontale) la perte de charge se traduit par une chute de pression statique. Si le débit double (Q2 = 2 Q1) la perte de charge double

$$(\Delta P_{f2} = 2 \Delta P_{f1}).$$

Figure III.2. L'évolution des pertes de charge d'écoulement laminaire.

Régime turbulent : les diverses particules fluides se déplacent dans des directions et à des vitesses variables et il se forme des tourbillons.

Figure III.3. L'écoulement turbulent des fluides visqueux.

Traduite en chute de pression statique dans une conduite horizontale, la perte de charge correspondante apparaît sur le schéma ci-dessous. Elle est multipliée par 4 si le débit est multiplié par 2.

Figure III.4. L'évolution des pertes de charge d'écoulement turbulent.

3.3 Paramètres intervenant dans les pertes de charge

Les pertes de charge ou perte d'énergie dans les écoulements, représentent sensiblement au niveau d'une usine, les dépenses engagées par le pompage des liquides ou la compression des gaz. Par exemple, cela correspond approximativement à 7 % de la consommation d'énergie d'une raffinerie classique. Les pertes de charge constituent un facteur essentiel de résistance à l'écoulement qui dépend du fluide, des caractéristiques des appareillages rencontrés et des conditions de l'écoulement.

3.3.1 Nature du fluide

Celle-ci est caractérisé essentiellement par :

- La viscosité (v) qui détermine prioritairement l'aptitude d'un fluide à l'écoulement. Il est clair que les frottements internes au fluide augmentent avec la viscosité et qu'il en est de même en conséquence pour les pertes de charge.
- \succ La densité (d) ou masse volumique (ρ) du fluide

3.3.2 Caractéristiques des appareillages :

Celles-ci concernent d'abord la conduite pour laquelle interviennent :

- ✓ La longueur L d'écoulement
- ✓ Le diamètre intérieur D
- ✓ L'état de surface de la conduite qui influe sur les frottements entre fluide et paroi. Cet état de surface est caractérisé par la rugosité absolue du tube qui représente l'épaisseur moyenne des aspérités de surface du matériau composant la conduite, et on l'exprime le plus souvent en millimètres :

Pour une conduite d'un diamètre **D** donné, on appelle **rugosité relative** le rapport ϵ/D

On donne ci-dessous quelques valeurs de rugosité absolue :

Matériaux	k Rugosité en [mm]
Cuivre étiré	0,001 - 0,002
Laiton	0,001 - 0,002
Plomb	0,001 - 0,002
Aluminium	0,002
Verre	0,001 - 0,002
Polyéthylène – PE	0,002
Acier étiré sans soudure : neuf	0,05
Acier étiré sans soudure : rouillé	0,2
Acier étiré sans soudure : eau chaude de chauffage	0,1
Acier étiré sans soudure : entartré	0,4
Acier galvanisé : neuf	0,15
Tôle galvanisée pour gaine de climatisation et de ventilation	0,150
Fonte : neuve	0,1
Fonte : usée	1 – 1,5
Béton lisse	0,5
Béton armé	2,5
Béton rugueux	5

3.3.3 Conditions de l'écoulement

Celles-ci concernent essentiellement le débit volumique de fluide et donc la vitesse moyenne d'écoulement qui détermine, pour une grande part, le régime d'écoulement.

Dans la grande majorité des cas industriels, l'écoulement est turbulent et les pertes de charge varient comme le carré du débit.

Cela signifie que lorsqu'on double la vitesse, les pertes de charge sont multipliées par 4, lorsqu'on la triple, elles sont multipliées par 9. Le choix de la vitesse d'écoulement est donc important et résulte du meilleur compromis économique entre :

- Une faible vitesse conduisant à des pertes de charge modérées mais à des tuyauteries onéreuses, de grand diamètre
- Une vitesse forte permettant des diamètres plus faibles mais conduisant à de plus grandes pertes de charge, coûteuses en énergie

Ceci conduit pour les gaz à des vitesses économiques dans les installations industrielles de l'ordre de 4 à 15 m/s (soit 14 à 54 km/h).

Dans le cas de distances importantes comme pour les pipelines, le choix de la vitesse est fait par les opérateurs en fonction, par exemple, du coût énergétique et de l'urgence de la demande. Les vitesses pratiquées actuellement vont de 0,8 à 2 m/s.

Les écoulements gazeux se font dans une plage de vitesse allant de 10 à 50 m/s.

3.4 Calcul des pertes de charge en ligne

3.4.1 Loi de pertes de charge

De nombreuses méthodes permettent d'accéder à la détermination des pertes de charge. A la base celles-ci résultent d'une loi générale qui exprime la perte de charge Δ Pf en unités de pression de la manière suivante :

Perte de charge
$$\Delta P_f = f \cdot \frac{L}{D} \cdot \rho \cdot \frac{V^2}{2}$$

Telle que :

 ΔP_f : Perte de charge en Pa.

D : Diamètre intérieur en m.

```
\rho : masse volumique du fluide en Kg/m<sup>3</sup>.
```

V : vitesse moyenne du fluide en m/s

f : Nombre sans dimension appelé facteur de frottement ou coefficient de friction dont la valeur dépend notamment du régime d'écoulement

Dans les formules de détermination des pertes de charge qui peuvent être écrites différemment, en faisant apparaître par exemple le débit du fluide tous les paramètres sont facilement accessibles, le seul problème restant étant la détermination de f.

3.4.2 Détermination du facteur de frottement

En régime laminaire le facteur : f est inversement proportionnel au nombre de Reynolds. Il est calculé par la formule suivante :

$$f = \frac{64}{\text{Re}} \qquad (\text{Re} < 2000)$$

Il est à signaler que les écoulements qui se déroulent dans ces conditions répondent à la loi de Poiseuille mise en application dans les viscosimètres à capillaire qui permettent de déterminer la viscosité cinématique des fluides.

En régime turbulent le facteur : f dépend non seulement du nombre de Reynolds, mais aussi de l'état de surface interne du tube caractérisé par sa rugosité relative ϵ/D . Plusieurs formules permettent de l'estimer, l'ordre de grandeur est de 0,02.

3.5 Pertes de charge singulières

La perte de charge singulière, localisée dans une section de la conduite, est provoquée par un changement de direction et d'intensité de la vitesse, Une telle non-uniformité de la vitesse peut être provoquée par :

- > Un branchement de section de la conduite,
- Un changement de direction (coude),
- Un branchement ou raccordement,
- Un dispositif de mesure et contrôle de débit...

Deux méthodes principales sont habituellement utilisées pour calculer les pertes de charge singulières introduites par les accessoires et 'accidents' de tuyauterie.

La première méthode consiste à affecter à chaque accessoire un coefficient de résistance K qui, multiplié par l'énergie cinétique du fluide, détermine la perte de charge.

La seconde fait appel à la notion de longueur de conduite droite équivalente qui consiste à traduire la perte de charge induite par l'accessoire en longueur droite provoquant la même perte d'énergie.

3.5.1 Coefficients de résistance

Les coefficients de résistance K ont été déterminés expérimentalement et la perte de charge est en unité d'énergie définie par :

Perte de charge accessoire =
$$k \cdot \frac{V^2}{2}$$

K : Coefficient de résistance de l'accessoire.

V: Vitesse en m/s.

Perte de charge en J/Kg.

La perte de charge étant de préférence exprimée en hauteur de fluide, on a :

Perte de charge accessoire
$$h_f = k \cdot \frac{V^2}{2g}$$

 $h_{\rm f}:en\;m$

K : coefficient de résistance de l'accessoire

V : en m/s

 $g = 9,81 \text{ m/s}^2$

La correspondance en bar est obtenue par : $\Delta P_f = \frac{h_f \cdot d}{10.2}$

h_f : en m,

d : densité liquide,

 ΔP_f : en bar

Les valeurs de K pour robinet, clapet, raccord, coude, élargissement, contraction, convergent peuvent être obtenues par des tables de données.

3.5.2 Longueurs droites équivalentes

Chaque accessoire est dans ce cas assimilé à une longueur droite supplémentaire de tuyauterie de même diamètre. On ajoute alors aux longueurs réelles de conduite droite les longueurs

équivalentes des accessoires et on applique à la nouvelle longueur totale ainsi obtenue le calcul de perte de charge.

3.6 Aperçu sur le logiciel d'optimisation (pipesim)

Le PIPESIM (pipeline simulator) est un logiciel d'analyse de performance des systèmes de production et l'injection.il peut aider les ingénieurs de production ou de réservoir pour prédire l'écoulement et la température dans le tubing et les pipelines avec exactitude et vitesse. Les calculs de sensibilité que PIPESIM nous offre permettant aux designs existant d'être optimisés et l'influence des futurs changements sur les paramètres du système considéré.

En séparant la modélisation de chaque composent du système par la baisse de fonction maching, PROSPER assurer que les calculs sont aussi exact que possible. Une fois un modèle du système a été réglé à vraies données du champ, PIPESIM peut être utilisé avec confiance pour modeler du réseau et les puits dans les d'effarants scénarios et faire les prédictions avancées de pression de réservoir basées sur les données de la production ou l'injection selon le type de puits de la surface.

Le PIPESIM est un simulateur de conçu par Schlumberger afin d'effectuer les tâches suivantes :

L'optimisation de l'équipement de puits.

L'analyse des performances des puits.

L'analyse des réseaux des puits.

L'optimisation de l'injection et la production

L'analyse des puits multilatéraux.

3.6.1 Méthode d'unecréation d'un projet avec pipesim

On crée un nouveau projet en cliquant sur l'icône de l'assistant de création d'un nouveau Projet, et il va nous aider étape par étape dans l'introduction des déférentes données 1-dans cette étape on choisit :

- Le type de modèle : producteur, injecteur ou une étude de surface
- Le type de l'opération : analyse du système, le profil de la pression et de la température, analyse nodale, corrélation matching ou les courbes des performances du puits.
- L'emplacement de notre projet dans le disque dure.

20n choisit le système des unités.

Units		. Ba			
onits	Sexport	port	Delete		
Plugins	Default unit system:	ult unit system: Field -			
Advanced	Description:	ription: PIPESIM Field Unit System			
<u></u>	Reference base name	ence base name: Canonical			
Catalog	Measurements:				
GIS map	Name		Unit		
	1 API Oil Gravity		dAPI		
	2 Absolute Roug	Ihness	in		
	3 Area		ft2		
	4 Azimuth		deg		
	5 Back Pressure	Equation	mmscf/d/psi2n		
	6 Choke Size		in		
	7 Compressibilit	у	1/psi		
	8 Compressor H	ead	(ft.lbf)/lbm		
	9 Corrosion Rate	2	0.001 in/a		
	10 Density	Density Ibm/ft3			
	11 Deviation	Deviation deg			
	12 Differential Pre	Differential Pressure psi			
	13 Differential Ter	13 Differential Temperature de			
	14 Dimensionless	14 Dimensionless			
	15 Directional Permeability m		mD		
	16 Distance		ft		
	17 Distributed Ba	ck Pressure Equation	mmscf/d/psi2n/ft		
	18 Distributed Ga	s Productivity Index	MMSCF/(d.psi2.ft)		
	19 Distributed Liq	uid Productivity Index	STB/(d.psi.ft)		
	20 Dog Leg Seven	ity	deg/100ft		
	21 Duty		Btu/hr	-	

Figure III.5. Choix du système désunîtes

ENG: Anglo-Saxon (psi, ft, lb, °F).

SI: system international (bar, m, kg, °C).

Custom : un system personnalisé

3on choisit le model qui s'applique sur notre fluide :

Il existe trois (03) modèles : black oïl, compositionnel ou PVT

Le model qu'on à choisir est le model compositionnel car c'est celui qui correspond le mieux à notre cas.

4 la dernière étape consiste à choisir la source du fluide, et à ajouter l'équipement de notre réseau (pipe jonction, les puits ...)

5avec la corrélation sélectionnée nous effectuons les tests de sensibilités pour défirent paramètres pour savoir le futur. Dans ce cas on choisit la corrélation biggs & brill revised.

3.6.2 Sensibilité

Les sensibilités sont les scénarios qui nous pouvons utiliser pour avoir comment les déférant variable effectuent le système global.

On peut utiliser la sensibilité pour un variable connu par estimateur aux variables avec plusieurs valeurs possibles. Ensuite, on utilise les donnes de sortie (out let) pour estime la valeur de la variable en comparant les résultats de sensibilité avec les résultats compte

Chapitre 4 : Modélisation de réseau de desserte gaz HP Introduction

La modélisation de réseau de desserte (l'injection de gaz à haute pression) consiste a étudié la chaine d'injection à partir du compresseur jusqu'aux puits injecteurs. L'analyse détaillée des paramètres de system sert à déterminer les variables clés qui seront prises en considération dans l'optimisation. La solution optimale du system est en fonction de tous les paramètres (Variable Clés) qui influent sur l'injection. L'organisation de ce cas d'étude de l'optimisation est comme suivant :

- La modélisation de réseaux,
- les scenarios d'optimisation de l'injection.

4.1 Problématique

Le réseau de desserte et les installations de surface sont des parties essentielles dans la chaine d'injection. Dont, leurs impacts sur l'exploitation du champ est important, de même, la quantité du gaz traitée au niveau des centres ainsi que les vieillies des lignes d'injection et les postes de détente qui assure l'alimentation en gaz lift (point GL). Sont parmi les problèmes les plus rencontrés dans le champ nécessitent des études approfondies, afin de porter des solutions définitives et économiques aux problèmes rencontrés.

4.2 Description du réseau desserte

Le réseau desserte est comme le réseau collecte dans les divisions et les étiquettes. Mais il est très compliqué. Et subdivisé en deux (2) champs : nord et sud. Chaque champ contient des unités des compressions (CINA et CIS) qui alimentent les puits injecteurs par le réseau desserte ainsi que les postes détente (point GL). Le CIS assure 90% de la quantité de gaz injectée et 10% par le CINA.

4.2.1 Les lignes de banalisation entre les champs

Sont des lignes qui jouent un rôle très important. Ils assurent la liaison entre les manifolds ce qui donne la flexibilité au réseau en cas de problèmes (baisse de pression, compenser les quantités de gaz à injecter, fuites ...etc). Dans notre cas on a quatre linges comme suivant :

- 10 " entre MFD RE2 et nouveau MFD OMP51.
- 10" entre MFD RW et MFD RNW'.
- 8" entre MFD RW2 et MFD RNW
- 6''entre JCT MD70 et MFD OMP51.

4.2.2 LA distribution des puits injecteur par zone

Le champ HMD subdivisée en 25 zones. Sachant que seulement 16 zones contiennent des puits injecteur (**Figure 4.1**)

Démarrage de l'injection

Figure 4.1: distribution des puits par zone

4.3 Etats des puits injecteurs

Le tableau ci-dessous montre l'Etat de tous les puits injecteurs dans champs

Hassi Messaoud

Etat des puits	N° des puits	Catégorie	La somme
	00	En services	85
Les puits ouverts	90	injectivités nulle (Qinj=0)	5
		Fermés attente WO	5
		injectivités nulle (Qinj=0)	10
		Fermés suite décision PED	5
Les puits fermé	39	En cours de raccordement (OMN761etOMN542)	2
		Fermés (divers)	11
		Abandonnés (remplacés)	4
			2
total puits	129	A abandonner (décision PED)	

4.4 Analyse chromatographique de gaz injectée

Les résultats d'études PVT (analyse chromatographique et les paramètres pétro-physique) de gaz injecte sont représentés sur les figures suivantes

CONSTITUANTS	:	Service N°	Service N°1 Service N°2			
CONSTITUANTS	Fuel gaz	Sc 5/6	Sc 7/8	Fuel gaz	Sc 9/10	Sc 11/12
C1	72.83	72.39	72.08	73.17	71.26	72.54
C2	19.57	20.11	19.90	19.27	19.84	20.16
C3	2.34	2.19	2.53	2.41	2.50	2.02
ic4	0.10	0.11	0.12	0.09	0.13	0.10
nc4	0.27	0.29	0.34	0.22	0.37	0.26
iC5	0.04	0.05	0.04	0.01	0.05	0.04
nC5	0.05	0.05	0.02	0.02	0.04	0.04
C6 ⁺	-	-	0.14	-	0.41	-
N2	2.63	2.64	2.67	2.61	3.30	2.67
CO2	2.17	2.17	2.16	2.20	2.10	2.17
D/air	0.710	0.712	0.718	0.708	0.727	0.710
P.M. (g/mol)	20.57	20.62	20.79	20.50	21.05	20.56
P.C.S. (Kcal/Nm3)	10165	10189	10275	10125	10337	10154
Date		29/12/2016 à 09h30				

Tableau 4 .2 : Analyse chromatographique de gaz injecté

Tableau 4.3 : Les paramètres pétro-physique de gaz injecte

4.5 L'organigramme de modélisation :

4.6 Résultats de modélisation :

Le tableau suivant montre la comparaison entre les valeurs de pression calculées à l'aide du logiciel Pipesime et les valeurs mesurées sur le terrain. Avant la calibration

mesuré (Barg) (Barg) % MD112 285 272,2291 4,48101754 MD121 268 249,2724 6,98791045 MD123 301 292,3249 2,88209302 MD132 296 278,2086 6,01060811 MD142 275 258,2659 6,08512727 MD143 275 258,4116 6,03214545 MD15 296 307,4456 -3,8667567 MD156 300 283,7491 5,41696677 MD159 306 294,0435 3,90735294 MD160 286 251,702 11,9923077 MD163 306 296,4444 3,1227451 MD168 280 271,1728 3,15227451 MD168 280 271,1728 3,152448 MD176 296 264,2383 10,7303041 MD186 316 295,352 6,60278481 MD202 276 267,5946 3,0443478 MD205 3006 292,3936	Les puits	Pression	Pression calculé	Ecart
MD112 285 272,2291 4,48101754 MD121 268 249,2724 6,98791045 MD123 301 292,3249 2,8809302 MD132 296 278,2086 6,01060811 MD144 275 258,2659 6,08512727 MD143 275 258,4116 6,03214545 MD15 296 307,4456 -3,86675676 MD156 300 283,7491 5,41696667 MD159 306 294,0435 3,90735294 MD160 286 251,702 11,9923077 MD163 306 296,4444 3,1227451 MD168 316 295,1352 6,60278481 MD176 296 264,2383 10,7303041 MD186 316 295,1352 6,60278481 MD19 250 237,4638 5,01448 MD202 276 267,5946 3,04543478 MD205 306 292,936 4,26928105 MD244 316 <t< td=""><td>Ĩ</td><td>mesuré (Barg)</td><td>(Barg)</td><td>%</td></t<>	Ĩ	mesuré (Barg)	(Barg)	%
MD121 268 249,2724 6,98791045 MD123 301 292,3249 2,88209302 MD132 296 278,2086 6,0106811 MD142 275 258,2659 6,08512727 MD143 275 258,4116 6,03214545 MD15 296 307,4456 -3,86675676 MD156 300 283,7491 5,41696667 MD159 306 294,0435 3,90735294 MD160 286 251,702 11,9923077 MD163 306 296,4444 3,1227451 MD168 280 271,1728 3,15257143 MD176 296 264,2383 10,7303041 MD186 316 295,1352 6,60278481 MD202 276 267,5946 3,04543478 MD205 306 292,936 4,26928105 MD207 275 271,6812 1,20686365 MD244 316 310,298 1,8043038 MD245 306	MD112	285	272,2291	4,48101754
MD123 301 292,3249 2,88209302 MD132 296 278,2086 6,01060811 MD142 275 258,2659 6,082152727 MD143 275 258,4116 6,03214545 MD15 296 307,4456 -3,86675676 MD156 300 283,7491 5,41696667 MD159 306 294,0435 3,90735294 MD160 286 251,702 11,9923077 MD163 306 296,4444 3,12257143 MD164 280 271,1728 3,15257143 MD176 296 264,2383 10,7303041 MD186 316 295,1352 6,60278481 MD19 250 237,4538 5,01448 MD202 276 267,5946 3,04543478 MD205 306 292,936 4,26928105 MD207 275 271,6812 1,20683636 MD237 275 274,3162 0,24865455 MD244 316	MD121	268	249,2724	6,98791045
MD132 296 278,2086 6,01060811 MD142 275 258,2659 6,08512727 MD143 275 258,4116 6,03214545 MD15 296 307,4456 -3,86675676 MD156 300 283,7491 5,41696667 MD159 306 294,0435 3,90735294 MD160 286 251,702 11,9923077 MD163 306 296,4444 3,1227451 MD168 280 271,1728 3,15257143 MD176 296 264,2383 10,7303041 MD186 316 295,1352 6,60278481 MD19 250 237,4638 5,01448 MD202 276 267,5946 3,04543478 MD205 306 292,936 4,26928105 MD207 275 271,6812 1,2088366 MD237 275 274,3162 0,24865455 MD241 275 274,2996 0,25469991 MD268 265 <t< td=""><td>MD123</td><td>301</td><td>292,3249</td><td>2,88209302</td></t<>	MD123	301	292,3249	2,88209302
MD142 275 258,2659 6,08512727 MD143 275 258,4116 6,03214545 MD15 296 307,4456 -3,86675676 MD150 300 283,7491 5,41696667 MD159 306 294,0435 3,90735294 MD160 286 251,702 11,9923077 MD163 306 296,4444 3,1227451 MD168 280 271,1728 3,15257143 MD176 296 264,2383 10,7303041 MD186 316 295,1352 6,60278481 MD19 250 237,4638 5,01448 MD202 276 267,5946 3,04543478 MD205 306 292,936 4,26928105 MD207 275 271,6812 1,20683636 MD237 275 274,3162 0,24865455 MD241 275 274,2996 0,25469091 MD244 316 310,298 1,80443038 MD276 275 <t< td=""><td>MD132</td><td>296</td><td>278,2086</td><td>6,01060811</td></t<>	MD132	296	278,2086	6,01060811
MD143 275 258,4116 6,03214545 MD15 296 307,4456 -3,86675676 MD156 300 283,7491 5,41696667 MD159 306 294,0435 3,90735294 MD160 286 251,702 11,9923077 MD163 306 296,4444 3,1227451 MD168 280 271,1728 3,15257143 MD176 296 264,2383 10,7303041 MD186 316 295,1352 6,60278481 MD19 250 237,4638 5,01448 MD202 276 267,5946 3,04543478 MD205 306 292,936 4,26928105 MD207 275 271,6812 1,20683636 MD237 275 274,3162 0,24865455 MD241 275 274,2996 0,25469091 MD244 316 310,298 1,80443038 MD268 265 256,9774 3,02739623 MD276 275 <t< td=""><td>MD142</td><td>275</td><td>258,2659</td><td>6,08512727</td></t<>	MD142	275	258,2659	6,08512727
MD15296307,4456-3,86675676MD156300283,74915,41696667MD159306294,04353,90735294MD160286251,70211,9923077MD163306296,44443,1227451MD168280271,17283,15257143MD176296264,238310,7303041MD186316295,13526,60278481MD19250237,46385,01448MD202276267,59463,04543478MD205306292,9364,26928105MD207275271,68121,20683636MD225322309,8273,78043478MD237275274,31620,24865455MD241275274,29960,25469091MD244316310,2981,80443038MD245306307,4456-0,4724183MD268265256,97743,02739623MD276275269,65741,94276364MD333265258,83182,32762264MD346285267,84746,01845614MD351275276,983-0,72109091MD382285273,64973,9825614MD39316297,47315,86294304MD49206296,58253,00761438MD459250255,333-2,1332MD489291276,6754,92268041MD571301282,65686,09408638MD578245239,62912,19220408<	MD143	275	258,4116	6,03214545
MD156 300 283,7491 5,41696667 MD159 306 294,0435 3,90735294 MD160 286 251,702 11,9923077 MD163 306 296,4444 3,1227451 MD168 280 271,1728 3,15257143 MD176 296 264,2383 10,7303041 MD186 316 295,1352 6,60278481 MD19 250 237,4638 5,01448 MD202 276 267,5946 3,04543478 MD205 306 292,936 4,26928105 MD207 275 271,6812 1,20683636 MD225 322 309,827 3,78043478 MD237 275 274,3162 0,24865455 MD241 275 274,2996 0,25469091 MD244 316 310,298 1,80443038 MD276 275 269,6574 1,94276364 MD281 275 264,9626 3,64996364 MD295 256 <td< td=""><td>MD15</td><td>296</td><td>307,4456</td><td>-3,86675676</td></td<>	MD15	296	307,4456	-3,86675676
MD159306294,04353,90735294MD160286251,70211,9923077MD163306296,44443,1227451MD168280271,17283,15257143MD176296264,238310,7303041MD186316295,13526,60278481MD19250237,46385,01448MD202276267,59463,04543478MD205306292,9364,26928105MD207275271,68121,20683636MD225322309,8273,7804378MD237275274,21620,24865455MD241275274,29960,25469091MD244316310,2981,80443038MD255306307,4456-0,4724183MD268265256,97743,02739623MD276275269,65741,94276364MD281275264,96263,64996364MD295256244,23834,59441406MD333265258,83182,32762264MD346285267,87182,62843636MD351275276,983-0,72109091MD382285273,64973,9825614MD39316297,47315,86294304MD419306296,58253,07761438MD459250255,333-2,1332MD489291276,6754,92268041MD571301282,65686,09408638MD578245239,62912,19220408<	MD156	300	283,7491	5,41696667
MD160286251,70211,9923077MD163306296,44443,1227451MD168280271,17283,15257143MD176296264,238310,7303041MD186316295,13526,60278481MD19250237,46385,01448MD202276267,59463,04543478MD205306292,9364,26928105MD207275271,68121,20683636MD225322309,8273,78043478MD237275274,31620,24865455MD244316310,2981,80443038MD268265256,97743,02739623MD276275264,96263,64996364MD281275264,96263,64996364MD295256244,23834,59441406MD333265258,83182,32762264MD366285267,84746,01845614MD351275266,965741,94276364MD346285267,84746,01845614MD351275276,983-0,72109091MD382285273,64973,9825614MD384286275,10823,8083168MD39316297,47315,86294304MD419306296,58253,07761438MD489291276,6754,92268041MD571301282,65686,09408638MD578245239,62912,19220408	MD159	306	294,0435	3,90735294
MD163306296,44443,1227451MD168280271,17283,15257143MD176296264,238310,7303041MD186316295,13526,60278481MD19250237,46385,01448MD202276267,59463,04543478MD205306292,9364,26928105MD207275271,68121,20683636MD225322309,8273,78043478MD237275274,31620,24865455MD241275274,29960,25469091MD244316310,2981,80443038MD255306307,4456-0,4724183MD268265256,97743,02739623MD276275264,96263,64996364MD295256244,23834,59441406MD333265258,83182,32762264MD346285267,84746,01845614MD351275276,983-0,72109913MD384286275,10823,80832168MD39316297,47315,86294304MD459250255,333-2,1332MD489291276,6754,92268041MD571301282,65686,09408638MD578245239,62912,19220408	MD160	286	251,702	11,9923077
MD168280271,17283,15257143MD176296264,238310,7303041MD186316295,13526,60278481MD19250237,46385,01448MD202276267,59463,04543478MD205306292,9364,26928105MD207275271,68121,20683636MD225322309,8273,78043478MD237275274,31620,24865455MD241275274,29960,25469091MD244316310,2981,80443038MD288265256,97743,02739623MD276275269,65741,94276364MD281275264,96263,64996364MD295256244,23834,59441406MD333265258,83182,32762264MD346285267,84746,01845614MD351275276,983-0,7219091MD382285273,64973,9825614MD384286275,10823,80832168MD39316297,47315,86294304MD419306296,58253,07761438MD459250255,333-2,1332MD489291276,6754,92268041MD571301282,65686,09408638MD578245239,62912,19220408	MD163	306	296,4444	3,1227451
MD176296264,238310,7303041MD186316295,13526,60278481MD19250237,46385,01448MD202276267,59463,04543478MD205306292,9364,26928105MD207275271,68121,20683636MD225322309,8273,78043478MD237275274,31620,24865455MD241275274,29960,25469091MD244316310,2981,80443038MD245306307,4456-0,4724183MD268265256,97743,02739623MD276275269,65741,94276364MD281275264,96263,64996364MD295256244,23834,59441406MD333265258,83182,32762264MD346285267,84746,01845614MD351275276,983-0,72109091MD382285273,64973,9825614MD384286275,10823,80832168MD39316297,47315,86294304MD419306296,58253,07761438MD489291276,6754,92268041MD571301282,65686,09408638MD578245239,62912,19220408	MD168	280	271,1728	3,15257143
MD186316295,13526,60278481MD19250237,46385,01448MD202276267,59463,04543478MD205306292,9364,26928105MD207275271,68121,20683636MD225322309,8273,78043478MD237275274,31620,24865455MD241275274,29960,25469091MD244316310,2981,80443038MD245306307,4456-0,4724183MD268265256,97743,02739623MD276275269,65741,94276364MD281275264,96263,64996364MD295256244,23834,59441406MD333265258,83182,32762264MD346285267,84746,01845614MD351275276,983-0,72109091MD382285273,64973,9825614MD384286275,10823,80832168MD39316297,47315,86294304MD419306296,58253,07761438MD459250255,333-2,1332MD489291276,6754,92268041MD571301282,65686,09408638MD578245239,62912,19220408	MD176	296	264,2383	10,7303041
MD19250237,46385,01448MD202276267,59463,04543478MD205306292,9364,26928105MD207275271,68121,20683636MD225322309,8273,78043478MD237275274,31620,24865455MD241275274,29960,25469091MD245306307,4456-0,4724183MD268265256,97743,02739623MD276275264,96263,64996364MD295256244,23834,59441406MD333265258,83182,32762264MD346285267,84746,01845614MD351275266,97713,9825614MD382285273,64973,9825614MD384286275,10823,80832168MD39316297,47315,86294304MD419306296,58253,07761438MD459250255,333-2,1332MD489291276,6754,92268041MD571301282,65686,09408638MD578245239,62912,19220408	MD186	316	295,1352	6,60278481
MD202276267,59463,04543478MD205306292,9364,26928105MD207275271,68121,20683636MD225322309,8273,78043478MD237275274,31620,24865455MD241275274,29960,25469091MD244316310,2981,80443038MD245306307,4456-0,4724183MD268265256,97743,02739623MD276275264,96263,64996364MD295256244,23834,59441406MD333265258,83182,32762264MD346285267,84746,01845614MD351275266,777182,62843636MD354296280,39795,27097973MD378275276,983-0,72109091MD382285273,64973,9825614MD39316297,47315,86294304MD419306296,58253,07761438MD459250255,333-2,1332MD489291276,6754,92268041MD571301282,65686,09408638MD578245239,62912,19220408	MD19	250	237,4638	5,01448
MD205306292,9364,26928105MD207275271,68121,20683636MD225322309,8273,78043478MD237275274,31620,24865455MD241275274,29960,25469091MD244316310,2981,80443038MD245306307,4456-0,4724183MD268265256,97743,02739623MD276275269,65741,94276364MD281275264,96263,64996364MD295256244,23834,59441406MD333265258,83182,32762264MD346285267,84746,01845614MD351275276,983-0,72109091MD382285273,64973,9825614MD384286275,10823,80832168MD39316297,47315,86294304MD419306296,58253,07761438MD459250255,333-2,1332MD489291276,6754,92268041MD571301282,65686,09408638MD578245239,62912,19220408	MD202	276	267,5946	3,04543478
MD207275271,68121,20683636MD225322309,8273,78043478MD237275274,31620,24865455MD241275274,29960,25469091MD244316310,2981,80443038MD245306307,4456-0,4724183MD268265256,97743,02739623MD276275269,65741,94276364MD281275264,96263,64996364MD295256244,23834,59441406MD333265258,83182,32762264MD346285267,84746,01845614MD351275266,97733,9825614MD348296280,39795,27097973MD378275276,983-0,72109091MD382285273,64973,9825614MD39316297,47315,86294304MD419306296,58253,07761438MD459250255,333-2,1332MD489291276,6754,92268041MD571301282,65686,09408638MD578245239,62912,19220408	MD205	306	292,936	4,26928105
MD225322309,8273,78043478MD237275274,31620,24865455MD241275274,29960,25469091MD244316310,2981,80443038MD245306307,4456-0,4724183MD268265256,97743,02739623MD276275269,65741,94276364MD295256244,23834,59441406MD333265258,83182,32762264MD346285267,84746,01845614MD351275269,69793,9825614MD384296280,39795,27097973MD384286275,10823,80832168MD39316297,47315,86294304MD419306296,58253,07761438MD489291276,6754,92268041MD571301282,65686,09408638MD578245239,62912,19220408	MD207	275	271,6812	1,20683636
MD237275274,31620,24865455MD241275274,29960,25469091MD244316310,2981,80443038MD245306307,4456-0,4724183MD268265256,97743,02739623MD276275269,65741,94276364MD281275264,96263,64996364MD295256244,23834,59441406MD333265258,83182,32762264MD346285267,84746,01845614MD351275266,9773,9825614MD384296280,39795,27097973MD382285273,64973,9825614MD39316297,47315,86294304MD419306296,58253,07761438MD489291276,6754,92268041MD571301282,65686,09408638MD578245239,62912,19220408	MD225	322	309,827	3,78043478
MD241275274,29960,25469091MD244316310,2981,80443038MD245306307,4456-0,4724183MD268265256,97743,02739623MD276275269,65741,94276364MD281275264,96263,64996364MD295256244,23834,59441406MD333265258,83182,32762264MD346285267,84746,01845614MD351275267,77182,62843636MD354296280,39795,27097973MD378275276,983-0,72109091MD382285273,64973,9825614MD39316297,47315,86294304MD419306296,58253,07761438MD459250255,333-2,1332MD489291276,6754,92268041MD571301282,65686,09408638MD578245239,62912,19220408	MD237	275	274,3162	0,24865455
MD244316310,2981,80443038MD245306307,4456-0,4724183MD268265256,97743,02739623MD276275269,65741,94276364MD281275264,96263,64996364MD295256244,23834,59441406MD333265258,83182,32762264MD346285267,84746,01845614MD3512752667,77182,62843636MD354296280,39795,27097973MD378275276,983-0,72109091MD382285273,64973,9825614MD39316297,47315,86294304MD419306296,58253,07761438MD459250255,333-2,1332MD489291276,6754,92268041MD571301282,65686,09408638MD578245239,62912,19220408	MD241	275	274,2996	0,25469091
MD245306307,4456-0,4724183MD268265256,97743,02739623MD276275269,65741,94276364MD281275264,96263,64996364MD295256244,23834,59441406MD333265258,83182,32762264MD346285267,84746,01845614MD351275267,77182,62843636MD354296280,39795,27097973MD378275276,983-0,72109091MD382285273,64973,9825614MD39316297,47315,86294304MD419306296,58253,07761438MD459250255,333-2,1332MD489291276,6754,92268041MD571301282,65686,09408638MD578245239,62912,19220408	MD244	316	310,298	1,80443038
MD268265256,97743,02739623MD276275269,65741,94276364MD281275264,96263,64996364MD295256244,23834,59441406MD333265258,83182,32762264MD346285267,84746,01845614MD351275267,77182,62843636MD354296280,39795,27097973MD378275276,983-0,72109091MD382285273,64973,9825614MD39316297,47315,86294304MD419306296,58253,07761438MD459250255,333-2,1332MD571301282,65686,09408638MD578245239,62912,19220408	MD245	306	307,4456	-0,4724183
MD276275269,65741,94276364MD281275264,96263,64996364MD295256244,23834,59441406MD333265258,83182,32762264MD346285267,84746,01845614MD351275267,77182,62843636MD354296280,39795,27097973MD378275276,983-0,72109091MD382285273,64973,9825614MD39316297,47315,86294304MD419306296,58253,07761438MD459250255,333-2,1332MD489291276,6754,92268041MD571301282,65686,09408638MD578245239,62912,19220408	MD268	265	256,9774	3,02739623
MD281275264,96263,64996364MD295256244,23834,59441406MD333265258,83182,32762264MD346285267,84746,01845614MD351275267,77182,62843636MD354296280,39795,27097973MD378275276,983-0,72109091MD382285273,64973,9825614MD39316297,47315,86294304MD419306296,58253,07761438MD459250255,333-2,1332MD489291276,6754,92268041MD571301282,65686,09408638MD578245239,62912,19220408	MD276	275	269,6574	1,94276364
MD295256244,23834,59441406MD333265258,83182,32762264MD346285267,84746,01845614MD351275267,77182,62843636MD354296280,39795,27097973MD378275276,983-0,72109091MD382285273,64973,9825614MD39316297,47315,86294304MD419306296,58253,07761438MD459250255,333-2,1332MD489291276,6754,92268041MD571301282,65686,09408638MD578245239,62912,19220408	MD281	275	264,9626	3,64996364
MD333265258,83182,32762264MD346285267,84746,01845614MD351275267,77182,62843636MD354296280,39795,27097973MD378275276,983-0,72109091MD382285273,64973,9825614MD39316297,47315,86294304MD419306296,58253,07761438MD459250255,333-2,1332MD489291276,6754,92268041MD571301282,65686,09408638MD578245239,62912,19220408	MD295	256	244,2383	4,59441406
MD346285267,84746,01845614MD351275267,77182,62843636MD354296280,39795,27097973MD378275276,983-0,72109091MD382285273,64973,9825614MD384286275,10823,80832168MD39316297,47315,86294304MD419306296,58253,07761438MD459250255,333-2,1332MD489291276,6754,92268041MD571301282,65686,09408638MD578245239,62912,19220408	MD333	265	258,8318	2,32762264
MD351275267,77182,62843636MD354296280,39795,27097973MD378275276,983-0,72109091MD382285273,64973,9825614MD384286275,10823,80832168MD39316297,47315,86294304MD419306296,58253,07761438MD459250255,333-2,1332MD489291276,6754,92268041MD571301282,65686,09408638MD578245239,62912,19220408	MD346	285	267,8474	6,01845614
MD354296280,39795,27097973MD378275276,983-0,72109091MD382285273,64973,9825614MD384286275,10823,80832168MD39316297,47315,86294304MD419306296,58253,07761438MD459250255,333-2,1332MD489291276,6754,92268041MD571301282,65686,09408638MD578245239,62912,19220408	MD351	275	267,7718	2,62843636
MD378275276,983-0,72109091MD382285273,64973,9825614MD384286275,10823,80832168MD39316297,47315,86294304MD419306296,58253,07761438MD459250255,333-2,1332MD489291276,6754,92268041MD571301282,65686,09408638MD578245239,62912,19220408	MD354	296	280,3979	5,27097973
MD382285273,64973,9825614MD384286275,10823,80832168MD39316297,47315,86294304MD419306296,58253,07761438MD459250255,333-2,1332MD489291276,6754,92268041MD571301282,65686,09408638MD578245239,62912,19220408	MD378	275	276,983	-0,72109091
MD384286275,10823,80832168MD39316297,47315,86294304MD419306296,58253,07761438MD459250255,333-2,1332MD489291276,6754,92268041MD571301282,65686,09408638MD578245239,62912,19220408	MD382	285	273,6497	3,9825614
MD39316297,47315,86294304MD419306296,58253,07761438MD459250255,333-2,1332MD489291276,6754,92268041MD571301282,65686,09408638MD578245239,62912,19220408	MD384	286	275,1082	3,80832168
MD419306296,58253,07761438MD459250255,333-2,1332MD489291276,6754,92268041MD571301282,65686,09408638MD578245239,62912,19220408	MD39	316	297,4731	5,86294304
MD459250255,333-2,1332MD489291276,6754,92268041MD571301282,65686,09408638MD578245239,62912,19220408	MD419	306	296,5825	3,07761438
MD489291276,6754,92268041MD571301282,65686,09408638MD578245239,62912,19220408	MD459	250	255,333	-2,1332
MD571 301 282,6568 6,09408638 MD578 245 239,6291 2,19220408	MD489	291	276,675	4,92268041
MD578 245 239,6291 2,19220408	MD571	301	282,6568	6,09408638
	MD578	245	239,6291	2,19220408

Tableau 4.4 : comparaison entre les pressions calculées et les pressions réelles avant la calibration

MD61	255	253,9466	0,41309804
MD63	285	179,1853	37,1279649
MD65	286	245,4674	14,1722378
MD67	276	242,4753	12,1466304
MD70	275	253,3986	7,85505455
MD85	284	271,0298	4,56697183
MD86	265	256,9636	3,03260377
MD88	306	289,6166	5,35405229
MD89	235	219,5899	6,55748936
OML202	235	243,2982	-3,53114894
OML301	245	229,8941	6,16567347
OML41	245	209,6352	14,4346122
OML63	235	224,6588	4,40051064
OML71	235	219,4954	6,59770213
OML74	245	215,1126	12,1989388
OML75	270	239,9151	11,1425556
OML76	247	214,6724	13,0880972
OMM21	293	274,0174	6,47870307
OMM502b	294	279,9847	4,76710884
OMN203	245	212,4446	13,2879184
OMN32	265	245,7101	7,27920755
OMN352	255	230,5615	9,58372549
OMN432	265	245,5084	7,35532075
OMN452	291	263,2489	9,53646048
OMN51	245	219,4546	10,4266939
OMN62	252	230,8694	8,38515873
OMN622	275	242,6634	11,7587636
OMN64	255	231,6981	9,138
OMN641	286	242,5193	15,203042
OMN81	265	238,0892	10,1550189
OMO 51	225	225,9175	-0,40777778
OM0212	286	278,7407	2,53821678
OMO602	298	292,0989	1,9802349
OM0652	270	251,3762	6,8977037
OM071	204	208,0524	-1,98647059
OM073	235	224,7111	4,37825532
OM075	250	236,7234	5,31064
OMO88	255	251,2744	1,46101961
OMP142	286	266,1324	6,94671329
OMP153	255	243,0802	4,67443137
OMP20	203	269,7493	-32,8814286
OMP262	180	176,5324	1,92644444
OMP32	265	254,1566	4,09184906
OMP68	255	231,9559	9,03690196

Le tableau suivant montre la comparaison entre les valeurs de pression calculées à l'aide du logiciel Pipesime et les valeurs mesurées sur le terrain. Après la calibration

Les puits	Pression	Pression	Ecart
_	mesuré (Barg)	calculé (Barg)	%
MD112	285	280,2741	1,65821053
MD121	268	264,8889	1,16085821
MD123	301	296,1728	1,60372093
MD132	296	292,3411	1,23611486
MD142	275	279,8341	-1,75785455
MD143	275	270,7829	1,53349091
MD15	296	307,4456	-3,86675676
MD156	300	295,3823	1,53923333
MD159	306	301,3826	1,50895425
MD160	286	284,2327	0,61793706
MD163	306	301,9214	1,33287582
MD168	280	280,7985	-0,28517857
MD176	296	291,0768	1,66324324
MD186	316	307,2659	2,7639557
MD19	250	247,9693	0,81228
MD202	276	277,1568	-0,41913043
MD205	306	302,0814	1,28058824
MD207	275	271,6812	1,20683636
MD225	322	300,5274	6,66850932
MD237	275	274,3162	0,24865455
MD241	275	274,2996	0,25469091
MD244	316	310,298	1,80443038
MD245	306	307,4456	-0,4724183
MD268	265	259,9966	1,88807547
MD276	275	269,6574	1,94276364
MD281	275	270,6921	1,56650909
MD295	256	258,5017	-0,97722656
MD333	265	267,2888	-0,86369811
MD346	285	282,7613	0,78550877
MD351	275	273,3088	0,61498182
MD354	296	290,3089	1,92266892
MD378	275	276,983	-0,72109091
MD382	285	280,4017	1,6134386
MD384	286	282,2708	1,30391608
MD39	316	308,3996	2,40518987
MD419	306	302,9169	1,00754902
MD459	250	245,6243	1,75028

Tableau 4.5 : comparaison entre les pressions calculées et les pressions réelles après la calibration

MD490	201	200 2027	0 200/1521
MD571	291	200,5027	1 70050801
	301	295,8812	1,70059801
MD578	245	239,6291	2,19220408
MD61	255	253,9466	0,41309804
MD63	285	280,8737	1,44782456
MD65	286	278,173	2,73671329
MD67	276	276,5754	-0,20847826
MD70	275	271,8462	1,14683636
MD85	284	283,9094	0,03190141
MD86	265	269,5305	-1,70962264
MD88	306	302,3793	1,18323529
MD89	235	230,5237	1,90480851
OML202	235	232,6788	0,98774468
OML301	245	247,9201	-1,19187755
OML41	245	247,2874	-0,93363265
OML63	235	232,055	1,25319149
OML71	235	234,0123	0,42029787
OML74	245	246,5683	-0,64012245
OML75	270	256,8512	4,86992593
OML76	247	244,2294	1,1217004
OMM21	293	287,6761	1,81703072
OMM502b	294	294,1937	-0,06588435
OMN203	245	249,5478	-1,8562449
OMN32	265	262,1657	1,06954717
OMN352	255	259,1347	-1,62145098
OMN432	265	261,3828	1,36498113
OMN452	291	271,6084	6,66378007
OMN51	245	241,4595	1,44510204
OMN62	252	255,0128	-1,19555556
OMN622	275	264,9411	3,65778182
OMN64	255	252,1287	1,126
OMN641	286	251,6817	11,9994056
OMN81	265	259,7365	1,98622642
OMO 51	225	225,9175	-0,40777778
OMO212	286	286,7765	-0,2715035
OM0602	298	292,0989	1,9802349
OM0652	270	265,8538	1,53562963
OM071	204	201,3608	1,29372549
OM073	235	231,9923	1,27987234
OM075	250	251,4397	-0,57588
OM088	255	259,1778	-1,63835294
OMP142	286	273,0898	4,51405594
OMP153	255	255,8454	-0,33152941
OMP262	180	204,7077	-13,7265
OMP32	265	176,5324	33,384
OMP68	255	265,3877	-4,07360784
OMP80	260	251,3246	3,33669231

4.6.1 Diagnostique du système :

- **V** \uparrow ΔP \uparrow sous dimensionnée (inacceptable)
- $\mathbf{V} \searrow \Delta \mathbf{P}^{\dagger}$ sur dimensionnée liquide holdup
- $\mathbf{V} \downarrow \Delta \mathbf{P} \downarrow$ sur dimensionnée haute risque de holdup
- Vidéal $\Delta P \neq$ sous dimensionnée (risque d'érosion interne)
- V: vitesse d'écoulement (m/s)

 ΔP : perte de charge dans la pipe (barg/km)

$4 \le V$ idéal ≤ 15 m/s

$0,1 \le \Delta P \le 0.3$ barg/km

D'après les résultats de la modélisation, on remarque l'existence des branches sur dimensionnées avec les paramètres ($\mathbf{v}, \Delta \mathbf{p}$) qui ne satisfait pas les normes citées en objet :

On a 47 branches en risque de corrosion interne

Tableau 4.6: les branches on	t un risque de corrosion interne
------------------------------	----------------------------------

Branches	Equipments	Gas velocity (m/s)	gradient de pression
			(bar/km)*10^5
PDT LD1	Ck PDT LD1	2,584069	198,1524434
RS2_JS09	MFD RS2 JS09.Flowline	2,79783	98,35913486
PIPE3 MFD CIS MFD RW	PIPE3 MFD CIS MFD RW	6,335853	262,3895044
RW_RNW	MFD RW MFD RNW	4,295393	112,7811968
PDT LDO88	CK PDTLD88	7,351396	2055,2
PIPE1 MFD CIS MFD RW	PIPE1 MFD CIS MFD RW	6,335853	262,3900292
PDT IRW5	Ck PDT LRW5	3,395289	250,5
PDT RW4p GLLD	Ck PDT RW4p	1,161784	129,8960831
RS1_RS2	MFD RS1 MFD RS2.Flowline	3,745252	97,27539379
JS11_JS14	JS11 JS14.Flowline	4,559824	112,3597303
MFD CINA_JOM075	MFD CINA JNO4.Flowline	4,382913	122,7819101
RNW_JN OMN64	MFD RNW JN OMN64.Flowline	6,795882	559,8570071
RW_RW1	MFD RW MFD RW1.Flowline	5,614094	207,8614347

RS3_JCT MD 156	MFD RS3 JCT MD156.Flowline	2,113112	60,6390006
PDT LRO3	ck PDT LRO3	3,855104	320
PDT GLLD	Ck PDT GLLD	3,843859	186
CIS_JS01	MFD CIS Reduction2.Flowline	2,449503	71,09219408
CIS_JS01	Reduction2 JSO1.Flowline	3,990159	120,5198497
RW_JMD225	MFD RNW J MD225.Flowline	3,124625	120,0081784
PDT LRE2	Ck PDT LRE2	2,176071	60,5
JCT MD70_OMP51	MFD OMP51 JCT MD70	4,572973	251,4476962
CIS_RS1	MFD CIS RS1.Flowline	5,667623	187,032125
RNE2_RNE	MFD RNE2 JNO3.Flowline	3,738204	178,1760385
PDT LRE4	Ck PDT LRE4	2,378523	77,5
RNE1_JNO88	MFD RNE1 JNO88.Flowline	3,766034	250,8890642
PIPE2 MFD CIS MFD RW	PIPE2 MFD CIS MFD RW	6,335853	262,3900292
JS16_RW2	JS16 MFD RW2.Flowline	5,581844	206,1993112
PDT MD170	JCT MD170 PDT MD170	0,9221238	104,9300466
JS05_RE4	JSO6 MFD RE4	2,680525	86,51324139
OML202	CK OML202	2,099404	87,34236338
MD142	Ck MD142	2,130674	77,99430302
RE2_JCT MD70	MFD RE2 JCT MD20.Flowline	6,527725	562,9025031
JOMO75_RNS	JOMO75 MFD RNS	2,245361	64,60632418
JS01_RE2	JSO1 MFD RE2.Flowline	3,347101	95,56602227
CIS_JS02	MFD CIS Reduction1	2,219505	64,01295857
CIS_JS02	Reduction1 JSO2	3,62159	115,1572643
PDT LNW1(OMN64)	CH PDT LNW1	3,802381	71,54276579
PDT RNEpp	CK PDT RNE2	3,571763	161,5
PDT LNW3	CH PDT LNW3	3,747069	170
_PIPE1 JCT OML RNE2	PIPE1 JCT OML RNE2	3,30944	142,9143623
OMM502b	CK OMM502b	0,509107	88,69944132
JS14_JS16	JS14 JS16.Flowline	5,252409	147,79818
OML74	CK OML74	1,076808	127,1336416
RNW_RW2	MFD RNW MFD RW2.Flowline	4,540306	177,6564133
RW_RW4	B138.MFD RW RW4	4,109744	115,4349334
RS1_JS07	MFD RS1 JS07.Flowline	2,328062	50,22981725
MD176	Ck MD176	1,323656	57,52489635

On a 76 branches en cours de formation holdup

Branch	Equipment	Gazvélocité (m/s)	gradient de pression (bar/km)*10^5
MD67	Ck MD67	1,194348	16,88846338
MD207	Ck MD207	0,5522289	20,1222764
MD63	JSO2 MFD RE3.Flowline	1,620476	33
MD63	MFD RE3 MD63.Flowline	1,620195	26,52327599
MD205	Ck MD205	0,7554812	11,99946669
MD333	Ck MD333	0,8252255	15,49617434
PIPE2 JCT OML RNE2	PIPE2 JCT OML RNE2.Flowline	1,957147	42,14682937
MFD CINA_RNW	UNO2 UNO3.Flowline		10,30051901
OM075	Ck OMO75	0,5323457	10,96604526
MD86	Ck MD86	1,169985	33,91967445
RW_JS11	MFD RW JS11.Flowline	2,873516	46,59606908
MD295	Ck MD295	1,388164	45,97527067
MD132	Ck MD132	1,487899	29,72038461
CIS_JS05	MFD CIS JSO4.Flowline	1,916671	15,69461314
CIS_JS05	JSO4 JSO5.Flowline	1,797448	24,85577021
OML76	Ck OML76	1,380397	37,35850566
JOMO75_JCT OML	JOMO75 JCT OML.Flowline	1,152126	10,45246802
MD121	MFD RW2 JS15.Flowline	1,436201	27,21669727
MD160	Ck MD160	1,313774	20,87038505
OMN51	CK OMN51	1,371611	25,57564364
MFD CINA_JOM075	JNO4 JOMO75.Flowline	2,674485	17,58810136
JMD225_JCT OMO602	J MD225 JCT OMO602.Flowline	1,762783	38,9501527
MFD CINA_RNE1	MFD CINA MFD RNE1.Flowline	1,830314	17,47709803
OMM21	CK OMM21	0,7186173	17,51567822
RW3p_RW4p	MFD RW3p MFD RW4p.Flowline	1,429465	23,65175655
MD143	Ck MD143	0,9932779	14,25643004
OM0652	JOMO75 JCTO652.Flowline	0,7211086	17,09244453
OM0652	JCTO652 OMO652.Flowline	0,6608853	23,66377443
PDT LRO3	MFD RO3 JCT MD271.Flowline	1,705421	33,75996212
RW4_J C MD 123	RW4_J C MD 123	1,77836	22,41464969
OMO88	CK OMO88	1,468545	42,8
MD237	CK MD237	0,2764984	16,73506284
PDT LNWP	Ck PDTVLRW2	1,367566	24
MD382	Ck MD282	0,7280219	22,72132913
PDT MD123	FL PDT MD123	0,9950218	40,99672026

Tableau 4.7: les branches ont cors de formation holdup

[Modélisation du réseau de desserte gaz haut pression HP (sans gaz-lift)]

MD245	Ck MD245	0,9827026	29,72811772
RS2_RS3	MFD RS2 MFD RS3.Flowline	1,701247	25,68896704
JS16_RO1	JS16 MFD RO1.Flowline	1,431488	10,9170621
RE2_N OMP51	BANALISATION (RE2 OMP51)	2,341954	46,15388287
RE2_N OMP51	SUITE BANALISATION (RE2 OMP51)	2,26331	35
MFD CINA_JN01	MFD CINA JNO1.Flowline	0,2215959	25,20787286
OM071	CK OMO71	1,279805	37,57447957
MD346	Ck MD346	0,5952115	19,62726294
MD19	Ck MD19	1,465142	33,31359081
MFD CINA_JCT OML	MFD CINA JCT OML.Flowline	2,270813	34,88771125
OMP68	CKOMP68	1,727322	23,22460012
OMN452	MFD RNWpp OMN452.Flowline	0,5143295	32,85044907
RW1_RW3p	MFD RW1 MFD RW7.Flowline	2,576968	45,05615562
RW1_RW3p	MFD RW7 MFD RW3p.Flowline	2,523773	38,80979086
OMN622	CK OMN622	1,454299	20,05
OMN64	CK OMN64	1,443155	28,20
MD225	CK MD225	1,193649	19,20
CIS_RE2	MFD CIS MFD RE2.Flowline	2,63341	35,33582096
MD459	Ck MD459	0,4536896	16,21
OMP32	Ck OMP32	1,015269	22,33
MD156	Ck MD156	0,9408144	12,20
JN01_RNE1	B16.Flowline	1,569833	29,89
MD112	MFD RS2 JS08.Flowline	1,478956	42,47
MD112	JS08 MD112.Flowline	1,452404	27,47
MD202	Ck MD2	1,070668	16,09
OM073	СК ОМО73	0,8478957	43,44
OMN641	CK OMN641	1,65065	32,99
JS11_RW4	B132.ligne JS11 MFD RW	2,526825	36,38
MD351	Ck MD351	0,488851	25,44
RW5_RW8	MFD RW8 MFD RW5.Flowline	0,4466241	11,81
PDT LRW2	Ck PDT LRW2	1,801211	41,20
MD65	CK MD65	1,959472	47,08
RNE_JCT OML75	MFD RNE JCT OML75.Flowline	1,822358	37,38500511
MD39	Ck MD39	0,5820269	14,07757535
OMP153	CK OMP153	0,9513277	13,91716128
RNW_RNWp	MFD RNW MFD RNWp.Flowline	1,456612	16,02032198
PDT OMK25	CK OMK25	1,599832	35,57230383
N OMP51_RNE2	FL 1 MFD OMP51 MED RNE2	1,53164	17,71566204
N OMP51_RNE2	SUIT FL1 MFD OMP51 MED RNE2	1,450096	15
MD268	Ck MD268	0,6644512	29,02747945
MD186	Ck MD186	0,9868045	40,92344533

On a 61 branches acceptables (plus au moins stables)

Branch	Equipment	Gaz vélocité (m/s)	gradient de pression (bar/km)*10^5
OMO 51	СК ОМО51	0.6329833	5.749589315
MD61	Ck MD61	1,079538	1,307054164
OMN81	Ck OMN81	0,6478879	6,199729466
OMP80	Ck OMP80	0,5664707	6,509804706
OMN432	CK OMN432	0,654768	5,62875621
RO1 RO3	MFDRO1 MFD RO3.Flowline	1,553986	6,053809528
MFD CINA RNW	B3.MFD CINA UN02	0,1633715	1,853224611
MFD CINA RNW	UNO3 UNO4.Flowline	0,1438657	0
MFD CINA_RNW	UNO4 MFD RNW.Flowline	0,08789643	6,571714339
MD384	Ck MD384	0,8328925	8,288871271
RW3p_RW5	MFD RW3p MFD RW5.Flowline	1,192732	4,50447497
MD168	Ck MD168	0,5865001	5,066328911
MD85	Ck MD85	0,6723246	9,632755368
MD276	Ck MD276	0,4115861	4,524632374
RW3 JS 15	B5.Flowline	0,2128373	0,33801103
 OMP262	Ck OMP262	0,6150188	4,690738519
RO1 RO2	MFD RO1 MFD RO2.Flowline	0,4359061	3,877922135
 MD571	Ck MD571	1,095328	4,791379184
OML301	CK OML301	0,7163811	2,75585253
RW1_RW3	MFD RW1 MFD RW3.Flowline	0,9979904	7,687363252
OMP51_N OMP51	MFD OMP51 N MFD OMP51	0,5339296	2,066528898
OML71	CK OML71	0,7076192	0,847586759
OMN203	Ck OMN203	0,6100852	4,07736343
MD578	Ck MD578	0,7474016	7,110006581
MD378	Ck MD378	0,7346037	9,455784953
RNE2_RNE	JNO3 MFD RNE.Flowline	1,326292	0,901258905
OML75	Ck OML75	0,446654	2,733151123
MD70	Ck MD70	0,6980472	6,4
MD163	Ck MD163	0,5481248	4,387335475
MD419	JSO5 MFD RE5.Flowline	0,1825776	0,428571429
MD419	Md419	0,3188628	8,385235129
OMP142	CK OMP142	0,5064676	5,375703261
MD244	Ck MD244	0,8497845	4,487301811
OMN32	Ck OMN32	0,9877531	4,346735769
PDT MD170	MFD RO3 JCTMD170.Flowline	0,9267627	4,859732715
OM0212	CK OMO212	0,6599575	7,153023369
JS05_RE4	JSO5 JSO6.Flowline	1,643437	1,98740063
MD89	Ck MD89	1,578699	2,306343779
OMN62	Ck OMN62	1,314165	3,245414755
OMP20	Ck OMP20	1,311407	7,337505348
JS14_RW1	JS14 MFD RW1.Flowline	1,000996	6,899844753
RW3p RW8	MFD RW3p MFD RW8.Flowline	0,8779096	5,558463864

Tableau 4 .8 : les branches	acceptables
-----------------------------	-------------

MFD RNW MFD RNWpp.Flowline	0,1893001	2,371909867
CK OML63	0,9089412	1,620950256
Ck MD88	0,9714164	6,657400688
Ck MD489	0,9995689	4,915207207
MFD RW8 MFD RW9.Flowline	0,1850034	5,838901956
MFD RW9 MD241.Flowline	0,5241145	7,873352701
Ck MD15	1,258754	7,299416047
JSO2 MFD RE2.Flowline	2,684074	5,406045543
Ck OMO602	0,4266105	2,705564051
CK MD354	0,4938986	4,48830213
RNE1 MFD OMK821	0,5798821	1,713807959
MFD OMK821 MFD OMK85	0,6001994	2,622254106
CK OML41	1,197682	4,272991494
Ck OMN352	0,4380112	2,084740999
Ck MD159	0,853851	6,188818601
Ck MD281	0,6105663	1,656753307
JCT OMO602 J OMO51.Flowline	0,4548575	4,651971653
JCT MD123 MD123	0,7103411	6,999650017
JNO1 MFD OMP51.Flowline	0,42856	4,058404562
	MFD RNW MFD RNWpp.Flowline CK OML63 Ck MD88 Ck MD489 MFD RW8 MFD RW9.Flowline MFD RW9 MD241.Flowline Ck MD15 JSO2 MFD RE2.Flowline Ck OMO602 CK MD354 RNE1 MFD OMK821 MFD OMK821 MFD OMK85 CK OML41 Ck OMN352 Ck MD159 Ck MD159 Ck MD281 JCT OMO602 J OMO51.Flowline JCT MD123 MD123 JNO1 MFD OMP51.Flowline	MFD RNW MFD RNWpp.Flowline 0,1893001 CK OML63 0,9089412 Ck MD88 0,9714164 Ck MD489 0,9995689 MFD RW8 MFD RW9.Flowline 0,1850034 MFD RW9 MD241.Flowline 0,5241145 Ck MD15 1,258754 JSO2 JSO2 MFD RE2.Flowline 2,684074 Ck OM0602 0,4266105 CK MD354 CK MD354 0,4938986 RNE1 RNE1 MFD OMK821 0,5798821 MFD OMK821 MFD622 0,4380112 Ck OM141 1,197682 0,4380112 Ck OM159 0,853851 Ck MD159 0,853851 Ck MD281 0,6105663 JCT OM0602 J OM051.Flowline 0,42856 JNO1 MFD OMP51.Flowline 0,42856 0,7103411

4.6.2 Interprétation d'un exemple des résultats et des graphes d'un cas typique:

Après le calage de notre modèle en prend comme exemple la branche MFD CINA JCT OMO 75 flowline, pour exepliquer la procedure d'interpretation.

La figure ci-dessous représente la variation de pression on fonction de la longueur de pipe

Figure 4.3 la variation de pression en fonction de la longueur de pipe

Diamètre intérieur =7.761 in avec vitesse

Interprétation des deux graphes :

D'après la consultation des deux graphes on remarque une chute de pression repartie en deux phases :

Première phase : La longueur de [0m -150m] ; gaz vélocité 4.4 m/s

Pendant cette phase on remarque que la chute de pression est plus significative [275bar-274.8bar] à cause des différents types de perte de charge (friction, gravitaire,).

Deuxième phase : La longueur de [150m -2150m] ; gaz vélocité 2.6 m/s.

Pendant cette phase on remarque que la chute de pression est très faible par apport la première phase **[0m -150m], grâce** à l'élargissement de diamètre qui produit une diminution de la vitesse, cette chute de vitesse permet de minimiser les pertes de charges par friction.

Figure 4.5 la branche MFD CINA_JOMO75

Conclusion générale

La problématique à laquelle nous avons essayé de porter remède dans ce travail consiste à la modélisation du réseau desserte de gaz haut pression (HP) sans gaz lift dans le champ de Hassi Messaoud et l'analyse des problèmes existant sur le dit réseau, ont été résolus par l'augmentation de pression et de débit au niveau des centres de compression.

RECOMMANDATION

L'état actuel des puits injecteurs et les centres de compression le 15/04/2020

- Actuel on a 90 puits ouvert (en service)
- ➢ Permit les 90 puits il y (cinq) 5 puits a débit nulle (Q_{inj}=0).
- Md 225 fermé pour descende la flapeur valve
- On a 15 postes de détente

Plus de 80% des puits injecteurs sans duse.

- > Il faut installer la duse au niveau de chaque puits pour adapter le débit injecté.
- > Il faut raclée les anciennes lignes, Pour les problèmes de holdup et la corrosion interne.
- Assure la fermeture et l'ouverture des vannes à 100%.
- Pour le problème d'érosion il faut éviter l'installation des coudes au niveau de réseau.

Bibliographie

Les livres :

BOUCHAMA Farid, Etudes de performance du système de production LDHP Z-CINA 32ba2015

Document SONATRACH Hassi Messouddivision production BELLAOUI Brahim optimisation de production par la modélisation intégrée cas de satellite w1a 2012/2013

GASMI Ahmed, Dimensionnement d'une pompe d'expédition de centre de Séparation à TFNW 2015/2017

Point de Situation sur les injecteurs gaz du champ HMD & Projet Télémétrie

CIS : complexe industriel sud.et CINA : complexe industriel NAILI Abd elhalim

Logiciel :

Logicielpipesim2014.

Les sites :

http:// www.google image.com

Annexe : généralités sur la modélisation

5.1 Distribution des puits injecteur

La figure suivante représente l'alimentation des puits injecteurs dans toutes les zones

Figure 1: représente réseau desserte gaz haut pression de champ hmd par zone

5.2 Les étapes de modélisation

5.2.1 Collecte les données

- Nombre des puits injecteurs qui en service
- Nombre des manifolds
- Nombre des jonctions
- > La longueur et diamètre avec l'élévation de chaque collecte et collecteur
- Les stations de compression
- Les postes de détente
- Les analyses chromatographie du gaz injecté

Champs Sud

Centre de compression	CIS
les manifolds	RE2-RE3-RE4-RE5 RS1-RS2-RS3 RW-RW4-RW1-RW3-RW7-RW3'- RW4'-RW5-RW8-RW9-RW10 RW2-RO1-RO2-RO3
Les postes des détentes	LRO3-MD170-LRW2-GLLD-RW4' LRW5-MD123-MD156-LD1-MD271-

Champs Nord

Centre de compression	CINA		
Les manifolds	RNW-RNW'-RNW''-RNE'-RNE''-RNE OMK821-OMP51-NOMP51-OMO70- RNS		
Les postes des détentes	RNE''- RNW- RNW'-OMN64-OMO88- OMK25 -OMP51-OMG513-OMH31		

5.2.2 Organisée les données dans un tableau Excel

Pour faciliter le travail il faut organiser le tableau selon les manifolds et son puits comme suivant

mfd+jct	Puits	Longueur(m)	Élévation des pipes(m)	ID ('')	shudel N
RS3	MD156	1750	2	5,761	80
	MD 39	1142	4	5,761	80
	MD 244	2359	-4	5,761	80
	MD 202	3326	1	5,761	80
	MD132	3663	3	5,761	80
DC2	JSO8	872	5	5,761	80
R3Z	JSO9	3601	2	5,761	80
	RS3	2515	6	9,75	80
ISOS	MD112	25	0	5,761	80
1208	MD58	204	-1	5,761	80
1500	MD 15	100	-1	5,761	80
1303	MD 245	1688	7	5,761	80
DC1	MD 186	2342	25	5,761	80
	MD 142	2295	19	5,761	80
NJ1	JSO7	300	-2	5,761	80
	RS2	2058	4	9,75	80
JSO7	MD143	2782	2	5,761	80
	MD 176	150	2	5,761	80
			0		
RW10	MD259	2712	-11	3,826	80
RW9	MD241	926	-4	5,761	80
RW8	MD345	1186	8	5,761	80
	MD398	1186	5	5,761	80
	MD268	1350	11	5,761	80
	RW9	2083	-5	9,75	80

Tableau 1: données des pipes

Les postes de détente	Longueur (m)	Élévation (m)	ID (mm)
JCT MD156 PDT LD1	49,99939	0,9999878	97,1804
JCT MD170 PDT MD170	59,99988	2,000006	146,3294
JCT MD271 PDT LRO3	4,999939	0	97,1804
JN OMN64 PDT LNW1	49,99939	-2,000006	146,3294
JNO88 PDT LDO88	49,99939	0	55,3212
MFD OMK85 PDT UP2 OMH31.	7199,986	-15,00012	146,3294
MFD OMK85 PDT OMK25	7000,037	8,000086	146,3294
MFD OMK85 PDT UP10MG 513	7299,96	9,999878	146,3294
MFD OMP51 PDT GLLD.	9,999878	0	146,3294
MFD RE2 JCT MD20.Flowline	2700,01	28,00015	146,3294
MFD RE4 PDT LRE4	20,00006	0	146,3294
MFD RNW PDT LNW3	49,99939	0	146,3294
MFD RW2 PDTLRW2	49,99939	0	146,3294
MFD RW4p PDT RW4p	49,99939	2,000006	146,3294
MFD RW5 PDT LRW5	20,00006	0	97,1804
PDT MD123	50	0,5	146
PDT RNW'	9,999878	0	146,3294

Les postes de détente : dans notre champ on a 17 postes de détente.

Tableau 2: reprisant les logeurs des postes détente

5.2.3 Création de modèle dans le logiciel

Fenêtre d'insertion les données de pipe

Figure 2: Fenêtre d'insertion les données de pipe

Image de modèle final sur le logiciel pipesim

Figure 3: Image représente une partie de réseau gaz par pipesim

5.3 Information sur la longueur des pipes

- La longueur totale des pipes de réseau gaz haut pression Plus de 575200 m
- La longueur utile plus de 449900,6856 m

5.4 Fiche technique de puits injecteur

Figure 4: Fiche technique de puits injecteur MD29