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Abstract 

In this work, the structures, relative stability and magnetic properties of pure Gen+1, neutral 

,cationic and anionic SnGen (n = 1-17) clusters have been investigated by using the first principal 

density functional theory (DFT) implemented in SIESTA packages. The absorption cross-section over 

the optical range of frequencies of pure germanium and tin doped germanium clusters of up to 18 

atoms was calculated using time-dependent density functional theory (TDDFT). Calculations were 

performed using the Octopus package and used the explicit time propagation method. The 

wavefunctions were calculated over a real-space grid and exchange-correlation interactions were 

including using the local density approximation. We find through DFT calculations that with the 

increasing of cluster size, the Gen+1 and SnGen
(0,±1)

 clusters tend to adopt compact structures. It has 

been also found that the Sn atom occupied a peripheral position for SnGen clusters when n<12 and 

occupied a core position for n>12. The structural and electronic properties such as optimized 

geometries, fragmentation energy, binding energy per atom, HOMO–LUMO gaps and second-order 

differences in energy of the pure Gen 1 and SnGen clusters in their ground state are calculated and 

analyzed. All isomers of neutral SnGen clusters are generally nonmagnetic except for n=1 and 4, 

where the total spin magnetic moments is 2 μb. The total (DOS) and partial (PDOS) density of states 

of these clusters have been calculated to understand the origin of peculiar magnetic properties. The 

cluster size dependence of vertical ionization potentials (VIP), vertical electronic affinities (VEA), 

chemical hardness (η), adiabatic electron affinities (AEA) and adiabatic ionization potentials (AIP) 

have been calculated and discussed. In addition, we find through TDDFT calculations that when 

increase of the numbers of atoms, the sizes of these Germanium clusters grow, and their absorption 

spectra converted gradually from many peaks to broad absorption bands. In general, increasing the 

number of atoms can enhance the absorption intensity. A compared with pure germanium, The 

absorption spectra after Sn doping are characterized by the emergence of a dominant and relatively 

broad peak between 6 and 10 eV, accompanied by  broad absorption peaks also at the same region but 

smaller intensities . This common feature is coupled to a blue shift of the main peak with increasing 

cluster size. The cluster size dependence of optical gap energies (Eopt) and exciton binding energies 

(Ex) have been calculated and discussed. 

Key words: DFT calculations, Sn-Ge clusters, structural properties, electronic properties, magnetic 

properties, Siesta package, TDDFT calculations, Octopus package, absorption spectra. 
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 الملخص

والمطعمة , Gen+1الاستقرار النسبي و كذا الخصائص المغناطيسية لعناقيد الجيرمانيوم النقية , تمت دراسة البنى, في هذه العمل

SnGenبالقصدير في حالاتها الثلاث المحايدة و الهابطة و كذا الصاعدة 
(0,±1)

  (n = 1-17 ) باستخدام المبادئ الأولية لنظرية الكثافة

بدلالة  البصري المدى على للامتصاص العرضي المقطع حساب تمكما . SIESTAو التي تم تنفيذها بواسطة حزمة  (DFT) التابعية

 المعتمدة تابعيةال الكثافة نظرية باستخدام ذرة 21غاية  إلى حجمها يصل التي بالقصدير لمطعمةوا نقيةال الجرمانيوم لعناقيد تردداتال

 تم. Octopus حزمةالتي نفذت بالصريح  الوقت انتشارطريقة  باستخدام TDDFT  اباتحس اجريت.  (TDDFT)الوقت على

. المحلية الكثافة تقريب استخدامب التبادلي الارتباط تفاعلات مع تضمين حقيقي فضاء شبكة عبرفي هذه الطريقة  الموجية الدوال حساب

 ذرة أن أيضًا ناوجدكما   .ها تميل في هيكلتها الى البنى المدمجةجمح زيادة معبنى  هذه العناقيد و  أن DFT حسابات خلال من توصلنا

 الخصائص وتحليل حسابب قمنا.  n> 12لما  في قلب الهيكلو n <12 لما عناقيدلفي سطح الهيكل لهذه ا موقعاً تلتح Sn القصدير

 HOMO-LUMO الطاقة وفجوات ذرة كلل الربط وطاقة التجزئة وطاقة المحسنة الهندسية الأشكال مثل والإلكترونية بنيويةال

   العناقيد المحايدة جميعالى أن  DFT تشير أيضا حسابات . لهذه العناقيد و هي في حالتها الأساسية الثانية الدرجة من فرق في الطاقةوال

SnGen الحالتين  باستثناءليس لها طابع مغناطيسي  بمختلف ايزوماراتها n = 1 3 و n = , الدوران عزم إجمالي يكون حيث 

هذه  مصدر لفهم هذه العناقيدل  (PDOS) والجزئية (DOS) الكليةالحالات  كثافةايضا  حسابب قمنا. μb5 لهما مساويا لـ المغناطيسي

 , (VIP) الرأسي التأينكل من كمون , اعتمادا على حجم العناقيد, ومناقشة حسابب لقد قمنا ايضا. مثيرةال المغناطيسية الخصائص

 التأين كومون و  (AEA)  ديباتيكيةالأ الإلكترونية لفةوالأ , (η) الكيميائية دةوالصلا , (VEA) الرأسية الإلكترونية لفةوالأ

 ,هذه العناقيد أحجام تنمو , الذرات عدد زيادة عند أنه TDDFT حسابات خلال من وجدنا , ذلك إلى بالإضافة.  (AIP)ديباتيكيالأ

ً تدريجي امتصاصها أطياف تتحولف  أن يمكن الذرات عدد زيادةأن   عام بشكلفخلصنا و . واسعة امتصاص نطاقات إلىمتعددة  قمم من ا

 بظهورالتطعيم بالقصدير  بعدلعناقيد الجيرمانيوم  الامتصاص أطياف تتميز , النقي الجرمانيوم مع بالمقارنة. الامتصاص شدة يعزز

 هذه تقترن. أصغر شدةب ولكن المنطقة نفس في أيضًا واسعة امتصاص بقمم مصحوبة فولت, 21 و 6 بين نسبياً وواسعة سائدة ذروة

كل من  ,عنقودال حجم على اعتمادا, ومناقشة حساب تم. عنقودال حجم زيادة مع الرئيسية للقمة الأزرق اللون بانزياح المشتركة الميزة

 .(Ex) الإكسيتون طرب وطاقات (Eopt) الضوئية الفجوة طاقات

 الخصائص , الإلكترونية الخصائص , بنيويةال الخصائص , Sn-Ge مجموعات , DFT حسابات :احيةمفتال الكلمات

 .طياف الإمتصاصا , Octopus حزمة , TDDFT حسابات , Siesta حزمة , المغناطيسية
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Résumé 

Dans ce travail, les structures, la stabilité relative et les propriétés magnétiques des clusters de 

Gen+1 purs et SnGen (n = 1-17) neutres, cationiques et anioniques ont été étudiées en utilisant la 

première principal de la théorie fonctionnelle de la densité (DFT) implémentée dans la package 

SIESTA. La section efficace d'absorption sur la gamme optique de fréquences des agrégats de 

germanium pur Gen+1 et dopés SnGen et à l'étain jusqu'à 18 atomes a été calculée en utilisant la théorie 

fonctionnelle de la densité dépendante du temps (TDDFT). Les calculs ont été effectués à l'aide du 

package Octopus et ont utilisé la méthode de propagation temporelle explicite. Les fonctions d'onde 

ont été calculées sur une grille en espace réel et les interactions d'échange-corrélation ont été 

incluaient en utilisant l'approximation de densité locale. Nous constatons grâce aux calculs DFT 

qu'avec l'augmentation de la taille des clusters, les clusters Gen+1 et SnGen 
(0, ± 1)

 ont tendance à adopter 

des structures compactes. Il a également été constaté que l'atome Sn occupait une position 

périphérique pour les clusters SnGen lorsque n <12 et occupait une position centrale pour n> 12. Les 

propriétés structurelles et électroniques telles que les géométries optimisées, l'énergie de 

fragmentation, l'énergie de liaison par atome, les gaps HOMO – LUMO et les différences d'énergie du 

second ordre des clusters Gen+1 purs et SnGen dans leur état fondamental sont calculées et analysées. 

Tous les isomères des clusters SnGen neutres sont généralement non magnétiques sauf pour n = 1 et 4, 

où les moments magnétiques de spin totaux sont de 2 μb. La densité totale (DOS) et partielle (PDOS) 

des états de ces clusters a été calculée pour comprendre l'origine de propriétés magnétiques 

particulières. La dépendance de la taille des clusters des potentiels d'ionisation verticale (VIP), des 

affinités électroniques verticales (VEA), de la dureté chimique (η), des affinités électroniques 

adiabatiques (AEA) et des potentiels d'ionisation adiabatique (AIP) ont été calculées et discutées. De 

plus, nous constatons grâce aux calculs TDDFT que lorsque le nombre d'atomes augmente, les tailles 

de ces clusters de germanium augmentent et leurs spectres d'absorption sont progressivement convertis 

de nombreux pics à de larges bandes d'absorption. En général, l'augmentation du nombre d'atomes 

peut améliorer l'intensité d'absorption. A par rapport au germanium pur, les spectres d'absorption après 

dopage Sn sont caractérisés par l'émergence d'un pic dominant et relativement large entre 6 et 10 eV, 

accompagné de pics d'absorption larges également dans la même région mais d'intensités plus faibles. 

Cette caractéristique commune est couplée à un décalage vers le bleu du pic principal avec une taille 

de cluster croissante. La dépendance de la taille des agrégats des énergies gaps optique (Eopt) et des 

énergies de liaison à l'exciton (Ex) a été calculée et discutée. 

Mots clés: Calculs DFT, clusters Sn-Ge, propriétés structurelles, propriétés électroniques, propriétés 

magnétiques, package Siesta, calculs TDDFT, package Octopus, spectres d'absorption  
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Introduction 

Optoelectronic components do conversions between optical and electrical energy and are 

used to generate (e.g., Light Emission Diods and lasers), control (e.g., optical modulators), 

and detect (e.g., photodiodes) light. During the past three decade, optoelectronics have had a 

big in interest due to the increasing importance of optoelectronics for computing applications 

(reductions in component sizes within integrated circuits over time)[1]. 

Clusters are nothing but a collection of atoms. In the past, people had used the so-called 

clusters to make colored glasses, without any scientific knowledge. The number of atoms can 

vary from the lowest possible value of two to tens or hundreds of thousand atoms. In this 

regime, the physical and chemical properties of clusters are size dependent. Thus, clusters are 

often considered as a bridge for comprehensive understanding as to how matter evolves from 

atoms to bulk [2, 3]. The cluster physics field is an interesting field of investigation for 

understanding size effects in finite dimensional systems. Clusters made up of covalent atoms 

alone constitute an important part of the discipline: "cluster physics", and possess an 

impressive variety of forms. In particular, carbon, silicon and germanium, although having a 

similar basic electronic configuration, lead to homogeneous clusters with completely different 

geometries. Carbon tends to form empty fullerene cages, whereas silicon and germanium 

leads to compact three-dimensional structures. There has been tremendous progress in the 

scientific exploration of properties of these clusters, especially in the recent few decades [4-

9]. The study of mixed doped clusters consisting of two (or more) types of atoms makes it 

possible to explore the properties compared to those of pure clusters. The properties of the 

new systems obtained, or the disturbances associated with doping, are also a subject of 

research quite widely addressed. Interestingly, the properties exhibited by clusters are often 

different from that of their bulk counterparts. Also, clusters offer a great tunability or tailoring 

the properties of materials, which is otherwise not possible in simple molecules. Owing to 

tremendous tunability of properties, clusters are favored in technological applications. A 

plethora of synthetic molecules can be explored to investigate science, which is otherwise 

difficult with normal elements. Many clusters have ability to store hydrogen molecules, 

thereby suggesting the possibility of solid-state hydrogen



Introduction  

 

 

 
5 

 

energy storage devices [10]. Clusters are also promising candidates as catalysts [11]. 

Semiconductor nanostructures form, specially the clusters, a leading class of materials 

with a large degree of freedom to design optoelectronic properties through variations in 

composition, size and dimensionality. They are contributing to the development of disruptive 

technology, for instance in lighting and displays, telecommunication, (quantum) information 

processing and (quantum) sensing. The importance of germanium and its applications is well 

established today. In particular, its applications in electronics such as transistors or solar cells 

are very famous, and the greatest revolution of this century is surely largely due to the 

development of microchips, real brains in computers. Also studies done on germanium 

clusters are interesting and potentially useful. The production of clusters of semiconductor 

materials, particularly germanium, has become a very active area of research in recent years. 

Quantum mechanical methods are based on density functional theory (DFT) for 

determines the ground-state electron density, followed by calculations of the optical 

properties based on time-dependent density functional theory (TDDFT). The theoretical study 

of small clusters makes it possible to interpret and understand the existing experimental 

results, it also makes it possible to study properties useful to know which are difficult to 

access to the experiment. For example, the geometric structure, which is an essential element 

for the interpretation and analysis of results, remains very difficult to determine 

experimentally, and can only be done indirectly.  On the other hand, it is directly accessible to 

theoretical studies combining quantum chemistry methods for energy calculation and 

geometry optimization processes. For this reason we carried out a systematic theoretical study 

of the pure and tin doped germanium clusters, Gen+1 and SnGen (n=1-17), neutrals and cations, 

to find their most stable structures and their optical, electronic properties. 

In This thesis, we were apply the DFT and TDDFT methods to pure and tin doped 

germanium  clusters of up to 18 atoms in size. DFT calculations have been performed by 

using the SIESTA simulation package, and TDDFT calculations have been performed by 

using OCTOPUS package. Firstly, we searched for the most stable geometric structures of 

clusters, and we have calculated some properties that can be measured experimentally:  the 

ionization potential energy, the electron infinity energy, the binding energy, HOMO-LUMO 

gap by using DFT calculations.  Secondly, we obtained the photo-absorption spectra of the 

more stable structures of these clusters by using TDDFT calculations. It was identify trends in 

the optical response of the clusters as a function of the cluster size. It was also investigate the 
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impact of substituting germanium atom by tin atom on these photo-absorption spectra, and the 

calculated optical spectra will be compared to previous calculations and experimental 

measurements.  

This thesis is comprised of four chapters. Chapter 1 will summarize previous work on 

germanium clusters. It will summarize a brief presentation of the current state of knowledge 

on these germanium clusters, which constitute the object of our study, as well as 

investigations into cluster structure, electronic and optical properties, using quantum 

mechanical methods. 

 The theoretical background of DFT and TDDFT, on which the calculations performed in 

this thesis are based, will then be described in chapter 2. This will include both the formal 

theory, as well as numerical methods. Also, in this chapter, a brief introduction to the various 

computational methods and implementation programs will present.  

 The results are presented and discussed over the subsequent two chapters. In chapter 3, 

we will present the different structures of pure and doped germanium clusters obtained from 

DFT calculations and we will discuss their structural and electronic properties. 

Chapter 4 performs TDDFT calculations on the more stable structures of pure and doped 

germanium clusters, including identifying changes to the optical absorption spectra caused by 

the addition of tin atom in pure germanium clusters. Finally, will summaries the findings of 

this thesis, as well as suggesting possible avenues for future work. 



 

 
 

 

FUNDAMONTALS 
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1. Literature Review and motivation 

Introduction 

In this chapter, we will present a brief review of previous works on germanium clusters. 

We will outline progress to date in two main areas; structural calculations, and optical 

calculations. 

1.1. Nanorevolution; impact of nanosystems on technology 

The term ‘Nano’, in terms of physical dimensions, refers to the order of a billionth of a 

meter (10
-9

 m). Due to the nanosize dimensions, the materials exhibit various interesting 

properties which are distinctly different from their bulk counter parts[12]. The 

‘Nanotechnology’ is a technology that provides a way to engineer the functional systems at 

the molecular scale. It possess the ability to construct materials from bottom up and top down 

approaches and considered as one of the most important and dynamic technologies due to its 

abilities and numerous applications.  Nanotechnology allows manipulating, assembling, 

synthesizing, characterizing, and manufacturing functional structures and devices with 

atomic, molecular and nanometer-scale dimensions. The applications of nanotechnology is 

not limited to the areas of electronics, optics, catalysis, environmental engineering and 

aerospace but also to cosmetics industry, medicine, pharmacy, engineering, human health and 

so on[13]. In general, nanotechnology can be understood as a technology of design, 

fabrication and applications of nanostructures and nanomaterials, as well as fundamental 

understanding of physical properties and phenomena of nanomaterials and nanostructures [14, 

15]. 

The nanomaterials, the basic unit of nanoscience and nanotechnology, have received a great 

attention due to their exotic properties and versatile applications[16]. Among various 

nanomaterials, the semiconductor nanomaterials possess a special place due to their special 

properties and wide applications. Recently, the semiconductor nanomaterials are used for 

environmental applications which primarily include the degradation and sensing 

applications[17, 18]. 

1.2. Semiconductor nanostructures 

The semiconductor nanomaterials hold significant scientific and technological importance
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not only in the areas of electronics and optoelectronics but also in biomedicine, energy 

technologies, environment protection and health. Over the past decades the physics and 

chemistry of semiconductor nanomaterials have been hot topics in nanoscience and 

nanotechnology. The semiconductor nanomaterials are exhibiting high potential for 

fabricating selective, sensitive, simple, and low cast sensors for the detection of various 

organic pollutants because of their unique electrical, structural and optical properties. 

1.2.1. Classifications of Semiconductor Nanostructures 

In bulk materials, carriers can freely move in all three dimensions and the material is 

referred as a three dimensional (3D) system, the energy of the conduction electron equation of 

this system is already well defined[19, 20].  

In the nanostructure materials, the electrons are confined to various regions, i.e. zero 

dimension, one dimension, two dimension and three dimensions. For a semiconductor, the de 

Broglie wavelength of free electron is around 10 nm and the nanostructures of semiconductor 

crystals having the z direction below this critical value (thin film, layer structure, quantum 

well) are defined as two- dimensional (2D) system since carriers are free to move in two 

dimensions and confined in one dimension. 

 The two spatial dimensions of a material are in nanometer range but the other one is 

larger than the resulting structure is referred as quantum wires and linear chain structures. It is 

a one-dimensional (1D) system. Here, carriers are free moving in one dimension and are 

confined in the other two dimensions.  

Similarly, quantum dot, cluster, colloid and nanocrystal can be defined as three dimension 

materials are in nanometer range and it is considered to be a zero-dimensional (0D) system 

since carriers are confined in all three dimensions. 

In generally, the term 'nanoparticle' is used in materials science to specify particles with 

diameter less than 100 nm, and there is no strict distinction in literature between the terms 

“clusters, nanoparticles and quantum dots.” However, often “clusters” are used for 

agglomerates of very few atoms, “nanoparticles” are used for larger agglomerates (usually of 

metals or carbon), and “quantum dots” are used for semiconductor particles and islands where 

quantum confinement of charge carriers or excitons determines their properties[21]. 

1.2.2. Semiconductor clusters and nanoparticles 

Nanoclusters possess potentially useful attributes, such as high surface-to-volume ratios, a 

high degree of geometrical surface defects, and unique electronic structures. Because of the 
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unique properties of, and interactions between nanoclusters, materials assembled from them 

differ from conventional materials. Therefore, nanoclusters can be used as building blocks to 

design new materials exhibiting unique or improved electronic, magnetic, optical, mechanical, 

and chemical properties. 

In recent years, the clusters of different materials have attracted a great interest and their 

study has become a hot topic of research in both physics and chemistry.  Because of their very 

small size, the evolution of their physical and chemical properties became very important for 

many applications in different fields such as optoelectronic materials, catalyst, nanoelectronic 

and spintronic[22, 23]. Semiconductor clusters and nanoparticles formed by the elements of 

group 14 have been also extensively investigated experimentally and theoretically in view of 

their fundamental understanding and technological applications.  When the size of 

semiconductor materials is reduced to nanoscale, their physical and chemical properties 

change drastically, resulting in unique properties due to their large surface area or quantum 

size effect. The conductivity of the semiconductor and its optical properties (absorption 

coefficient and refractive index) can be altered.  Such nanoparticles have been used in many 

technological applications such as advanced electronic devices [24, 25], light-emitting devices 

[26], photodetectors [27], and solar cells [28-30]. As the size of semiconductor nanosystems 

can be made smaller and smaller, the influence of quantum confinement on their optical 

properties becomes larger. Therefore, the optical properties of semiconductor clusters as the 

function of the particle size have attracted much interest. For instance, the optical absorption 

spectra of CdSe nanocrystals can span across the entire visible light region by varying the size 

of the nanoparticles [31, 32]. It has also been reported that the optical properties of Si 

nanoparticles were affected by different crystallinity. Experiment [33] shows that amorphous 

Si nanoparticles have stronger optical absorption than those with higher crystallinity, 

especially in short wavelength region. Theoretical calculations also show that the absorption 

spectra of non-crystalline silicon nanoclusters exhibit a red-shift compared to those of 

crystalline silicon structures, and doping Phosphor and Aluminum can cause the spectrum to 

shift even further toward the red region[34, 35]. Furthermore, localized surface plasma 

resonance (LSPR) can be produced when more than 10 P atoms are doped in a Si nanocrystal 

of 1.8 - 4 nm [36]. In addition, reconstructed surface [37], different passivants (hydrogen, 

chlorine, fluoride, oxygen, sulfur, and soon)[38], different oxygen content (hydrogen, 

hydroxyls, one oxide shell and two oxide shells) on surface[39]. Also Wei Qin et al [40-42] 
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show that Silicon nanoclusters of the same size but with different structure motifs exhibit 

different optical absorption. Contrast to the abundant research on Si nanoparticles (either 

clusters or nanocrystal), study of optical properties of germanium nanoclusters is very limited 

although Germanium is also one of the most important semiconductor materials.  

1.3. Germanium  

Germanium has been a popular material of study as its properties benefit many 

applications. Germanium was the choice of material used in the first bipolar transistor which 

was invented in 1949 by Bardeen, Brattain, and Shockley; hence proving its electrical 

functionality [43, 44]. Due to its small energy band gap 0.66 eV, Germanium is also popularly 

used in optical and optoelectronic devices. Examples of optical and optoelectronic devices 

that uses Ge are photodetectors [44, 45], solarcells [44], and waveguides [44, 46]. However, 

the challenge to design a light source based on Germanium has not been solved as 

Germanium is known to be a poor light emitter, but the scaling of materials toward nanoscale, 

which will change its properties as the motion of electrons, holes, and excitons are restricted 

in three dimensions, has shed some ray of hope for Germanium to emit light. Germanium 

nanostructures have shown considerable promise for light emitting applications, as the 

indirect band gap of Germanium can be converted to a direct one through a combination of 

applying tensile strain and appropriate doping at a high level [47]. 

1.3.1. Germanium crystal Structure and Physical Properties 

Germanium is a Period 4 element belonging to Group 14, Block P with an atomic number 

of 32. The electronic configuration of Germanium (Ge) is [Ar] 3d
10

 4s
2
 4p

2
. The germanium 

atom has a radius of 122.5 pm and a Van der Waals radius of 211 pm. Germanium is non-

toxic. It is a hard, lustrous, grayish-white metalloid chemically similar to its group neighbors, 

tin and silicon. Germanium is mainly obtained from sphalerite but is also found in lead, silver 

and copper ores. Clemens Winkler discovered germanium in 1886. The name Germanium 

finds its origin from the latin word ‘Germania'. Like silicon, Germanium has the diamond 

cubic crystal structure and varies in that it has a slightly higher lattice parameter 5.66 Å.  It 

has an indirect band gap of 0.66 eV which lies in the infrared region, and if quantum 

confinement is demonstrated, will widen[48].  

1.4. Germanium clusters 

Study of small atomic clusters is greatly beneficial to the understanding of evolution of 

materials from the molecular to macroscopic regimes. Small to medium sized semiconductor 
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clusters, such as Silicon and Germanium clusters, have received considerable attention since 

the 1980s, largely because of their potential relevance to and applications in the nano-

electronics industry. During the last four decades, pure and doped germanium clusters have 

been intensively studied experimentally [49-55]and theoretically [12, 18, 20, 21, 33, 40-42, 

47, 56-73]. Today, the most stable structures of small germanium clusters are known thanks 

to many theoretical works [57, 74-79] and have been confirmed by experimental studies [80-

83]. In contrast, for larger clusters the determination of the most stable structure is an open 

topic despite numerous studies published recently [84-86]. The results are still very dependent 

on the method of calculating energy and also the algorithm for exploring the space of 

geometric configurations. We will now briefly present an overview of the structures 

knowledge, the electronic and optical properties of pure germanium clusters and then doped 

germanium clusters. 

1.4.1. Structural and sizes   

1.4.1.1. Small size clusters (2-10 atoms) 

The numerous experimental and theoretical studies carried out on small germanium 

clusters Gen (n ≤ 10) have given a fairly precise idea of their geometry and their electronic 

structure. As early as 1954, the Gen clusters containing two to eight atoms were 

experimentally studied for the first time by Kohl [87].The atomization energies of small 

Germanium clusters were first determined by Kant and Strauss [88] using Mass Spectrometry. 

Other studies of Gen clusters include Mass Spectrometry [89, 90], Raman spectra [91], 

Photoelectron spectroscopy [49, 51, 92-95], Photodetachment Thresholds and Infrared 

Spectroscopy [80-83]. 

Numerous theoretical calculations [57, 74-79], have been performed on small germanium 

clusters. One of the first theoretical studies on germanium aggregate structures is that of J. 

Harris et al[96] who performed the DFT (density functional theory) calculations using the 

local-density-functional method. Structures of very small germanium clusters up to 10 atoms 

have been well established [57, 74-77]. Xu and coworkers [97]did an extensive search on 

structures for small Gen and Gen
-
 (n=1-6). King and coworkers did a limited search on 

structures for small Gen
(0, ±2, ±4, ±6) 

(n = 5-13) clusters [98-106].  

Madhu Menon is calculate ground state structures of small clusters using the tight-binding 

method [107]. For small germanium clusters up to n = 4 the most stable structure is flat. For 
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Ge3-Ge6 the most stable structures are structures corresponding to an isosceles triangle (Ge3), 

a plane rhombus (Ge4), a trigonal bipyramid (Ge5), an edge-capped trigonal bipyramid (Ge6). 

For Ge7-Ge10 the most stable structures are pentagonal bipyramid, a distorted bicapped 

octahedron, a distorted tricapped trigonal prism and a tetracapped trigonal prism, respectively, 

and are presented in Figure2. Jinlan Wang et al. [57] as well calculated the structures, for 

small and medium sizes aggregates of pure germanium, Gen (n = 2-25), with DFT methods. 

The lowest energy structures are identical to those obtained by Madhu Menon [107] for n ≤ 5. 

For n = 6, the most stable structure has distorted octahedron (D2h) and the Ge8 structure is a 

capped pentagonal bipyramid. The most stable structure for Ge9 is a bicapped pentagonal 

bipyramid. In the case of the Ge10, they calculations suggest that the tetracapped trigonal 

Figure2 

 

Figure 1. : The most stable structures of Gen (n=5-10) clusters [107]. 
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 prism (C3v) has favorable energy, and are consistent with previous DFT calculations [74, 75, 

108].  

1.4.1.2. Medium and large size clusters (>10 atoms) 

The theoretical determination of the most stable structures for medium and large sized 

aggregates is a very complex task as full exploration of the potential surface is almost 

impossible. Numerous theoretical calculations have been performed on medium sizes 

germanium clusters. The lowest-energy geometries of Gen (n = 2-25) clusters have been 

obtained by DFT-GGA calculations combined with a genetic algorithm made by Jinlan Wang 

et al. [57]. They found that the germanium clusters follow a prolate growth pattern starting 

from n=13 and the stacked layer structures are dominant in the size range of n= 13-18. 

However, a near-spherical compact cage like structure appears in the cluster Ge19. The 

competition between compact structure and stacked layer structure leads to the alternative 

appearance of these two types of geometries. Stacked-compact structures are predominant for 

larger clusters. The Figure  5 showed those structures. 

Li and coworkers [109]did an extensive search on medium-sized clusters Gen (n = 21-25) 

clusters and suggested that low-lying prolate clusters could be built upon stacked tricaped 

trigonal prism (TTP) motifs. Zeng and coworkers did a limited search on structures for 

medium sized Gen (n = 12-29) clusters[78, 79]. They suggested that most low-lying medium 

sized clusters consist of the six/nine and six/ten motifs. J.J. Zhao and coworkers [84] did a 

limited search on structures for medium Gen (n =30-39). Ho and coworkers [84-86] who did a 

limited search on structures for medium Gen (n = 2-44) clusters. 

Hunter et al. [110] studied the mobilities of Gen
+
 (n = 7-54) and Gen

2+
 (n =44-86) clusters 

and revealed that the structural transition to more spherical geometries begins at n = 65. They 

have observed an elongated growth for the Gen
+
 cluster ions with n = 10-35 and a gradual 

deviation from this growth sequence for the clusters with more than 35 atoms. Through 

comparison with the results on the dissociation energies, they have proposed the structures of 

the Gen clusters with up to 70 atoms as weakly bound assemblies of small stable fragments 

such as Ge7 and Ge10. The structural transition at around 70 atoms has been ascribed to a 

reconstruction to a more compact bulk-like structure. Zhang and coworkers [111] investigated 

the mass selected laser photo-dissociation of germanium cations prepared by laser 

vaporization and supersonic beam expansion using tandem time-of-flight mass spectrometry. 

Germanium clusters up to size 40 were studied. As a general observation, the nature of the  
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(Figure  5 ) 

 

Figure  2. : Lowest energy structures of Gen ( n=11-25) clusters[57].  
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fragmentation patterns does not depend qualitatively upon the fragmentation laser used, 

although there are significant dependencies upon fragmentation laser fluence. Zhao et al [112] 

calculated the second order difference in energy, ∆2E for Gen clusters (n = 3-32).  The 

calculated values of ∆2E show maxima at n = 4, 7, 10, 12, and 14. Ge7 and Ge10 correspond to 

prominent peaks. Ge20, Ge23, Ge26 and Ge29 also exhibit special stability because each of these 

clusters contains two stable Ge10 subunits. These results also suggest that Ge10 is a very 

favorable building block for the growth of large germanium clusters. The cohesive energy of 

bulk germanium is 3.85 eV per atom, and the fragmentation energies of clusters with up to 10 

atoms are comparable to the bulk cohesive energy. These small-sized clusters with large 

fragmentation energies are not easy to dissociate. For clusters with more than 11 atoms, the 

fragmentation energies drop sharply. In the fragmentation products, Ge6, Ge7 and Ge10 are 

obviously more abundant, this is in agreement with the experimental results.  

Ion mobility measurements by Hunter et al [110] have revealed that the medium sized 

cations Gen are generally prolate in shape and the structural transition from the prolate to 

spherical-like shape appears at n =65 were different isomers coexist. The most relevant 

experimental information on anionic systems, up to size 40, comes from laser studies by 

Zhang et al [111]. These experiments clearly show that semiconductor clusters dissociate 

larger fragments with a preference for 6, 9 or 10 atoms. This is in sharp contrast to metal 

clusters that dissociate only monomers and dimers. Zhao and coworkers [112] studied the 

fragmentation behavior of the lowest-energy structures of Ge2–Ge33 using all-electron DFT 

methods. They predict that the fragmentation products of Ge6, Ge7, and Ge10 clusters are 

abundant and appear frequently in fragmentation processes, which is in line with the 

experimental observations. The lowest-energy structures of germanium clusters (n = 11–33) 

are presented in Figure  4 . It can be seen that the TTP motif is prevailing in almost all of these 

structures. For Ge17–Ge26 they contain a Ge6 link unit, except for Ge20. All Gen clusters in the 

size range 27–29 contain a Ge9 link unit, which acts as a linkage connecting to two small 

clusters. The lowest-energy structures of Ge19-Ge29 are consistent with the calculated results 

of Yoo et al [79], though the latter discuss other competitive structures based on the Ge9 link 

unit and octagonal subunits. The lowest-energy geometries of Ge30-Ge33 keep a similar 

growth pattern with a Ge9 linkage connecting with three small clusters including a Ge4 

cluster. The shape of the clusters is clearly prolate. 
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 (Figure  4 ) 

 

Figure  3. : Lowest-energy structures of germanium clusters (n = 11–33) [112]. 
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1.4.2. Doped germanium clusters 

In recent years, there has been interest in doping germanium clusters with different 

materials in order to improve the electronic properties of germanium aggregates for possible 

applications. Zhao and Wang [113] studied geometries, stabilities and electronics properties 

of FeGen (n = 9-16) clusters. They found that the encapsulation of one iron atom Fe in the 

pure Gen clusters contributes in strengthening the stabilities of the germanium framework and 

the HOMO-LUMO gaps of the FeGen clusters which are usually smaller than those of the 

corresponding pure germanium clusters. In their study concerned with the properties of 

aluminum-doped small germanium clusters, Shi et al. [114] showed that the lowest energy 

structures of the AlGen are similar to lowest energy structures of the pure corresponding 

germanium clusters. Li et al. [115] reported the effect of one atom of gold Au in anionic 

germanium clusters AuGen
-
 (n = 1 – 13). They found that the clusters with n = 12 are the most 

stable ones compared to the other size. Electronic and magnetic properties of Mn, Co and Ni 

doped small germanium clusters have been investigated using spin polarized density 

functional theory by Kapila et al.[116]. They found that the Ni-doped Gen clusters are the 

more stable when compared to Co and Mn dope Gen clusters. Tang et al. [117] studied the 

structure and stability of the 3d transition metal endohedral Ge12M (M= Sc – Ni) clusters. 

They found that all Ge12M clusters have the doping energies (DEs) and the energies gap (Egs) 

comparable to the isolated compounds, which indicates their remarkably kinetic stability and 

the possibility for isolation. Mahtout et al. [23] calculated the electronic and magnetic 

properties of medium-sized CrGen (15 ≤ n ≤ 29) clusters by using first principles DFT 

investigation. They showed that the structures of Gen+1  and CrGen become more compact and 

switch to near spherical structure with one or more core atoms and the clusters with size 17, 

19, and 22 exhibit high stability. Katircioglu [118]reported that the C– C bonds are privileged 

over Ge–C bonds and Ge–Ge binding for different values of n and m in GenCm-n clusters.  

     The tunability of the GeSn band structure through Sn composition is an important 

advantage to implement optoelectronic devices operating in the Near Infra Red (NIR) and 

Mid Infra Red (MIR) wavelength ranges.  

Recently, small SnGen clusters have been studied in the range n < 5. Andzelm et al. [119] 

performed a DFT study on GeSn monomer, and they reported on the spectroscopic constants 

and electronic structure of the diatomic molecules GeSn in their low lying electronic states. 

They showed that the local spin density model potentials (LSD) used in their study form a 
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good description of chemical bonding and spectroscopic properties of molecules. Schmude 

and Gingenich [120] presented an experimental study on the small germanium-tin clusters and 

they find the atomization enthalpies of the GeSn, GeSn2 , Ge2Sn, Ge3Sn, Ge4Sn molecules. A 

DFT investigation of SnmGen (m + n ≤ 5) binary clusters has been performed by Samanta and 

Das [22]. They showed that the larger mixed tin and germanium clusters have higher binding 

energies and the larger HOMO–LUMO energy gaps, which implies their high stability. Han et 

al. [121] presented theoretical investigation of very small SnGen  (n=1 - 4)  clusters. They 

calculated equilibrium geometry, enthalpy of reaction and natural population and they found 

that natural populations of these clusters indicate a charge transfer from Sn to Ge atoms.  

 

1.4.3. Optical properties 

The optical spectrum provides information on the electronic structure. In particular, the 

optical response of the clusters depends on their size and also on the cluster structure. This is 

an important feature, since the determination of the structure is, in general, a hard task, either 

for experimental techniques or for sophisticated total energy calculations and knowledge of 

the geometrical structure of a cluster is required as a basis for understanding many of its 

properties. 

Experimentally, germanium nano-crystals of various large sizes were synthesized and 

their optical properties have been studied [122-124]. Ikezawa et. al. [122], they measured the 

optical absorption spectra of Germanium crystals in the far-infrared region at the temperatures 

of 2 ~ 292 K and they found the structures in the absorption spectra around 100 and 200 cm 
-1

. 

Also Heath et al.[123] synthesized three large Germanium quantum dots with the sizes over 

200, 100, and 60 Å in their experimentally study. The extinction spectra of these Germanium 

quantum dots were measured with ultraviolet/visible and near infrared spectroscopy in the 

energy range of 0.6 ~ 5 eV. The highly crystalline germanium nanocrystals in the size range 2 

~ 10 nm were grown by Wilcoxon's group[124], and also they studied the optical absorption 

properties of Germanium nanocrystals with the diameters of 2.0 nm (about 150 Ge atoms) and 

4.0 nm.  

Theoretically, various models and methods have also been used to study the optical 

properties of Germanium nanocrystals [125-128]. Lorin X. et al [125] they reported first-

principles calculations for diamond, Si, Ge, and GaAs that include the electron-hole 

interaction were used to calculate the frequency-dependent imaginary part of the dielectric 
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function. Independent-particle approximation and a pseudopotential-plane-wave method were 

used to calculate the nanoparticles up to 363 atoms [125]. Nesher et al. calculated the 

absorption spectra and optical gap of Germanium nanocrystals using time-dependent density 

functional theory within the adiabatic local density approximation. They predicted that the 

optical gaps of Germanium nanocrystals are smaller than that of Silicon for any size[128]. 

H.Ch. Weissker et al[127] calculated Spin-dependent excitation energies of Silicon and 

Germanium nanocrystals by means of a delta self-consistent field method considering the 

excitation of an electron-hole pair and including the electron-hole Coulomb interaction. 

Absorption spectra of hydrogenated germanium nanocrystals over 800 atoms are 

calculated in real space using ab initio pseudopotentials constructed within the local density 

approximation by Dmitriy V.M et al[126]. A semi-empirical tight-binding approach were 

used to calculate the optical properties of Germanium nanoclusters with up to about 1000 

atoms and the theoretical single-particle spectra showed that the bulk absorption peak is blue-

shifted [129]. The experiment measured the absorption peak of the Germanium quantum dots 

with average radius from 12 to 60 Å showed a blue-shift of up to 0.1 eV and a strong 

reduction of their oscillator strengths due to the effect of quantum confinement[130]. J. Tauc 

[131] studied the infrared absorption bands in germanium amorphous, the analysis of their 

results has shown that the valence band wave functions are delocalized over distances of the 

order 10
2
 A°. 

The optical properties of Si-Ge semiconductor nano-onions[132] and different sized 

Silicon containing Germanium nanoclusters of spherical shape[133] were studied in detail. 

Hill et al. found that the band gaps of small Si-coated Ge Nano-onion with the diameter below 

about 30 Å are within the visible region of the spectrum[132]. The results of calculations of 

optical absorption spectra of silicon containing Germanium nanoclusters of spherical shape 

and different size are reported by V.N. Brudnyi et al[133], and they analyzed the optical 

transitions from the Germanium cluster levels to the silicon bulk energy band states. The 

optical absorption properties of Ge clusters and nanocrystalline with the sizes from ~ 2.5 to 15 Å 

have been studied at the B3LYP/6-31G level using time-dependent density functional theory by 

Wei Qin et all [67]. Hydrogen passivation and phosphorus doping on some selected Ge 

nanoparticles were also calculated. They found that with the increase of cluster size, the optical 

absorption spectra of change from many peaks to a continuous broad band and at the same time 

exhibit a systematic red shift. Doping phosphorus also causes the absorption spectra to shift 
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toward the lower energy region. The germanium clusters are found to have stronger absorption in 

the visible region in comparison with the crystalline ones, regardless phosphorus doping. V. N. 

Brudnyi et all [134] studied the electronic states and optical absorption spectra of germanium 

clusters in silicon matrix by the pseudo-potential method , it has been shown that the optical 

spectra are sensitive to the shape and size of the Germanium quantum dots. 

Despite of these studies, many questions remain open. For example, what are the 

structural, electronic and the optical properties of germanium clusters when the size of the 

clusters changes from small to large? How about the effects on the structural, electronic and 

the optical properties when impurities are doped in germanium clusters? Further 

understanding of these questions would be very helpful to the relevant application of 

germanium clusters in advanced electronic and optical devices. 

1.5. Motivation 

In light of the previous studies, to the best of our knowledge, systematic and theoretical 

investigated on neutral and charged tin doped germanium SnGen clusters with range of 5 to 17 

atoms have been not reported so far. The main motivation behind the present work is to study 

the inclusion effect of one Sn on the electronic, magnetic and optical properties of different 

isomers of Gen+1 clusters in the size range n=1-17 atoms and their evolution as a function of 

the size by using ab intio calculations. The properties and the associated adiabatic energies of 

charged tin doped germanium are also studied. Our investigation will provide noteworthy 

contribution for theoretical and experimental studies and also provide useful information for 

guiding the design of semiconductor nanostructure-based electronic and optoelectronic 

devices. 
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2. Theory and Computational methods 

Introduction 

In this chapter, we will outline the theoretical background for DFT and TDDFT and we 

will present and comment the computational methods and the computer programs 

implementation (numerical simulations) were we use to calculate ground state structures and 

their properties optic, electronic and energetic. The numerical simulations can be realized 

through several ab initio codes with pseudopotential approach electron like “SIESTA, 

PWSCF, VASP ...” or with all electron like “TBLMTO, WIEN2k, CRYSTAL, FPLO…”, for 

what concern the total energy calculation part. In this work, the initial structures of the 

clusters used have been obtained by SIESTA ab initio DFT code. On the other side, the 

optical features of the optimized structures have been investigated by OCTOPUS TDDFT 

code.  

2.1. Density functional theory  

Before the calculation of electronic and optical properties using quantum mechanical 

methods can be performed, the ground state electronic structure must first be determined. In 

the following paragraphs, we will detail the calculation methods of ground state electronic 

structure. 

2.1.1. The Schrodinger Equation 

One of the principal aim of condensed matter physics is the theoretical study of the 

electronic properties of a system. To understand the behaviour of systems ranging from atoms 

and nanostructures to complex bulk systems, the resolution of the Schr¨odinger equation 

[135] has become the fundamental and the primary task of the many-body problem, the time-

independent Schrödinger equation is given as 

Ĥ                                       2.1  

where                    is the all electron wave function, and Ĥ represents the 

Hamiltonian of the interacting system, can be written as 
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 Ĥ    
  

   
    

 
   

  

   
    

 
   

   
 

           
     

  
  

              

  
      

              

 

2.2  

 

where me and Mi are the mass of the electron and nucleus, respectively. The first and the 

second term are represent the kinetic energy of the electrons and the nuclei, respectively. The 

remaining three terms are the potential energy from Coulomb interaction between electron 

and nucleus, electron and electron, and nucleus and nucleus, respectively[135]. To solve this 

equation exactly is impossible. Even solving this equation numerically is infeasible. In order 

to accurately calculate the electron wavefunctions and eigenvalues, a series of approximations 

must be made. 

2.1.2. The Born-Oppenheimer (adiabatic) or approximation 

The first approximation uses the large mass difference between the nuclei and the 

electrons, which causes almost immediate adaptation of the dynamics of electrons to the 

position of the nuclei. Therefore, the dynamics of the nuclei could be neglected, considering 

them as “frozen”, which is the basis Born-Oppenheimer (BO) or adiabatic 

approximation[136]. The ion kinetic energy term in equation (3.1) becomes zero. The ion 

interaction term would also reduce to a constant expression, Vext. This has significantly 

reduced the equation to a ZN body equation of the form: 

Although using this approximation, there’s still another open question blinking on the 

paper: how to resolve the electron eigenvalues equation from the quantum theory point since 

it describe interactions between 10
23

 electrons per material and the index of the wavefunction 

runs over N-electrons? 

2.1.3. The Hohenburg and Kohn Theorems 

A further development towards finding a solvable set of equations came with the two 

theorems of Hohenburg and Kohn [137]in 1964 showed that indeed any property of an 

interacting system can be obtained from the ground state electron density, n0(r). This is the 

foundation of the DFT. 

    
  

   
    

 

 

  
  

              

      

                                                                  

2.3  
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2.1.3.1. Theorem I 

For any system of interacting particles in an external potential Vext(r), the potential 

Vext(r) is determined uniquely, up to a constant, by the ground state particle density, n0(r). 

2.1.3.2. Corollary I 

Considering that the Hamiltonian is fully determined from n0(r), except for a constant shift 

of the energy, it follows that the many body wavefunctions for all states (ground and excited) 

and the properties of the system are also completely determined. 

2.1.3.3. Theorem II 

A universal functional for the energy E[n] in terms of density n(r) can be defined for any 

external potential Vext. For any particular Vext , the ground state energy of the system is the 

global minimum of the energy functional, and the density n(r) which minimizes the functional 

is the exact ground state density n0(r)[138]. 

An immediate consequence of this theorem is that if Vext is known then this uniquely 

identifies an electron density. This can be used to calculate the other terms in the 

Hamiltonian, producing the full Hamiltonian. Therefore if the external potential, provided by 

the ions, is known then the full multi-electron wave function can be calculated. 

Following the two theorems of Hohenberg and Kohn, the ground-state energy functional 

H[n] = E[n] is of the form 

where the functional        incorporates the kinetic and the potential energy, coming from 

the all electron-electron interactions. Since this functional does not depend on the external 

potential, the kinetic and potential energies depend only on the density; hence the functional 

must be the same for any system. The        function can be further split into 

                    2.5  

where TS[n] is the kinetic energy, and Eint[n] is the interaction energy [139], which is defined 

as 

        
 

 
 

         

      
             

2.6  

where the first term is the Hartree energy, and the second term is the exchange correlation 

energy, in which all the many particle interactions are gathered. 

                             

                                

2.4  
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With these theories the ability to calculate the ground state electron density and many 

different properties of materials became possible. There still remained a few more theoretical 

developments before it became practical. This came in 1965 with the equations of Kohn and 

Sham. 

2.1.4. The Kohn-Sham Equations 

The essential change introduced in the Hohenberg and Kohn theory by the Kohn-Sham 

formalism[140] is the replacement of the many body equation with a single particle equation, 

while keeping constant the total number of interacting particles. According to the formalism, 

the total energy functional can be written as 

                      
 

 
                     

2.7  

TS[n] is the kinetic energy of the electrons, Exc[n] is the exchange-correlation functional, 

VH is the Hartree potential, and Vext is the external potential, defined  

       
  

     
 

 
2.8  

Minimizing the Eq. 2.7 with respect to the density yields a Schrodinger-like [138] 

               
 

 
                         

2.9  

showing that the independent particles are moving in an effective potential, Veff . In the Veff the 

external potential, the Hartree potential and the exchange correlation potential are included. 

Using an initial guess of electron density to solve the KS equation, gives the KS 

wavefunctions,   , which are then used to calculate the electron density 

             
 

 

   

 

2.10  

is later used to calculate new effective potential. This is repeated until self consistency[139] is 

achieved. From Eq. 2.9 the kinetic energy can be expressed by: 

                        

 

   

 

2.11  

Ultimately, the total energy of the system is given by 
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                        2.12  

The most appealing property of this formalism is that the kinetic energy and the Hartree 

terms are explicitly separated and can be calculated accurately. Therefore, the limiting factor 

in providing accurate results is the exchange correlation term, the form of which, if it would 

be exactly known, would make this formalism an exact one. It is necessary, in fact, to find a 

good approximation for the exchange-correlation energy   . Once a good approximation for 

    is obtained, the Kohn-Sham equations must be solved self-consistently [139]and then it is 

possible to obtain the ground state density of the interacting system and its total energy, as 

depicted in Figure  3 . 

(Figure  3 ) 

 

Figure  4. : Self-Consistency in Density Functional Theory [139] 

2.1.5. Approximations to the exchange-correlation functional 

In the following section an overview of the two most widely used approximations of the 

exchange-correlation functional is going to be presented. 

2.1.5.1. LDA 

The main difficulty in developing Kohn-Sham formalism is in the construction of 

exchange-correlation functional. The electron density is treated locally as a uniform electron 

gas, and the exchange-correlation energy is considered to be the same as the energy of the 
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uniform electron gas at any local point in space. In LDA[140] the exchange-correlation 

functional can be written as 

 

   
                      2.13  

where     is the exchange-correlation energy per particle. The εxc can be further divided into 

exchange,   , and correlation,   , terms. The    term can be explicitly evaluated from the 

Hartree-Fock method. On the other hand, the analytical form of the    is not know. Thus 

numerical forms of εc are used, which have been obtained by fitting on accurate data from 

Quantum Monte Carlo calculations[141]. Despite the simplicity, LDA is one of the most 

widely used functionals in various studies. 

2.1.5.2. GGA 

In general, the electronic density of a system is not uniform and can even vary rapidly in 

space, for example, when switching from one electronic layer to another in an atom, or when 

we go from one atom to another in a molecule. In these cases the LDA approximation is not 

suitable. Therefore, the first improvement that can be made to the LDA method is expressing 

the exchange-correlation energy functional as a function of both the electron density and its 

gradient. This method is known as Generalised-Gradient approximation (GGA) [142, 143], in 

which the exchange-correlation functional is given by 

   
                              2.14  

where     can be expressed as the homogeneous    enhanced by a factor    . Then the 

exchange-correlation functional can be written as 

   
           

                        2.15  

where     is a functional of the electron density and its gradient. Compared to LDA, GGA 

gives often better results when calculating structural properties cohesive energies, phase 

transitions, and various other properties. 

2.2. Pseudopotenials 

The electronic ground state of any system can be described by the different methods 

which we presented in this chapter. But the problem is that calculations become more and 

more expensive as the number and size of atoms increases, because of the increase in the 

number of electrons. However, and in the most cases, the valence electrons are the only ones 
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to intervene in the interesting properties of the systems studied, for example in the 

establishment of chemical bonds. The core electrons are almost unaffected by environmental 

changes and remain unchanged from the situation in the isolated atom, it possible to group 

them with the nuclei, to constitute rigid ions: it is the approximation of the frozen cores[144]. 

Thus the number of electrons to be treated explicitly is much smaller than the real number of 

electrons and "big" systems become accessible to calculations. The interactions between 

valence electrons and ionic atomic cores are represented by pseudopotential. For 

Construction, a pseudo potential must be additive: it must be possible to obtain from 

calculations on the atom, and the total potential must be the sum of the pseudopotentials when 

several atoms are present. Also It must be transferable, i.e., the same atomic pseudo potential 

must be used in different chemical environments. The most pseudo potentials are built from 

calculations on the atom involving all electrons. Figure  2  illustrates the schematic 

representation of the pseudo potential concept [145]. 

To explain the construction of a pseudo potential, firstly, consider exact core and valence 

states,        and         , for which the Schrödinger equation can be expressed as 

                 2.16  

i stands for both core and valence states. The interest is to smoothen the valence states in 

the core region; thus, the core orthogonality wiggles can be subtracted from the valence states, 

(Figure  2 ) 

 

Figure  5. : The schematic representation of the pseudo potential concept[145] 

leading to pseudostates,       , written as  
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 2.17  

and 

            2.18  

Inserting Eq. 2.17 into Eq. 2.16 we find that[146-148] 

                             

 

                                

 

          2.19  

Hence, 

                       

 

                 2.20  

Through this the pseudo-Hamiltonian is written as follows 

                          

 

 2.21  

And pseudopotential 

                          

 

 2.22  

The first and the second terms in the pseudopotential are the true potential and the 

repulsive potential, respectively. 

2.3. Basis sets 

Let us have reminder in brief of the KS formalism before going into details regarding the 

basic concept of basis sets. In KS DFT, the electrons are moving under the effect of effective 

potential     , thus the Kohn-Sham eigenvalue equation write as follows 

               
  

   
                         2.23  

From the Bloch theorem, and the periodicity of the effective potential     , the single 

particle wavefunction can be written as 

                 2.24  

To solve the the KS equation the single particle wavefunction can be expanded in a 

complete basis set of functions        as follow 

                   

 

 2.25  

and the coefficients      can be obtained by solving 
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 2.26  

The first term is the effective Hamiltonian and the second term is the overlap matrix 

element, and then can be obtained the eigenvalues by solving the secular equation 

                                    2.27  

The basis sets can be formed in different ways depending on the studied systems and the 

required accuracy, and among the most widely used basis sets are linear muffin-tin orbitals 

(LMTO), linear combination of atomic orbitals (LCAO)[149], planes wave (PW), and 

linearised augmented plane waves (LAPW) 

2.4. Success and limitations of the DFT 

The numerous works carried out in recent years show that DFT calculations give good 

results for the fundamental states of very diverse systems (metallic, ionic, organometallic, 

transition metals, etc.) for many properties (molecular structures, vibration, ionization 

potentials ...). However, these methods still suffer from several defects. Thus, it would seem, 

until proven otherwise, that dispersion forces or van der Waals are not yet correctly treated in 

DFT except in the specially developed functional ones. Moreover, we do not always 

understand the good or bad results of the DFT on some systems. Moreover, there is no real 

criterion for choosing one functional over another. It is also difficult to find criteria to 

improve a given functional, which sometimes makes the use of the DFT difficult. A strong 

limitation is that excited states are not accessible in the formalism developed above. However, 

recent developments using a time-dependent formalism (TDDFT) as part of the linear 

response theory allow a description of the excited states. 

2.5. Extending Density Functional Theory to Excited State Calculations 

The ground-state formulation of DFT has allowed the calculation of many properties of 

materials. Some properties, however, depend not only on the ground state electron density, 

but also how that density responds to excitations (TDDFT)[150]. The first theorem of the 

Hohenburg and Kohn Theorems (DFT) only refers to the time-independent ground-state 

density of a system. A new theorem is therefore required, analogous in principle to the first 

Hohenburg and Kohn Theorem, but able to accommodate a time-dependent potential. This 

theorem was provided by the Runge-Gross Theorem in 1984[151], and is widely cited as the 

beginnings of modern TDDFT. 
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The Runge-Gross Theorem states that under certain conditions there is a one-to-one 

correspondence between the time-dependent external potential Vext(r, t) and the time-

dependent density n(r, t) of a system.  This theorem means that, given the external potential of 

the system, the electron density can be calculated. The electron density can then be used to 

calculate the rest of the Hamiltonian, and the full many-body wavefunction can be derived. 

The exchange-correlation potentials are a function of the full history of the density, and so 

are much more complex than in the ground-state case. Many approximations are made in 

order to make these calculations feasible, and there are several different approaches that fall 

under this heading. 

The majority of methods adopted under TDDFT work within the time-propagation of the 

system. Under this method a perturbation of arbitrary time and spatial dependence may be 

considered. This method is usually referred to as an explicit propagation over time method. 

As shall be seen, there are a number of different approximations that must be made within this 

method, which further divide it. A short summary of this method and its approximations shall 

be given here, a more complete description of the explicit propagation method is given by 

Castro et. al[152]. 

2.5.1. Explicit Propogation Over Time  

The essential aim of TDDFT theorem is to find the set of wavefunctions ψn(t) that are 

solutions to the equation [153] 

                 
 

  
          2.28  

At some time   , assuming that the perturbation was switched, the set of wavefunctions up 

to this time it could be solved within standard DFT and there is a set of solutions to the 

system at time   ,       . The problem is then to find an expression for how the 

wavefunctions change from this initial solution. Now, the problem is reduced to finding a 

propagator         such that at any time   >    the solution is given by 

                            2.29  

Substituting this expression into equation (3.46) gives the equation 

                         
 

  
                  2.30  

and  
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        2.31  

After integral, can now be expanded out to form a Dyson series and introducting a time 

ordering operator[154]: 

           
     

  
        

 

  

                       
 

  

 

  

 

   

 2.32  

Where   given by  

             
                       

                       

  2.33  

   and    are the time coordinates of points   and   respectively. In equation (2.32), we 

can see that it is necessary to include the time-ordering operator to ensure that the correct 

order is maintained. Therefore, the propagator can be rewritten in terms of the time-ordered 

exponential  

          
         

 
   2.34  

The expression above is too complex to compute directly, and so approximations must be 

made to find a calculable form of        . The first commonly made approximation is that 

the Hamiltonian commutes with itself at different times. This allows the removal of the time-

ordering operator  . In this case the integral over time can be removed and the familiar form 

for the time dependence remains[155], 

                   2.35  

And 

             
  2.36  

where   
  is the solution to the time-independent Kohn-Sham equation. Of course, this 

assumption is not relevant to TDDFT. Other approximations must therefore be made for the 

propagator. 

For any three times   ,   ,    the propagator can be rewritten as follow 

                   2.37  

It is very important property of the time propagator, and one that allows simplification of the 

problem substantially. This property allows the problem to be broken into a series of time 

segments. The propagator can then be expressed by 
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  2.38  

For each time step to be a constant   , in which case the above expression can be further 

simplified to become 

            

   

   

 2.39  

And therefore, the wavefunctions which can now be written with the expression given in 

equation (2.34) to give [155] 

                        
    
           2.40  

There are two levels of approximation remaining. Firstly, there needs to be an 

approximation of the integral of the Hamiltonian over the time step. Secondly the exponential 

of this integral must be calculated. 

2.5.1.1. Methods for Approximating the Integral 

The exponential midpoint rule is one of the simplest methods available and works by 

giving a first-order approximation to the integral term in equation 2.34.  And the time 

propagator is given by [154] 

              
 
 
           

 
 
   

 2.41  

where the potential operator V is defined by 

                   
     

      
             2.42  

where   is the electron density. The main advantage of this technique is it uses the fact 

that the kinetic energy operator is diagonal in Fourier space, and the potential operator is 

almost diagonal in real space, and separation of these operators makes calculating the 

exponential of the integral less computationally expensive. 

The next question then is whether there is some other operator, say           such that 

                     2.43  

In 1954 W. Magnus developed such an expression for           in the form of an 

infinite series of the form[156] 

                     

 

   

 2.44  
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Where  

            
  

  
   

 
    

 

   

   

   

   2.45  

And   and   are expressed by  

  
             

  
             

  
                       

                  

   

   

  

Although the Magnus expansion method is the most sophisticated of the above techniques 

for approximating the integral, currently the Magnus expansion method was considered an 

“experimental” feature of Octopus [152, 157]. 

2.5.1.2. Methods for Approximating the Exponential 

The Taylor expansion of an exponential is the most obvious method to find the 

exponential of the integral. That is 

    
 

  
  

 

   

 2.46  

Therefore the Nth order approximation of the exponential of the operator is simply 

    
 

  
  

 

   

 2.47  

Where   can be any positive integer, and in practice     has is usually used, as it 

allows the use of larger time steps Δt whilst staying stable [152]. 

The Chebyshev expansion is another polynomial expansion of the exponential [158], it 

form a complete orthogonal basis set. The Nth order Chebyshev approximation of the 

exponential is defined as 

           

 

   

 2.48  

where    is the Chebychev polynomial of order k. 

The Chebychev expansion has the advantage over the Taylor expansion that it allows 

larger time steps Δt to be used, hence reducing the number of steps required for a full 

propagation, but it is less efficient than the Taylor expansion for small time steps. 
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The Lanczos method is a more sophisticated than those already mentioned. The Lanczos 

approximation of the exponential is defined as 

       
     2.49  

Where     can be calculated by any of the methods given by Moler and Loan [159]. The 

Lanczos method is capable of efficiently calculating the exponential up to quite large time 

steps Δt [157]. This makes it very useful for calculating systems over large time scales where 

very high-frequency data is not required. 

2.5.2. Calculation of the Absorption Cross-Section 

In order to calculate the optical absorption cross-section for a particle, a set of perturbed 

wavefunctions are defined in terms of the ground-state electron wavefunctions   
     by 

              
      2.50  

where   is a small, positive, real constant and    is a unit vector in direction j. And then, these 

wavefunctions are used as a starting point and the system is propagated through time as it 

relaxes from the initial perturbation, giving the change to the ground-state density δρ(r, t). The 

change in the dipole moment in the direction i is given by 

                       2.51  

The polarisability element       is defined in terms of the dipole moment in the direction 

  from a perturbation in the direction  , and can be calculated by[154] 

        
      

 
 2.52  

The absorption cross-section tensor for isolated particle is given by 

     
   

 
         2.53  

One of the strengths of the explicit time propagation method is the ability to deal with an 

arbitrary external potential. The linear response methods make the assumption of a sinusoidal 

perturbation. They also assume a small external perturbation and in practice also assume a 

perturbation without any spatial variation. 

2.6. What TDDFT can do well 

In the dynamics of the interacting system is qualitatively similar to the corresponding non-

interacting system. The adiabatic approximation (LDA) for the exchange-correlation potential 

works well, and it is possible to use the same approximation in the time-dependent case that is 
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used to prepare the initial ground state of the system. In the case of linear-response 

calculations of the excitation spectrum of the system, the spectral features are dominated by 

single-particle excitation processes. In the case of the calculations of strongly excited systems 

under the influence of high intensity fields, the external field dominates over the electron-

electron interactions, highly nonlinear multiphoton processes are prevalent (multiple 

ionization or high-harmonic generation) [152]. 

2.7. SIESTA our choice of DFT implementation 

SIESTA [160, 161] “Spanish Initiative for Electronic simulations with Thousands of 

atoms” is a calculation method and computer code which solves problems related to ground 

state properties (Energy/volume curves, phase diagrams, phonons, molecular dynamic) at the 

level of density functional theory (DFT). Since its development, the computational power has 

risen substantially, allowing for calculations of various properties of small to considerably 

large systems, with > 1000 atoms. We used a version written in Fortran 90.  

The system is reproduced identical to itself by periodicity. It suffices to define just one 

elementary cell, giving the angles and norms of the three vectors defining it, and then to give 

the positions of the atoms in this cell. When studying molecular systems such as clusters, they 

must be placed in cells large enough to avoid interactions between the system and its images 

of neighboring cells. These interactions must not exist because they are physically unfounded 

since the images are only there to reflect the artifice of the periodic boundary conditions. 

The number of points k of the first Brillouin zone used for the self-consistent resolution of 

the Kohn-Sham equations can have a great influence on the result. In the case of molecular 

systems, the molecules or atoms of each cell are well separated and energy bands (i.e., 

molecular or atomic levels) are flat. It is enough then to take only one point k (in most cases 

one takes k = 0 which is called approximation of the point Г). On the other hand, for a solid, it 

is necessary to take enough point k to represent well the structure of bands. 

Structural relaxation is done by minimizing the total energy either with a static method, 

such as the conjugate gradient method [162] (in this method, it is a question of minimizing 

energy by moving in the configuration space , not according to the greatest slope, but in 

directions that accelerate convergence) or with dynamic method (Verlet, Nosé, simulated 

annealing, etc.). For that we fix the maximum tolerated force undergone by each atom. 

Constraints can also be imposed during the relaxation of the system by freezing, for example, 

the position of certain atoms. 
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In the following paragraphs, we will briefly discuss a concept of non-local 

pseudopotentials, basis sets based on atomic orbitals, and the basic method for calculating 

matrix elements and total energies implemented in SIESTA. For more details can be found in 

the Soler et al. review of the method [163]. 

2.7.1. Norm-conserving pseudopotentials 

In computations solid-state, the first step in gaining efficiency in calculations is to 

generate a pseudo potential from a simple environment like spherical atom, termed “good” ab 

initio pseudopotential. The role of this pseudopotential is reproducing the logarithmic 

derivatives of the all electron wavefunction outside a given cutoff radius, rc. Hammann, 

Schlüter and Chiang, the first to propose pseudo potentials which satisfy all criteria [164], 

they were named norm-conserving pseudopotentials. From given all electron information, we 

can generating a screened pseudo potential,V
sc

. However, this propos does not provide the 

form of the pseudo potential in the core region, for treat this problem we can use Troullier-

Martins (TM) approach [165], one of the most widely used methods for determining the form 

of a pseudopotential in the core region. In the TM approach, the pseudo wavefunction is made 

to satisfy: (i) norm conservation of the charge density in the core region; (ii) continuity of the 

pseudo wavefunction and its logarithmic derivative and first energy derivative at rc; and (iii) 

smooth pseudopotential form, which comes from the zero curvature at the origin. The 

interaction between the atomic valence states in screened pseudopotential is different from 

valence states interactions in molecules or solids. Therefore, it is very useful to remove the 

screening to make the pseudopotential transferable to various environments; it is termed 

unscreened pseudopotential V
usc

. The newly introduced pseudopotential has a spherically 

symmetric form which loads to possible to treat each angular momentum (Ɩ) separately, so Ɩ-

dependent pseudopotential, VƖ (r). It is possible to a made more efficient by introducing 

separable potentials that are non-local in the angles and radius which was proposed by 

Kleinman and Bylander (KB) [166]. 

2.7.2. LCAO basis set 

The first introduced in quantum chemistry for describing molecular orbitals is the linear 

combination of atomic orbitals (LCAO) basis sets. They are essentially a superposition of 

atomic orbitals, given by 

                  

 

 2.54  
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Where     is the basis orbital,        are the AO coefficients and the summation is over 

the number of AO,       . Mostly used basis functions are the Slater Type Orbitals (STO) 

[167] and the Gaussian Type Orbitals (GTO) [168]. Both of these types of AO have the same 

form 

                             2.55  

The basis orbitals that are confined within a given cutoff radius are used in SIESTA for 

increase the efficiency. These basis orbitals have the following form 

                       2.56  

where        , and       is a numerical radial function. The index n indicates the number 

of orbitals which have different radial dependence, but the same angular dependence, referred 

to as multiple-ζ (zeta). 

2.7.2.1. Single, multiple and polarized basis sets 

The basis sets is a set functions that is used to represent the electronic wave function in the 

density functional theory. The basic description of a free atom can be obtained by considering 

only one basis function for each atomic orbital. This type of basis set is termed minimal basis 

set (use of minimum number of basis orbitals) also knows as single-zeta (single-ζ, SZ) basis 

set. The SZ basis set for hydrogen and helium is composed of just one s-function (1s) but 

ethers elements of periodic table, the different shells in the atoms from the same row, are 

considered together, e.g. 2sp (2s and 2p), 3sp,4sp,3 d shells, etc. In the case of lithium and 

beryllium, including only the s orbitals in the minimal basis set yields very poor results, thus 

p-functions are also added. The Double Zeta (DZ) basis set is two basis functions for every 

atomic orbital, the DZ basis set for hydrogen and helium has two s-functions (1s and 1sʹ), and 

for the second row elements has four s-functions (1s,1sʹ, 2s and 2sʹ) and two p-functions (2p 

and 2pʹ), six s-functions and four p-functions for third row elements. As in DZ, the core and 

valence orbitals in TZ (increasing the number of basis function by one will yield the Triple 

Zeta basis set) can be split, giving a triple split valence basis set. The basis sets next in size 

are Quadruple Zeta (QZ) and Quintuple Zeta (5Z). The LCAO basis sets can be improved by 

adding polarization functions, e.g. p-functions for hydrogen and helium, d-functions for the 

second row elements etc. In general, single or multiple polarization functions can be added to 

the multiple zeta basis sets, i.e. adding a single polarization function to a DZ basis set gives 

Double Zeta Polarized (DZP) basis set[169]. 
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2.7.3. Matrix elements 

For practical reasons the pseudopotential approximations and the LCAO basis set, which 

were discussed in the previous sections, were implemented in the SIESTA DFT method. 

Thus, the Hamiltonian can be written as 

       
     

 

    
  

 

               2.57  

where   is an atom index,   is the kinetic operator,   
   I is the non-local      part of the 

KB pseudopotential,   
   is screened neutral-atom      potential,        and        are the 

electrostatic and exchange-correlation potentials. The matrix elements of the   and   
   are 

expressed as two-center integrals and calculated in reciprocal space then tabulated as 

functions of the relative position of the centers. The residual terms are calculated using real-

space grid. The sum of neutral atom potentials are calculated and tabulated as a function of 

distance to atoms. The last two terms (      ,       ) depend on the self-consistent electron 

density,     , can be written as  

                   

  

 2.58  

where    indicate the basis orbitals     , and     is the one-electron density matrix, defined 

as 

             

 

 
2.59  

  

With  

            , 

where    is the occupation of state of the Hamiltonian. To obtain the last two terms in Eq. 

2.57, first the      needs to be calculated at a given grid point, by calculating each of the 

atomic basis orbital at that point. The        can be obtained, by solving the Poisson’s 

equation, and is added to the total grid potential,                       . Finally, 

the matrix elements of the total grid potential are calculated at every grid point, and added to 

the Hamiltonian matrix element [169]. 
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2.7.4. Total energy 

The Kohn-Sham total energy, based on the electron density obtained from Eq. 2.58, is 

constructed as follows  

            

   

 
 

 
                                  

 
 

 
 

      

         

 

2.60  

where            is the exchange-correlation energy density and      are the valence pseudo-

atom charges. The calculations can be further improved by avoiding the long-distance 

interactions of the last term. To do this, a diffuse ion charge   
        , having the same 

electrostatic potential as   
      , can be written as 
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The last term in Eq. 2.60 is constructed as follows 
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Where 

  
           

           
              2.63  

 

Then,     can be defined as                , and Eq.2.60 can be transformed into [169] 

                 
   

   

 
 

 
     

       
      

  

 

 
    

     

 

                
 

 
              

               

2.64  

 

The first two terms are calculated by interpolation from initially calculated tables, as in the 

case of the matrix elements of the Hamiltonian. The third term is calculated from the Eq. 2.63, 

and the last three terms are calculated using a real space grid. 
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2.8. Octopus our choice of TDDFT implementation 

Octopus is a scientific program aimed at the ab initio virtual experimentation on a 

hopefully ever-increasing range of system types. Electrons are described quantum-

mechanically within density-functional theory (DFT), in its time-dependent form (TDDFT) 

when doing simulations in time. Nuclei are described classically as point particles. Electron-

nucleus interaction is described within the pseudopotential approximation.  

For optimal execution performance Octopus is parallelized using MPI and OpenMP and 

can scale to tens of thousands of processors. It also has support for graphical processing units 

(GPUs) through OpenCL and CUDA. Octopus is free software; it is coded in a combination 

of Fortan and C and has some scripts within it written in Perl. It also makes extensive use of 

libraries, requiring FFTW [170], LAPACK/BLAS [171, 172] and GSL [173] for compilation, 

so you are free to download it, use it and modify it.  

In order to run Octopus, we need a few input files like the Cartesian coordinates of the 

atoms within the system (.xyz file), and the pseudopotentials for each of the species, although 

Octopus has default pseudopotentials it can use. The rest of the parameters are given in a 

single text file known as the inp file.  

The program of octopus [154, 174] is based on TDDFT in the Kohn-Sham scheme and all 

calculations are expanded in a regular mesh in real space, so the simulations are performed in 

real time. The program has been successfully used to calculate linear and non-linear 

absorption spectra, harmonic spectra, laser induced fragmentation, etc. of a variety of 

systems. The main advantage of real space methods is the simplicity and intuitiveness of the 

whole procedure. First of all, quantities like the density or the wave-functions are very simple 

to visualize in real space. Furthermore, the method is fairly simple to implement numerically 

for 1-, 2-, or 3-dimensional systems, and for a variety of different boundary conditions. In real 

space methods the only convergence parameter is the grid-spacing, and decreasing the grid 

spacing always improves the result. Unfortunately, real-space methods suffer from a few 

drawbacks. For example, most of the real-space implementations are not variational, i.e., we 

may find a total energy lower than the true energy, and if we reduce the grid-spacing the 

energy can actually increase. Moreover, the grid breaks translational symmetry, and can also 

break other symmetries that the system may possess. This can lead to the artificial lifting of 

some degeneracies, to the appearance of spurious peaks in spectra. Another important 

parameter for OCTOPUS calculations is the radius parameter. Since OCTOPUS performs all 



2. Theory and Computational methods 

 

 

 
49 

 

real space calculations using a sphere around each atom, it converge the density within each 

of these spheres. Also since we employ zero boundary conditions for clusters calculations, we 

do not need to specity a super-cell since this condition will take care of the non-periodic 

boundary conditions. Also this method of using spheres centered around each atom rather 

than a cell reduces the computational time drastically in real space calculations for clusters 

and molecules. A radius too large will not affect the calculations but a radius too small would 

make the wave function die out even before they reach adjacent atom. But all of the above 

problems can be minimized by correctly optimizing the radius and the spacing parameters as 

described in the sub-sections [154, 174]. 

2.8.1. Radius optimization 

As mentioned earlier the radius parameter is a crucial parameter for OCTOPUS 

calculations. In order to get the correct value of the radius parameter, we minimize the energy 

by consecutively running OCTOPUS for a test system with a fixed value of spacing and vary 

over the radius parameter. We check for the total energy of the system and chose a radius 

parameter where the total energy is a minimum. 

2.8.2. Grid Spacing 

Methods of optimizing the grid spacing for a calculation are outlined within the Octopus 

tutorial [157]. Any real space grid must be sufficiently dense that the electron density is 

accurately represented, having a grid density that is too low results in the total energy 

dropping from the true value. Calculation times are directly proportional to number of grid 

points, and therefore scale with 1/x
3
, where x is the grid spacing. Similar to the case of radius 

optimization, even while optimizing spacing energy minimization is the only reliable 

criterion.  

A similar set of tests were run on all the clusters under consideration and the value of 

radius and spacing obtained were the same proving the earlier point, that these parameters 

mainly depend on the pseudo-potentials under consideration. Once the spacing and radius 

parameters are fixed we calculate the photo-absorption spectra of the clusters using TDDFT 

method. Other variables like Convergence Criteria, Exchange-Correlation Potential, Extra 

States and Smearing were used in our calculation with default values. 

2.8.3. Time Dependent run: 

In our calculation, the photo-absorption spectrums were obtained by use TDDFT method 

[150, 175]. In this method, the basic variable is the one electron density        which is 
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obtained with the help of a fictitious system of non-interacting electrons, the Kohn-Sham 

system. The time-dependent Kohn Sham equations are [150, 175] 

 
 

  
         

   

 
                  2.65  

Where         are Kohn-Sham one electron orbitals. In terms these orbitals        can be 

written as 

                 
 

   

 

 2.66  

The Kohn-Sham potential can be written as 

                                          2.67  

where the first term is the external potential, the second Hartree potential and the last the 

exchange and correlation potential. For obtaining this potential we use adiabatic local density 

approximation (ALDA). 

In order to calculate the absorption spectra by octopus cod we must choose between the 

three methods below: the Sternheimer response method, the Casida response method and the 

explicit propagation method. The aim of this work is to calculating the absorption cross-

section spectra of pure and tin doped germanium clusters from 2 to 18 atoms which leads 

produced a lot of clusters, i.e. a lot of the calculations. The prime consideration for selecting 

the appropriate calculation method is the scaling of the calculation time it takes each method 

with system size and with number of the clusters to obtain. This excludes the Casida method 

as its calculation time scales proportionally to NRN
2

oN
2

u where No and Nu are the number of 

occupied and unoccupied states in the system, respectively, and NR is the number of real-

space points in the system. Calculations times for both the Sternheimer and explicit 

propagation methods are approximately directly proportionally to NRNe and are therefore 

proportional to the number of atoms in the system squared [150], and in the other side, the 

Sternheimer method however also scales with the number of frequencies for which the 

absorption cross-section is required. This causes it is slow for the calculation of an entire 

cross-section spectrum, the explicit propagation method was therefore chosen for calculations. 

In this method the electrons are given some small momentum (K) to excite all the frequencies 

[176]. This is achieved by transforming the ground state wave function according to 

                     2.68  
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and then propagating these wave functions for some finite time. The spectrum is then obtained 

from dipole strength function S( ω ) [176] 

     
  

 
       2.69  

 

     
 

 
                   2.70  

where the α ( ω ) is the dynamical polarizability  and d(t) is dipole moment of the system. We 

can also define a quantity know as the oscillator strength to express the strength of the 

transition. 

      
 

 
              

 

       

 2.71  

where φ 0 and φ I are the ground and excited state respectively. The oscillator strength is 

related to the dipole strength function defined earlier using the following relationship 

                

 

 2.72  

The sum over the oscillator strength gives the number off active electrons in the system, 

      2.73  

where N is the number of active electrons in the system. 
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3. The ground state structures of SnGen
(0,±1)

 (n=1-17) 

clusters and their electronic properties  

Introduction 

The present chapter deals a theoretical study of structures of pure and tin doped 

germanium clusters, Gen+1 and SnGen (n=1-17), neutrals and cations in the framework of the 

DFT method. The aim is to find the ground state structures of these clusters and their 

electronic properties. The chapter is organized as follows: we describe the computational 

details in section 2, section 3 is devoted to discuss the obtained results and in section 4 we 

draw some conclusions. 

3.1. Method 

In this study, ab initio molecular orbital and density functional theory (DFT) calculations 

are performed by using the SIESTA software package [137, 140, 177] (the Spanich Initiative 

for Electronic Simulation with Thousand of Atoms). The density functional is treated by 

generalized gradient approximation (GGA) with exchange correlation potential developed by 

Perdew and Zanger[178] and Perdew, Burke and Ernserhof (PBE)[179]. Self-consistent field 

procedures are carried out with a convergence (SZ) basis set for Sn and Ge atoms. The ionic 

core criterion of 10
-4

 a.u. on the total energy and electron density. A big cubic supercell with 

dimension of 40 Å was used to create sufficient vacuum space to eliminate the image 

interactions. The k=0 (Γ) point approximation was used in Brillouin zone sampling. During 

simulation, volume of the system was kept constant and a single  potential were Bylander 

form[180]. The energy cut-off of150 Ry was use represented by norm-conserving Troullier-

Martins[165] and non local pseudopotentiels factorized in the Kleinman- and 

PAO.EnergyShift is taken equal to 50 meV. To perform simulated annealing for pure 

germanium clusters, initial velocities were assigned to the system corresponding to 10 K. 

Random velocities, drawn from the Maxwell-Boltzmann distribution with the corresponding 

temperature, are assigned to atoms. The constraint of zero centre of mass velocity is imposed. 

The atoms were moved according to the velocity Verlet algorithm with a time step of 1 a.u.
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 (Table1) 

Table1.: Average bond length a (Å), Binding energy Eb (eV), Adiabatic Electronic Affinity (AEA) (eV) and 

Adiabatic Ionisation Potential (AIP) (eV) for Ge2 et Ge3 clusters. 

 

 a
 Ref.[181]. 

 b
 Ref.[182]. 

 c
 Ref.[114]. 

 d
 Ref.[183]. 

 e
 Ref.[184]. 

 f
 
 
Ref.[107]. 

 g
 Ref.[49]. 

 h
 Ref.[50]. 

  i
 Ref.[56]. 

  j
 Ref.[76]. 

 k
 Ref.[23]. 

  l
 Ref.[57]. 

m
 Ref.[88].

 

 n
 Ref.[185] 

The system of each cluster was taken at high temperature of 1000 K in 1000 steps. Then, 

they are equilibrated at this temperature in 1000 other steps. Finally, the system was slowly 

cooled to 0 K in 5000 steps. On the other hand, for tin doped germanium clusters, conjugate 

gradient method within Hellmann Feynman forces was used and all the forces are less than 

10
-2

 eV/ Å. In order to find the global minimum structures of SnGen clusters, at first we have 

optimized several isomers of pure germanium clusters with size of 2-18 atoms. Second, a 

great number of isomers for doped SnGen were considered. We have initially relaxed different 

possible isomers of neutral SnGen clusters. Then, the best obtained structures have been 

considered in their anionic and cationic configurations and relaxed. After conducting a 

simulation process, a comparative study between the properties of neutral and charged 
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clusters was performed. In the discussion, we consider only the lowest energy isomers 

determined in our optimizations. In order to test the method used in geometry optimization, 

with respect to the exchange-correlation functional to the size and to the cutoff radii of basis 

sets, we performed calculations on Ge2 and Ge3 clusters. Our results shown in Table1 are in 

good agreement with theoretical and experimental results of the literature. 

3.2. Results and discussions 

3.2.1. Structural properties  

In cluster physics, one of the most important things in studying the properties of clusters is 

to determine their ground states geometries. The most obtained stable structure and their 

corresponding isomers for pure and tin doped germanium clusters are shown in Figure.  6 and 

Figure7, respectively. In these Figures, (a) isomer is the most stable structure. The energetic 

ordering of isomers for Gen+1 and SnGen (n=1-17) clusters are given in Table2 and Table  4 , 

respectively. In these tables, the parameters of the most stable structures for each size are 

reported in bold character. In Table.4, we give the average Ge-Ge and Sn-Ge bond lengths of 

the lowest energy structures of SnGen
(0,±1)

 clusters. Figure.1 presents the most stable 

structures of anionic and cationic SnGen
(±1)

 clusters and their parameters are described in 

Table.5.  

In the case of clusters with two atoms, we obtained a SnGe monomer with bond length of 

2.805 Å, which is in good agreement with the theoretical value [165] of 2.753Å. The binding 

energy equals 1.19eV/atom which is smaller than that of Ge2 monomer (1.28eV/atom). For 

charged monomer, the bond length is 2.910 Å and 2.495 Å for SnGe
+
 and SnGe

-
 , 

respectively, while the binding energy is 1.285 and 1.819 eV/atom, respectively. The cationic 

monomer is more stable than the neutral and anionic monomers.  

The triangular structure is the lowest energy structure for Ge3 with symmetry C2v and 

average bond length of Ge-Ge of 2.476 Å. For SnGe2 cluster, which has a triangular structure, 

with Cs symmetry, the average bond lengths Ge-Ge and Sn-Ge are 2.472 Å and 2.658 Å, 

respectively. The geometric structure of the anion cluster of SnGe2 is also triangular, whereas 

its cation cluster is angular with Cs symmetry.  

For Ge4, the most stable structure is the rhombus (D2h) with the bond length of 2.714 Å 

and the binding energy Eb=2.25eV/atom. The same structure is obtained by Wang et al[57] in 

their theoretical study and Li et al[76] in their experimental study on the Gen systems. In the 
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(Figure.  6 ) 

 

Figure.  6 : Ground state structures and their isomers for Gen+1 (n = 1-17) clusters 
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 (Table2) 

Table2.: Symmetry group, binding energy per atom Eb (eV/atom), HOMO-LUMO gap ΔE(eV) and average 

bond length for pure Gen+1 (n=1-17) clusters, the bold character is the parameter of the most stable structure.  
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case of SnGe3 cluster, the ground state structure showed a C2v symmetry with Sn–Ge and Ge–

Ge bond distance of 2.857 Å and 2.741 Å, respectively. Rhombus structure is also found to be 

the most stable structure for charged SnGe3 cluster.  

The ground state of Ge5 cluster is a trigonal bipyramid with D3h symmetry and average bond 

length of 2.668 Å. Our calculations indicate that the SnGe4 cluster has also trigonal bipyramid 

with C2v structure. Their Ge-Ge bond length increases to 2.665 Å and Sn-Ge bond length is 

found to be 2.852 Å. This structure is in agreement with Samanta et al[22] results. For the 

charged cluster, the capped tetrahedron structure is the most stable structure with C2v 

symmetry. The energy binding of SnGe4
+
 is 2.316eV/atom which is smaller than that of 

SnGe4
- 
(2.833eV/atom).  

The capped trigonal bipyramid with (C2v) symmetry is obtained for Ge6 cluster, in agreement 

with the result of Li et al[76]. For n=5, SnGe5 (a) is the most stable isomer with Cs symmetry. 

Their corresponding Ge-Ge and Sn-Ge bonds length are 2.850Å and 2.911Å, respectively. 

The same form is obtained by Wang and Han[186]. The capped trigonal bipyramid 

configuration with C2v is also stable for SnGe5
+
. However, the anion SnGe5

-
 is a distorted 

octahedron with (C2v) symmetry.  

For Ge7, the pentagonal bipyramid with D5h symmetry and the lowest binding energy of 2.66 

eV/atom is suggested. Our results are in good agreement with previous theoretical studies [57, 

76, 187]. Three different isomers are found for SnGe6. The most stable one is SnGe6 (a) with 

Cs symmetry, bond lengths Ge-Ge and Sn-Ge of 2.714Å and 2.927Å, respectively. The 

pentagonal bipyramid is the most stable structure for SnGe6
-
 and SnGe6

+
.  

For n = 8, the face capped pentagonal bipyramid is obtained for pure Ge8 cluster with Cs 

symmetry, binding energy of 2.64 eV/atom and average bond length of  2.796 Å. The same 

structure is reported by Wang et al [57]. A similar structure as Ge8 is obtained in the case of 

SnGe7 and SnGe7
±
 with C1 symmetry. The Ge-Ge bond length is much larger in the case of 

SnGe7
+
 and SnGe7

-
 (2.892 Å and 2.862 Å) clusters compared to the corresponding neutral 

SnGe7 cluster (2.581 Å).  

For Ge9, the bicapped pentagonal bipyramid Ge9 (a) with C2v symmetry is the most stable 

structure with binding energy of 2.70 eV/atom and average bond length Ge-Ge of 3Å. In the 

corresponding doped cluster, the most stable structure is SnGe8 (a) with Cs symmetry. Its Ge-

Ge and Sn-Ge average distances are 2.939 Å and 3.062 Å, respectively. The same structure  

(Figure7 
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Figure 7.  :Ground state structures and their corresponding isomers for SnGen (n = 1-17) clusters. 
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and symmetry is found for cationic SnGe8
+
. However, the anionic SnGe8

-
 cluster presents a 

different structure with C1 symmetry.  

The lowest energy structure, among the three best structures observed in the case of Ge10 

cluster, is Ge10 (a) with C3v symmetry, which is in good agreement with Wang et al [57] 

results. In the doped clusters case, the ground state structure is SnGe9 (a) with Cs symmetry. 

The Sn atom occupies a peripheral position. The averages Ge-Ge and Sn-Ge distances are 

2.851 Å and 3.059 Å, respectively. The results indicate that the SnGe9
+
 and SnGe9

-
 structure 

are completely different to the neutral SnGe9 structure. The average Ge-Ge distance of 

cationic cluster 0.353 Å is smaller than that in the neutral SnGe9.  

For Ge11, the most stable structure is Ge11 (a) with Cs symmetry. Substituting Ge by Sn leads 

to a somewhat similar structure. The ground state structure of SnGe10 (a) is given in Figure7 

with Cs symmetry. Its calculated binding energy is 2.73 eV/atom, while the bond lengths Ge-

Ge and Sn-Ge are 2.846 Å and 3.088 Å, respectively.  

We observe that the obtained results suggest that the majority lowest energies clusters of 

germanium pure are layered structure beginning n = 12. In Figure.  6 , we show that the ground 

state structure of Ge12 has stacked structure with C2v symmetry. Substituting Ge by Sn doesn’t 

perturb significantly the structure because the structure of SnGe11 is very similar to that of 

Ge12. The binding energy of SnGe11 is only 0.02eV/atom, which is less than that of Ge12. The 

stacked structure is also stable for SnGe11
+
 specie with C1 symmetry. The layered structure 

has found also for Ge13. It consists in a triangle Ge3 and bicapped square antiprism Ge10, in 1-

5-4-3 layers. Similar layered structure Ge14 (a) is obtained for Ge14 with 1-5-4-4 layered. In 

this case, the Ge3 unit of the best isomer Ge13 is replaced by a rhombus Ge4.  

The lowest energy structures of Ge15, Ge16, and Ge17 are stacked structures with 1-5-3-5-1, 1-

5-4-5-1 and 1-5-5-5-1 layers, respectively. These layered structures have also been found by 

Wang et al[57]. Two isomers with spherical configuration and one Ge core atom are found for 

Ge16 and Ge18, as shown in Figure.  6 . The most stable structure Ge18 (a) of Ge18 consists in 

three connected pentagonal parties Ge7, dimer Ge2 and capped tetragonal prism Ge9 but this 

isomer is not a layered structure. 

 In all the SnGen isomers clusters, with n < 12 size, the Sn atom occupies a peripheral 

position. In n > 12 case, the Sn atom can occupy a core position. For example in SnGe12, Sn 

occupies a peripheral position in SnGe12 (a) structure and occupies a core position in SnGe12 

(b) and SnGe12 (c) structures. Compared to other isomers, SnGe12 (a) structure has the highest  

(Figure.1) 
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Figure.8:.Ground state structures of cationic and anionic SnGen
(±1)

 (n = 1-17) clusters 
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stability. For charged SnGe12
±
, we obtained the same structures with the same symmetry C1 

and Sn-Ge bond length for cation and anion clusters of 3.078 Å and 3.029 Å, respectively. 

Two stacked structures (a) and (b) and hexagonal prism (c) are optimized for SnGe13. The 

calculated results show that the SnGe13 (a) isomer is the most stable geometry and have the 

same form with pure germanium Ge14. The stacked structure is also stable for SnGe13
±
. 

SnGe14 (a) structure, where the Sn atom is located at the surface, is similar to Ge15 structure. 

Two other isomers (b) and (c), with Sn atom at the center of thestructure, are also found for 

SnGe14. The same structure with Cs symmetry, have been obtained for SnGe14
+
 and SnGe14

-
. 

SnGe15 cluster have four stable structures.  

The most stable one is the SnGe15 (a) with Cs symmetry, which is obtained by substitution of 

Ge atom by Sn atom in the Ge16 cluster. The other isomers SnGe15 (b, c, d) have spherical 

structures with Sn atom in surface for (b) and in a core position for (c, d). The SnGe15 (a) 

structure is conserved for the cationic SnGe15
+
 cluster.  

SnGe16 and SnGe16
±
 have the same stable structure Ge17 (a) with C1 symmetry, SnGe16 has 

two other isomers. Three SnGe17 isomers are shown in Figure7. The SnGe17 (a) isomer has 

the same form of Ge18 and it is the most stable structure. The SnGe17 (b) cluster is similar 

spherical structure and SnGe17 (c) cluster is spherical structure, Sn atom is located in the 

centre position in both structures. The same structure as SnGe17 (a) is found for cationic 

SnGe17
+
 with C1 symmetry. Different forms of anionic SnGe17

-
 cluster are obtained.  

3.2.2. Electronic properties  

3.2.2.1. Binding energy 

In order to explore the relative stability of different species, we calculate the binding energy 

per atom for the Gen+1 and SnGen
(0±1)

 (n = 1-17) clusters. The binding energy per atom 

((Eb/atom) is considered, in cluster science, as a sensitive quantity that reflects the relative 

stability. The different values of Eb/atom for the lowest energy structures are calculated as: 

Eb(Gen+1) = ((n+1)E(Ge)-E(Gen+1))/(n+1) 3.1  

 

Eb(SnGen) = (nE(Ge) + E(Sn) - E(SnGen))/(n+1) 3.2  

 

 

Figure9) 
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Figure 9. : Size dependence of the binding energies of Gen+1 and SnGen
 (0, ±1)

 (n=1-17) clusters. 

 

Eb(SnGen
-1

) = ((n-1)E(Ge) + E(Sn) + E(Ge
-1

)- E(SnGen
-1

))/(n+1) 3.3  

 

Eb(SnGen
+1

) = (nE(Ge) + E(Sn
+1

) - E(SnGen
+1

))/(n+1) 3.4  

where E(Ge)     , E(Sn), E(Ge
-1

)      and E(Sn
+1

) are the total energy of free Ge, Sn, Ge
-
 

and Sn
+
 atoms, respectively. E(Gen+1)         is the total energy of Gen+1, 

E(SnGen)         is the total energy of SnGen and E(SnGen
±
)       

   is the total energy 

cationic and anionic SnGen
±
 clusters. The obtained results of binding energies per atom for 

pure Ge and neutral and charged tin doped germanium clusters are given in Table2, Table  4  

and Table.5, respectively and their variations versus the cluster size are plotted in Figure9. For 

all species, the binding energy per atom increases with the cluster size. This behavior implies 

that the cluster stability is enhanced whenever the cluster size increased. The graphs show a 

thermodynamic instability of smaller clusters. In the case of SnGen clusters, the binding 

energy per atom increases significant increasing in the average binding energies of the 

clusters of small size rang (n < 9), which is due to the rapidly from 1.19eV/atom in SnGe 

cluster to 2.77eV/atom in SnGe9. For clusters of size n > 9, we can see a slow increasing in Eb 

to reach the saturation plateau at 2.8eV/atom. From Figure9, we also observe that there is a 
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high competition in the evolution of the binding energies between SnGen and its 

corresponding Gen+1 cluster. This means that the Sn atoms haven’t an immediate and direct 

effect on the relative stability of pure germanium clusters. The anionic clusters exhibit a high 

stabilities compared to the others cationic and neutral ones. Local peaks are observed in the 

curve of binding energies of Gen+1 and SnGen for n=6, n=9 and n=13. This means that the 

corresponding clusters are more stable than their neighbors.  

3.2.2.2. Fragmentation energy 

In the other hand, we calculated the fragmentation energy which is considered as a good 

criterion for predicting the relative stability of the clusters for spontaneous fragmentation. In 

this works, the size dependence of the fragmentation energies (Eƒ) for Gen+1 and SnGen
(0,±1)

 

clusters are studied. The fragmentation energy values for different clusters can be calculated 

by using the following formulas: 

Eƒ(Gen+1) = E(Gen)+ E(Ge)-E(Gen+1) 
3.5  

 

Eƒ(SnGen
(0±1)

) =  E(SnGen-1
(0±1)

) + E(Ge) - E(SnGen
(0±1)

) 3.6  

 

Where E(Ge)     , E(Gen+1)          and E(SnGen
(0±1)

)        
     

  are the total 

energy of free Ge atom, Gen+1 cluster and SnGen
(0±1)

 cluster respectively.  

Based on the above formulas, the calculated fragmentation energy values and their 

evolution with the cluster size are shown in Figure21. We observe that there are oscillating 

behaviors with an odd-even decreasing tendency in the evolution of fragmentation energy for 

all the species. Two parts can be distinguished for Gen+1 and SnGen clusters. For n<9, the 

clusters with n even values are more stable than n odd values. However, for n>9, the clusters 

with n odd values are more stable than n even values. This confirms that the size n=9 is the 

stability transition size of these two species. 

(Figure11) 
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Figure 11. : Size dependence of the fragmentation energy of Gen+1 and SnGen
 (0, ±1)

 (n=1-17) clusters. 

 Local maxima of the fragmentation energy of Gen+1, SnGen, SnGen
+
 and  SnGen

-
 clusters 

appear at Ge4,10,14, SnGe3,9,13,16, SnGe
+

3,5,13,16 and  SnGe
-
4,6,8,13 , respectively, which indicates 

that these clusters are more stable than their neighbors. 

3.2.2.3. Second difference energy 

In order to analyze the relative stability of Gen+1 and SnGen
(0±1)

 clusters, we calculate second 

order difference of  total energy (Δ2E). For the ground state structures the second difference 

energies for all species are defined by: 

Δ2E(Gen+1) = E(Gen+2) + E(Gen) - 2E(Gen+1) 
3.1  

 (Figure11) 
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Figure 22. : Second energy differences for Gen+1 and SnGen
 (0, ±1)

 (n=1-17) clusters. 

  

where E is the total energy of corresponding cluster. It is very known in cluster physics that 

the small systems with positive value of Δ2E are more stable than the systems with negative 

value of Δ2E.  The calculated values of Δ2E and their evolution as function of the n size for 

Gen+1 and SnGen
(0±1)

 are shown in Figure22. From the Figure22, the very pronounced peaks 

are observed at the sizes n = 1,5,7,10,12,14 for pure Gen+1 and SnGen clusters, which 

demonstrate that the clusters corresponding for these sizes are more stable compared to their 

neighbors for both species. The explanation of this behavior can be given with a direct 

relationship between the stability of Sn doped germanium and their corresponding pure Gen+1 

with the same size. Except for the two size n = 7 and n=10, we observe that the structure 

SnGen clusters kept unchanged after the encapsulation of Sn atom in pure germanium cage. 

We also observe that the local peaks at sizes n=2,4, 12 and n=7, 10, 11 for SnGen
+
 and SnGen

-
 

clusters, respectively indicating that the corresponding clusters have a higher relative stability 

compared to neighboring clusters. 

 

 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

 

 

S
ec

on
d

 O
rd

er
 D

if
fe

re
n

ce
 (

eV
)

Cluster Size (eV)

 Ge
n+1

 SnGe
n

 SnGe
n

+

 SnGe
n

-



 

 
27 

 

3.2.2.4. HOMO-LUMO gap 

In order to understand the chemical reactivity and kinetic stability of the clusters, we 

calculate the energy differences between the highest occupied and lowest unoccupied 

molecular orbital (HOMO-LUMO) of the Gen+1 and SnGen
(0,±1)

 clusters. In Figure25, we show 

the evolution of the HOMO-LUMO gaps as a function of the size for the ground states of 

different species studied in this thesis. We observe a high oscillation of HOMO-LUMO gaps 

values for the very small size clusters (n<4). From n = 4 this behavior decreases when the size 

increases.  Many local maxima are observed at n = 2, 4, 8, 9, 11, 13, 15, 17 for both pure and  

doped germanium clusters, which indicates that these clusters are less reactive than their 

neighbors and have high chemical stability. The HOMO-LUMO gap of SnGe4 is lower than 

that of Ge4, which indicates that the doping Sn atom enhance the chemical activity of the 

cluster. We note that the cluster of tin doped germanium at n = 6 have a large value of  

HOMO-LUMO gap, which indicates that SnGe6 is the most chemically stable structure and 

can be used as the building blocks in many new nanomaterials with specific properties. The 

ionization of SnGen leads to a considerable reduction of the HOMO-LUMO gaps compared to 

the case of neutral clusters. 

This indicates that the chemical activity of charged SnGen
±
 clusters is higher than that of 

neutral SnGen clusters. Moreover, the clusters of Ge2, SnGe1,4 and SnGe
-
12,13,16,17

 
 have small 

values of HOMO-LUMO gaps, which indicates that they have partially metallic character. 

3.2.2.5. Ionization potential and electron affinity 

In cluster physics, the ionization potential and electron affinity are considered as suitable 

parameters to determine the stability of clusters and reflecting the variation of the electronic 

structure with the size. In order to determine the required energies to add or remove an 

electron from the lowest energy structures of neutral SnGen clusters, we have calculated the 

adiabatic electron affinity (AEA) and adiabatic ionization potential (AIP),taking in the 

account the structural relaxation. The vertical ionization potential (VIP) and vertical electron 

affinity (VEA) are respectively the energy required to remove or add an electron on the 

neutral clusters without structural relaxation. 

The ionization potential (IP) is an important character in understanding electronic 

properties of clusters and giving more information about clusters metallic character. From 

Figure24 (a), we can see that VIP and AIP values decrease as the cluster size the increase. It is 

well known that when the IP is small, the cluster will be more close to a metallic character. 

(Figure21) 
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Figure 21. : Size dependence of the HOMO-LUMO gaps of Gen+1 and SnGen
 (0, ±1)

 (n=1-17) clusters. 

 

This means that the clusters of SnGen with size more than 9 atoms exhibit a high metallic 

character. The smallest VIP and AIP values are observed in SnGe14,16 clusters, indicating that 

these clusters are more readily ionized than the others. The highest value of SnGe4 VIP can be 

explained by its related symmetry.  

The calculated AEA and VEA of SnGen clusters are presented in Figure21 (b). We can see 

that the electron affinity increases whenever the cluster size increases. Consequently, the 

SnGen clusters with large sizes will liberate more energy when they capture one electron. We 

also observe some maximal local peaks in this graph at n = 8, 12, 14 for AEA and n = 7, 9, 15 

for VEA, which means that these clusters are energetically less stable than their neighbors.  

3.2.2.6. Chemical hardness 

On the other hand, the chemical hardness (η) of cluster can be examined in order to 

understand its chemical stability. A large values of η indicates that corresponding clusters are 
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less reactive [188, 189]. For the ground state structures, the chemical hardness is evaluated by 

using the following formula:  

The obtained results for the most stable structures of SnGen clusters are listed in Table  4  

and plotted in the Figure24 (c) as a function of the size n. We observe that the chemical 

hardness of SnGen clusters decreases when the size increases. This means that clusters with 

small size are less reactive and more stable than clusters with large size. We can also see from 

graph that the SnGe4 cluster has the highest chemical hardness value, which indicates that this 

cluster is more stable than its neighbors. In addition, other local peaks at n = 2, 6 and 8 for 

SnGen are less reactive than the other clusters. 

3.2.3. Magnetic properties  

One of the most important properties which make a special characteristic of these small 

clusters is their magnetic behavior. Indeed, we can observe very small clusters with very 

specific magnetic response which can have many important applications in nanotechnologies. 

In our case, the magnetic properties are evaluated by the assessment of the total spin magnetic 

moment for each cluster size. It is defined as the difference between the total Mullikan charge 

populations for electrons with spin up and electrons with spin down. The calculated total spin 

magnetic moment values of SnGen clusters are reported in Table  4 . We observe that all the 

ground states of SnGen clusters are generally nonmagnetic structures, except the case of 

SnGe1 which have a total spin magnetic moment of 2 μb. In order to explore this specific case 

we plot the total and the partial densities of states for SnGe1 cluster (DOS and PDOS) (Figure 

23). We observe, from the figure, that the total spin magnetic moment in SnGe monomer is 

mainly due to the 4p and 5p orbital of Ge and Sn atoms, respectively. In the case of the 

anionic and cationic SnGen clusters, the obtained total spin magnetic moments have been 

reported in Table.5. We observe that their total spin magnetic moments of ionized structures 

are different compared to those obtained in neutral structures and they are generally equal to 1 

μb. This means that the charge of the systems can affect the magnetic response of the tin 

doped germanium clusters. 
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Figure 21. : (a) Vartical (VIP) and adiabatic (AIP) ionization potential; (b) Vartical (VEA) and adiabatic (AEA) 

electron affinity, (c) chemical hardness for SnGen
 
(n=1-17) clusters. 
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Table  3. : Symmetry group, binding energy per atom Eb (eV/atom), HOMO-LUMO gap ΔE(eV), Vertical 

Electronic Affinity (VEA) (eV), Vertical Ionisation Potential (VIP) (eV), Chemical Hardness η (eV) and total 

spin magnetic moments µ (µB) for SnGen (n=1-17) clusters. 

 

Table.4)                                                                                                                         
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 Table.4: Average bond length aGe-Ge and aSn-Ge for neutral, cationic and anionic SnGen
(0±1)

 (n = 1-17) 

clusters. 

 

(Table  5 ) 

Table  5. : (A) Symmetry group, binding energy per atom Eb (eV/atom), HOMO-LUMO gap ΔE(eV), total spin 

magnetic moments µ (µB), adiabatic Ionisation Potential (AIP) (eV) for cationic SnGen
+
 (n=1-17) clusters.(B) 

Symmetry group, binding energy per atom Eb (eV/atom), HOMO-LUMO gap ΔE(eV), total spin magnetic 

moments µ (µB), adiabatic electron affinity (AEA) (eV) for anionic SnGen
-
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(Figure  14 ) 

 

Figure  14. : The total density of states (DOS) for SnGe monomer and the projected density of states (PDOS) for 

Sn and Ge atoms in SnGe. 
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4. The Photo-Absorption spectra of SnGen (n=1-17) 

clusters and their optical properties 

Introduction 

In this chapter we present the calculated optical absorption features of the pure germanium 

and tin doped germanium clusters. The aim is to understand the roles played by the size of the 

cluster and the presence of the impurity, Tin atom, on the electronic structure of the 

germanium clusters and to investigate how these features can be manipulated and engineered 

by simply handling with the size of the system and with dopo within the system. We employ 

Time Dependent Density Functional Theory within Local Density Approximation using 

OCTOPUS package to calculate the absorption spectra for those clusters.  

4.1. Method 

The initial structures of the clusters used for our calculations have been obtained by 

SIESTA package (see chapter 3). In this work, the local density approximation was employed 

to keep consistency with the geometry optimization process. OCTOPUS uses a uniform grid 

in real space, which is located inside the sum of n spheres, one around each atom of the n-

atom cluster. A minimization of energy with respect to the radius and the grid spacing was 

carried out for all clusters. For optimal energy minimization, we used the radius of each 

sphere to be 6-8 Å and the grid spacing 0.16-0.18 Å. 

We used a real-time TDDFT approach, based on the explicit propagation of the time-

dependent Kohn–Sham equations. In this approach, one first excites the system from its 

ground state by applying a delta electric field. The Kohn–Sham equations are then propagated 

forward in real time[152], and the time-dependent density n(r,t) readily computed. From this 

quantity one can then obtain the absorption cross-section as explained in refs. [174],  and 

[190]. In our work, the total propagation time was chosen to be 15 ħ/eV, and the time step 

0.001 ħ/eV. This approach has already been used for cluster and molecular systems: metal and 

semiconducting clusters [191-194], aromatic hydrocarbons [190, 195, 196]. 

Throughout the calculations the ions were kept static. The approximated enforced time 

reversal symmetry (aetrs) method was employed in order to approximate the evolution
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operator. Numerically the exponential of the Hamiltonian, which is used to approximate the 

evolution operator, was evaluated using a simple Taylor expansion of the exponential. In 

order to verify our calculation with experimental data, we chose to compare the absorption 

spectra of the most stable cluster of GeH4 with available experimental data as our benchmark. 

4.1.1. Benchmark 

Before getting the absorption spectra of GeH4 cluster, we need to calculate the ground 

state of this cluster and optimized him. For this cluster, we use the bond length 1.5 from ref. 

[197]. Figure  22  shows the structure of GeH4, the green sphere is the germanium atoms and 

the weight spheres are Hydrogen atoms. A typical graph of radius optimization is shown in 

Figure26. The figure corresponds to GeH4 system and at a value of 3.5 Å the energy reaches a 

minimum. Once the energy reaches a minimum we can chose any value of the radius 

parameter. But at the same time it is important to note that choosing a larger radius would 

considerably increase the computational time. Figure27 shows the value of total energy 

plotted as a function of the spacing parameter for GeH4 system with a range on the x axis is 

0.10 to 0.22 Å. The spacing parameter of 0.20 Å would be the ideal spacing since the energy 

change only 0.01 eV. 

The study of optical properties depends on transition from the occupied levels to the 

unoccupied levels. The structures in the photo-absorption spectra are specified by these 

transitions. Thus, we are interested in calculating these differences in energy and compare 

them with the energy differences deduced from the experimental spectra, Table6 shows this 

comparison. We have also included the TDDFT results of G. Nesher et al[128] along with the 

transitions identification. The uppermost occupied states result from a hybridisation of the 

germanium and hydrogen states while the lowest unoccupied states are primarily germanium 

states. Thus the energy gap is dependent on the bonding and anti-bonding germanium states. 

The transitions between these states have been identified as 5s, 5p, 5d states (these refer to the 

angular momentum character of the final states). In the absence of experimental data for the 

Ge clusters sizes studied here, our only point of experimental reference is the optical 

measurement of Itoh et al[198] for GeH4. Here, our TDLDA-calculated optical gap value is 

8.75 eV, which compares very well to the experimental value of 8.32 eV. 

 Figure21 shows the photo-absorption spectra obtained for GeH4 using TDDFT. Here we 

plot the spectrum for the range from 0 eV to 12 eV, the entire spectrum gives us a better 

understanding of the optical properties. It can be quite clearly seen from the spectrum that 



4. The photo-absorption spectra of  SnGen (n=1-17) clusters and their optical properties 

 

 

 
66 

 

Time Dependent run give quite accurate answers if the parameters are chosen correctly. The 

calculated photo-absorption cross-section (using TDDFT) seems to be in good agreement 

with the TDLDA results of G. Nesher[128]. 

A similar set of tests were run on all the clusters under consideration and the value of 

radius and spacing obtained were the same proving the earlier point, that these parameters 

mainly depend on the pseudo-potentials under consideration. Once the spacing and radius 

parameters are fixed we calculate the photo-absorption spectra of the clusters using TDDFT 

metho  

(Figure  21 ) 

 

Figure  15. : Ground state structure of GeH4 cluster.  

 

(Figure26) 

 

Figure 16. : Energy as a function of radius parameter for GeH4. 
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(Figure27) 

 

Figure 17. : Energy as a function of spacing parameter for GeH4. 

 

(Figure21) 

 

Figure 18. : Photo-Absorption spectrum as a function of Energy for GeH4. 
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(Table6) 

Table6.: Excitation energies in eV for GeH4 cluster. 

 

a [128] 

b [199] 

c [198, 200, 201] 

4.2. Results and Discussion 

4.2.1. Optical absorption spectra of Pure germanium clusters 

For Gen (n=2-18) clusters, the optical absorption spectra essentially depend on the two 

properties: the size of the clusters and their electronic structure, the calculated optical 

absorption spectra of Gen (n=2-18) clusters in the high energy and infrared-visible light region 

are plotted in Figure29 and Figure51. From Figures, we can see that the main absorption 

intensity of Ge2-Ge18 clusters is concentrated in the ultraviolet region, especially in the far 

ultraviolet region (about 6 ~ 10 eV, i.e. 120 ~ 200 nm).  

A general trend for the optical absorption spectra can be found in Figs :(1) An empty gap 

area exists at the lowest energies, and some minor peaks appear about 1.5-4 eV. (2) Several 

main peaks appear in the interesting near ultraviolet region of about 5-10 eV. (3) Above near 

ultraviolet region, high-energy region is of little interest because the TDDFT method is 

insufficient to describe behavior of the electrons in this region which is dominated by 

ionization processes[190]. (4)  The increase of the numbers of atoms, the sizes of these 

Germanium clusters grow, and their absorption spectra converted gradually from many peaks 

to broad absorption bands. It can be also observed that in the low energy region the absorption 
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spectra of small clusters present much larger oscillator strengths than that of larger clusters. 

As germanium clusters size continues to increase, their structure motifs are sphere-like or 

prolate structures (see the chapter 3) and the number of optical absorption peaks decrease. 

Compared with the small clusters, the absorption peaks are not so sharp. Each peak is 

extended to both sides, forming an absorption band consisted of multiple peaks. The positions 

of absorption are also shifted toward the lower energy region. In general, increasing the 

number of atoms can enhance the absorption intensity because there will be more electronic 

states available for optical transition. Our results are agreement with Ref [67]. 

4.2.2. Effect of single Sn atom in pure germanium clusters 

To see the effect of adding a single Sn atom to Gen clusters, we have also calculated the 

photo-absorption spectra of SnGen clusters which are also shown in Figure52 and Figure55 

compared with the germanium clusters results. Each figure shows the calculated photo-

absorption cross-section of germanium and Sn doped germanium clusters. A compared with 

pure germanium, The absorption spectra after Sn doping are characterized by the emergence 

of a dominant and relatively broad peak between 6 and 10 eV, accompanied by  broad 

absorption peaks also at the same region but smaller intensities . This common feature is 

coupled to a blue shift of the main peak with increasing cluster size. 

For small clusters (up to n=7) we find that the photo-absorption spectra is a combination 

of many peaks and looks like that of isolated atoms. For example, in the case of clusters with 

two atoms, we obtained a SnGe monomer with the binding energy equals 1.19eV/atom which 

is smaller than that of Ge2 monomer. The spectrum of the SnGe cluster shows marked 

differences from pure Ge2. In general, we notice that the absorption of SnGe is concentrated 

more in blue shift region and his peaks are broader compared to the Ge2 cluster. We can see 

also that the number of peaks in the Sn doped Ge cluster is less than pure Ge2 cluster. Let us 

now focus on the positions of the main peaks. From spectra, the main adsorption peak of Sn-

doped Ge cluster is 7.9 eV where is located in high energies region compared to the Ge2 

cluster, and non absorption in spectrum of Ge2 cluster at this energy. 

For SnGe2 cluster, the triangular structure is the lowest energy structure Like Ge3. After 

an overview of the two spectra of these clusters we can observe that there are clear differences 

between the two spectra in positions and the oscillator strengths of the peaks. For example at 

the energy 5.2 eV the absorption spectrum of the SnGe2 cluster has the highest peak while no 

absorption in this region is shown for the absorption spectrum of a pure germanium cluster. 
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We can also observe that the addition of the tin in this case resulted in a decrease in both of 

the values of oscillator strengths and in the number of absorption peaks, this addition also led 

to the widening of the absorption peaks. 

After compared the two photo-absorption spectra of SnGe3 and Ge4, in general, we notice 

that the absorption of both two clusters is concentrated in blue shift region and a similarity 

between the two spectra in the infrared-visible and near the ultraviolet regions (around 6 eV). 

The addition of one atom of the tin in this case made some peaks appear and others disappear. 

For example, at energy 6.5 and 9.2 the absorption is almost non-existent for Ge4 cluster while 

at the same energy the absorption equal 3.8 and 4.3 a.u. for SnGe3 cluster, respectively. The 

addition of the tin to the pure germanium clusters not only changed the positions of the peaks, 

but also reduced the intensity of oscillator strength.  

In the case of a cluster of five atoms, the trigonal bipyramid structure is ground state for 

each two Ge5 and SnGe4 clusters with differences symmetries D3h and C2v respectively. The 

photo-absorption spectra of each cluster were presented in fig. Broadly, we can observe 

similarity between two spectra in all energy regions and that is due to the same structure, only 

some of the differences we will touch it now. The first difference that we can note him is the 

energy displacement towards the infrared energy region after adding the tin. We can note also 

increase in the intensity of oscillator strength, these differences can be explained by different 

symmetry of two structures. Like pure Ge5 cluster the shape of the spectrum of SnGe4 cluster 

changes compared to the other clusters from many peaks to broad absorption bands, this band 

started from 6 eV to 10 eV. The calculated positions of the absorption peaks for SnGe4 show 

two intense transitions at 6.50 and 9.50 eV and smaller ones at 3.50, 4.2, 5.5, 7.2, 7.8 and 8.40 

eV. 

The ground state structure of SnGe5 cluster is more stable compared to pure Ge6 cluster.  

We produced the absorption spectrum for the minimum energy structure of SnGe5 obtained in 

these calculations was presented in fig. Through the figure we can observe that both spectra 

have the same shape in the infrared and visible regions. From 5.2 eV the shape of the spectra 

changes this is due to the effect of adding tin to pure germanium. From figure, we can see that 

some peaks appear and others disappear for example at energy 6.5 eV the absorption is almost 

non-existent for Ge6 cluster while at the same energy the absorption equal 3 a.u. for SnGe3 

cluster. We can also see a significant increase in the intensity of oscillator strength exactly at 

9.8 eV. In contrast, the opposite occurs in other energies for example at 9 eV.  
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From the optical spectra cross-section of SnGe6 and Ge7 clusters, in general, we can 

observe similarity between two spectra along the axis of energy, only some of the differences 

in positions and the oscillator strengths of the some peaks. Also we can observe and clearly 

that the absorption of the two spectra are concentrated in blue shift energy.  The absorption 

band of the SnGe6 cluster is broader than in the case of Ge7 cluster. The calculated positions 

of the absorption peaks for SnGe6 show three intense transitions at 5.50, 6.28 and 9 eV and 

smaller ones at 5, 4.2, 7.5, 8.2 and 9.7 eV. From spectra, we can see that some peaks appear 

and others disappear for example at energy 5.5 eV the absorption is almost non-existent for 

Ge7 cluster while at the same energy the absorption equal 8 a.u. for SnGe3 cluster this also 

happened in 6.28 and 7.5 eV. We can also see a reduction in the intensity of oscillator 

strength exactly at 7 and 10 eV. 

In the case of SnGe7, in general, adding tin to the pure germanium cluster in this case did 

not make much difference only some of the differences in positions and the oscillator 

strengths of the some peaks. The absorption in both spectra is characterized by broad 

absorption range carries intense peaks started from 5 eV to 10 eV. Through spectra, we can 

observe a significant absorption in the visible region of Ge8 cluster compared to SnGe7 

cluster. So we say that add the tin to the pure cluster has made the absorption drift towards the 

ultraviolet region and also changed the positions of some peaks such as in energy 6 eV the 

absorption of Ge8 cluster equal 2 a.u  against equal 6 a.u for SnGe7 cluster.  

The photo-absorption spectra of Ge9 and SnGe8 clusters, In this case, are very similar, so this 

great similarity leads us to say that the addition of tin has not changed the optical properties of 

the Ge9 cluster except in some positions we observe a slight decrease or a slight increase in 

intensity of the oscillator strength exactly between 6.5-9.5 eV Apparently, and compatible to 

the case of Ge10, the calculated spectrum of SnGe9 does not show any transition between 0 

and 3 eV. Generality the SnGe9 spectrum has a similar overall shape as the Ge10 spectrum, 

and, in particular, three peaks are present in the Ge10 spectrum at the same positions.  

Note that there is a slight difference between the two spectra and the appearance of two 

peaks at the energies 6 and 9 eV after the encapsulation of Sn atom in pure germanium cage.  

In the case of SnGe10, there is a remarkable similitude between Ge11 and SnGe10 spectra 

that are mainly formed of four broad structures between 5 and 10 eV that are energetically 

almost equidistant and increasing in intensity. From the Figure55, the very pronounced peaks 

are observed at the energies 3.8, 5, 6.5, 7.7, 8.6 eV for pure Ge11 and SnGe10 clusters. After  
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(Figure29) 

 

Figure 19. : The Photoabsorption spectrum of Gen (n= 2,9) clusters. 
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(Figure51) 

 

Figure 21. : The Photo-absorption spectra of Gen (n= 10,18) clusters. 
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Table  7 : Optical gap energies in eV, HOMO-LUMO energies in eV, Exciton binding energies in eV of Gen 

and SnGen-1 clusters . 

 

Figure52 
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Figure 21. :The Photoabsorption spectrum of SnGen (n=1,8) clusters. 
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(Figure55) 

 

Figure 22. : The Photo-absorption spectrum of SnGen (n=9,17) clusters. 
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adding tin to the pure germanium cluster, new peaks are observed at the energies 8, 9.4 eV for 

pure Ge11 and SnGe10 clusters. The photo-absorption spectrum of SnGe11 represented in 

Figure55 shows three main peaks at 3.42 and 3.91 eV and two a less intense at 4.38 eV. Both 

spectra obtained for the lowest-energy structures of pure and doped germanium cluster have 

very similar shapes with broad absorption band started from 5.5 eV to 10 eV. We can note 

some differences like the emergence of new peaks at 7 and 8.5 eV and the disappearance of 

peaks like 7.7 and 9.8 eV. Through the spectra of SnGe12 and Ge13 clusters, in general, we can 

observe that the absorption of the two spectra is concentrated in blue shift energy. We can 

note similarity between two spectra along the axis of energy, only some of the differences in 

positions and the oscillator strengths of the some peaks. From spectra, we can see that some 

peaks appear and others disappear for example at energy 6.8 eV the peak disappear for 

SnGe12 and 8.5 eV. We can see also that the transitions for SnGe12 are broader than in Ge13. 

In the case of clusters composed 14 atoms, the photo-absorption of pure and tin doped 

germanium clusters were studied. The photo-absorption spectra of each cluster were presented 

in fig. from figure, substituting Ge by Sn leads to a somewhat similar spectrum. In the region 

of 2 to 5 we note that there has been no change in the form of absorption spectrum. The 

absorption in both spectra is characterized by broad absorption band carries intense peaks 

started from 4 eV to 10 eV. Clearly the difference between two spectrums show in positions 

of those intense peaks, Let's take examples, The emergence of new peaks at energies 5.7 eV, 

8.6 eV, 9.8 eV and other disappearance at energies 5.5 eV, 6.2 eV,  7.8 eV, 9.5 eV. 

In Figure55 is shown the comparison between the photo-absorption spectra of Ge15 and 

SnGe14 clusters. It can be seen that the impurity state, due to tin atom, have a slight influence 

of the optical spectrum that shows peaks in the optical region at 6.9, 8.5 and 9.4 eV and no 

more the intense peaks at 6.7, 8.3 and 9.8 eV in the tin doped germanium cluster; moreover 

the absorption spectrum of the doped cluster, in the optical region below 5 eV, remains 

similar to the corresponding spectrum of the undoped cluster. 

From the spectra of Ge16 and SnGe15 clusters, like previous clusters, It can be seen also in 

this case that the tin atom have a slight influence of the optical spectrum that shows broad 

peaks in the optical region at 6, 6.4, 7.4 and 8.8 eV and no more the intense peaks at 6.7 and 

7.7 eV in the tin doped germanium cluster; moreover the absorption spectrum of the doped 

cluster, in the optical region below 5 eV, remains similar to the corresponding spectrum of the 

undoped cluster. 
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The calculated optical absorption spectrum of SnGe17 cluster has been compared in 

Figure55  with the corresponding spectra of the Ge18 cluster. Once again substituting Ge by 

Sn leads to a somewhat similar spectrum of corresponding one. In the region of 2 to 5.6 we 

note that there has been no change in the form of absorption spectrum. The absorption in both 

spectra is characterized by broad absorption band started from 5 eV to 10 eV. On the contrary, 

in the region of 5.6 to 10 we note change in the positions of peaks and decrease in intensities 

of oscillator strength. We note also the peaks has became more broader than from before. 

4.2.3. Optical gap energy  

In Table  7 we present the optical absorption gaps of the various clusters. The optical gap of a 

cluster defined by a neutral excitation is the energy difference between the lowest dipole-

allowed excited state and the ground state. In our work the optical gap energy, Eopt, which is 

defined as the energy of first well defined peak in the absorption spectrum [202], provides 

another measure of the excitation energy obtained through TD-DFT calculations. As shown in 

Figure54, these are well-defined transitions even though the optical absorption strength is so 

weak that it is not even visible on the scale of Figures (20-23). Thus the present definition 

represented the lowest calculated gap. The HOMO-LUMO gap and the optical gap are known 

to differ because of the attractive interaction between the electron and the electron-hole 

formed during electron excitation. Our results shown in Table  7  are in good agreement with 

theoretical results of the literature[67]. 

(Figure54) 

 

Figure 23. : Detail of the low-energy absorption spectrum of Ge2 and SnGe clusters. 



4. The photo-absorption spectra of  SnGen (n=1-17) clusters and their optical properties 

 

 

 
79 

 

 (Figure53) 

 

Figure 24. : Optical gap energies of various Gen+1 (black line) and SnGen (red line) clusters as a function of the 

number of germanium atoms (n). 

(Figure52) 

 

Figure 25. : Exciton binding energies of various Gen (black line) and SnGen-1 (red line) clusters as a function of 

the number of germanium atoms (n). 
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In Figure53 we plot the optical gap as a function of the cluster size (n) for various Gen+1 

(black Line) and SnGen (red Line) clusters (n=1-17). With the increase of cluster size, the 

optical gap exhibits a oscillating downward trend; and the local minimum values of the 

optical gap are found at n = 2, 8, 10, 12 and 14 for Gen and at n =2, 7, 10 and 12 for SnGen-1 

as marked in Figure53. These results indicate that the electrons in the clusters of these sizes 

are easier to be excited than their neighboring clusters.  It also shows a general trend that the 

addition of a single Sn atom reduces the optical gap as compared to the germanium clusters. 

As the number of germanium atoms in the cluster increase we find that the effect of a single 

Sn atom decreases. The dependence of the optical gap on the size of the clusters can be 

explained with the help of the quantum confinement model. According to this model, the 

observed photoluminescence comes from the recombination of electron-hole pairs confined in 

the clusters [203, 204]. 

4.2.4. The exciton binding energy 

The exciton binding energy (Ex) of a cluster is defined as the difference between the 

HOMO-LUMO gap (Eg) and optical gap (Eopt), 

Ex = Eg - Eopt 4.1  

The exciton binding energy gives the energy required to separate an electron-hole pair, 

which should be taken into account when designing solar cells and optoelectronic devices 

[205].  Estimates of the exciton binding energies for each cluster are also displayed alongside 

the optical gaps in Table  7 . 

Figure52 shows the exciton binding energies versus sizes of the clusters (n) for pur and 

doped germanium clusters; we can see that the variations of the exciton binding energy with 

size and structure of clusters are large. Figure52 also displays the opposite trend of increasing 

exciton binding energy as cluster size increases. Interestingly, those calculations predict an 

optical gap that is higher than the HOMO- LUMO gap, which results in negative exciton 

binding energies. This is a trend that is well known in TDLDA calculations [206], and can 

likely be attributed to underestimation of the single particle transition energies. The Figure52 

shows also the effect of  add one tin atom on the exciton binding energies of germanium 

clusters, we can see clear increases of the exciton binding energies values.   

For germanium clusters, the exciton binding energy ranges from 0.412 eV to 2.546 eV.  

These energies are much greater than the energies associated with bulk diamond structure of 
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germanium semiconductors, which are on the order of 4.7 meV[207]. This major increase of 

the Coulomb interaction part of the exciton binding energy is caused by the increased overlap 

of the electron and hole wave-functions. 

The local maximum values of the exciton binding energies are found at n = 2, 6, 8, 12, 15 

and 17 for Gen and at n =2, 4, 6, 12 and 15 for SnGen-1 as marked in Figure52. These results 

indicate that those clusters with larger exciton binding energy are less reactive chemical so 

chemical stability higher than their neighboring clusters, which are often desirable for light 

emitting devices. Whereas the opposite, the local minimum values of the exciton binding 

energy at n = 1, 5, 7, 11, 14 and 16 for Gen and at n = 1, 3, 5, 11, 13 and 16 for SnGen-1, may 

be favorable for photovoltaic applications. 
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Conclusions and future works 

    In this thesis, we applied ab initio computation techniques to study the structural, electronic 

and optical properties of germanium clusters and the study of structural, electronic, magnetic 

and optical properties of germanium clusters doped with tin atoms. We were able to 

familiarize ourselves with the basics of ab initio calculus, DFT, TDDFT and pseudopotentials. 

This gave us the opportunity to fully understand the SIESTA and Octopus packages  to find 

the ground state structures of the germanium clusters and their the photo-absorption spectra. 

In the case of pure germanium clusters, the lower energy structures of clusters with size n 

(n = 2-18) are obtained by DFT-GGA calculations with a molecular dynamics method, ie 

simulated annealing, application in the SIESTA code. 

The lower energy structures obtained for the clusters are completely different and in no 

case constitute a fragment of the solid crystal. All the Gen+1 and SnGen
(0,±1)

 clusters adopt 

planar structures for very small size and near spherical and spherical compact structures as the 

size increase. In SnGen
(0,±1)

 clusters, the Sn atom prefers the peripheral position when n<12 

and occupies a core position for n>12. The structure SnGen clusters kept unchanged after the 

encapsulation of Sn atom in pure germanium cage. For Gen+1 and SnGen
(0,±1) 

clusters, the 

binding energy per atom increases with the increasing of the size. The strong increasing in 

stability of the small clusters is related to the thermodynamic instability of smaller systems. 

The fragmentation energy calculations indicates that the clusters Ge4,10,14 and  SnGe3,9,13,16 and  

SnGe
+

3,5,13,16 are more stable than their neighbors. The second energy difference analysis 

show that the clusters of Gen+1 and SnGen clusters at n = 1, 5, 7, 10, 12, 14 are more stables. 

The HOMO-LUMO gaps of all systems showed a decreasing behavior with the increasing of 

the size from n=4 and the charged clusters showed a considerable reduction of the HOMO-

LUMO gaps compared to the case of neutral ones. The ionization potentials and electron 

affinity calculations showed that the clusters of SnGen with a size more than 9 atoms exhibit 

high metallic character and will liberate more energy when they capture one electron. 

However, the chemical hardness of SnGen showed that the clusters with large size are less 

reactive and more stable. All of the ground states of SnGen clusters are nonmagnetic 

structures, except the case of SnGe1. Their total spin magnetic moment is mainly due to the 4p 

and 5p orbital of Ge and Sn atoms, respectively.
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The optical response of germanium clusters with numbers of atoms between 2 and 18 

atoms was studied using TDDFT. As results using different calculation methods have been 

shown to be quite dependent on the calculation approach, trends in the optical absorption 

spectra should not be identified by bringing together sets of calculations from different 

sources. Rather, the complete range should be coverd in a continuous fashion, using a single 

meth, as has been done here. The trends idenified were: 

The absorption spectra of clusters are dominated by a series of distinct peaks. The position 

of these peaks changes rapidly by the addition of only a few atoms, or alterations of the 

atomic structure. 

The absorption spectra become smoother as the cluster size increases. Compared with the 

small clusters, the absorption peaks are not so sharp. Each peak is extended to both sides, 

forming an absorption band consisted of multiple peaks. 

The main absorption peaks of these clusters are in the ultraviolet region, especially in the 

far ultraviolet region. With the increase of cluster size, their absorption spectra converted 

gradually from many peaks to broad absorption bands, and extend gradually toward the lower 

energy region and their optical gap becomes smaller and smaller. 

A compared with pure germanium, The absorption spectra after Sn doping are 

characterized by the emergence of a dominant and relatively broad peak between 6 and 10 eV, 

accompanied by  broad absorption peaks also at the same region but smaller intensities . This 

common feature is coupled to a blue shift of the main peak with increasing cluster size. 

With the increase of cluster size, the optical gap exhibits a oscillating downward trend; 

and the local minimum values of the optical gap are found at n = 2, 8, 10, 12 and 14 for Gen 

and at n =2, 7, 10 and 12 for SnGen-1. These results indicate that the electrons in the clusters 

of these sizes are easier to be excited than their neighboring clusters.  It also shows a general 

trend that the addition of a single Sn atom reduces the optical gap as compared to the 

germanium clusters. 

All these specific properties make the SnGen clusters good potentials candidates for many 

eventual applications in nanotechnologies. We had to mention that it is very interesting for the 

future to calculate the frequencies of vibration in order to obtain the best and more stable 

isomers, and to calculate emission spectra of these clusters.  
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