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Notations

•Γ Gamma function.

•β Beta function.

•Eα The one-parameter Mittag-Leffler function.

•E(α,β) The two-parameter Mittag-Leffler function.

•D(A) Domaine de A .

•Rλ(A), the resolvent of A

•cDα
t the Caputo fractional derivative of order α .

•C l(Ω) (0 < l < 1) Hölder Spaces .

•Re The real part.

•L(X) Space of linear applications from X to X .

•σ(A) The spectrum of the operatorA .

• ‖.‖∞ Infinity Norm, ‖x‖∞ = sup {| x(t) |: t ∈ [a, b]} .

•S(Ω) Schwartz space.

•R Set of real numbers.

•C Set of complex numbers.

•N Set of natural numbers.

•a.e Almost everywhere.

•`(X) Space linear the operator .

•C0 The space of continuous functions and translates to 0 at ±∞ .

•C(Ω̄) space of continuous functions defined on Ω̄ .

•Jαt Riemann–Liouville integral of order α.
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Introduction

The study of fractional powers of operators has a rich history.However, it is only cur-

rently that the general theory was developed. The fractional powers

of closed linear operators were first constructed by Bochner [1] and afterwards Feller [2],

for the Laplacian operator.These constructions relyon the fact that theLaplacian generates

a semigroup.When A is the negative of the infinitesimal generator of a bounded semi-group

of operators, Hille [3] and Phillips [4]revealed that fractional powers could be considered

in the framework of an operational calculus which they originated. This program was

carried out thoroughly by Balakrishnan[5], He gave later a new definition and enhanced

his theory to a larger class of operators[6].The goal of fractional calculus, which is around

300 years old, is to understand the problem of non-whole orders of traditional derivatives.

As is well known, the extension of the notion of derivative to non-whole orders is not done

in a unique way.

Fractional calculus had played a very important role in various fields such as physics,

chemistry, mechanics, electricity,economics, control theory, signal and image processing,

biophysics, blood flow phenomena, aerodynamics, fitting of experimental data, etc.

ut = −a(−∆)αu+ g(u, v) inΩ× R+

vt = −a(−∆)βv + f(u, v) in Ω× R+

(1)
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Contents 0.0

supplemented with the boundary and initial conditions

∂u

∂η
(x, t) =

∂v

∂η
(x, t) = 0 on ∂Ω× R+ (2)

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω (3)

Since we are in the period of the epidemic, we focus on its role in biomedicine with regard

to the spread of epidemics .

Take an example :

g(u, v) = −λuv

f(u, v) = −λuv − µv

this system (1) (2) (3) describes the spread of epidemics with in a confined population. The

functions u(x, t), v(x, t) represent densities of susceptible and infected individuals. The

positive constants λ and µ represent the infection rate and the removal rate respectively

(see [18]). The Neumann boundary conditions implies that there is no infection across

the boundary.

In this work, We will study the following questions:

Does the fractional Cauchy problem accept a local solution?

Does the problem accept a local solution also if the operator raises the fractional power?

.

This work is divided into four chapter:

• In the first chapter, we presented some definitions and theorems that we will use in

this note.

• In the secend chapter, mainly introduces definitions and basic properties of fractional

powers of closed operators.

• In the third chapter, the main purpose is to study the existence and uniqueness of

mild solutions and classical solutions of Cauchy problems (LCP) and (SLCP).

• In fourth chapter, the main purpose is to study the existence of local in time positive

solution of the time fractional reaction–diffusion system with a balance law.
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Chaptre 1
Preliminaries

1.1 Linear Operators

Definition 1.1. [8]

Let X and Y be Banach spaces. A linear operator from X to Y is a pair (D(A), A)

consisting of a subspace D(A) ⊂ X (called the domain of the operator) and a linear

transformation A : D(A) −→ Y .

1 A linear operator (D(A), A) from X to Y is said to be bounded if there exists a

constant C > 0 such that

‖Ax‖Y ≤ C ‖x‖X for every x ∈ D(A)

If no such C exists, the operator is said to be unbounded.

2 An operator (D(A), A) is closed if and only if it has the following property

. Whenever there is sequence xn ∈ D(A) such that

xn −→ x and Axn −→ f then x ∈ D(A) and Ax = f .

3 Inverse Operators [8]

Recall that we say that a mapping A : D(A) −→ R(A) is one-to-one or injective

1



1.2. Spectrum and Resolvent 1

if distinct points in D(A) get mapped to distinct points in R(A), i.e., if for any

x1, x2 ∈ D(A) we have

x1 6= x2 ⇒ Ax1 6= Ax2.

For any such mapping we can define an inverse mapping (R(A), A−1) which maps

any point y ∈ R(A) to the unique point x ∈ D(A) such that Ax = y. This definition

implies

A−1Ax = x,

for every x ∈ D(A) and
AA−1y = y,

for every y ∈ R(A).

Remark 1.1. The range of (D(A), A) is a subspace R(A) ⊂ Y defined by

R(A) := {u ∈ Y |u = A(x), for some x ∈ D(A)} .

1.2 Spectrum and Resolvent

Definition 1.2. [8]

Let X be a complex Banach space. Let (D(A), A) be an operator from XtoX.

For any λ ∈ C we define the operator (D(A), Aλ) by

Aλ = A− λI,

where I is the identity operator on X.

If Aλ has an inverse (i.e., if it is one-to-one), we denote the inverse by Rλ(A) , and

call it the resolvent of A.

Definition 1.3. [8]

Let X 6= {0} be a complex Banach space and let (D(A), A) be a linear operator from

X to X. Consider the following three conditions:

(1) Rλ(A) exists,

2



1.3. The semi-groups of linear operators 1

(2) Rλ(A) is bounded,

(3) the domain of Rλ(A) is dense in X .

We decompose the complex plane C into the following two sets.

• The resolvent set of the operator A is the set

ρ(A) := {λ ∈ C|(1), (2), and(3)hold} .

Elements λ ∈ ρ(A) in the resolvent set are called regular values of the operator A.

• The spectrum of the operator A is the complement of the resolvent set

σ(A) := C\ρ(A),

The spectrum can be further decomposed into three disjoint sets.

1.3 The semi-groups of linear operators

Definition 1.4. [7]

A family {T (t)}t≥0 of elements T (t) ∈ L(X) for t ≥ 0 forms a semi group of class C0

in X if it satisfies the following conditions:

a) T (s+ t) = T (s)T (t) for all s, t ≥ 0 (algebraic property) ,

b) T (0) = I (identity in L(X)),

c) lim
t→0
‖T (t)x− x‖X = 0 for all x ∈ X (topological property).

Definition 1.5. [8]

The type of a semigroup , Let {T (t)}t≥0 be a semigroup of class C0in X. The lower

bound w̄ of the set of w such that there exists a number Mw satisfying

‖T (t)‖ ≤Mwe
wt, t ≥ 0

is called the ’type’ of the semigroup {T (t)}.

Proposition 1.1. [8]

Let {T (t)}t≥0 be a semigroup of class C0 over X. Then:

3



1.4. Infinitesimal Generator 1

a) t −→ ‖T (t)‖is bounded over all compact intervals [0, α] ;

b) for all x ∈ X the function t −→ T (t) is continuous

(with values in X) over R+ = [0,+∞[;

c) there exist real constants w and M such that

‖T (t)‖ ≤Mew, t ∈ R+.

1.4 Infinitesimal Generator

Definition 1.6. [8]

Let T (t), t ≥ 0, be a strongly continuous semigroup of bounded linear operators on

a Banach spaceX. The infinitesimal generator of the semigroup is the operator A

defined by

Ax = lim
h→0

T (h)x− x
h

and the domain of A is the set of all vectors x ∈ X for which this limit exists.

Proposition 1.2. [8] Let A be the infinitesimal generator of the strongly continuous

semigroup T (t). Then the following hold.

1 For x ∈ X,

lim
h→0

1

h

∫ t+h

t

T (s)xds = T (t)x.

2 For x ∈ X and any t > 0,
∫ t

0
T (s)xds ∈ D(A) and

A

(∫ t

0

T (s)xds

)
= T (t)x− x

.

3 For x ∈ D(A), we have T (t)x ∈ D(A). Moreover, the function

[0,∞) 3 t −→ T (t)x ∈ X is differentiable. ( This means that difference quotients

have a limit in the sense of norm convergence in X). In fact,
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1.5. Differentiable Semigroups 1

d

dt
T (t)x = AT (t)x = T (t)Ax.

4 For x ∈ D(A)

T (t)x− T (s)x =

∫ t

s

T (γ)Axdγ =

∫ t

s

AT (γ)xdγ.

1.5 Differentiable Semigroups

Definition 1.7. [7] A semigroup {T (t)} of class C0 in X is called differentiable for t > t0

if for all x ∈ X, the function t −→ T (t)x is differentiable for t > t0. The semigroup is

T (t) differentiable if t0 = 0.

1.6 Holomorphic Semigroups

Definition 1.8. [7] (Holomorphic = Analytic) Let X be a complex Banach space. Let

4 = {z ∈ C;φ1 < argz < φ2, φ1 < 0 < φ2} . A family {T (z)}z∈4 of elements T (z) ∈

L(X) forms a semigroup in X, holomorphic in 4, if it satisfies the following conditions:

0. T (z1 + z2) = T (z1)T (z2) for all z1, z2 ∈ 4,

0. T (0) = I(identity in X),

0. lim
z→0

T (z)x = x for all x ∈ X,

0. the mapping z ∈ 4∗ = 4\{0} −→ T (z)x ∈ Xis holomorphic .

We shall study the possibility of a semigroup class C0 ,{T (t)t≥0} being extendible to a

holomorphic semigroup in an angle of type 4 . (containing the real positive half axis).

1.7 sectorial operator

Definition 1.9. Let −1 < γ < 0 and 0 < ω <
π

2
. By Θγ

ω(X) we denote the family of

all linear closed operators A : D(A) ⊂ X −→ X which satisfy:

(1) σ(A) ⊂ Sµ = {z ∈ C\ {0} ; | arg z| ≤ ω}
⋃
{0} and
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1.8. Banach fixed point theorem 1

(2) for every ω < µ < π there exists a constant Cµ such that

‖R(z;A)‖ ≤ Cµ|z|γ for all z ∈ C\Sµ,

A linear operator A will be called an almost sectorial operator on X if A ∈ Θγ
ω(X).

Exemple 1.1. [11] If Au(x) = −∆u(x), x ∈ Ω, when u ∈ C2
0(Ω)(Ω ⊂ Rn), and A is

the closure in Lp(Ω) of −∆ | C2
0(Ω)(1 ≤ p <∞) then A is sectorial if (see sec 1.6 [11])

its resolvent set meets the left half-plane.

Theorem 1.1. [11] If A is a sectorial operator, then −A is the infinitesimal generator

of an analytic semigroup
{
e−tA

}
t>0

, where

e−tA =
1

2πi

∫
Γ

(λ+ A)−1eλtdλ
,

where Γ is a contour in ρ(−A) with arg λ −→ ±θ as | λ |−→ ∞ for some θ in (

π/2, π).

Remark 1.2. (1) if A is a bounded linear operator on a Banach space , then A is

sectorial.

(2) if A is a self adjoint densely defined operator in a Hilbert space ,and if A is bounded

below ,then A is sectorial.

(3) Laplacian ∆ is exemple of sectorial operator, with choosing the appropriate domain

for ∆.

.

1.8 Banach fixed point theorem

Theorem 1.2. [20] . (Banach contraction mapping principle) Let (X, d) be a complete

metric space, and Φ : Ω −→ Ω a contraction mapping:

d(Φx, Φy) ≤ kd(x, y),

where 0 <k< 1, for each x, y ∈ Ω. Then, there exists a unique fixed point x of Φ in Ω,

i.e.,Φx = x.

6



1.9. Special Functions 1

1.9 Special Functions

1.9.1 Mittag-Leffler Function

[13] In this section we introduce the one and two-parameter Mittag-Leffler functions,

denoted as Eα(.) and E(α,β)(.), respectively.

Definition 1.10.

The one-parameter Mittag-Leffler function. One parameter Mittag-Leffler function (Eα),

is defined as:

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
Re(α) > 0.

The two-parameter Mittag-Leffler function. Two parameter Mittag-Leffler function E(α,β),

is defined as:

E(α,β)(z) =
∞∑
k=0

zk

Γ(αk + β)
Re(α) > 0 ,Re(β) > 0 , β ∈ C.

.

Exemple 1.2.

E(1,1)(z) =
∞∑
k=0

zk

Γ(k + 1)
=
∞∑
k=0

zk

k!
= ez

E(1,2)(z) =
∞∑
k=0

zk

Γ(k + 2)
=
∞∑
k=0

zk

(k + 1)!
=

1

z

∞∑
k=0

zk+1

(k + 1)!
=
ez − 1

z

E(1,2)(z) =
∞∑
k=0

zk

Γ(k + 3)
=
∞∑
k=0

zk

(k + 2)!
=

1

z2

∞∑
k=0

zk+2

(k + 2)!
=
ez − 1− z

z2

1.9.2 Beta function

Definition 1.11. [13]

Here we consider the Beta function, denoted Beta function (B). Beta function, or the

first order Euler function, can be defined as

B(ϑ, ς) =

1∫
0

tϑ−1(1− t)ς−1dt,Re u > 0,Re v > 0.

7



1.9. Special Functions 1

the symmetry

B(ϑ, ς) = B(ϑ, ς).

wehere ϑ, ς ∈ C

Proposition 1.3.

B(ϑ, ς) =
Γ(ϑ)Γ(ς)

Γ(ϑ+ ς)
,Re ϑ > 0,Re ς > 0.

1.9.3 Gamma function

Definition 1.12. [14] Gamma function is defined as a definite integral over the positive

part of the real axis,

Γ(ξ) =

∫ ∞
0

tξ−1e−tdt.

(1.1)

For our purposes, we assume that the independent parametric variable,is real.

A graph of the Gamma function computed by a polynomial approximation discussed later

in this appendix is shown in Figure (1.1) Note that singularities occur when is zero or a

negative integer. Known exact values of the Gamma function are

Γ(
1

2
) = 2

∫ ∞
0

e−t
2

dt =
√
π,

(1.2)

Γ(1) = 1, Γ(2) = 1, Γ(3
2
) = 1

2

√
π.

Other exact values can be deduced using the properties of the Gamma function.

Properties

Integrating by parts on the right-hand side of (1.1), we obtain th important property

Γ(ξ + 1) = ξΓ(ξ)

Working recursively, we obtain

8



1.10. Definition and elementary properties of LP spaces 1

Γ(ξ + n− 1) = ξ(ξ + 1) + ......+ (ξ + n− 2)Γ(ξ)

for any integer, n.Consequently,

Γ(n+ 1) = 1.2......n = n!

for any integer, n, where the exclamation mark denotes the factorial.

A reflection property states that

Γ(1− ξ) = −ξΓ(−ξ) =
1

Γ(ξ)

π

sin(πξ)

for 0 < ξ < 1 .

1.10 Definition and elementary properties of LP spaces

Definition 1.13. [10]

Let p ∈ R with 1 < p <∞, we set

Lp(Ω) = {f : Ω −→ R; f is measurable and | f |p ∈ L1(Ω)}

with

‖ f ‖Lp = ‖ f ‖p =

∫
Ω

| f(x) |pdµ

 1
p

.

We shall check later on that ‖ · ‖p is a norm.

Definition 1.14. [11]

We set

L∞(Ω) =

f : Ω→ R

∣∣∣∣∣∣ f is measurable and there is a constant C

suth that | f |≤ C a.e. on Ω


with

‖ f ‖L∞ = ‖ f ‖∞ = inf{C | f(x) |≤ C a.e. on Ω}.

The following remark implies that ‖ · ‖∞ is a norm.

9



1.11. Hölder Continuous Function Spaces 1

Remark 1.3.

If f ∈ L∞ then we have
| f(x) |≤ ‖ f ‖∞ a.e. on Ω.

Indeed, there exists, a sequence Cn such that Cn −→ ‖ · ‖∞ and for each n,| f(x) |≤ Cn

a.e.on Ω .Therefore | f(x) |≤ Cn for all x ∈ Ω \En, with | En |= 0.We set E =
∞⋃
n=1

En,so

that | E |= 0 and
| f(x) |≤ Cn ∀n, ∀x ∈ Ω \ E;

it follows that | f(x) |≤ ‖ f ‖∞∀x ∈ Ω \ E.

Notation. Let 1 ≤ p ≤ ∞; we denote by p′ the conjugate exponent ,

1

p
+

1

p′
= 1.

Lemma 1.1. (Young inequality) [11]

Let a, b two real positive, and 1 ≤ p, p′ <∞

ab ≤ 1

p
ap +

1

p′
bp
′
.

Lemma 1.2. (Hölder inequality) [11]

Let Ω be an open set in RN , f ∈ Lp(Ω) and g ∈ Lp
′
(Ω), with 1 ≤ p ≤ ∞. Then

f · g ∈ L1(Ω) and ∫
| fg |≤‖ f ‖pp · ‖ g ‖

p′

p′ .

1.11 Hölder Continuous Function Spaces

[12] For m=0,1,2,..., and an exponent 0 < σ < 1 , Cm+σ([a, b];X) denotes the

spaceofmtimes continuously differentiable functions whosemth derivatives are Hölder con-

tinuous on [a,b] with exponent σ. The space is equipped with the norm

‖F‖Cm+σ = ‖F‖Cm + sup
a≤s<t≤b

∥∥F (m)(t)− F (m)(s)
∥∥ .

| t− s |σ
.

By Cm,1([a, b];X), we denote the space ofmtimes continuously differentiable functions

10



1.12. Analytic function 1

whosemth derivatives are Lipschitz continuous on [a,b]. The space isequipped with the

norm

‖F‖Cm,1 = ‖F‖Cm + sup
a≤s<t≤b

∥∥F (m)(t)− F (m)(s)
∥∥ .

| t− s |
.

By Cσ
{a}([a, b];X), where 0 < σ < 1, we denote the space of continuous functions [a,b]

which are Hölder continuous at least at t = a with exponent σ. We equipthe space with

the norm

‖F‖Cσ{a} = ‖F‖C + sup
a<t≤b

∥∥F (m)(t)− F (m)(s)
∥∥ .

| t− s |σ
.

1.12 Analytic function

Definition 1.15. Formally, a function f is real analytic on an open set D in the real

line if for any x0 ∈ D one can write....

f(x) =
∞∑
n=0

an (x− x0)n = a0 + a1(x− x0) + a2(x− x0)2 + a3(x− x0)3 + · · ·

in which the coefficients a0, a1, . . . are real numbers and the series is convergent to

f(x) for x in a neighborhood of x0. Alternatively, an analytic function is an infinitely

differentiable function such that the Taylor series at any point x0 in its domain

T (x) =
∞∑
n=0

f (n),(x0)

n!
(x− x0)n

converges to f(x) for x in a neighborhood of x0 pointwise. The set of all real analytic

functions on a given set D is often denoted by C ω(D). A function f defined on some

subset of the real line is said to be real analytic a t a point x

if there is a neighborhood D of x on which f is real analytic.

Exemple 1.3. Typical examples of analytic functions are:

All elementary functions:

11



1.12. Analytic function 1

1 All polynomials: if a polynomial has degree n, any terms of degree larger than n in

its Taylor series expansion must immediately vanish to 0, and so this series will be

trivially convergent. Furthermore, every polynomial is its own Maclaurin series.

2 The exponential function is analytic.Any Taylor series for this function converges

not only for x close enough to x0 (as in the definition) but for all values of x

(real or complex).

3 The trigonometric functions, logarithm, and the power functions are analytic on any

open set of their domain.

12



Chaptre 2
Fractional Powers of Closed Operators

2.1 Introduction

In this section we define fractional powers of certain unbounded linear operakors and

study some of their properties. We concentrale mainly on fractional powers of operators

A for which −A is the infinitesimal generator of an analytic semigroup.

For our definition we will make the following assumption,

Assumption 1 :Let A be densely defined closed linear operator for which

ρ(A) ⊃ Σ+ = {λ : 0 < w < | arg λ| ≤ π} ∪ v,

where v is nighborhood of zero ,and

‖R(λ : A)‖≤ M

1+|λ|
for λ ∈ Σ+.

The assumption that 0 ∈ ρ(A) and therefore a whole neighborhood v of zero is in

ρ(A) was made mainly for convenience. Most of the results on fractional powers that we

will obtain in this section remain true even of 0 ∈ ρ(A).

For an operator A satisfying Assumption 1 and α > 0 we define
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2.1. Introduction 2

A−α =
1

2πi

∫
C

z−α(A− zI)−1dz,

where the path C runs in the resolvent set of A from ∞e−iθ to ∞eiθ, w < α < π,

avoiding the negative real axis and the origin and z−α is takan to be positive for real

positive values of z.

For 0 < α < 1 we can deform the path of integration C into the upper and lower

sides of the negative reat axis and obtain

A−α =
sin πα

π

∫ ∞
0

t−α(tI + A)−1dt 0 < α < 1,

(2.1)

if w < π
2
, i.e, if − A is the infinitesimal generator of an analytic semigroup T (t) we

obtain still another representation of A−α: This representation turns out to be very useful

and therefore in the rest of this section we assume, unless we state explicitly otherwise,

that w < π
2
. In this case since by Assumpiion 1 0 ∈ p(A) there exists a constant σ > 0

such that −A+σ is still an infnitesimal generator of an analytie semigroup. This implies

the following estimates;

‖T (t)‖ ≤Me−σt (2.2)

‖AT (t)‖ ≤M1t
−1e−σt,

‖AmT (t)‖ ≤Mmt
−me−σt,

and

‖AmT (t)‖ = ‖(AT (
t

m
))m ‖ ≤ ‖AT (

t

m
) ‖m,

≤ (M1t
−1e

−σt
m )m ≤Mmt

−me−σt.

Furthermore, we know that
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2.1. Introduction 2

(tI + A)−1 =

∫ ∞
0

e−stT (s)ds,

(2.3)

converges uniformly for t ≥ 0 in the uniferm operator topology, by (2.2) Substituting

(2.3) into (2.1) and using Fubini’s theorem, we have

A−α =
sinπα

π

∫ ∞
0

t−α
(∫ ∞

0

e−stT (s)ds
)
dt

A−α =
sin πα

π

∫ ∞
0

T (s)
(∫ ∞

0

t−αe−stT (s)dt
)
ds

=
sin πα

π

(∫ ∞
0

u−αe−udu
)∫ ∞

0

sα−1T (s)ds

Since ∫ ∞
0

u−αe−udu =
π

sin πα

1

Γ(α)

we finally obtain

A−α =
1

Γ(α)

∫ ∞
0

tα−1T (t)dt

(2.4)

where the iategral converges in the uniform operator topology for every α > 0 . In the

case where w < π
2
, i.e, -A is the infinitesimal generator ef an analytic semigroup T(t) we

will use (2.4) as the definition of A−α for α > 0 and we define A−0 = I.
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2.2. Definition and properties of Aα 2

2.2 Definition and properties of Aα

Definition 2.1. [9]

Let A satisfy Assumption with w <
π

2
.

For every α > 0 we define

Aα = (A−α)−1,

for α = 0 Aα = I. .

Proposition 2.1. [9]

1 for α, β ≥ 0

A−(α+β) = A−αA−β,

2 There exists a constant C such that

‖A−α‖ ≤ C for 0 ≤ α ≤ 1,

3 for every x ∈ X we have

lim
α→0

A−αx = x.

Theorem 2.1. [9]

Let Aα be defined by Definition 2.1 then,

(a) Aα is a closed operator with domain D(Aα) = R(A−α) the range of A−α

(b) α ≥ β > 0 implies D(Aα) ⊂ D(Aβ)

(c) D̄(Aα) = X for every α ≥ 0

(d) if α, β are real then

A(α+β)x = AαAβx

for every x ∈ D(Aγ) where γ = (α, β, α + β).

Theorem 2.2. [9]

Let 0 < α < 1 of x ∈ D(A) then

16



2.2. Definition and properties of Aα 2

Aαx =
sinαπ

π

∫ ∞
0

tα−1A(tI + A)−1xdt.

Theorem 2.3. [9]

Let 0 < α < 1 There exists a constant C0 > 0 such that every x ∈ D(A) and ρ > 0

we have

‖Aαx‖ ≤ C0(ρα ‖x‖+ ρα−1 ‖Ax‖)

and

‖Aαx‖ ≤ 2C0 ‖x‖1−α ‖Ax‖α .

Theorem 2.4. [9]

Let B be a closed linear operator satisfying D(B) ⊃ D(A) if for some γ, 0 < γ < 1

and every ρ ≥ ρ0 > 0 we have

‖Bx‖ ≤ C0(ργ ‖x‖ − ργ−1 ‖Ax‖) for x ∈ D(A)

then

D(B) ⊃ D(Aα) for every γ < α ≤ 1.

Theorem 2.5. [9]

let −A be the infinitesimal generator of an analytic semigroup T (t) of 0 ∈ ρ(A)

then

(a) T (t) : X −→ D(Aα) for every t > 0 and α ≥ 0,

(b) for every x ∈ D(Aα) we have T (t)Aαx = AαT (t)x,

(c) for every t > o the operator AαT (t) is bounded and

‖T (t)Aα‖ ≤Mαt
−αe−δt,

(d) Let 0 < α < 1 and x ∈ D(Aα) then

‖T (t)x− x‖ ≤ Cαt
α ‖Aαx‖ .

Theorem 2.6. [12] Let A is a sectorial operator of X with angle ≤ wA, then for

0 < α < 1, Aα is a sectorial operator of X with angle ≤ αwA.

17



Chaptre 3
Abstract fractional Cauchy prob-

lems with almost sectorial operators

The main purpose is to study the existence and uniqueness of mild solutions and

classical solutions of Cauchy problems (LCP) and (SLCP).

3.1 Preliminaries

Definition 3.1. [15] Let f ∈ L1(I;X) and a ≥ 0 Then the expression

Jαt f(t) := (gα ∗ f)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, t > 0, α > 0,

with J0
t f(t) = f(t) , is called Riemann–Liouville integral of order α of f

.where

gβ(t) =


1

Γ(β)
tβ−1, t > 0

0, t ≤ 0

and g0(t) = 0

Definition 3.2. [15] Let f(t) ∈ Cm−1(I;X), gm−α∗f ∈ Wm,1(I,X)(m ∈ N, 0 ≤ m−1 <

α < 1). The regularized Caputo fractional derivative of order α of f is defined by

18



3.1. Preliminaries 3

cD
α
t f(t) = Dm

t J
m−α
t

(
f(t)−

m−1∑
t=0

f (i)(0)gi+1(t)
)

where Dm
t =

dm

dtm

In this work, motivated by the above consideration, we are interested in studying the

Cauchy problem for the linear evolution equation

(LCP) cD
α
t u(t) + Au(t) = f(t) t > 0

u(0) = u0

as well as the Cauchy problem for the corresponding semilinear fractional evolution

equation

(SLCP) cD
α
t u(t) + Au(t) = f(t, u(t)) t > 0

u(0) = u0

in X, where cD
α
t , 0 < α < 1, is the regularized Caputo fractional derivative of order

α and A is an almost sectorial operator, that is,A ∈ Θγ
ω(X)(−1 < γ < 0, 0 < ω < π/2).

The main purpose is to study the existence and uniqueness of mild solutions and classical

solutions of Cauchy problems (LCP) and (SLCP). To do this, we construct two operator

families based on the generalized MittagLeer-type functions and the resolvent operators

associated with A, present deep analysis on basic properties for these families including the

study of the compactness, and prove that, under natural assumptions, reasonable concepts

of solutions can be given to problems (LCP) and (SLCP), which in turn is used to nd

solutions to the Cauchy problems.

Proposition 3.1. [15] Let α, β > 0. The following properties hold.

(i) Jαt J
β
t f = Jα+β

t f for all f ∈ L1(I;X);

(ii) Jαt (f ∗ g) = Jαt f ∗ g for all f, g ∈ Lp(I;X)(1 ≤ p < +∞);

(iii) The Caputo fractional derivative cD
α
t is a left inverse of Jαt :

cD
α
t J

α
t f = ffor allf ∈ L1(I;X)
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3.1. Preliminaries 3

,

but in general not a right inverse, in fact, for all f(t) ∈ Cm−1(I;X) with gm−α ∗ f ∈

Wm,1(I,X)(m ∈ N, 0 ≤ m− 1 < α < m), ,one has

JαtcD
α
t f(t) = f(t)−

m−1∑
k=1

f (k)(0)gk+1(t)

At the end of this section, we present some properties of two special functions. Denote

by Eα,β the generalized Mittag-Leffler special function defined by

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
=

1

2πi

∫
Γ

λα−βeλ

λα − z
dλ, α, β > 0, z ∈ C,

where Γ is a contour which starts and ends at −∞ and encircles the disc |λ| ≤ |z| 1α

counter -clockwise. If 0 < α < 1, β > 0, then the asymptotic expansion of Eα,β as

z −→∞is given by

Eα,β(z) =


1

α
z(1−β)/α exp(z1/α) + εα,β(z), | arg z| ≤ 1

2
απ,

εα,β(z), | arg(−z)| ≤ (1− 1

2
α)π,

where

εα,β(z) = −
N−1∑
n=1

z−n

Γ(β − αn)
+O(|z|−N), as z −→∞

For short, set

Eα(z) := Eα,1(z), eα(z) := Eα,α(z).

Then we have

cD
α
t E(wtα) = wE(wtα), J1−α

t (tα−1eα(wtα)) = E(wtα)

Consider also the function of Wright-type

Ψα(z) =
∞∑
n=0

(z−n)

n!Γ(−αn+ 1− α)
=

1

π

∞∑
n=0

(z−n)

(n− 1)!
Γ(nα) sin(nπα), z ∈ C,

with 0 < α < 1.For− 1 < r <∞, λ > 0, the following results hold.

(W1) Ψα(t) ≥ 0, t > 0
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3.2. Properties of the operators Sα(t) and Pα(t) 3

(W2)
∫∞

0
α

tα+1Ψα( 1
tα

)e−λtdt = e−λ
α
;

(W3)
∫∞

0
Ψα(t)trdt = Γ(1+r)

Γ(1+αr)
;

(W4)
∫∞

0
Ψα(t)e−ztdt = Eα(−z), z ∈ C;

(W5)
∫∞

0
αΨα(t)e−ztdt = eα(−z), z ∈ C.

3.2 Properties of the operators Sα(t) and Pα(t)

Throughout this section we letAbe an operator in the class A ∈ Θγ
ω(X) with − 1 <

γ < 0 and 0 < ω < π/2. In the sequel, we will define two families of operators based

on the generalized Mittag-Leffler-type functions and the resolvent operators associated

with A. They will be two families of linear and bounded operators. In order to check the

properties of the families, we will need a third object, namely the semigroup associated

withA. We stress that these families will be used very frequently throughout the rest of

this paper. Below the letter Cwill denote various positive constants. Define operator

families {Sα(t)} |t∈S0
π
2−w
{Pα(t)} |t∈S0

π
2−w

Sα(t) = Eα(−ztα) =
2

2πi

∫
Γθ

Eα(−ztα)R(z;A)dz,

Pα(t) = eα(−ztα) =
2

2πi

∫
Γθ

eα(−ztα)R(z;A)dz,

where the integral contour Γθ :=
{
R+e

iθ
⋃

R+e
−iθ} is oriented counter-clockwise and

w < θ < µ < π
2
− | arg t|.

We need some basic properties of these families which are used further in this chaptre.

Theorem 3.1. For each xed t ∈ S0
π
2
−ω, Sα(t) and Pα(t) are linear and bounded operators

on X. Moreover,there exist constants Cs = C(α, γ) > 0, Cp = C(α, γ) > 0 such that for

all t>0 ,

‖Sα(t)‖ ≤ Cst
−α(1+γ), ‖Pα(t)‖ ≤ Cpt

−α(1+γ).

Theorem 3.2. [15] For t > 0, Sα(t)and Pα(t) are continuous in the uniform operator

topology. Moreover, for every r> 0, the continuity is uniform on [r, ∞).

Theorem 3.3. [15] Let 0 < β < 1− γ .Then
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3.3. Linear problems 3

(i) the range R(Pα(t))ofPα(t)fort > 0, is contained in D(Aβ);

(ii) S ′α(t)x = −tα−1APα(t)x (x ∈ X), and S ′α(t)x for t > 0 is locally integrable on (0,∞);

(iii) for all x ∈ D(A) and t > 0 ‖ASα(t)x‖ ≤ Ct−α(1−γ) ‖Ax‖, here C is a constant

depending on γ, α.

Theorem 3.4. [15] The following properties hold.

(i) let β > 1 + γfor all x ∈ D(Aβ) limt→0;t>0 Sα(t)x = x;

(ii) for all x ∈ D(A), (Sα(t)− I)x =
∫ t

0
−Sα−1APα(t)xds;

(iii) for all x ∈ D(A), t > 0, Dα
t Sα(t)x = ASα(t)x;

(iv) for all t > 0, Sα(t) = J1−α
t (t1−αPα(t)).

Remark 3.1. Particularly, from the proof of Theorem 3.3(i) we can conclude that

‖APα(t)‖ ≤ Ct−α(2+γ),

where C is a constant depending onγ, α. Moreover, using a similar argument with that

in Theorem 3.2, we have that APα(t) for t>0 is continuous in the uniform operator

topology.

3.3 Linear problems

Let A ∈ Θγ
ω(X) with − 1 < γ < 0 and 0 < ω < π/2. We discuss the existence and

uniqueness of mild solution and classical solutions for the inhomogeneous linear abstract

Cauchy problem

(LCP) cD
α
t u(t) + Au(t) = f(t) t > 0

u(0) = u0

where cD
α
t , 0 < α < 1 is the Caputo fractional derivative of order α, and u0 is given

belonging to asubset of X.
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Assumption. Assume that u(.) : [0, T ] −→ X is a function such that

(H∗) u ∈ C([0, T ];X), g1−α∗u ∈ C1([0, T ];X), u(t) ∈ D(A), for t ∈ [0, T ], Au ∈ L1((0, T );X)

and u satises (LCP).Then, by Denitions 3.1 and 3.2, one can rewrite (LCP) as

u(t) = u0 −
1

Γ(α)

∫ t

0

(t− s)α−1Au(s)ds+
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds

for t ∈ [0, T ].

Lemma 3.1. [15] If u : [0, T ] −→ X is a function satisfying Assumption (H∗),then

u(t) satisfies the following integral equation

u(t) = Sα(t)u0 +

∫ t

0

(t− s)α−1Pα(t− s)f(s)ds, t ∈ (0, T ].

Definition 3.3. [15] By a mild solution of problem (LCP), we mean a function u ∈

C((0, T ];X) satisfying

u(t) = Sα(t)u0 +

∫ t

0

(t− s)α−1Pα(t− s).f(s)ds, t ∈ (0, T ].

Definition 3.4. By a classical solution to problem (LCP), we mean a function u(t) ∈

C([0, T ];X) with cD
α
t u(t) ∈ C((0, T ];X),which for all t ∈ (0, T ], takes values in D(A)

and satises (LCP).

Theorem 3.5. [15] Let A ∈ Θγ
ω(X) with 0 < ω <

π

2
. Suppose that f(t) ∈ D(A) for

all 0 < t ≤ T ,Af(t) ∈ L∞((0, T );X) and f(t) is Hölder continuous with an exponent

θ
′
> α(1 + γ) that is,

‖f(t)− f(s)‖ ≤ K|t− s|θ
′
, for all 0 < t, s ≤ T.

Then, for every u0 ∈ D(A), there exists a classical solution to problem (LCP) and this

solution is unique.

Démonstration 3.1. [15] For u0 ∈ D(A), let u(t) = Sα(t)u0(t > 0). Then it follows

from Theorem 3.4 (i), (iii) that u(t) is a classical solution of the following problemcD
α
t u(t) + Au(t) = 0, 0 < t ≤ T

u(0) = u0

(3.1)

Moreover, from Lemma 3.1, it is easy to see that u(t) is the only solution to problem

(3.1). Put
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w(t) =

∫ t

0

(t− s)α−1Pα(t− s)f(s)ds, t ∈ (0, T ]

Then from the assumptions on f and Theorem 3.1 we obtain

‖Aw(t)‖ ≤
∫ t

0

(t− s)α−1 ‖Pα(t− s)‖ ‖Af(s)‖L∞((0,T );X) ds

≤ Cp ‖Af(s)‖L∞((0,T );X)

1

−αγ
t−αγ

which implies that w(t) ∈ D(A) for all 0 < t ≤ T.

Next, we show w(t) ∈ C((0, T ];X) .Since w(0) = 0 and hence

cD
α
t w(t) = D1

t J
1−α
t w(t) = D1

t ((J
1−α
t ϕα) ∗ f) = D1

t (Sα ∗ f) (3.2)

in view of Proposition 3.1 and Theorem 3.3(iv), where ϕα = tα−1Pα(t), it remains to prove

v(t) := (Sα ∗ f)(t) ∈ C1((0, T ];X) Let h > 0 and h ≤ T − t. Then it is easy to verify

the identity

v(t+ h)− v(t)

h
=

∫ t

0

Sα(t+ h− s)− Sα(t− s)
h

f(s)ds+
1

h

∫ t+h

t

Sα(t+ h− s)f(s)ds

Again by the assumptions on f and Theorem 3.1, we have, for t > 0 fixed

‖(t− s)α−1APα(t− s)f(s)‖ ≤ Cp(t− s)−αγ−1 ‖Af(s)‖ ∈ L1((0, T );X)

for all s ∈ [0, t). Therefore, using Theorem 3.2 (ii) and the Dominated Convergence The-

orem we get

limh−→0

∫ t

0

Sα(t+ h− s)− Sα(t− s)
h

f(s)ds =

∫ t

0

(t−s)α−1(−A)Pα(t−s)f(s)ds = −Aw(t)

(3.3)

Furthermore, note that

1

h

∫ t+h

t

Sα(t+ h− s)f(s)ds =
1

h

∫ h

0

Sα(s)f(t+ h− s)ds

=
1

h

∫ h

0

Sα(s)(f(t+ h− s)− f(t− s))ds

+
1

h

∫ h

0

Sα(s)(f(t− s)− f(t))ds+
1

h

∫ h

0

Sα(s)f(t)ds

From Theorem 3.1 and the Hölder continuity on f we have

1

h
‖
∫ h

0

Sα(s)(f(t+ h− s)− f(t− s))ds ‖ ≤ CsKh
θ
′−α(1+γ)

1− α(1 + γ)

1

h
‖
∫ h

0

Sα(s)(f(t− s)− f(t))ds ‖ ≤ CsKh
θ
′−α(1+γ)

1 + θ − α(1 + γ)
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Also, since f(t) ∈ D(A)(0 < t ≤ T ), limh−→0
1

h

∫ h
0
Sα(s)f(t)ds = f(t)in view of Theorem

3.4(i). Hence,

1

h

∫ t+h

t

Sα(t+ h− s)f(s)ds −→ f(t) as h −→ 0+ (3.4)

Combining (3.3) and (3.4) we deduce that v is differentiable from the right at t and

v
′
+(t) = f(t)−Aw(t)(t ∈ (0, T ]). By a similar argument with the above, one has that v is

differentiable from the left at t and v′−(t) = f(t)−Aw(t)(t ∈ (0, T ])Next, we proveAw(t) ∈

C((0, T ];X)Ṫotheend,let Aw(t) = I1(t) + I2(t), where

I1(t) =

∫ t

0

(t− s)α−1APα(t− s)(f(s)− f(t))ds

I2(t) =

∫ t

0

A(t− s)α−1Pα(t− s)f(t)ds

By Theorem 3.4(ii), we obtain I2(t) = (Sα(t) − I)f(t) . So, by the assumption of f

and Theorem 3.2, we see that I2(t) is continuou for 0 < t ≤ T . To prove the same

conclusion for I1(t) ,we let 0 < h ≤ T − t and write

I1(t+ h)− I1(t)

=

∫ t

0

(t+ h− s)α−1APα(t+ h− s)(t− s)α−1APα(t− s)(f(s)− f(t))ds

+

∫ t

0

(t+ h− s)α−1APα(t+ h− s)(f(s)− f(t+ h))ds

+

∫ t

0

(t+ h− s)α−1APα(t+ h− s)(f(t)− f(t+ h))ds

:= h1(t) + h2(t) + h3(t)

For h1(t), on the one hand, it follows from Theorem 3.2 that

limh→0(t+ h− s)α−1APα(t+ h− s)(f(s)− f(t))

= (t− s)α−1APα(t− s)(f(s)− f(t))

On the other hand, for t ∈ (0, T ] xed, by Remark 3.1 and the assumption on f ,we

get

‖(t+ h− s)α−1APα(t+ h− s)(f(s)− f(t))‖

≤ C
′
pk(t+ h− s)−α(1+γ)−1(t− s)θ

′

≤ C
′
pk(t− s)(θ

′−α−αγ)−1

∈ L1((0, t);X)
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Thus, by means of the Dominated Convergence Theorem one has

lim
h→0

∫ t

0

(t+ h− s)α−1APα(t+ h− s)(f(s)− f(t))ds

=
∫ t

0

(t− s)α−1APα(t− s)(f(s)− f(t))ds

which implies that h1(t) −→ 0 as h −→ 0+. For h2(t) , using Theorem 3.3(i) and

Remark 3.1, we obtain∫ t

0

(t+ h− s)α−1 ‖APα(t+ h− s)‖L(X) ‖(f(t)− f(t+ h))‖ ds

≤
∫ t

0

C
′
K(t+ h− s)−α(1+γ)−1hθ

′

ds

=
C
′
pkh

θ
′

α(1 + γ)
(h−α(1+γ) − (h+ t)−α(1+γ))

This yields h2(t) −→ 0 as h −→ 0+.

Moreover,h3(t) −→ 0 as h −→ 0+by the following estimate

‖
∫ t+h

t

(t+ h− s)α−1Pα(t+ h− s)(Af(s)− Af(t+ h))ds ‖

≤ 2Cp
−αγ

‖Af(s)‖L∞(0,T ;X) h
−αγ

in view of Af(s) ∈ L∞((0, T );X) and Theorem 3.2. The same reasoning gives I1(t−

h) − I1(h) −→ 0 as h −→ 0+. Consequently, Aw ∈ C((0, T ];X), which implies that

v
′ ∈ C((0, T ];X), provided that f is continuous on (0, T ].

Thus,by(3.4) we have cD
α
t ∈ C((0, T ];X) . Hence, we prove that u+w is a classical

solution to

problem (LCP), and Lemma 1 implies that it is unique. This completes the proof.

3.4 Nonlinear problems

In this section we apply the theory developed in the previous sections to the nonlinear

fractional abstract Cauchy problem

(SLCP) cD
α
t u(t) + Au(t) = f(t, u(t)), 0 < t ≤ T

u(0) = u0
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where A ∈ Θγ
ω(X) with 0 < ω <

π

2
,cD

α
t , 0 < α < 1, is the Caputo fractional derivative

of order α.

Definition 3.5. [15] By a mild solution to problem (SLCP), we mean a function

u ∈ C((0, T ];X) satisfying

u(t) = Sα(t)u0 +

∫ t

0

(t− s)α−1Pα(t− s)f(s, u(s))(t ∈ (0, T ]).

Theorem 3.6. [15] Let A ∈ Θγ
ω(X) with − 1 < γ <

−1

2
and 0 < ω <

π

2
. Suppose that

the nonlinear mapping f : (0, T ] × X −→ X is continuous with respect to t and there

exist constants M, N > 0 such that

‖f(t, x)− f(t, y)‖ ≤ (1 +
∥∥xv−1

∥∥+
∥∥yv−1

∥∥) ‖x− y‖

‖f(t, x)‖ ≤ (1 + ‖xv‖)

for all t ∈ (0, T ] and for each x, y ∈ X,where v is a constant in [1,
−γ

1 + γ
).Then, for every

u0 ∈ X, there exists a T0 > 0 such that the problem (SLCP) has a unique mild

solution

defined on (0, T0].

Démonstration 3.2. [15] For fixed r> 0, we introduce the metric space

Fr(T, u0) = {u ∈ C((0, T ];X); ρT (u, Sα(t)u0) ≤ r}

ρT (u1, u2) = sup
t∈(0,T ]

‖u1(t)− u2(t)‖.

It is not dicult to see that, with this metric, Fr(T, u0) is a complete metric space. Take

L = Tα(1+γ) + Cs|u0| . Then for any u ∈ Fr(T, u0), we have∥∥sα(1+γ)u(s)
∥∥ ≤ sα(1+γ) ‖u− Sα(t)u0‖+ sα(1+γ) ‖Sα(t)u0‖ ≤ L

Choose 0 < T0 ≤ T such that

CpN
T−αγ0

−αγ
+ CpNL

vT
−α(v(1+γ)+γ)
0 β(−γα, 1− vα(1 + γ)) ≤ r (3.5)

MCp
T−αγ0

−αγ
+ 2Lρ−1T−α(γ+(1+γ)(v−1))β(−αγ, 1− α(1 + γ)(v − 1)) ≤ 1

2
, (3.6)

where β(η1, η2) with ηi > 0, i = 1, 2 , denotes the Beta function. Assume that u0 ∈ X .

Consider the mapping Γα given by
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3.4. Nonlinear problems 3

(Γαu)(t) = Sα(t)u0 +

∫ t

0

(t− s)α−1Pα(t− s)f(s, u(s))ds, u ∈ Fr(T0, u0)

By the assumptions on f, Theorems 3.1 and 3.2, we see that (Γαu(t)) ∈ C((0, T ];X) and

‖(Γαu)(t)− Sα(t)u0‖

≤ CpN

∫ t

0

(t− s)−αγ−1(1 + ‖u(s)‖v)ds

≤ CpN
T−αγ0

−αγ
+

∫ t

0

CpNL
v(t− s)−αγ−1s−vα(1+γ)ds

≤ CpN
T−αγ0

−αγ
+ CpNL

vT
−α(v(1+γ)+γ)
0 β(−γα, 1− vα(1 + γ))

≤ r

in view of (3.5).S0,Γ
α maps Fr(T0, u0) into itself. Next, for any u, v ∈ Fr(T0, u0), by the

assumptions on f and Theorem 3.1 we have

‖(Γαu)(t)− (Γαv)(t)‖

≤ CpM

∫ t

0

(t− s)−αγ−1(1 + ‖u(s)‖ρ−1 + ‖v(s) ‖ρ−1) ‖u(s)− v(s)‖ ds

≤ CpMρt(u, v)

∫ t

0

(t− s)−αγ−1(1 + 2Lv−1s−α(v−1)(1+γ))ds

≤ 2Lρ−1T
−α(v(1+γ)+γ)
0 β(−γα, 1− vα(1 + γ))ρT0(u, v)

+MCp
T−αγ

−αγ
ρT0(u, v)

This yields that Γα is a contraction on Fr(T0, u0) due to (3.6). S0 Γα has a unique fixed

point u ∈ Fr(T0, u0) by the Banach Fixed Point Theorem which is a mild solution to

problem

(SLCP) on (0, T0]

The proof is completed.

Remark 3.2. A ∈ Θγ
ω(X) with −1 < γ <

−1

2
and 0 < ω <

π

2
. , then we can derive the

local existence and uniqueness of mild solutions to problem (SLCP), under the conditions:

(1) u0 ∈ Xβ with β > 1 + γ;
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(2) he nonlinear mapping f : [0, T ]×X −→ X is continuous with respect to t and there

exists a continuous function Lf (.) : R+ −→ R+ such that

‖f(t, x)− f(t, y)‖ ≤ Lf (r) ‖x− y‖

, for all 0 ≤ t ≤ T and for each x, y ∈ X satisfying ‖x‖ , ‖y‖ ≤ r.

Theorem 3.7. [15] Let A ∈ Θγ
ω(X) with − 1 < γ <

−1

2
and 0 < ω <

π

2
. Let there

exist a continuous function Mf (.) : R −→ R+ and a constant N f > 0 such that the

mapping f : (0, T ]×X1 −→ X1 satisfies

‖f(t, x)− f(t, y)‖X1 ≤Mf (r) ‖x− y‖X1

,
‖f(t, Sα(t)u0‖X1 ≤ Nf (1 + t−α(1+γ) ‖u0‖X1),

for all 0 < t ≤ T and for each x, y ∈ X1 satisfying supt∈(0,T ] ‖x(t)− Sα(t)u0‖X1 ≤ r

,supt∈(0,T ] ‖y(t)− Sα(t)u0‖X1 ≤ r . Then there is a T0 > 0 such that the problem

(SLCP) has a unique mild solution defined on (0, T0].

Theorem 3.8. [15] Let A ∈ Θγ
ω(X) with − 1 < γ <

−1

2
and 0 < ω <

π

2
. Suppose that

there exists a continuous function M
′

f (.) : R+ −→ R+

and a constant k > α(1 + γ) such that the mapping f : [0, T ]×X −→ X satisfies

‖f(t, x)− f(t, y)‖ ≤M
′

f (r)(| t− s |k) ‖x− y‖

,

for all 0 ≤ t ≤ T and x, y ∈ X satisfying ‖x‖ , ‖y‖ ≤ r . In addition, let the

assumptions of Theorem 3.7 be satisfied and u be a mild solution corresponding to u0

, defined on [0, T0] . Then u is the unique classical solution to problem (SLCP) on

[0, T0] ,provided that u0 ∈ D(A) with Au0 ∈ D(Aβ), β > (1 + γ).

Exemple 3.1. Assume that Ω is a bounded domain in RN(N ≥ 1) with boundary ∂Ω of

class C4m(m ∈ N) .Let C l(Ω̄)(0 < l < 1), denote the usual Banach space with norm ‖.‖l .

Consider the elliptic differential operator A′ : D(A
′
) ⊂ C l(Ω) −→ C l(Ω), in the form

D(A
′
) =

{
u ∈ C2m+l(Ω̄);Dβu|∂Ω

= 0 | β |≤ m− 1
}
,
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3.4. Nonlinear problems 3

A
′
u =

∑
|β|≤2m

aβ(x)Dβu(x), u ∈ D(A
′
),

where β is a multiindex in (N
⋃
{0})n ,| β |=

∑n
j=1 βj, D

β =
∏n

j=1(−i ∂
∂xj

)βj . The

coefficients aβ : Ω̄ −→ C of A′ are assumed to satisfy

(i) aβ ∈ C l(Ω̄) for all | β |≤ 2m,

(ii) aβ ∈ R for all x ∈ Ω̄and | β |= 2m, and

(iii) there exists a constant M > 0 such that

M−1 | ξ |2≤
∑
|β|=2m aβ(x)ξβ ≤M | β |2, for all ξ ∈ RN, x ∈ Ω̄.

Then, the following statements hold.

(a) A′ is not densely defined in C l(Ω) ,

(b) there exist v, ε > 0 such that

σ(A
′
+ v) ⊂ Sπ

2
−ε =

{
λ ∈ C\ {0} ; | arg |≤ π

2
− ε
}⋃

{0} ,

∥∥∥R(λ,A
′
+ v)

∥∥∥
L(Cl(Ω̄))

≤ C

| λ |1− l
2m

, λ ∈ C\Sπ
2
−ε.

We will take this problem (3.7) as a special case :

let Ω be a bounded domain in RN(N ≥ 1) with boundary ∂Ω of class C4 . Consider

the fractional initial-boundary value problem
(cD

α
t u)(t, x)−∆u(t, x) = f(u(t, x)),

u|∂Ω
= 0

u(0, x) = u0(x)

(3.7)

in the space C l(Ω̄)(0 < l < 1), where ∆ stands for the Laplacian with respect to the

spatial variable and cD
α
t representing the regularized Caputo fractional derivative of order

(0 < α < 1), is given by

(cD
α
t )(t, x) =

1

Γ(1− α)

( ∂
∂t

∫ t

0

(t− s)αu(s, x)ds− tαu(0, x)
)

.
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3.4. Nonlinear problems 3

Ã = −∆D(Ã) =
{
u ∈ C2+l(Ω̄)u = 0 on ∂Ω

}
It follows from (b) that there exist v, ε > 0 such that Ã+v ∈ Θ

l
2
−l
π
2
−ε(C

l(Ω̄)) Then, problem

(3.7) can be written abstractly ascD
α
t u(t) + Ãu(t) = f(u), 0 < t ≤ T

u(0) = u0 (SLCP )
(3.8)

With respect to the nonlinearity f , we assume that f : R −→ R is continuously differen-

tiable and satises the condition

|f(x)− f(y)| ≤ K(r)

r
|x− y|, |x|, |y| ≤ r, (3.9)

for any r > 0. It denes a Nemytski ıoperator from C l(Ω̄) into C l(Ω̄) by f(u)(x) =

f(u(x)) with

‖f(u)− f(v)‖Cl(Ω̄) ≤ K(r) ‖u− v‖Cl(Ω̄) , ‖v‖Cl(Ω̄) , ‖u‖Cl(Ω̄) ≤ r

Noting
l

2
− l ∈ (−l,− l

2
) ,we then obtain (i) according to Remark 3.2,(3.7) has

a unique mild solution for each u0 ∈ D(Ãβ) with β >
l

2
. Moreover , (ii)if f ’,f ”

are continuously differentiable functions satisfying the condition (3.9), then one nds

that Nemytskii operator satises the assumptions of Theorem 3.7 and Theorem 3.8,

which implies that for each u0 ∈ D(Ã) with Ãu0 ∈ D(Ãβ)(β >
l

2
), the corresponding

mild solution to (3.7) is also a unique classical solution.
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Chaptre 4
Applications

4.1 Local existence for a time fractional reaction–diffusion

system

4.1.1 Introduction

This chaptre is concerned with the existence of local in time positive solution of the

time fractional reaction–diffusion system with a balance law
cDβ

t u− d∆u = −uf(v), in Ω× R+,

cDβ
t v −∆v = −uf(v), in Ω× R+,

(4.1)

supplemented with the boundary and initial conditions

∂u

∂η
(x, t) =

∂v

∂η
(x, t) = 0 on ∂Ω× R+ (4.2)

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω (4.3)

where Ω is a regular bounded domain in RN(N ≥ 1) with smooth boundary ∂Ω, ∂
∂η

denotes the normal derivative on ∆ stands for the Laplacian operator, d is the diffusion

constant, u0 and v0 are nonnegative functions, cDβ
t , β ∈ (0, 1), is the Caputo fractional

derivative of order β Concerning the nonlinearity f , we assume that there exist positive
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4.1. Local existence for a time fractional reaction–diffusion system 4

constants M1 andM2 and a real number p ≥ 1 such

0 ≤ f(v) ≤M1|v|p +M2 , (4.4)

and for all |v|, |ṽ| ≤ R, there exists a positive number L such that

|f(v)− f(ṽ)| ≤ L|v − ṽ|
. (4.5)

4.1.2 Preliminary results

We put m = 1 in a (D3.2)

Definition 4.1. [16] For an absolutely continuous function f , the Caputo fractional

derivative of order β ∈ (0, 1) is

cDβ
t f(t) = Dβ

t (f(t)− f(0)), t > 0 (4.6)

where Dβ
t is the Riemann–Liouville fractional derivative of order β given by

cDβ
t f(t) =

d

dt
J1−β
t f(t)

(4.7)

In particular, if f(0) = 0 we have

cDβ
t f(t) = Dβ

t f(t), t > 0 (4.8)

Lemma 4.1. [16] It holds

Jβt cD
β
t f(t) = f(t)− f(0) t > 0, (4.9)

and
cDβ

t J
β
t f(t) = f(t) t > 0. (4.10)

Definition 4.2. [16] We denote by A the realization of −∆ with homogeneous Neumann

boundary conditions in L2(Ω)

Let 0 = λ0 ≤ λ1 ≤ λ2 ≤ ......... be the eigenvalues of A and let {Φn}n≥0 be the orthonor-

mal eigenfunction system corresponding to {λn}n≥0 ;AΦn = λnΦn and

D(A) =

{
u ∈ L2(Ω)/

∂u

∂µ
= 0; |Au|2L2(Ω) =

+∞∑
k=1

|λk(u,Φk)|2 < +∞

}
.
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4.1. Local existence for a time fractional reaction–diffusion system 4

As it is known [4.9], the mild solution of the problem (4.1)–(4.2)–(4.3) can be expressed

as follows.

Definition 4.3. [16] (Mild Solution). Let u0, v0 ∈ O(Ω̄) and T > 0. We say that

(u, v) ∈ C([0, Tmax);C(Ω̄) × C(Ω̄)) is a mild solution of the system (4.1)–(4.3) if it

satisfies

u(t) = Eβ(−dtβA)u0 −
∫ t

0

(t− s)β−1Eβ,β(−d(t− s)βA)u(s)f(v(s))ds,
(4.11)

v(t) = Eβ(−tβA)u0 −
∫ t

0

(t− s)β−1Eβ,β(−(t− s)βA)u(s)f(v(s))ds,
(4.12)

for all t ∈ [0, T ], where Eβ(−tβA) and Eβ,β(−(t)βA) are the linear operators defined in

[4.9].

Lemma 4.2. [16] For u ∈ L∞, we have the estimates

|Eβ(−tβA)u|∞≤|u|∞, t > 0, (4.13)

|Eβ,β(−tβA)u|∞≤
1

βΓ(β)
|u|∞, t > 0.

(4.14)

Moreover, there exists δ > 0 such that

|Eβ(−tβA)u|∞≤|u|∞Eβ(−δtβ), (4.15)

|Eβ,β(−tβA)u|∞≤|u|∞Eβ,β(−δtβ), t > 0 (4.16)

where Eβ,β(z) is the Mittag-Leffler function defined by (see [4.10])

Eβ,β(z) =
+∞∑
k=0

zk

Γ(βk + β)
and Eβ(z) = Eβ,1(z)forz ∈ C.

The proofs of estimates (4.13)–(4.16) are based on the estimates of the semigroup
{
T (t) = e−tA

}
{t≥0}

[4.11,4.12] and the relationship between the semigroup and the solution operator given in

[4.13 ] by

Eβ(−tβA) =

∫ ∞
0

φβ(θ)T (θtβ)dθt ≥ 0,
(4.17)
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4.1. Local existence for a time fractional reaction–diffusion system 4

Eβ,β(−tβA) =

∫ ∞
0

βθφβ(θ)T (θtβ)dθt ≥ 0,
(4.18)

where φβ(θ) is the probability density function defined on (0, ∞) by (see [4.14,4.9]);

φβ(θ) =
+∞∑
k=0

(−θ)k

k!Γ(−βk + 1− β)
.

4.1.3 Local existence

Theorem 4.1. [16] Let u0, v0 ∈ C(Ω̄) , then there exist a maximal time Tmax > 0 and a

unique mild solution (u, v) ∈ C([0, Tmax);C(Ω̄)×C(Ω̄)) to the problem (4.1)-(4.2)-(4.3)

with the alternative:

– either Tmax = +∞;

– or Tmax < +∞;and in this case limt−→Tmax ‖u(t)‖∞ + ‖v(t)‖∞ = +∞

Démonstration 4.1. [16] The existence of a local solution is obtained by the Banach

fixed point theorem.Even through this is well documented part, we present it for the sake

of completeness. For arbitrary T > 0, we define the following Banach space

E =
{

(u, v ∈ C([0, Tmax);C(Ω̄)× C(Ω̄)); | ‖(u, v)‖ | ≤ 2 ‖u0‖∞ + ‖v0‖∞ = R
}
,where

‖.‖∞ = ‖.‖L∞(Ω) and

| ‖(u, v)‖ | = ‖u‖+ ‖v‖ = ‖u‖L∞([0,T ];L∞(Ω)) + ‖v‖L∞([0,T ];L∞(Ω))

Next, for every (u, v) ∈ E, we define

Ψ(u, v) = (Ψ1(u, v), Ψ2(u, v)),

where for t ∈ [0, T ],

Ψ1(u, v) = Eβ(−dtβA)u0 −
∫ t

0

(t− s)β−1Eβ,β(−d(t− s)βA)u(s)f(v(s))ds,

and

Ψ2(u, v) = Eβ(−tβA)u0 −
∫ t

0

(t− s)β−1Eβ,β(−(t− s)βA)u(s)f(v(s))ds,

We first prove that maps E onto E: Let (u, v) ∈ E, using (4.13), (4.14) and the fact

that ‖f(v(s))‖∞ ≤M1 ‖v‖p∞ +M2, we have

‖Ψ1(u, v)‖∞ ≤ ‖u0‖∞ +
1

βΓ(β)

∫ t

0

(t− s)β−1 ‖u(s)f(v(s))‖∞ ds

35



4.1. Local existence for a time fractional reaction–diffusion system 4

≤ ‖u0‖∞ +
T βR

βΓ(β + 1)
(M1R

p +M2) (4.19)

Similarly, we obtain

‖Ψ2(u, v)‖ ≤ ‖v0‖∞ +
T βR

βΓ(β + 1)
(M1R

p +M2) (4.20)

whereupon, from (4.19) and (4.20) we get

| ‖Ψ(u, v)‖ | = ‖Ψ1(u, v)‖+ ‖Ψ2(u, v)‖

≤ (‖u0‖∞ + ‖v0‖∞) + 2
T βR

βΓ(β + 1)
(M1R

p +M2)

If we choose T such that T β ≤ βΓ(β+1)
M1Rp+M2

, we conclude that Ψ(u, v) ∈ E.Now, we show

that is a contraction map: For (u, v), (ũ, ṽ) ∈ E, we have

‖Ψ1(u, v)− Ψ1(ũ, ṽ)‖ ≤ T β

β
‖ũf(ṽ)− uf(v)‖

Using

|ũf(ṽ)− uf(v)| ≤ |u||f(v)− f(ṽ)|+ |f(ṽ)||u− ũ|,

and the assumptions (4.4) and (4.5), we get

|ũf(ṽ)− uf(v)| ≤ L|u||v − ṽ|+ (M1|ṽ|p +M2)|u− ũ|; (4.21)

hence,

‖Ψ1(u, v)− Ψ1(ũ, ṽ)‖ ≤ LRM1R
p +M2

βΓ(β + 1)
T β| ‖(u, v)− (ũ, ṽ)‖ |

Similarly, we obtain

‖Ψ2(u, v)− Ψ2(ũ, ṽ)‖ ≤ LRM1R
p +M2

βΓ(β + 1)
T β| ‖(u, v)− (ũ, ṽ)‖ |

Whereupon

| ‖Ψ(u, v)− Ψ(ũ, ṽ)‖ | ≤ LRM1R
p +M2

βΓ(β + 1)
T β| ‖(u, v)− (ũ, ṽ)‖ |

≤ 1

2
| ‖(u, v)− (ũ, ṽ)‖ |

for T β ≤ βΓ(β+1)
LRM1Rp+M2

Therefore, in view of the Banach fixed point theorem admits a unique fixed point on E.

Thus the system (4.1)-(4.2)-(4.3)has a unique mild solution. Using the fact that the solu-

tion is unique, we conclude that the existence of the solution can be extended on a maximal

interval [0, Tmax) where

Tmax = sup {T > 0, such that (u, v) is a mild solution to (4.1)− (4.2)− (4.3)inE} ≤

+∞.
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4.2 Fractional power of Laplacian operator

[19] In the case of a bounded domain Ω ⊂ RN, we present the definition of Fractional

Laplacian on Ω with homogeneous boundary conditions of Neumann type noted
(
−∆

α
2
N

)
.

For λk(k = 1, ..,+∞), the eigenvalue du Laplacien in L2(Ω) with the homogeneous

boundary conditions of Neumann type and φk the eigenfunction associated with λk, we

have 
(
−∆

α
2
N

)
φk = λ

α
2
k φk sur Ω,

∂φk
∂η

= 0 sur ∂Ω.

Definition 4.4. [19] For u ∈ D(−∆
α
2
N), 0 < α ≤ 2, we have

(
−∆

α
2
N

)
u =

+∞∑
k=0

λ
α
2
k < u, φk > φk,

or

D
((
−∆

α
2
N

))
=

{
u ∈ L2(Ω)/

∂u

∂η
= 0 and

+∞∑
k=1

|λ
α
2
k < u, φk > |2 < +∞

}
.

4.3 Local existence of solution for fractional reaction-

diffusion system with fractional laplacian

We will study this part the existence of local solution fractional reaction-diffusion

system with fractional laplacian
cDβ

t u+ d
(
−∆

α
2
N

)
.u = −uf(v), in Ω× R+

cDβ
t v +

(
−∆

α
2
N

)
.v = −uf(v), in Ω× R+,

(4.22)

supplemented with the boundary and initial conditions

∂u

∂η
(x, t) =

∂v

∂η
(x, t) = 0 on ∂Ω× R+ (4.23)

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω (4.24)

where
(
−∆

α
2
N

)
. stands for the fractional laplasian operator and 0 < α < 2 ,the rest of

the items have previously been identified
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Remark 4.1. (1) Let ∆ sectorial oprator then
(
−∆

α
2
N

)
.sectorial oprator by (theorem

2.6).

(2) Let
(
−∆

α
2
N

)
.sectorial oprator then is the infinitesimal generator of an analytic semi-

group
{
e−tA

}
t≥0

by (theorem 1.1).

Definition 4.5. [16] We denote by A the realization of
(
−∆

α
2
N

)
. with homogeneous

Neumann boundary conditions in L2(Ω)

D (A) =

{
u ∈ L2(Ω)/

∂u

∂η
= 0 and

+∞∑
k=1

|λ
α
2
k < u, φk > |2 < +∞

}
.

The mild solution of the problem (4.22)–(4.23)–(4.24) can be expressed as follows.

Definition 4.6. [16] (Mild Solution). Let u0, v0 ∈ C(Ω̄) and T > 0. We say that

(u, v) ∈ C([0, Tmax);C(Ω̄) × C(Ω̄)) is a mild solution of the system (4.22)–(4.24) if it

satisfies

u(t) = Eβ(−dtβA)u0 −
∫ t

0

(t− s)β−1Eβ,β(−d(t− s)βA)u(s)f(v(s))ds,

v(t) = Eβ(−tβA)u0 −
∫ t

0

(t− s)β−1Eβ,β(−(t− s)βA)u(s)f(v(s))ds,

for all t ∈ [0, T ], where Eβ(−tβA) and Eβ,β(−tβA) are the linear operators defined in

[4.9].

Let
(
−∆

α
2
N

)
be the infinitesimal generator of an analytic semigroup then the inequal-

ities remain true.

Theorem 4.2. [16] Let u0, v0 ∈ C(Ω̄) , then there exist a maximal time Tmax > 0 and a

unique mild solution (u, v) ∈ C([0, Tmax);C(Ω̄)×C(Ω̄)) to the problem (4.1)-(4.2)-(4.3)

with the alternative:

– either Tmax = +∞;

– or Tmax < +∞;and in this case limt−→Tmax ‖u(t)‖∞ + ‖v(t)‖∞ = +∞

Démonstration 4.2. [16] The existence of a local solution is obtained by the Banach

fixed point theorem.Even through this is well documented part, we present it for the sake

of completeness. For arbitrary T > 0, we define the following Banach space

E =
{

(u, v ∈ C([0, Tmax);C(Ω̄)× C(Ω̄)); | ‖(u, v)‖ | ≤ 2 ‖u0‖∞ + ‖v0‖∞ = R
}
,where

‖.‖∞ = ‖.‖L∞(Ω) and

| ‖(u, v)‖ | = ‖u‖+ ‖v‖ = ‖u‖L∞([0,T ];L∞(Ω)) + ‖v‖L∞([0,T ];L∞(Ω))
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Next, for every (u, v) ∈ E, we define

Ψ(u, v) = (Ψ1(u, v), Ψ2(u, v)),

where for t ∈ [0, T ],

Ψ1(u, v) = Eβ(−dtβA)u0 −
∫ t

0

(t− s)β−1Eβ,β(−d(t− s)βA)u(s)f(v(s))ds,

and

Ψ2(u, v) = Eβ(−tβA)u0 −
∫ t

0

(t− s)β−1Eβ,β(−(t− s)βA)u(s)f(v(s))ds,

We first prove that maps E onto E: Let (u, v) ∈ E, using (4.13), (4.14) and the fact

that ‖f(v(s))‖∞ ≤M1 ‖v‖p∞ +M2, we have

‖Ψ1(u, v)‖∞ ≤ ‖u0‖∞ +
1

βΓ(β)

∫ t

0

(t− s)β−1 ‖u(s)f(v(s))‖∞ ds

≤ ‖u0‖∞ +
T βR

βΓ(β + 1)
(M1R

p +M2) (4.25)

Similarly, we obtain

‖Ψ2(u, v)‖ ≤ ‖v0‖∞ +
T βR

βΓ(β + 1)
(M1R

p +M2) (4.26)

whereupon, from (4.19) and (4.20) we get

| ‖Ψ(u, v)‖ | = ‖Ψ1(u, v)‖+ ‖Ψ2(u, v)‖

≤ (‖u0‖∞ + ‖v0‖∞) + 2
T βR

βΓ(β + 1)
(M1R

p +M2)

If we choose T such that T β ≤ βΓ(β+1)
M1Rp+M2

, we conclude that Ψ(u, v) ∈ E.Now, we show

that is a contraction map: For (u, v), (ũ, ṽ) ∈ E, we have

‖Ψ1(u, v)− Ψ1(ũ, ṽ)‖ ≤ T β

β
‖ũf(ṽ)− uf(v)‖

Using

|ũf(ṽ)− uf(v)| ≤ |u||f(v)− f(ṽ)|+ |f(ṽ)||u− ũ|,

and the assumptions (4.4) and (4.5), we get

|ũf(ṽ)− uf(v)| ≤ L|u||v − ṽ|+ (M1|ṽ|p +M2)|u− ũ|; (4.27)

hence,

‖Ψ1(u, v)− Ψ1(ũ, ṽ)‖ ≤ LRM1R
p +M2

βΓ(β + 1)
T β| ‖(u, v)− (ũ, ṽ)‖ |
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Similarly, we obtain

‖Ψ2(u, v)− Ψ2(ũ, ṽ)‖ ≤ LRM1R
p +M2

βΓ(β + 1)
T β| ‖(u, v)− (ũ, ṽ)‖ |

Whereupon

| ‖Ψ(u, v)− Ψ(ũ, ṽ)‖ | ≤ LRM1R
p +M2

βΓ(β + 1)
T β| ‖(u, v)− (ũ, ṽ)‖ |

≤ 1

2
| ‖(u, v)− (ũ, ṽ)‖ |

for T β ≤ βΓ(β+1)
LRM1Rp+M2

Therefore, in view of the Banach fixed point theorem admits a unique fixed point on E.

Thus the system (4.1)-(4.2)-(4.3)has a unique mild solution. Using the fact that the solu-

tion is unique, we conclude that the existence of the solution can be extended on a maximal

interval [0, Tmax) where

Tmax = sup {T > 0, such that (u, v) is a mild solution to (4.1)− (4.2)− (4.3)inE} ≤

+∞.
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Conclusion

• And upon my studies I came to the following conclusion

when we have an A is a sectorial operator in X then for 0 < α < 1, Aα is a sectorial

operator in X , then Aα is the infinitesimal generator of an analytic semigroup.

• In this work,we studied the existence and uniqueness of solutions of fractional cauchy

problems ,even with fractional power of laplacian operator the problem still accepts a

unique solution.

• The study of fractional powers of linear operators remains of the most important

studies that requires further research.
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Résumé

Le but de cette note est d’étudier la question de l’existence locale d’une solution

unique à ce problème fractionnaire de Cauchy, le problème reste d’accepter une solu-

tion unique même quand on élève l’opérateur (Laplace) à la puissance fractionnaire.

Mots cles :système de réaction-diffusion fractionnaire - Laplacien fractionnaire -

Dérivé fractionnaire - Existence locale.

Abstract

The aim of this note is to study the question of local existence of a unique solution

to this fractional Cauchy problem, the problem remains to accept a unique solution

even when we raise the operator (Laplace) to the fractional power.

Key words: fractional reaction–diffusion system - Fractional Laplacian - Fractional

derivative - Local existence
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