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General introduction

Low temperature plasma physics is a very active area of research located on the boundaries between
physics, chemistry and materials science. Recent technological developments have led to a revived

interest in plasma physics and technology.
Laser welding can be done at atmospheric pressure in the presence of air or in the presence of a
shielding gas under forced or non-forced speed. Atmospheric pressure gas attracts extensive attention
because of its low cost and simplified operation in comparison with low pressure gas. Nitrogen and
oxygen are the major constituents of air, so it is important to investigate the dynamic of nitrogen and
oxygen mixture gases at atmospheric pressure.
Nitrogen and/or oxygen at atmospheric pressure has been demonstrated in a number of previous
studies, like Wang yi-Nan et al. in (2013) and Wang yi-Nan and L. Yue in (2017) [1, 2]. Physical
systems naturally evolve toward higher entropy states. Hence, thermal diffusion is a direct result of
the logical operation of the universe [3].
In this thesis, we focus on the effect of surface welded by laser at dynamic thermal diffusion in air
mixture by calculating the gas, ions and electron temperatures and densities, which becomes (the
surface) a point source of thermal waves. The model used in this work has been simplified because of
the multi-chemical processes and multi-particles in the air.
Dynamics of heat transfer have been illustrated and measured in many experimental and theoretical
research, e.g; M. C. Sullivan et al. in (2007) [4] have measured temperature in metal rod as a function
of position and time, and used simple heat flow equations in order to extract the thermal diffusion of
the metal.
Gfroerer et al. in (2015) [3] have measured time-dependent radial temperature profiles of a heated rod
generate a temperature gradient in the center of a metallic plate in real time via the video feed from
a thermal camera. They estimated the thermal diffusivity , which is used to confirm the accuracy of
the finite-difference (FDM) simulations.
In many processes, such as the arc welding and laser welding, a luminous gas plasma forms near the
weld pool. In welding, the luminosity of the plasmas is a very important property. Many experimental
research studied and analyzed the light emission spectra from the plasma produced by laser welding
to get information about plasma parameters (Ne,Te) by the Boltzmann plot and/or Stark broadening
method, like Hoffman et al. in (2006) [5,6]; they studied the plasma produced during laser welding of
magnesium alloy.
We describe simple method [7] to calculation Stark broadening using the impact theory which takes
into account non adiabatic effects due to electron collisions. We neglect the contribution of ions to
the broadening of isolated lines. The corresponding profiles are, therefore, of dispersion (Lorentz-

1



General introduction 2

Weisskopf) type. Because of the long-range nature of the (dipole-monopole) interaction between
emitting atoms and perturbing electrons, perturbation theory can be used to calculate the dominant
terms in widths and shifts of these dispersion profiles. We apply this theory to the isolated neutral lines
of magnesium. The isolated lines are the lines whose half-width is much smaller than the separation
between the perturbed level and the next interacting level. Practically all the broadening is caused
by interactions between the upper state of the line in question and its neighbors, and lower state
interactions can be neglected [7].
Consequently, a number of experimental and theoretical papers have dealt with Stark broadening of
both neutral atom and ion spectral lines.
Freudenstein and Cooper (1978) [8] derived a simple formula for estimating Stark widths of neutral
lines; this formula gives the correct trend of Stark width dependence upon electron temperature.
Dimitrijević and Sahal-Bréchot (1994) [9] presented results of semi-classical calculations of Stark
broadening parameters for some lines of heavy neutral atoms. Dimitrijević and Konjević (1986) [10]
estimated simple formulae for Stark widths and shifts of neutral atom lines based on the simple
method of Freudenstein Cooper and the GBKO semi-classical theory. In 1994, Dimitrijević and
Sahal-Bréchot [9] used a semi-classical approach to calculate impact line widths and shifts for 267
Mg I multiplets caused by electron, proton and other ion as a function of temperature and perturber
density [9]. B. Zmerli et al. (2008) [11]have analyzed the temperature dependence of Stark widths for
neutral atom spectral lines. Sahal-Bréchot et al. (2011) [12] have calculated a great number of data,
obtained through the impact semi-classical perturbation theory. They are currently implemented in
the STARK-B database [13], which participates in the European effort within the Virtual Atomic and
Molecular Data Center [13].
In chapter 1, we present the main elements relating to the main themes addressed (Fundamental
equations of the fluid model, equilibrium laws and spectral line profiles in plasmas).
In chapter 2, we have established (1D) fluid model contains a set of gas dynamics equations, to de-
scribe the heat transfer by convection evolution. The coupled equations for plasma gas temperature,
electron temperature, charged and neutral species densities were solved simultaneously.
In chapter 3, we present a theoretical implementation to obtain the minimum of the impact parameter
for strong and weak contribution in collision operator. We also present the contribution of strong
collision and weak collision respectively for magnesium neutral emitters.
In chapter 4, spatial and temporal distributions of species (N2, O2, N+

2 , O+
2 and electrons and

temperatures) are presented and discussed.
In chapter 5, we present the calculated full Stark width (ionic and electronic) of isolated lines Mg I,
Be I and Ca I. We present and discuss a comparison between our result with the theoretical and the
experimental results of Griem (1974) [14], STARK-B web site [13], Dimitrijević and Sahal-Bréchot
(1994) results [9], we calculate stark broadening of Mg I under welding conditions. Finally, we present
a conclusion and some perspectives



Chapter

1
Theoretical foundations of gaseous
media near weld surfaces and
spectral line shapes of radiative
transitions

1.1 Introduction

The laser welding process has received significant attentions in recent years [15]. The effectiveness
of laser welding depends greatly on the physical properties of the material to be welded [16].

As the lightest structural material available, magnesium alloys are widely used in aerospace, automo-
tive, electronics and other fields for advantages such as specific strength, good castability, excellent
machinability and recyclability [6]. Two main types of lasers, CO2 and Nd:YAG with wavelengths of
10.6 and 1.06µm, respectively, have been used to investigate the weldability of material alloys in many
experiments. The CO2 laser has high power output, high efficiency, proven reliability and safety. With
the recent development of high output power, the improvement of beam quality and the possibility
of glass fiber delivery, the Nd:YAG laser has entered the fields dominated by the CO2 laser. The
weldability of magnesium alloys was reported to be significantly better with the Nd:YAG laser due
to its shorter wavelength, which in turn reduced the threshold irradiance required for keyhole mode
welding and produced a more stable weld pool. Compared with CO2 lasers, Nd:YAG laser beams
have a higher welding efficiency [16]. In addition, for the particular physical properties of magnesium
alloys, low melting point (650◦C), low boiling point (1090◦C) and low ionization energy (7.6eV ),
there are some particular phenomena of magnesium plasma under the action of a laser beam. So it is
of great interest to investigate the characteristics of magnesium welding plasma [6].

3



Chapter 1. Theoretical foundations of gaseous media near weld surfaces and spectral line shapes of
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Laser welding method heats locally and gives welds of very high quality. The interaction of the laser
beam with the metal vapor leads to a partial ionization which forms a plasma composed of ionized
vapors inside the keyhole and on the weld pool [17].
During laser welding near-surface plasma is not stable, it constantly changes its position in relation
to the area of introduction of the beam into the welding covering. In this case, the plasma has no
screening effect which confirms that the nature of formation of the welded joint is the same along the
entire length of the welded joint [18].
The laser beam welding operation is done in the presence of atmospheric gas (O2/N2) or in the
presence of protective gas which gives better quality to the weld [19].
An important area of scientific research is the investigation of wall kinetic processes in low pressure
gases and plasmas, since the interaction of different atomic and molecular species with walls can
significantly influence the gas phase concentration of these species. To investigate the influence of
surfaces on the densities of gas phase species the transfer of these species to or from the surface must
be studied [20].
In the presence of protective gas, convection phenomena are very important [19]; equations of the
fluid model allow to calculate the velocities of these gases and to study the general dynamics. Within
our team, Master works were interested in the calculation of these velocities [21,22]. The study of the
properties of gases near the welding surfaces can be done by a diagnosis of the spectral lines. We can
cite as examples the works on spectral line shapes of Cu and Mg, [5, 23–27]
The shape of spectral lines in plasmas is a topic of wide-ranging interest and the subject of study for
many years. The two major line broadening mechanisms in the laser plasma are Doppler broadening
and Pressure broadening. The latter includes broadening by collisions with foreign species, Resonance
broadening and Stark broadening and shift [28]. When line shapes and shifts are used for plasma
diagnostic purposes, in most of the cases, one cannot change plasma conditions so the contribution of
other broadening mechanisms has to be carefully estimated and, if necessary, measured widths and
shifts corrected [29].
In this chapter we present theoretical foundations of atmospheric gas (O2 / N2) near weld surfaces to
determine densities and temperatures of the gas species. The considered species are O2, N2, O+

2 , N+
2

and electrons.
We also present in this chapter a quick reminder on the calculation of spectral lines in plasma.

1.2 Gas reactions

There is sufficient background radiation in the atmosphere creating electrons such that the free elec-
tron concentration is 10−2cm−3 to the gas number density at standard pressure and temperature of
1020cm−3. The free electrons will be accelerated by the resulting electric field. Along the way, they
collide with the interstitial gas atoms or molecules (M).

These collisions represent three groups of chemical reactions:
Elastic : e−+M → e−+M ,
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Excitation: e−+M → e−+M∗ if e≥ E∗,
Ionization: e−+M → 2e−+M+ if e≥ Eion,

Note that for the excitation and ionization reactions, the kinetic energy of the incident electron Ec

must be greater than or equal to the minimum energy required for excitation E∗ or ionization Eion,
respectively.

1. Ec ≥ E∗min,

2. Ec ≥ Eion,

1.2.1 Elastic Collisions

The elastic collision is the dominant type of collisions and can occur for any kinetic energy of the
incident electron Ec. The electron and molecule collide like two billiard balls, and all the energy of
the collision is maintained (for the most part) as kinetic energy that is, kinetic energy is conserved. In
these binary (two-body) collisions, the electron is moving much faster than the molecule, and therefore
the gas molecule is typically considered at rest. The electron collides with the molecule and takes or
at a new trajectory.

1.2.2 Excitation Collisions

The electrons of an atom or a molecule are linked and they have discrete energies. Depending on the
collision process, an incident electron can have an elastic collision with the atom or the molecule by
exciting or de-exciting a bonded electron. In this case there is no conservation of kinetic energy; on
the other hand there is conservation of the total energy of the system.

1.2.3 Ionization Collisions

At sufficient kinetic energy, a free electron may actually cause an electron to detach from the neutral
resulting in a second free electron and a positive ions. The energy required for this reaction is called
the ionization energy Eion. Therefore the incident free electron must have a kinetic energy of Ec ≥Eion
to create an ion. This is called electron-impact ionization [30].

1.2.4 Electronic recombination

In a gas, atomic processes are equilibrium reactions. If there are ionization reactions by electrons,
there would be reverse reactions of electronic recombination.

1.2.5 Dissociation reaction

Collisions of electrons with molecules can dissociate these molecules and give lighter radicals or atoms.
The kinetic energy of the electrons must be greater than the activation energy Ea of the reaction.
In table 1.1, we present some important collision processes in oxygen and nitrogen mixture in plasma.
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We have limited ourselves to the reactions giving the different species of our study.
The constant kr presents rate coefficient of each reaction. The Arrhenius form of the rate constant as
a function of temperature is [31,32]:

kr = ArT
βexp(

−Ea
kBT

), (1.1)

For general equilibrium reaction, as :
aA+ bB
 cC+dD,

The rate consumption (or production) R takes the form [32]:
d

dt
[A] = −kr1[A]a[B]b+kr2[C]c[D]d,

R= −kr1[A]a[B]b+kr2[C]c[D]d.

Table 1.1 presents the main reactions in oxygen and nitrogen mixture in plasma.

Table 1.1 – Important collision processes in oxygen and nitrogen mixture in plasma.

No. Reaction Rate coefficient cm3/s Ref
1 e+N2→ e+ 2N k1 = 5.4×10−4

(
Te
300

)−1.6
exp(−9.76

Te
) [31]

2 e+N2→ 2e+N+
2 k2 = 2.4×10−6T−0.5

e exp(−14.6
Te

) [31]
3 e+O2→ 2e+O+

2 k3 = 2.34×10−9T 1.03
e exp(−12.29

Te
) [33]

4 e+O2→ e+ 2O k4 = 6.86×10−9 exp(−6.29
Te

) [33]
5 e+N+

2 →N2 k5 = 2.8×10−7
√

300
Te

[34]
6 e+O+

2 →O2 k6 = 2.1×10−7
√

300
Te

[34]

In table 1.2, we present the production (or consumption) rate R of each species per unit of time and
per unit of volume. This term R can present the term "source" in the differential equations relating to
the conservation of global quantities (mass, species, energies), where ∆εr are the activation energies
related to electronic energy term source Rεe.
Table 1.2 presents the term sources for considered species and electronic energy listed in table 1.1.

Table 1.2 – Term sources for considered species and electronic energy.

Species Term sources
RN2 −k1[N2][Ne]−k2[N2][Ne]+k5[N

+
2 ][Ne]

RO2 −k3[O2][Ne]−k4[Ne][O2]+k6[O
+
2 ][Ne]

RN+
2

k2[N2][Ne]−k5[N
+
2 ][Ne]

RO+
2

k3[O2][Ne]−k6[O
+
2 ][Ne]

Re k2[N2][Ne]+k3[Ne][O2]−k5[N
+
2 ][Ne]−k6[O

+
2 ][Ne]

Rεe [(∆ε1K1−∆ε2K2)[N2]+ (∆ε4K4−∆ε3K3)[O2]][Ne]
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1.3 Mathematical model of statistical properties of gas near weld
plates

1.3.1 General models for statistical properties of gas

The study of statistical properties in gas mixtures presenting complex phenomena requires experimen-
tal work or numerical work.
The numerical simulation models used in this area are classified into four main families or classes.

Monte Carlo simulations:

The first Monte Carlo Simulation (MCS) model was proposed by Metropolis et al. in 1953 [35].
They are a broad class of computational algorithms that are used to model the probability of different
outcomes in a process that cannot easily be predicted due to the intervention of random variables. The
underlying concept is to use randomness to solve problems that might be deterministic in principle [36].
Collisions and reactions in gas phase of SiH4/H2 mixture used in PECVD (plasma enhanced chemical
vapor deposition) process have been simulated by MCS models [37,38].

Molecular Dynamics Simulation:

Molecular Dynamics Simulation (MDS) model is a computer simulation method for analyzing the
physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a
fixed period of time, giving a view of the dynamic of the system. In the most common version, the
trajectories of atoms and molecules are determined by numerically solving Newton’s equations and
their potential energies are often calculated using inter atomic potentials or molecular mechanics force
fields [36].

Fluid Model:

The plasma fluid model consists of solving Poisson’ s equation and one or more moments of Boltzmann’
s equation to obtain (for a three moment fluid model) the density, momentum, and energy of each
charged species. Each of these equations contains transport coefficients or rate coefficients which
represent the effect of collisions and which are input data for the fluid model [39].
J. Hugill and T. Saktioto in (2001) used a fluid model to simulate Nitrogen plasmas at atmospheric
pressure produced by 2.45 GHz microwaves [31]. At low electron temperature, this plasma presented
dissociation reaction and ionization reaction. Concentrations of species N2, N , N+

2 , N+ and electrons
were calculated as function of time.
Z. Ballah and F. Khelfaoui in (2018) developed a one dimensional time-dependent fluid model in
presence of the magnetic field to simulate argon gas in RF magnetron sputtering discharge [40]. The
model is based on continuity equation and electron temperature equation coupled with Poisson’s
equation. Numerical simulations were resolved by using the Finite Volume Method (FVM) and the
Thomas algorithm. The obtained results of electrical properties (electron and ion densities, electrical
potential, electric field and electron temperature) were in good agreement with other works.
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Hybrid simulation:

Hybrid models have been introduced as a method to speed computations, is a modeling approach
that combines two or more simulation models. Belenguer and Boeuf first introduced this method for
rf discharges in what is now termed a "beam-bulk" simulation [39].

1.3.2 General Equations of fluid model for densities, temperatures and energy

Among the main equations relating to the fluid model are the continuity, the momentum and the energy
equations. We also add to these equations, equations of electromagnetism and equations taking into
account collision phenomena or other processes.
The continuity equation for particles can be written as [41]:

∂Ne

∂t
+∇Je = Re , (1.2)

∂Ni

∂t
+∇Ji = Ri , (1.3)

∂Nn

∂t
+∇Jn = Rn , (1.4)

Where Ne,i,n, Je,i,n and Re,i,n represent the densities of species, flux and the source term, respectively.
The subscripts (e,i,n) represent electron, ions, neutral, respectively. The particle fluxes under the
diffusion approximation are expressed as [41]:

Je = −µeNeE−De∇Ne , (1.5)

Ji = −µiNiE−Di∇Ni , (1.6)

Jn = −Dn∇Nn , (1.7)

Where De,i,n and µe,i,n represent the diffusion coefficient and mobility respectively. In addition, E is
the electric field.
The heat equation for continues medium (fluid, solid) can be written as [4]:

ρ(T )Cp(T )∂T

∂t
=∇.[λ(T )∇T ] = ∂

∂x
[λ(T )

∂T

∂x
] , (1.8)

Where ρ(T), Cp(T) and λ(T) are Density (in units Kg
m3 ), Specific heat (in units KJ

(Kg.K) ) and Thermal
conductivity (in units W

(m.K) ).
The electron-energy balance can be expressed as [41]:

∂Neεe
∂t

+
5
3∇Jeε = Reε , (1.9)

Where: εe =
3
2KBTe

In the electron energy equation, Te is the electron temperature, Jeε is the electron-energy flux , the
loss term Reε is considered as the inelastic collision between electrons and molecules,
The electrical field equation can be written as [41]:

∇E =
e

ε0

∑
j

Nij−Ne

 . (1.10)
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Where: e= 1.6×10−19 C, ε0 = 8.85×10−14 CV−1cm−1 are the electric charge, the permittivity of free
space.
Table 1.3 presents energy thresholds of the collision processes in oxygen and nitrogen gas mixture in
plasma.

Table 1.3 – Threshold energy ∆εr.

Reaction no. ∆ε(eV ) Ref
1 8.4 [42]
2 15.4 [42, 43]
3 12.1 [42, 43]
4 5.58 [42, 43]
5 −15.4 [42, 43]
6 −12.1 [42, 43]

1.3.3 Transport coefficients for heat equation

The expression of the heat equations coefficients in (N2−20%O2) mixture according to the gas tem-
perature Tg is:

Specific heat:

The general expression of the specific heat for this mixture is [44].

Cp(N2−20%O2) = 0.8Cp(N2)+ 0.2Cp(O2) , (1.11)

where: Cp(N2) and Cp(O2) are respectively the specific heat capacities for N2 and O2 calculated from
the following expressions (in J mol−1K−1) as a function of the gas temperature Tg (in K):

Cp(N2) = 29.1+ 2494.2
553.4

√π
2
exp

(
−2
(
Tg−1047.4

553.4

)2
)

, (1.12)

and
Cp(O2) = 28.2+ 6456.2

788.3
√π

2
exp

(
−2
(
Tg−1006.9

788.3

)2
)

, (1.13)

Thermal conductivity:

The thermal conductivity of plasma is the ratio between the heat flux and the corresponding temper-
ature gradient [44–46]. For the mixture N2−20%O2

λ(N2−20%O2) = 0.8λ(N2)+ 0.2λ(O2) =
λ(N2)

1+φN2O2
[O2]
[N2]

+
λ(O2)

1+φO2N2
[N2]
[O2]

, (1.14)

where φN2O2 and φO2N2 is Wassiljewa coefficients, which were calculated from the expressions presented
in [46]. The thermal conductivity of pure N2 and O2 given by

λ(N2) = 1.717+ 0.084Tg−1.948×10−5T 2
g , (1.15)
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and
λ(O2) = 1.056+ 0.087Tg−8.912×10−6T 2

g , (1.16)

Density:

According to the general expression of the binary mixture the density is [44,47].

ρ(N2−20%O2) = 0.8ρ(N2)+ 0.2ρ(O2) , (1.17)

The densities of pure N2 and O2, at atmospheric pressure:

ρ(N2) =
348
T

, (1.18)

ρ(O2) =
376
T

. (1.19)

1.3.4 Transport coefficients for continuity equation

The diffusion in a fluid is the phenomenon of transport of matter in the fluid from the areas of strong
concentration towards the areas of weak concentration.

Diffusion coefficient for neutral particles:

Diffusion coefficient for neutral particles is [48].

D =
3

16(N1 +N2)σ2
12

√
2kBT (m1 +m2)

πm1m2
, (1.20)

Chapman and Cowling, 1970 accurate a theoretical estimation of gaseous diffusion to an average of
about eight percent, leads to the equation

D =
1.86×10−3T 3/2

√
1
m1

+ 1
m2

Pσ2
12Ω

, (1.21)

in which the collision distance σ12 is given by:

σ12 =
1
2 (σ1 +σ2) , (1.22)

The values of σ1 and σ2 are listed in Table 1.4.
The molecular properties characteristic of the interacting particles Ω is given by:

Ω =
A

ΨB
+

C

eDΨ +
E

eFΨ +
G

eHΨ , (1.23)

where Ψ = Tgas/ε12 and ε12 =
√
ε1.ε2, values of the energy of interaction ε12

kB
are given in Table 1.4 this

energy is a geometric average of contributions from the two species [31,49,50].
With A= 1.06036,B = 0.15610,C = 0.19300,D= 0.47635,E = 1.03587,F = 1.52996,G= 1.76474,H =

3.89411.
Table 1.4 presents the lennard-Jones potential parameters for Air, N2 and O2. The Lennard-Jones
potential describes the potential energy of interaction between two non-bonding atoms or molecules
based on their distance of separation [32].
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Table 1.4 – Lennard-Jones potential parameters found from viscosities.

Substance σ12(A0) ε12/kB (K)
N2 3.798 71.4
O2 3.467 106.7

Estimates of σ12 and ε12 are not available for all gases. Instead, many authors have developed empirical
relations like:

D = 10−3
T 1.75

√
1
m1

+ 1
m2

P

(∑
i

Vi1

)1/3

+

(∑
i

Vi2

)1/3
2 . (1.24)

in which T is in Kelvin. P is in atmospheres. Vij are the volumes of parts of the molecule j.
Table 1.5 presents atomic diffusion volumes for N2, O2 and Air [49].

Table 1.5 – Diffusion volumes
∑
Vij .

Molecules
∑
Vij

N2 17.9
O2 16.6

The Diffusion coefficient for a neutral molecule and electron for collisions between an electron of mass
me and neutral particles of mass m with number density n,becomes

νe,n =
4
3Nπσ

2
12

√
8kBT
πme

, (1.25)

Because
m1 ≡m�m2 ≡me , (1.26)

The equation 1.25 becomes for air (N2 +O2)

νe,n = 5.4×10−10N
√
T , (1.27)

With the use of the relation
De,n =

(me+m)kBT

memνe,n
' kBT

meνe,n
, (1.28)

Diffusion coefficient for a neutral molecule and an electron [48]:

De,n =
3kBT

4meNπσ2
12

√
πme

8kBT
=

3
16Nσ2

12

√
2kBT
πme

. (1.29)

Diffusion coefficient for charged particles:

The diffusion coefficient D for charged particles is (up to the first approximation)

D =
3
16

1
(N1 +N2)

√
2kBT (m1 +m2)

πm1m2

(2kBT
e2

)2 1
A1(2)

, (1.30)

where A1(2) denotes a slowly varying function of T and Ne which will be given later [48].

ν+− =
4
3

πe4(N1m1 +N2m2)

m1m2(m1 +m2)
√

2πk3
BT

3
A1(2) . (1.31)
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Diffusion coefficient for neutral particles and positive ions:

The diffusion coefficient of neutral and positive ions is calculated using the Einstein relation,

Din =
kBTi
e

µin , (1.32)

The ion temperature Ti which is assumed to be equal to the gas temperature Tg. The ion mobility
of ions i in neutral background n is calculated as

µin = 5.14×103
√
mn+mi

mnmi

Tg
P
√
αd

. (1.33)

The polarizability αd is tabulated in Table 1.6. The ion mobility in the mixture is again obtained
using Blancs law [50].
Table 1.6 presents numerical Value of the Polarizability.

Table 1.6 – Numerical Value of the Polarizability.

Species N2 O2 N O

αd(Å
3) 1.76 1.60 1.13 0.15

Diffusion coefficient for electron and positive ions particles:

The electron collision frequency with neutral particles is negligible compared to the collision frequency
with positive ions. If we consider the collision frequency of positive ions with respect to an electron,we
may use the following conditions: m+�me and N+ =N−+Ne ≡ (1+u)Ne where N−

Ne
= u is the ratio

of negative ion (N−) and electron concentrations if the gas as a whole is assumed to be electrically
neutral. Then, the general expression 1.31 can be written as:

De,+ =
4
3

πe4√
2πmek3

BT
3
A1(2)(1+u)Ne , (1.34)

If the number of negative ion is negligible u << 1,n+Ne and the electronic collision frequency is
proportional to the electronic density, the diffusion coefficient for electron and positive ions is:

De,+ =
kBT

meνe,+
=

3
16

1
(1+u)Ne

√
2kBT
πme

(2kBT
e2

)2 1
A1(2)

. (1.35)

The function A1(2):

The nature of A1(2) must be known in order to perform an actual calculation of the collision frequency.
This slowly varying function of temperature and density may take different forms depending upon the
assumed mean collision distance. The expression given by CHAPMAN and COWLING (1939) is, to
the first approximation,

A1(2) = loge(1+ ν2
01) , (1.36)

where
ν01 =

4dkBT
e2 , (1.37)
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with d = mean distance between "pairs of neighboring molecules. "If we define d being equal to
(2Ne)−1/3,

A1(2) = loge[1+(
4kBT

e2(2Ne)1/3 )
2] , (1.38)

And if
1� 4kBT

e2(2Ne)1/3 , (1.39)

The correction term A1(2) is
A1(2) = 2loge

( 4kBT
e2(2Ne)1/3

)
, (1.40)

If we define d being equal to Debye’s length

d=

√
kBT

8πe2Ne
, (1.41)

the correction term must be written

A1(2) = loge[1+[
4√

πNee2 (
kBT

2 )3/2]2] , (1.42)

and with the condition 1.39
A1(2) = 2loge(

4√
πe.Ne

(
kBT

2 )3/2) , (1.43)

If we define d being equal to e2

hν , where ν, is the radiation frequency and h is Planck’s constant, 1.37
becomes

ν01 =
4kBT
hν

, (1.44)

and the correction term is
A1(2) = loge[1+(

4kBT
hν

)2] , (1.45)

In order to determine the numerical values of the electron collision frequencies in the upper ionosphere,
we use the formulas (11) and (18). We obtain a collision frequency [48].

νe,+ = [34+ 8.36log10

(
T 3/2
√
Ne

)
]
Ne

T 3/2 . (1.46)

In multi-components diffusion in gas mixture the diffusion coefficient Dj of particle j in the background
gas mixture is then approximated using Blank’s law [50]:

Ptot
Dj

=
∑

i=background

Pi
Dij

. (1.47)

1.4 The plasma

Plasma is often called the 4th state of matter (99 % of the universe). A plasma is essentially a gas
that consists of free positive and negative ions and electrons, gas atoms and molecules in the ground
or any higher state of any form of excited species, but the overall state of the plasma is neutral. It can
exist over an extremely wide range of temperature and pressure. It can be produced at low-pressure or
atmospheric pressure by coupling energy to a gaseous medium by several means such as mechanical,
thermal, chemical, radiant, nuclear, or by applying a voltage, or by injecting electromagnetic waves
and also in many processes it may be formed during laser welding near the weld pool. In welding, the
luminosity of the plasma is a very important property. The light emitted from the plasma should give
us information about plasma parameters (Ne,Te) [17,30,51].
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1.4.1 Distribution functions for equilibrium state

The four distribution functions to describe the plasma system are:

Boltzmann distribution function:

The Boltzmann distribution gives the population ratios between the different energy of excited states
i and j at the same species [52,53]:

Nj

gj
=
Nk

gk
exp

(
−Ej−Ek

kBTa

)
. (1.48)

Saha distribution function:

Saha ditribution gives the ratio of populations density of any excited state (m) belongs to some
ionization stage of charge (z) with excitation energy (Ezm) above the ionization of the previous stage
(z− 1) with ionization energy Ez−1

i of the same atomic species at thermodynamic equilibrium. The
following formula gives an approximate expression of this function in terms of three plasma parameters
(Ne,Te,No) [52–55]:

N z
m

gzm
=

(
NeN

z−1
o

2U z−1
o

)[
h2

2πmekBTe

]−3/2

exp−
(
Ez−1
i +Ezm
kBTe

)
. (1.49)

where: Ezm is the excitation energy of state m

Maxwell distribution function:

This function describes the velocity distribution of particles f(v) in plasma [7,52–56]:

f(v)dv = 4πv2
[

me

2πkBTe

]3/2
exp

(
− mev

2

2kBTe

)
dv . (1.50)

Planck distribution function:

At thermodynamic equilibrium, Planck function describe the distribution of spectral light in the
medium over the different wavelengths. It describing the spectral luminescence of a black body at
temperature T , is given by [51–55,57,58]:

Iλ(T ) =
2hc2

λ5

(
exp

(
hc

λkBT

)
−1
)−1

. (1.51)

1.4.2 Equilibrium states in plasma

Plasma in Complete thermodynamic equilibrium (CTE):

The plasma are in complete thermodynamical equilibrium (CTE) when Te = Ta = Ti which enable us
to use either of the four distribution functions to describe the plasma system [52,54,55].
Where Te, Ta and Ti are electron temperature, atomic excitation temperature and ion temperature
respectively.
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Plasma in Local Thermodynamic Equilibrium (LTE):

At an electron density range (From 1016 to 1018cm−3) and temperatures of around 1eV , the equilibrium
condition can also be applied between the different species of corpuscular nature but not for the
radiation field of wave nature. In this state Te = Ta = Ti [52, 54,55].

Plasma in Partial Local Thermodynamic Equilibrium (PLTE):

At a rather lower electron density regimes (1016 > Ne > 109cm−3), the electron gas in plasma tends
to divide the energy levels of the atoms into two main categories. One at the lower states where’s
the transition probabilities are large with respect to the collision frequency, and hence the radiative
processes control the population and depopulation of such states. This is in contrast to the upper states
at which the energy differences are small enough that the transition probabilities are smaller than the
collision frequency. Therefore, the upper states can simply retain equilibrium with the surrounding
particle species and hence they are drifting to the LTE state, while the lower ones are drifting out of
the equilibrium. We call this state as partial local thermodynamic equilibrium (PLTE). The Maxwell,
Boltzmann and Saha equations with equal temperatures are still applicable to the upper states only,
and deviations from real (measured) values was observed at the lower lying states.

Plasma Outside TE:

Non-equilibrium plasma is a plasma which is not in thermodynamic equilibrium, because the electron
temperature Te is much hotter than the temperature of heavy species (ions and neutrals) [59]. An
example of non-equilibrium plasma is the mercury-vapor gas within a fluorescent lamp, where the
"electron gas" reaches a temperature of 20,000 K (19,700 ◦C; 35,500 ◦F ) while the rest of the gas,
ions and neutral atoms, stays barely above room temperature.

1.4.3 Specific Equilibrium states in plasma

Corona Equilibrium (corona state):

Corona state classified of non thermal plasma (Non equilibrium plasma); Te ≥ Ti ≈ Tg = 300....103K,
and low electron density Ne ≈ 1016cm−3, will lead to a very small collision frequency with respect to
radiative transition probabilities even for the upper states. A characteristic feature for this state is
that no two temperatures are equal for two different species [51,52,57].

Collisional-Radiative (CR) model:

In a collisional-radiative (CR) model, the population distribution at any point does not depend only
upon plasma parameters at the point. The local population distribution is determined by balancing
collisional processes of local nature and radiative processes of non-local nature.
In a CR model, atomic level populations are calculated by solving multi-level, atomic rate equations
self-consistently with a radiation field.
The radiation field which induces stimulated radiative processes is computed from a radiation transport
equation, which brings in non-local contributions to population distribution calculations. Due to such
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non-local effects arising from radiative processes, population distributions can have a spatial gradient
even when there is no gradient in plasma parameters such as temperature and density.

1.5 Some information contained in emission spectral lines

1.5.1 Spectral line radiation

Line radiation is an electron transitions from a level of principal quantum number i and energy Ei to
a level j of energy Ej , the frequency νij of this tranition is

hνij = Ei−Ej , (1.52)

For allowed transitions the usual selection rules of spectroscopy have to be obeyed [60]. The total
power Iλ radiated in a spectral line of frequency ν per unit source volume and per unit solid angle is:

Iλ

(
Watt

m3Sr

)
=
hcAji
4πλj

Nj

gj
, (1.53)

where Aji is the atomic transition probability or Einstein coefficient for spontaneous emission. For a
homogeneous light source of length l and for the optically thin case, where all radiation escapes, the
total emitted line intensity (SI quantity: radiance) is [61]:

Iline = Iλl =
∫ +∞

0
I(λ)dλ=

hcAjil

4πλj
Nj

gj
, (1.54)

This equation can be re-written in terms of the probable number of emitting atoms per unit volume
Nj . If the emitting atoms is in thermodynamic equilibrium with the surrounding (CTE, LTE or PLTE),
then we can replace the term by the corresponding value given by Boltzmann equation 1.48, hence
can be expressed in terms of electron temperature Te provided that is in the units of

(
Watt/m3Sr

)
:

Iλ =
hcAji
4πλj

(
Nj

gj

)Boltzmann
=
hcAji
4πλj

(
N0
U0

exp
(
− Ej
kBTe

))
, (1.55)

Moreover, Eq. 1.53 can be further being modified “in case of using ionic lines instead ” by replacing(
Nj

gj

)
by the corresponding value give by the Saha relation :

Iλ =
hcAji
4πλj

(
Nj

gj

)Saha
=
hcAji
4πλj

(
N2
e

2U z−1
0

)[
h2

2πmekBTe

]−3/2

exp
(
−E

z−1
i +Ez−1

m

kBTe

)
. (1.56)

In that case the spectral radiance Iλ is expressed in terms of electron density and temperature [54].

1.5.2 Line Strengths

The atomic transition probability Aji and oscillator strength fij are the principal atomic quantities
related to line intensities. In theoretical work, the line strength S is also widely used

S = S(i,j) = S(j, i) =|Rij |2 , (1.57)

R2
ij =

3h̄
2mea2

0ωij

(2Jm+ 1)
(2Ji+ 1) fij . (1.58)

where: Rij involves an integration over spatial and spin coordinates of all N electrons of the atom or
ion [7, 11].
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1.5.3 Selection rules

Electric dipole approximation is the first term of the approach of radiative transition which induces
or is emitted during transitions between different atomic energy levels [62]. The selection rules for
discrete radiative transitions in electric dipole approximation are [61]:

Table 1.7 – Selection rules for discrete transitions.

Electric dipole E1 ("allowed")
∆J = 0,±1 (except 0 9 0)
∆M = 0,±1 (except 0 9 0 when ∆J = 0)
Parity charge
One electron jumping, with ∆l = ±1 , ∆n arbitrary
∆S = 0
∆L= 0,±1 (except 0 9 0) (except 0 9 0)

1.5.4 Relationships Between Aji, fij, and Sij

The relationships between Aji, fij , and Sij for electric dipole (E1, or allowed) transitions; see table
1.7 are [61]:

Aji =
2πe2

mecε0λ2
gi

gj

fij =
16π3

3hε0λ3gj
Sij , (1.59)

For Aji in s−1 and λ in Å

Aji =
6.6702×1015

λ2
gi
gj
fij =

2.0261×1018

λ3gj
Sij , (1.60)

and for line strength Sij and ∆E in atomic units,

fij =
2
3

∆E
gi
Sij , (1.61)

and for the lower (upper) term of a multiplet,

gi(j) =
∑
Ji(j)

(2Ji(j)+ 1) = (2Li(j)+ 1)(2Si(j)+ 1) . (1.62)

1.6 Spectral line shapes,Widths,and Shifts

Observed spectral lines are always broadened, partly due to the finite resolution of the spectrometer
and partly due to intrinsic physical causes. [61]. The broadened widths of lines have been used as
diagnostic tools for plasmas. Line broadening is a function of physical parameters of the emitting
particles such as pressure and temperature. Without an external influence on line broadening, a line
has a finite width due to natural broadening. In most cases, however, the natural broadening is
negligible, less than 10−4 Å. Of the various line-broadening mechanisms, Doppler broadening and
Stark broadening of lines have been considered important. Doppler broadening generally prevails
at high temperatures and low electron densities, while Stark broadening prevails for the opposite
conditions.
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1.6.1 Doppler Broadening

The motion of an emitting particle toward or away from an observer induces a wavelength shift of the
emitted line, that is, a Doppler shift. Doppler broadening is the average result of Doppler shifts of line
radiation produced by thermal motion of the emitting atoms or ions:

∆λ
λ

= ±vs
c

, (1.63)

assuming the Maxwellian velocity distribution of particles.

vth =

√
(
2kBT
m

) , (1.64)

∆λD(Å) = 7.17×10−7λ0(Å)

√
T (K)

m (amu)
. (1.65)

1.6.2 Stark Broadening

The Stark effect in plasmas is due to collisions with fast electrons and may be slow ions, with approx-
imate expression for neutral emitters [57]:

∆λS (HWHM ) = 2 [1+ 1.75A (1−0.75R)] we

N ref
e

Ne . (1.66)

In this equation, we is the electron-impact (half) width or electron Stark broadening parameter, R is
the ratio of the mean distance between ions and the Debye’s length [57,63].
Reference electron density N ref

e is usually of the order of 1016 or 1017 cm−3.

Theoretical models of Griem (1974), STARK-B web site:

Stark broadening parameters of non-hydrogenic neutral and ion lines is a good plasma characterization
for optimum application. Two sets of theoretical data are usually used in conjunction with experimental
results. Both sets of theoretical data are the result of semi-classical calculations, one performed by
Griem and coworkers, (G74) [14] and the other calculated by Dimitrijević, Sahal-Brèchot and coworkers
STARK-B website [13]. The results of these two semi-classical calculations differ and the overlapping
data for same plasma conditions are not identical. This is the result of different approximations used
for data evaluation and, in some cases, the difference is introduced by improved set of energy level
data used by DSB, which were not available at the time of (G74) [14] calculations. These authors used
an impact approximation for both, electrons and perturbing ions [23].

1.6.3 Van der Waals broadening

Arises from the dipole interaction of an excited atom with the induced dipole of a ground state atom.
An approximate formula for the FWHM, strictly applicable to hydrogen and similar atomic structures
only is [61]:

∆λW1/2 ' 3.0×10−16λ2C2/5
6

(
T

µ

)3/10
N , (1.67)
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where the interaction constant C6 may be roughly estimated as follows:

C6 = Ck−Ci , (1.68)

with
Ci(k) = (9.8×1010)αdR

2
i(k) . (1.69)

where: k, i, µ, N represent the upper and lower levels, the atom-perturber reduced mass in units of
uma, the perturber density respectively. αd is the polarisibility in cm3 and R2

i(k) is transition matrix
element in a2

0

1.6.4 Natural Broadening

The natural width of a spectral line results from a radiation damping effect during a radiation emission
process, the Natural broadening is negligible [61]. An atom at excited state ’m’ have a life time τmthe
principle of Heisenberg gives the energy interval as

∆Em =
h

2πτm
, (1.70)

Knowing that hνnm = Em−En, for the transition m→ n, there is some dispersion of frequencies
around of νnm, the natural width is [53]:

∆νN =
1
τm

+ 1
τn

2π . (1.71)

1.6.5 Spectral Line Shape and FWHM

The line shape of emitted spectral line is the functional relation between spectral radiance over a line
centered at with wavelength (λ0). This shape describes the distribution of the number of the light
photons around the central emission wavelength (λ0).
The distributions of a line shape can be a Lorentzian (Inhomogeneous distribution) or Gaussian
(Homogeneous distribution) [55].
The Homogeneous Gaussian line shape can be expressed as:

G (λ) =
I0√
π∆λD

exp
[
−
(
λ−λ0
∆λD

)2]
, (1.72)

Lorentzian distribution can be described by:

L (λ) =
I0
π

∆λS
(λ−λ0)

2 +(0.5∆λS)
2 , (1.73)

where we can take:
I0 = AjiN0gj

hc

λ
exp

(
− Ej
KBT

)
, (1.74)

The emitted spectral line contains contributions of Gaussian and Lorentzian shapes, theoretically
known as the Voigt line shape, which is the integration of the convolution function between Gaussian
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and Lorentzian functions. In other words, it is the multiplication of the Inverse Fourier Transform of
both functions [55].

V (λ;∆λD;∆λS) =
∫ +∞

−∞
G (λ′;∆λD) .L (λ−λ′;∆λS) .dλ′ , (1.75)

The Voigt function is also described by the following set of equations:

V (υ−υ0) = AK(x,y) , (1.76)

where:

A=
1
γD

√
ln(2)
π

, (1.77)

K(x,y) = y

π

∫ +∞

−∞

exp(−t2)
y2 +(x− t)2dt , (1.78)

y =
γL
γD

√
ln(2) , (1.79)

x=
ν−ν0
γD

√
ln(2) , (1.80)

where t is a variable of integration [64].
Also can be described by a very simple function [58]:

V (ν) =
1√
π

1
∆νV

exp
{
−
[
ν−ν0
∆νV

]2
}

, (1.81)

where [55,58]:
∆λ2

V ≈ ∆λ2
D+∆λ2

S . (1.82)

1.7 Measurement of the plasma parameters using spectroscopy Tech-
nique

The spectral diagnostic technique is an effective way to study the physical parameters of plasma
(Ne,Te) the value of the electron density can be used to determine the plasma state of equilibrium,
and hence the required distribution functions, while the temperature determines the strength of the
variation of these functions [54,65].
Light emitted by the plasma is very rich in information. Optical emission spectroscopy OES-technique
can determine characteristic quantities of plasmas such as Ne, Te ... etc, by analyzing the emitted
light from plasma without any perturbing tools. These spectroscopic methods of optical emissions are
based on the measurement of spectral lines intensity, widths (FWHM) and shifts... etc [52,54,55].

1.7.1 Measurement of electron density by Stark broadening

Among the OES methods proposed for electron density determination, the broadening of emission
lines due to the Stark effect has been the most widely used method. Stark broadening of isolated
spectral lines of non-Hydrogenic neutral atoms and ions is due mainly to electrons. As a consequence,
the contribution of quasi-static ions was generally neglected and hence the Lorentzian HWHM can be
approximated as [52,54,55].

∆λS (HWHM ) =
ωe

N ref
e

Ne . (1.83)
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where: ωe is electron-impact (half) width or Stark broadening parameter wich is calculated in [7].
N ref
e usually of the order of 1016 or 1017.

1.7.2 Measurement of electron temperature using the Boltzmann plot method

In the spectral diagnosis of the welding plasma by the Boltmann plot method, there are a basic
assumption is that; the welding plasma is assumed to be optically thin and in local thermal equilibrium
(LTE). Taking the ratio of the spectral intensities of the two lines leads to following valid expression:

Iλ1
Iλ2

=

(
Aj1gj1
λj1

/
Aj2gj2
λj2

)
exp

(
Ej2−Ej1
kBTe

)
. (1.84)

The Boltzmann plot with −1
kBTe

as the rate of slope can be obtained. In the plasma satisfying the
assumption of LTE, the electron temperature Te is approximated to the electron excitation temperature
Texc. In order to reduce the error in the Boltzmann plot method, The following restrictions on the
chosen line pairs are summarized as [6]:

1. Be emitted from the same element.

2. Belong to the same ionization stage.

3. Wavelength difference should be very small.

4. Difference in excitation energy should be large (∆Ej ≥ kBTe).



Chapter

2
Modeling of statistical properties
of gas near weld plates

2.1 Introduction

We propose to study the statistical properties, as densities and temperatures of species, of a
gas near a surface during laser welding of metal plates. The surface temperature results from

the passage of a laser beam; it is taken given or calculated by other authors. The considered gas is
air (O2/N2) under atmospheric conditions. We propose to use the equations of the fluid model. For
numerical resolution we use the exponential scheme method. The considered species are electron, N+

2 ,
O+

2 , N2 and O2.

2.2 Physical hypotheses and mathematical modeling

2.2.1 Physical hypotheses

Figure 2.1 shows a simplified scheme of the gas (air: O2/N2) near the surface. As cited before, the
considered species are electron,N+

2 , O+
2 ,N2 and O2. We assume that the distribution of concentration

and temperature are one-dimensional (1D); They are function of the dimensional x. We propose to
use one-dimensional (1D) fluid model.
Far from the surface, we have atmospheric conditions for temperature Tamb, pressure P0 and densities,
the concentration rates are 20% O2 and 80% N2. The surface temperature is Tsur(t). We consider
that gas velocities are negligible, and the particles move by thermal velocity and diffusion phenomena
related to density gradients.

22
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Metal Gas

N2, O2,0 xXmax

e, N+
2 , O+

2 ,

Figure 2.1 – Simplified scheme of O2/N2 gas mixture near surface during Laser welding.

Figure 2.2 shows a distribution of this temperature. The chosen temperature, for our model is calcu-
lated by Lemkeddem et al. [66].
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Figure 2.2 – Calculated surface temperature by S. Lemkeddem et al. in (2018).

For our numerical application, number of species is 5 and the number of considered chemical reactions
is 6. The main reactions are shown in Table 1.1 of chapter 1. Table 1.2 of chapter 1 presents the
production (or consumption) rate R of each species per unit of time and per unit of volume.

2.2.2 Basic mathematical equations

The basic mathematical equations of our model are equations of particle continuity, electron energy
equation and heat equation for gas temperature. We add to this equation Poisson’s equation to calcu-
late the local electric field. As it’s was shown in chapter 1, and for one-dimensional (1D) fluid model,
we have the following equations. Expressions, calculation and data of transport coefficients for heat
equation and transport coefficients for continuity equation were presented with detail in chapter 1.
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2.3 Numerical model and boundary conditions

We use the Exponential Scheme (SG Scheme) to resolve the densities of electrons and ions and the
electron energy (electron temperature). For numerical resolution of the gas temperature and neutral
density equations, we use the Finite Difference Method (FDM), The two methods allow us to obtain
spatio-temporal properties. As mentioned in chapter 1, these methods have been used to solve equa-
tions of fluid model and for other applications [31, 40]. The application proposed in this thesis, laser
welding, is different from the fact that the regime is not stationary in time and the study of boundary
conditions is very complex.

2.3.1 Exponential scheme (SG Scheme)

To resolve the nonlinear coupled equations, we use the exponential scheme (SG Scheme) [40]. The
advantage of this scheme is its ability to switch between situations where either the diffusion component
of the particle flux is dominant. We use one-dimensional spatial mesh and the Finite Difference Method
(FDM) for numerical resolution. The continuity equation for electron and ions and the electron energy
equation (electron temperature) have general form of the equation 2.1. Fluxes of particles and electron
energy have general form of the equation 2.2 [40]:

∂N

∂t
+β

∂Jx
∂x

= R , (2.1)

where
Jx = −µsNEx−Ds

∂N

∂x
, (2.2)

Here N is the density, Jx is the flux and β is a constant, R is the source term.
For the electron: β = 1, Jx = Je, N =Ne, R= Re .
For the ion: β = 1, Jx = Ji, N =Nion, R= Rion .
For the electron energy: β =

5
3 , Jx = Jeε, N =

3
2NekBTe, R= Reε .

For the space, we introduce a mesh of Nx nodes along x, with nodes xi (i = 1, 2, 3, ..., Nx)
and space step ∆x = xmax/(Nx − 1). For the time, we introduce discrete times tn = (n− 1). ∆t,
(n= 1, 2, 3, ... ) and time step ∆t. The equations 1.10 and 2.1 take the forms:

∆x

(
Nn+1
i −Nn

i

∆t

)
+β

(
Jn+1
i+1/2−J

n+1
i−1/2

)
= ∆xRni , (2.3)

Electric field is calculated by direct method.(
Eni−1−Eni+1

∆x

)
=

e

ε0
(Nn

ion−Nn
e ) , (2.4)

Flux is discretized by the SG scheme as:

Jn+1
i+1/2 =

(
Nn+1
i+1 D

n
i+1−Nn+1

i Dn
i exp(X1)

) X1
∆x(1− exp(X1))

, (2.5)

Jn+1
i−1/2 =

(
Nn+1
i Di−Nn+1

i−1 Di−1 exp(X2)
) X2

∆x(1− exp(X2))
, (2.6)
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where:
X1 = −

sµi+1/2Ei+1/2
Di+1/2

= −2.e.s Ei+1/2
kB
(
Tni+1 +Tni

) , (2.7)

X2 = −
sµi−1/2Ei−1/2

Di−1/2
= −2.e.s Ei−1/2

kB
(
Tni +Tni−1

) . (2.8)

s= −1 for electrons and 1 for ions. By using the relations (2.5,2.6), we get the forms:

Ai,i−1N
n+1
i−1 +Ai,iN

n+1
i +Ai,i+1N

n+1
i+1 = Bi , (2.9)

where for i= 2,Nx−1:

Ai,i−1 = βDn
i−1

X2
∆x(1−exp(X2))

,
Ai,i = −β

(
Dn
i exp(X1)

X1
∆x(1−exp(X1))

+Dn
i

X2
∆x(1−exp(X2))

)
− ∆x

∆t ,
Ai,i+1 = βDn

i+1
X1

∆x(1−exp(X1))
,

Bi = ∆xRni +∆xN
n
i

∆t .

(2.10)

For i= 1 and for i=Nx we use boundary conditions.

2.3.2 Finite difference method (FDM)

For the gas temperature and neutral density equations we use the finite difference method (FDM)
for numerical resolution, The finite difference method (FDM) is the oldest among the discretization
techniques for partial differential equations. The derivation and implementation of FDM are partic-
ularly simple on structured meshes which are topologically equivalent to a uniform Cartesian grid.
The nodal value of the approximate solution at node in [67]. Finite difference approximations can be
derived through the use of Taylor series expansions.
Suppose we have a function f(x), which is continuous and differentiable over the range of interest.
Let’s also assume we know the value f(x0) and all the derivatives at x= x0.
The forward Taylor-series expansion for f(x0 +∆x) about x0 given by:

f(x0 +∆x) = f(x0)+
∂f(x0)

∂x
∆x+

∂2f(x0)

∂2x

(∆x)2

2!
+
∂3f(x0)

∂3x

(∆x)3

3!
+
∂nf(x0)

∂nx

∆xn

n!
+O(∆x)(n+1) ,

(2.11)
We can compute the first derivative by rearranging equation 2.11:

∂f(x0)

∂x
=
f(x0)−f(x0 +∆x)

∆x
− ∂

2f(x0)

∂2x

(∆x)2

2!
− ∂

3f(x0)

∂3x

(∆x)3

3!
, (2.12)

This can also be written in discredited notation as:

∂f(xi)

∂x
=
fi+1−fi

∆x
+O(∆x)2 , (2.13)

Here O(∆x) is called the truncation error, which means that if the distance ∆x is made smaller and
smaller, the (numerical approximation) error decreases as ∆x. This derivative is also called first order
accurate. The following equations are the Finite difference approximations of derivatives which we
need it in the calcul:

| ∂f(x)
∂x

|i=
fi+1−fi−1

2∆x
+O(∆x)2 , (2.14)
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| ∂
2f(x)

∂x2 |i=
fi+1−2fi+ fi−1

∆x2 +O(∆x)3 , (2.15)

| ∂
∂x

(
k
∂f(x)

∂x

)
|i=

ki+1/2
fi+1−fi

∆x −ki−1/2
fi−fi−1

∆x
∆x

+O(∆x)2 ≈ ki+1fi+1−2kifi+ki−1fi−1
∆x2 , (2.16)

∂f(t)

∂t
≈ fn+1

i −fni
tn+1− tn

=
fn+1
i −fni

∆t
, (2.17)

For neutral particles the mobility is set equal to zero [50]. The continuity equation for neutral density
and the heat temperature have the general form:

∂X

∂t
−α∂

2X

∂x2 = R , (2.18)

where:
For neutral density: X =N , α=DN , R= RN ,
For gas temperature: X = T , α= λ

ρ.Cp
, R= 0.

The discretization of heat and neutral concentration equations in space and time are presented as:

Ai,i−1X
n+1
i−1 +Ai,iX

n+1
i +Ai,i+1X

n+1
i+1 = Bi , (2.19)

Where (for i= 2, ...,Nx−1): 
Ai,i−1 = −αni−1

∆t
∆x2 ,

Ai,i =
(
1+ 2αni ∆t

∆x2

)
,

Ai,i+1 = −αni+1
∆t

∆x2 ,
Bi =Xn

i +∆xRni ,

(2.20)

For i= 1 and for i=Nx we use boundary conditions.
Introducing a mesh of N nodes along x designated xi with i= 2,3, ...,N −1 and ∆x=Xmax/(N −1),
and a mesh of nodes in time tn with n = 1,2, ..., spacing ∆t, and working forward in time, providing
an implicit method for the direct determination of the unknown temperatures and concentrations at
all nodes in each new time increment n+ 1. The equation 2.10 are similar to 2.20, they are a system
of coupled algebraic equations with simple tri-diagonal structure;

Xn+1
1

Xn+1
2

Xn+1
3
...

Xn+1
N

=


a1,1 a1,2 0 · · · 0
a2,1 a2,2 a2,3 · · · 0
0 a3,2 a3,3 · · · 0
...

...
... . . . ...

0 0 0 · · · aN ,N




Xn

1
Xn

2
Xn

3
...
Xn
N

 , (2.21)

Such matrix equation can be solved using standard numerical linear algebra methods like Thomas or
gauss-seidel algorithm.
For computational stability, the Mesh fourier Number F = α

∆t
∆x2 must be less than 0.5. The simplicity

of the one-dimensional approach makes the calculation quick and easy in common computational
software like Fortran, Matlab, Mathematica ... etc. [3]. A fortran program was developed. We chose
iteratif Thomas algorithm to resolve the equations discretized [68]:

b1x1 + c1x2 = d1 ,
aixi−1 + bixi+ cixi+1 = di , i= 2, ...imax−1 ,
aimaxximax−1 + bimaxximax = dimax ,

(2.22)
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x1 and ximax should be evaluated to find αi and βi as:

αi =


ci
bi

, i= 1 ,
ci

bi−aiαi−1
, i= 2, ...imax−1 ,

(2.23)

βi =


di
bi

, i= 1 ,
di−aiβi−1
bi−aiαi−1

, i= 2, ...imax−1 ,
(2.24)

we find:

{
ximax = βimax ,
xi = βi−αixi−1 , i= imax−1, ...1 .

(2.25)

2.3.3 Boundary and initial conditions (BIC)

In our simulation, the ambient concentration and temperature are located at x= xmax, and the surface
concentration and surface temperature are located at x= 0.
Table 2.1 summarizes the boundary conditions and initial conditions in our calculation.

Table 2.1 – Boundary and initial conditions.

limit conditions initial conditions
symbol at plate at (x= 0) at (xmax) at (t= 0)
Ne(cm−3) ∂Ne(t)

∂x = 0 Ne(0) 107

N+
2 (cm−3)

∂N+
2 (t)
∂x = 0 N+

2 (0) 0.8.107

O+
2 (cm

−3)
∂O+

2 (t)
∂x = 0 O+

2 (0) 0.2.107

N2(cm−3) ∂N2(t)
∂x = 0 N2(0) 0.8N0

O2(cm−3) ∂O2(t)
∂x = 0 O2(0) 0.2N0

Te(K) ∂Te(t)
∂x = 0 Te(0) 300.

Tg(K) T (t) T (0) 300.
E(V /cm) / 0 /

2.3.4 Diagram

The flow-diagram of steps in the mathematical modeling is shown in Figure. 2.3. We have to note
that, Xf=(Tg, or Te, or Ne, or N2, or O2, or N+

2 , or O+
2 ). We have a loop on iterative calculation

(igs= igs+ 1) and another loop on time (it= it+ 1).
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Figure 2.3 – Flow-diagram of the modeling of statistical properties
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Figure 2.3 shows presentation of the model and the numerical procedure based on the exponential
scheme method. The studied species are N2, O2, N+

2 , O+
2 and electrons and temperatures.



Chapter

3
Electronic Stark broadening using
an analytical model based on limits
of impact parameter

3.1 Introduction

Many problems have been solved by the very active experimental and theoretical research on Stark
broadening that began in the 1950’s [14]. Stark broadening of spectral lines by plasmas has been

used as an important plasma diagnostic tool for a number of years. Many of this work was concerned
the Stark broadening of hydrogen lines. Because of the large linear Stark effect, these studies were
useful for diagnostic in plasmas. However, it is not always convenient to seed a plasma with hydrogen,
and sometimes it is not possible to do so. Further, because of the large Stark effect, hydrogen lines
may not be useful for diagnostic purposes; since they become so broad at high electron densities that
it is difficult to determine a line shape because of interference with neighboring lines. Therefore, there
has been interest in the Stark broadening of non-hydrogenic lines of neutrals and ions [69].
In general, Stark broadening tends to be important for lines of allowed electric dipole transitions. When
Stark widths are large, collision induced transition rates are large as well, and relative populations
of neighboring levels are not negligible. Intensities of so-called forbidden lines become not negligible
(because of the microfield of ions). In an electric field, a linear Stark effect exists for hydrogen; for
all other atoms the interaction is quadratic [28]. In plasmas, the Stark effect is due to interaction of
the emitting atoms (or ions) with microelectric fields produced by electrons and ions. Generally, this
interaction leads to spectral line shift and broadening (width) of the upper emitting state [57].
Stark widths and shifts are normally computed from two extreme approximations, in general, the
impact theory and the quasi-static theory. Electron collisions effect can be presented by electronic
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collision operator [14,70]. The basic concept of the impact theory is that a wave train of emitted light
is perturbed by instantaneous impacts of charged particles (usually electrons) and cut completely into
a number of smaller independent wave trains [57]. It takes into account nonadiabatic effects due to the
electron collisions [71]. The line profile is closely approximated by a Lorentz profile. The impact theory
is usually used to treat collisions with electrons. The quasi-static theory considers the emitting parti-
cles to be under the continuous influence of perturbers during the whole emission process. Perturbing
particles are assumed to move so slowly during an emission that the perturbing field is assumed to
be quasi-static. The quasi-static theory is used to treat the heavy, slowly moving ions. Comparison
between experiments and theories indicates that both ions and electrons should be considered in com-
puting Stark widths [57]. The experimentally observed line shapes are usually the result of several
broadening factors from which the Stark profile component has to be isolated and retrieved. While the
experiments reporting plasma broadening data are usually designed so as to have Stark broadening
as the dominant cause of the width, the conditions can rarely be made so ideal that all broadening
factors become insignificant. When line shapes are used for plasma diagnostic purposes, in most of
the cases, one cannot change plasma conditions so the contribution of other broadening mechanisms
has to be carefully estimated and, if necessary, measured widths corrected. Stark broadening is of
particular interest for a large number of problems which concern laboratory plasma spectroscopy and
astrophysics as well.
In this chapter, we describe simple method for calculation the contribution of electrons to the broaden-
ing using the impact theory which takes into account nonadiabatic effects due to electron collisions [71].
We neglect the contribution of ion to the broadening to the widths of isolated lines; ion contribution is
usually less than 20% for many spectral lines [72]. The corresponding profiles are, therefore, of disper-
sion (Lorentz-Weisskopf) type. Because of the long-range nature of the (dipole-monopole) interaction
between emitting atoms and perturbing electrons, perturbation theory can be used to calculate the
dominant, terms in widths and shifts of these dispersion profiles. We apply this theory to the isolated
neutral lines of magnesium. The isolated lines are the lines whose half-width is much smaller than the
separation between the perturbed level α and the next interacting level α′ that is to say λwidth<<λαα′
(λαα′ is the separation between levels α and α′ whereas λwidth is the half width of the spectral line).
Practically all the broadening is caused by interactions between the upper state of the line in question
and its neighbors, and lower state interactions can be neglected [72].

3.2 Theoretical Implementation

To calculate the electronic broadening using electronic collision operator in impact approximation, we
have to calculate the contributions of all transitions that respect the selection rules in electrical dipole
approximation in particular ∆J = 0,±1. But, it is sufficient to keep a few neighbor states; we can take
less than five states [73]. In the calculation of the latter, we need the minimum value of the impact
parameter ρmin defined by the criteria of the unitarity of S-matrix that gives [14]:

(ρmin)
2 =

2e4

3h̄2V 2a
2
0
∑
α′

R2
αα′

√
A2(zαα

′
min)+B2(zαα

′
min) , (3.1)
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where R2
αα′ is the dimensionless matrix element of the position operator of the bounded electron, a0

is the Bohr radius and:
zαα

′
min = ωαα′

ρmin
V
≡ ωαα′tmin , (3.2)

For a velocity V of free electron and a angular frequency separation ωαα′ between the sublevels α and
α′, we have:

t2min =
2
3

(
h̄

meV 2

)2∑
α′

R2
αα′

.
√
A2(ωαα′tmin)+B2(ωαα′tmin) , (3.3)

such that [14]:
A(z) = z2

[
K2

0 (z)+K2
1 (z)

]
≡ z2a(z) , (3.4)

B(z) = πz2 [K0(z)I0(z)−K1(z)I1(z)] ≡ πz2b(z) , (3.5)

Using these definitions, and the formula (3.15) of the paper [74] between the oscillator strength fαα′
and Rαα′ (Jm refers to the value of the angular momentum of the lower state among the sublevels α
and α′):

R2
αα′ =

3h̄
2mea2

0ωαα′

(2Jm+ 1)
(2Jα+ 1) fαα

′ , (3.6)

we obtain, the following relation between the minimum of the impact parameter and the velocity of
the free colliding electron: (

me

h̄

)3
V 4 =

∑
α′

Fα,α′ωαα′ .√
a2(ωαα′tmin)+π2b2(ωαα′tmin) , (3.7)

where we have, for lightening the subsequent equations, defined:

Fα,α′ =
(2Jm+ 1)
(2Jα+ 1)

fαα′

a2
0

, (3.8)

To find the minimum of the impact parameter ρmin, we have to solve the last equation to get tmin as
function of V then we obtain ρmin = V tmin. To reach this goul, we have studied deeply the function√
a2(z)+π2b2(z); we conclude that the function has two different behaviors with respect z < 1 or

z > 1. Then we define a critical velocity Vc, by putting ωαα′tmin = 1 in the equation (3.7) as:

Vc = 0.94907
(
h̄

me

)3/4(∑
α′

Fα,α′ωαα′

)1/4

, (3.9)

By defining the reduced critical velocity vc (with dimensionless unit):

vc =
√

me

2kBTe
Vc , (3.10)

we obtain:

vc = 0.94907
(∑
α′

a2
0Fαα′

EH
kBTe

h̄ωαα′

2kBTe

)1/4

, (3.11)
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where EH = e2/(2a0) is the fundamental Bohr energy. Going back now to solve the equation (3.7):
the square root can be replaced, with a good approximation, by 1/(ωαα′tmin)2 for ωαα′tmin < 1 and
by (4/5)/ (ωαα′tmin)

3 for ωαα′tmin > 1. In the case of ωαα′tmin < 1, where is V < Vc, we have:

t2min =
1
V 4

(
h̄

me

)3∑
α′

Fαα′

ωαα′
, (3.12)

or, by taking the square root:

tmin =
1
V 2 (

h̄

me
)3/2(

∑
α′

Fαα′

ωαα′
)1/2 , (3.13)

and the minimum of impact parameter ρ(1)min = V tmin for V < Vc:

ρ
(1)
min =

1
V
(
h̄

me
)3/2(

∑
α′

Fαα′

ωαα′
)1/2 , (3.14)

In the case of ωαα′tmin > 1, where is V > Vc , the equation (3.7) takes the following formula:(
me

h̄

)3
V 4 =

∑
α′

Fα,α′ωαα′
(4/5)

(ωαα′tmin)
3 ,

(3.15)

that is to say:

tmin =

[
4

5V 4 (
h̄

me
)3∑

α′

Fαα′

ω2
αα′

]1/3

, (3.16)

and the minimum of impact parameter ρ(2)min, for the case V > Vc, is given by:

ρ
(2)
min =

(
h̄
me

)
V 1/3

(
4
5
∑
α′

Fαα′

ω2
αα′

)1/3

. (3.17)

Once all necessary parameters are ready, we can compute the contribution of strong collisions (for
impact parameter less than ρmin) and of weak collisions (for impact parameter great than ρmin).

3.3 Strong Collision Contribution

To compute the strong collisions contribution to collision operator, we use Maxwell’s distribution of
the velocities f(V ):

f(V )d3V = 4πV 2
(

me

2πkBTe

)3/2
exp(−meV

2

2kBTe
)dV , (3.18)

so that, we have [71]:

φstrongα = −πNe

∞∫
0

V ρ2
minf(V )d3V (3.19)

= −4π2Ne

(
me

2πkBTe

)3/2 ∞∫
0

V 3ρ2
min exp(−meV

2

2kBTe
)dV , (3.20)

By expliciting the integral, in two regions with respect the expressions of the impact parameter given
by (3.14) and (3.17), we find:

φstrongα = φstrong1α +φstrong2α , (3.21)
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such that:
φstrong1α = −4π2Ne

(
me

2πkBTe

)3/2 ∫ Vc

0

(
ρ
(1)
min

)2
V 3 exp(−meV

2

2kBTe
)dV ,

and
φstrong2α = −4π2Ne

(
me

2πkBTe

)3/2 ∫ ∞
Vc

(
ρ
(2)
min

)2
V 3 exp(−meV

2

2kBTe
)dV ,

or more explicitly:

φstrong1α = −4π2Ne

(
h̄

me

)3( me

2πkBTe

)3/2

(∑
α′

Fαα′

ωαα′

)∫ Vc

0
V exp(−meV

2

2kBTe
)dV , (3.22)

and

φstrong2α = −4π2Ne(
me

2πkBTe
)3/2(

h̄

me
)2

(
4
5
∑
α′

Fαα′

ω2
αα′

)2/3 ∫ ∞
Vc

V 7/3 exp(−meV
2

2kBTe
)dV , (3.23)

When we perform the integrals in formulas (3.22-3.23), we find:

φstrong1α = −2
√
πNe

(
h̄

me

)3( me

2kBTe

)1/2

(∑
α′

Fαα′

ωαα′

)(
1− exp(−meV

2
c

2kBTe
)

)
, (3.24)

φstrong2α = −4π2Ne

(
me

2πkBTe

)3/2( h̄

me

)2

(
4
5
∑
α′

Fαα′

ω2
αα′

)2/3

F (q,Vc) , (3.25)

where:

F (q,Vc) =
∫ ∞
Vc

V 7/3 exp(−meV
2

2kBTe
)dV

=
kBTe
me

V 4/3
c exp(−εc)+

1
3

(2kBTe
me

)5/3
Γ(

2
3,εc) . (3.26)

and Γ(a,x) is a non-complete gamma Euler function and εc = (meV
2
c )/(2kBTe). Formulas (3.24-3.25)

are the key formula to get the contribution of strong collisions to the broadening of the level α by
electron collisions.

3.4 Weak Collision Contribution

Recall that the minimal impact parameter ρmin has two expressions ρ(1)min or ρ(2)min with respect to the
colliding electron if it has a velocity less or greater than the critical velocity Vc. We take the maximum
of the impact parameter that correspond to the Debye length [56,75], and we have:

z
(1,2)
min =

ωαα′

V
ρ
(1,2)
min , zmax =

ωαα′

V
λD , (3.27)
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from which, we can write, the weak collisions contribution to the collision operator as Griem (1962) [71]
in the hydrogen-like approximation, as:

φweakα =
16
√
π

3 Ne

√
me

2kBTe

(
h̄

me

)2∑
σα′

rα,α′
σ rα

′,α
σ (3.28)∫ ∞

0
vdv exp(−v2)

∫
zdz

[
(K0(z))

2 +(K1(z))
2
]
,

The integration over z is between zmin and zmax defined by (3.27). By separating the integral over
two regions (v < vc and v > vc: here v is a dimensionless velocity v = V

√
m/2kBTe and vc is given by

(3.11) and doing the sum over the components of the position vector, we find

φweakα =
16
√
π

3 Ne

√
me

2kBTe
(
h̄

me
)2∑

α′

R2
αα′

∫ vc

0
vdv exp(−v2)

∫ zmax

z
(1)
min

zdza(z)

+
∫ ∞
vc

vdv exp(−v2)
∫ zmax

z
(2)
min

zdza(z)] , (3.29)

where a(z) is defined by the formula (3.4). By using (3.6 ) and (3.8) and after integrating over z, we
obtain:

φweakα =
3
2Q

∑
α′

Fαα′

ωαα′
[
∫ vc

0
vdv exp(−v2)Bes1(v,ωαα′)+

∫ ∞
vc

vdv exp(−v2)Bes2(v,ωαα′)] , (3.30)

where Q, Bes1(v,ωαα′) and Bes2(v,ωαα′) are given consecutively by:

Q=
16
√
π

3 Ne

√
me

2kBTe

(
h̄

me

)3
, (3.31)

Bes1 = Bes(zmax)−Bes(z
(1)
min(v,ωαα′)) , (3.32)

Bes2 = Bes(zmax)−Bes(z
(2)
min(v,ωαα′)) , (3.33)

and Bes(z) = zK0(z)K1(z). If we neglect the terms coming from zmax(because λD >> ρmin and the
fact that the function xK0(x)K1(x) is strongly decreasing function), we find φweakα = φweak1

α +φweak2
α

such that:

φweak1
α '−Q

∑
α′

3
2
Fαα′

ωαα′∫ vc

0
vdv exp(−v2)Bes(z

(1)
min(v,ωαα′)) , (3.34)

and:

φweak2
α '−Q

∑
α′

3
2
Fαα′

ωαα′∫ ∞
vc

vdv exp(−v2)Bes(z
(2)
min(v,ωαα′)). (3.35)

To compute the formulas (3.34) and (3.35), we have to explict the two quantities z(1)min(v,ωαα′) and
z
(2)
min(v,ωαα′). The first quantity is based on formula ( 3.14) and the second on the formula ( 3.17). In
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fact we have:

z
(1)
min(v,ωαα′) =

ωαα′

V
ρ
(1)
min

=
1
v2
meωαα′

2kBTe

(
h̄

me

)3/2(∑
α′

Fαα′

ωαα′

)1/2

,

=

√
2
v2

∆Eαα′
2kBTe

(∑
α′

a2
0Fαα′

EH
∆Eαα′

)1/2

=
Pαα′

v2 . (3.36)

where we have defined:

Pαα′ =
√

2∆Eαα′
2kBTe

(∑
α′

a2
0Fαα′

EH
∆Eαα′

)1/2

,

and:

z
(2)
min(v,ωαα′) =

ωαα′

V
ρ
(2)
min

=
ωαα′(

2kBTe
me

)2/3

(
h̄
me

)
v4/3

(
4
5
∑
α′

Fαα′

ω2
αα′

)1/3

, (3.37)

or equivalently:

z
(2)
min =

1
v4/3

(
∆Eαα′
2kBTe

)(
h̄

e2

)2/3(2kBTe
me

)1/3

(
16
5
∑
α′

a2
0Fαα′

(
EH

∆Eαα′

)2
)1/3

=
1

v4/3

(
∆Eαα′
2kBTe

)(
kBTe
EH

)1/3

.
(

16
5
∑
α′

a2
0Fαα′

(
EH

∆Eαα′

)2
)1/3

≡ Λαα′

v4/3 . (3.38)

where:

Λαα′ =

(
∆Eαα′
2kBTe

)(
kBTe
EH

)1/3

.
(

16
5
∑
α′

a2
0Fαα′

(
EH

∆Eαα′

)2
)1/3

. (3.39)

To obtain (3.36) and (3.38), we have used the fact that EH = e2/2a0 and a0 = h̄/mee
2

3.5 Full Electronic Width and Stark Broadening

3.5.1 Full electronic width

The full electronic width (strong and weak) is then the sum of (3.24) and (3.25) for strong collision
and (3.34 -3.35) for weak collision. Formula (3.30) can be simplified if the following considerations are
satisfied: if the reduced critical velocity (3.11) is small (vc << 1) and if the first integral in (3.30) is
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canceled, such that:

φweakα '−16
√
π

3 Ne

√
me

2kBTe

(
h̄

me

)3∑
α′

3
2
Fαα′

ωαα′
.

∞∫
0

vdv exp(−v2)z
(2)
minK0(z

(2)
min)K1(z

(2)
min) , (3.40)

By replacing z(2)min by its expression given by (3.38), the formula (3.40) transforms to:

φweakα '−Q
∑
α′

3
2
Fαα′Λαα′

ωαα′

∞∫
0

dv

v1/3 exp(−v2)K0(
Λαα′

v4/3 )K1(
Λαα′

v4/3 ) , (3.41)

The change x= v2/3 gives 3
2dx=

dv
v1/3 and:

φweakα '−9
4Q

∑
α′

Fαα′Λαα′

ωαα′

∞∫
0

dxexp(−x3)K0(
Λαα′

x2 )K1(
Λαα′

x2 ) , (3.42)

The last integral can be expressed with the help of Meijer’s G-functions Φ(Λαα′), [56, 76]:

φweakα '−9
4Q

∑
α′

Fαα′Λαα′

ωαα′
Φ(Λαα′) . (3.43)

such that Λαα′ is given by (3.39). The result (3.43) is new and is useful when the critical velocity
(vc << 1). In this case, where vc << 1, the strong collision contribution is given by the formula (3.25).
We can then assert that when vc << 1, the contribution of the collision operator is given by the sum of
the formulas (3.25) and (3.43). Viewing the formulas (3.10-3.11), this case occurs at high temperatures
(5000-50000 K) and for high ionization energy elements in stellar plasmas.

3.5.2 Stark broadening

The full Stark width ∆λStark in (Å) (ionic and electronic) is given by [14]:

∆λStark = 2φ(1+ 1.75A(1−0.75R)) , (3.44)

Where φ is given by:
φ= φstrong+φweak , (3.45)

and:

A=
4πNe

3 (
1

3φ (
h̄

me
)2∑

α′

|〈α|−→r |α′〉|2

ωα,α′
)3/4

=
1

φ3/4
4πNe

3 (
1
3 (

h̄

me
)2∑

α′

|〈α|−→r |α′〉|2

ωα,α′
)3/4 , (3.46)

and:

R(Ne,Te) = (36πNe)
1/6

√
e2

kBTe
. (3.47)
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In this equation, φ is the electron-impact (half) width or Stark broadening parameter, Ne is the
electron density. A is the ion broadening parameter, which is a measure of the relative importance
of the collisions with ions in the broadening. Parameters φ and A are measured or calculated; they
are weak functions of temperature. R is the ratio of the mean distance between ions and the Debye’s
length [57, 63]. The first term in equation (3.44) of ∆λStark is caused by electron collisions and it
is very sensitive to the electron temperature. The second term in this equation that describe the
contribution of ion broadening are very small and negligible [77]. This equation is valid only in the
range A ≤ 0.5, R ≤ 0.8. Also, this equation is valid for neutral emitters. For singly ionized emitters,
the term 0.75R should be replaced by about 1.2R [63].
Focus on the electronic broadening of spectral lines which is estimated via a collision operator. She
distinguished between strong and weak collisions due to electrons which is the lighter particles in the
plasma.
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4
Temperatures and densities of
particles of gas near weld plates

4.1 Introduction

In this chapter, we will use the modeling proposed in Chapter 2 to calculate the temporal and
spatial distributions of densities and temperatures near the surface of a metal during laser welding.

The variation of the surface temperature of a magnesium metal is that calculated by S. Lemkeddem
et al. [66]. For the O2/N2 gas mixture, the different selected species are O2, N2, O+

2 , N+
2 and the

electrons. Solutions of analytical forms of the distributions are requested for possible exploitation of
the parameters of plasma and welding.

4.2 Temporal and spatial distribution of electron density

We chose a specific time indexes characteristic times for surface temperature during laser welding. Let
T0 be the initial temperature and Tmax the maximum temperature at the weld bead during welding;
and let Tmoy be the temperature corresponding to Tmoy =

Tmax
2 and Tmin the minimum temperature

after the passage of the laser beam. Tmin is slightly greater than T0. Let t0, t1, t2, t3 and t4 be the
characteristic times for surface temperature corresponding respectively to temperatures T0, T1 = Tmoy

(before Tmax), T2 = Tmax, T3 = Tmoy (after Tmax) and Tmin (see figure 4.1). We have chosen to calculate
the temperatures and densities near the surface for a maximum distance Xmax= 3 cm. To see the effect
of dynamics as a function of time and space, we have chosen a few significant positions x0, x1, x2, x3,
x4, x5 and x6. The temperature and density profiles are different for these positions. Indeed, X0 and
X1 are practically the surface; for X5 and X6, these are the conditions for the ambient environment.

39



Chapter 4. Temperatures and densities of particles of gas near weld plates 40

Numerical values of characteristic times and significant positions are presented in Table 4.1.
Figure 4.1 shows the characteristic times for surface temperature during laser welding.
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Figure 4.1 – Characteristic times for surface temperature.

Table 4.1 presents the characteristic times for surface temperature during laser welding and significant
positions chosen to see the effect of dynamics as a function of time and space.

Table 4.1 – Values of characteristic times and significant positions.

Characteristic times value in 10−5 s significant positions value in (cm)
t0 0.0 x0 = 0.00 0.0
t1 2.28 x1 = 0.001xmax 3×10−3

t2 2.52 x2 = 0.004xmax 1.2×10−2

t3 3.7 x3 = 0.019xmax 5.7×10−2

t4 10 x4 = 0.033xmax 0.1
x5 = 0.60xmax 1.797
x6 = 0.80xmax 2.39

Figure.4.2 presents calculated electron density as a function of distance from welded surface plate of
times t0, t1, t2, t3, and t4.
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Figure 4.2 – Electron density as a function of distance from the surface.

Figure. 4.3 presents the calculated distributions of electron density as a function of times when the
surface plate welded at five distances from the surface x0, x1, x2, x3, x4.

Figure 4.3 – The electron density as a function of time for distances x0, x1, x2, x3, x4.

4.3 Temporal and spatial distribution of Temperatures and densities
of species

Figures.4.4a, 4.4b, 4.5a and 4.5b show the profile of particle densities and temperatures as a function
of time at the surface.
During the first phase corresponding to heating, the increase is very rapid. During the second cooling
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phase (after the passage of the laser beam), the distributions are decreases; these variations are less
rapid.

Also it can be seen that particle densities and temperatures has the same trend as surface tempera-
ture, when the surface temperature increase or decrease also the particle densities and temperatures
increase or decrease at the same time approximately.
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Figure 4.4 – Distributions of particle densities as a function of time at the surface.
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Figure 4.5 – Distributions as a function of time at the surface.

Table. 4.2 presents the maximum values of species at specific points during laser welding. High pop-
ulation at near distances and low populations at points far from the surface for Ne, N+

2 , O+
2 , where

for N2 and O2 has low population near the surface and high at long distances. We explain that by the
ionization and electronic recombination.
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Table 4.2 – Maximum values of species in each specific positions during laser welding.

x(cm) Tmaxg NmaxN2
NmaxO2

Nmaxe Nmax
N+

2
Nmax
O+

2
Tmaxe

(K) (1020cm−3) (1019cm−3) (108cm−3) (108cm−3) (108cm−3) (K)
x0 1772.2 1.2383 3.0913 9.004744 6.0432 1.0559 2661.1
x1 1279.7 1.2383 3.0913 9.004811 6.0432 1.0559 2661.1
x2 722.05 1.0417 2.6000 7.5184377 5.6534 0.98573 2663.2
x3 334.00 2.2911 5.7258 1.3523757 1.2645 0.21801 2683.1
x4 - - - - - - 2726.6
x5 - - - - - - 787.8
x6 - - - - - - 370.6

Table. 4.3 shows that, at x0 and x1 the temperatures and particle densities reach the maximum value
at the same time approximately.

Table 4.3 – Time corresponding to maximum values of species in each specific distance during laser welding.

x(cm) t(10−5s)
Tmaxg NmaxN2

NmaxO2
Nmaxe Nmax

N+
2

Nmax
O+

2
(10−5s) Tmaxe

x0 2.5196 2.6531 2.6531 2.6856 2.7456 2.7411 3.6427
x1 2.6261 2.6531 2.6531 2.6856 2.7456 2.7411 3.6427
x2 3.5822 3.0917 3.0917 2.9911 2.7936 2.7916 3.6357
x3 10. 10. 10. 3.0617 3.0077 3.0292 3.6402
x4 - - - - - - 3.6212
x5 - - - - - - 10.
x6 - - - - - - 10.

Figures. 4.6a, 4.6b, 4.7a and 4.7b show distributions of particle densities, temperatures and electric
field as a function of space at the time when surface has a maximum temperature.
It can be seen that particle densities and temperatures has the same trend as surface temperature;
when the surface temperature increase or decrease also the particle densities and temperatures increase
or decrease at the same time approximately, it has the functional form of equation.4.1.
At t=0, the species has a sharp spike at the plate, but as time progresses, the distribution gets shorter
and wider. In both coordinate systems, the energy spreads quickly at first when the species gradient
is large and more slowly at later times when the gradients are smaller.
For the profiles of the density distributions of the various species, we were inspired by the shape of the
concentrations due to the diffusion of matter on a surface. For ideal conditions these concentrations
have the following form:

X(x, t) = 1√
t

exp(− x2

4αt ) . (4.1)
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Figure 4.6 – Distributions of particle densities and temperatures as a function of space at the time when surface
has a maximum temperature.
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Figure 4.7 – Distributions of electron temperature and electric field as a function of space at the time when
surface has a maximum temperature.

From tables. 4.2 and 4.5 and from figures. 4.6a, 4.6b, 4.7a and 4.7b along the air at a point Xs, the
species first increases, then slowly decays back to ambient state, when the surface temperature reach
maximum value: Xs ∼ 0.02 cm for (N2, O2, Tg), 0.06cm (N+

2 , O+
2 , Ne), 0.3 cm E and 0.5 cm Te.

Table. 4.4 present the maximum values of species in each specific time during laser welding. The
peak is directly proportional to the time until t2 (the time when the surface reach the maximum
temperature), after this point the peaks decreasing, except Te which keep going up for longer period
and than decreasing.
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Table 4.4 –Maximum values of densities and temperatures in each specific time t1, t2, t3, t4 during laser welding.

t(s) Tmaxg NmaxN2
NmaxO2

Nmaxe Nmax
N+

2
Nmax
O+

2
Tmaxe

(K) (1020cm−3) (1019cm−3) (108cm−3) (108cm−3) (108cm−3) (K)
t1 900.6696 0.25604 0.63998 0.20102 0.3876476 0.8717958 357.35
t2 17717 0.94677 2.3641 5.583 4.006584 7.3195016 1279.2
t3 887.4417 0.89806 2.2419 4.9601 3.4549 0.61893 2972.
t4 427.3018 0.44185 1.1035 0.74427 0.52242 0.10186 2431.3

Table 4.5 presents the position of x corresponding to the maximum values of densities and tempera-
tures at four specific times during laser welding t1, t2, t3, t4. The value of x grows with the growth of
time.

Table 4.5 – Position of x corresponding to the maximum values of densities and temperatures in each specific
time t1, t2, t3, t4 during laser welding.

t(s) x(cm)
Tmaxg NmaxN2

NmaxO2
Nmaxe Nmax

N+
2

Nmax
O+

2
Tmaxe

t1 0.00 0.00 0.00 0.003 0.00 0.00 0.00
t2 0.00 0.00 0.00 0.003 0.00 0.00 0.003
t3 0.00 0.012 0.012 0.012 0.012 0.012 0.3
t4 0.024 0.018 0.018 0.021 0.015 0.012 0.74

Table 4.6 presents the points Xs at three specific times during laser welding t1, t2, t3. Xs The value
of Xs grows with the growth of time.
The values of Xs are different for the various parameters studied. The effect of the diffusion phe-
nomenon plays a main role in the dynamics of these parameters: the mobility of electrons is faster and
the diffusion of neutral molecules is the slowest.

Table 4.6 – The point Xs at specific times during laser welding t1, t2, t3.

Species Xs (cm)
at t=t1 at t=t2 at t=t3

Ions and electrons 0.795λ1
D 1.65λ2

D 8.639 λ3
D

E 5.30λ1
D 8.26λ2

D 15.118λ3
D

Te 10.61λ1
D 13.77λ2

D 28.07λ3
D

Where:
λ1
D :is Debye’s length at t1.
λ2
D :is Debye’s length at t2.
λ3
D :is Debye’s length at t3.

Table 4.7 presents plasma parameters at specific times t1, t2, t3 during laser welding. Values of coupling
parameter, Γ0 �1, show that the medium is a kinetic plasma. The average values of the periods of
the electronic plasma oscillations (Tpl,osc =

2π
ωp

) are of the order of 10−8s. These values are much lower

than the characteristic times of the diffusion phenomena (10−5 and less than 10−4s). The values of λD
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are from 0.037 to 0.046 cm and Rs are of the order of 10−3s, and Coulomb logarithm are from 9.9 to
11.24.

Table 4.7 – Plasma parameters at the characteristic times of the diffusion phenomena of Ne, Te(s) during laser
welding t1, t2, t3.

Plasma param. Expression Val.
at t=t1 s at t=t2 s at t=t3 s

Debye’s length λD [cm] 6.9
√

Te[K]
Ne[cm−3] 0.0377 0.0363 0.0463

Electronic plasma frequency ωp
[
s−1] 5.6.104

√
Ne [cm−3] 1.779×108 2.063×108 2.533×108

Coupling parameter Γ0
1

12πNeλ3
D

4.90×10−5 4.089×10−5 1.307×10−5

Particle distance RS [cm] 3
√

3
4πNe

0.0029 0.0026 0.0023
log. Coulomb lnΛ ln(12πNeλ3

D) 9.9226 10.104 11.245
Period of electronic plasma oscillations [s] 2π

ωp
3.5318×10−8 3.0456×10−8 2.4805×10−8

4.4 Analytical approach

The analytic solution of temperatures and particle densities equations takes the form [4]:

Xe0 +
(XeS−Xe0)√
4πDX .(t− t0)

exp(−(xi+xeff )
2

4πDX .(t− t0)
−104µXE.(t− t0)) , (4.2)

We used a Matlab program to determine the parameters of the functions to interpolate.
Using De, µe and E calculated in numerical solution and with xeff ∼ 0.0911 cm, the electron density
Ne at the surface xi = 0 takes the expression:

Ne = 107 +
9.8×107√

4πDe.(t− t0)
exp( −(0.0911)2

4πDe.(t− t0)
−2.3997.104(t− t0)) . (4.3)

Qualitatively, the values of DX , µX , E and xeff , when used with Equation.4.2 for all temperatures
and particle species, produce a graph very similar to numerical solution that is, the numerical and
analytical values agree well up to the peak, but the analytic underestimates the heat loss and layer
times and distance.

Typical results at the welded surface are shown in figure.4.8 together with the analytical for-
mula. Note that the analytical solutions fit well at early times for each distance taken individually.
They do not fit well when go back to ambient state.
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Figure 4.8 – Calculated and fitted solution of electron density at the surface

In order to obtain a very similar curve of electron density, we searched for more accurate expressions,
we have divided the curve into two parts; heating and cooling part.
The analytic solution of electron density equation at the heating part is:

NHeating
e = 107 +

9.8×107√
4πDe.(t− t0)

exp( −(0.0911)2

4πDe.(t− t0)
−2.3997.104(t− t0)) , (4.4)

where: De is the mean value of electron diffusion at the surface De = 350cm2/s , t0 = 2.35×10−5s.
The analytic solution of electron density equation at the cooling part is:

NCooling
e = 107 +

4.5×107√
4πDe.(t− t0)

exp( −(0.044)2

4πDe.(t− t0)
−104(t− t0)) . (4.5)

where: De = 350cm2/s, t0 = 2.5×10−5s.
Figure 4.9 shows The analytic solution of electron density equation at the heating and cooling part
approximated to numerical calculation of electron density at the surface.
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Figure 4.9 – Heating and cooling approximated to numerical calculation of electron density at the surface

4.5 Conclusion

The presented results for a numerical model adopted to simulate the heat transfer at the time when a
surface plate welded. Through analyzing the result, it is found that, the induced air plasma can provide
high energy electrons and it is favorable to ionize the gas. It also can provide internal electric field at
the order of 1 V/cm and electron density at the order 9×108 cm−3 and electron temperature at the
order 3000 K. A spatial and temporal distribution of thermal and particular density are presented and
discussed; we found that the profile is a Gaussian in the distance x and decreases in amplitude and
increases in width with increasing time. Along the air at a specific point Xs the species first increases,
then slowly decays back to ambient state. Also it can be seen that particle densities and temperatures
has the same trend as surface temperature, when the surface temperature increase or decrease also
the particle densities and temperatures increase or decrease at the same time approximately. In both
coordinate systems, the energy spreads quickly at first when the species gradient is large and more
slowly at later times when the gradients are smaller. We also suggests an analytic approach to our
numerical solution for electron density by the help of analytic formulas of [4], typical results at the
welded surface are shown in figure.4.8 together with the analytic formula. Note that the analytic
solutions fit well at early times for each distance taken individually. They do not fit well when go back
to ambient state.
The numerical model shows varies results for the temporal and spatial distributions of electron densities
close to the surface during the welding process.
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5
Stark broadening of isolated lines

5.1 Introduction

In this chapter we calculate Stark widths for isolated lines of the non hydrogenic heavy element
Mg I. We calculate the contributions of weak collisions and strong collisions using two limiting

cases for impact parameter. In order to study the validation of this new estimated formula for other
spectral lines in other atoms, we calculate electronic Stark widths for the two atoms in the same
column in periodic table Be I and Ca I, using the same plasma conditions. We analyse the electron
density dependence for Be I, Mg I and Ca I spectral lines one time at vc constant and other time at
Te constant. Finaly, we presented and discussed a comparison between our result with the theoretical
and the experimental results of Griem (1974) [14] , STARK-B web site [13] and Dimitrijević and
Sahal-Bréchot (1994) results [9].

5.2 Electron Broadening for Mg I

Table 5.1 presents the critical velocity Vc for some upper levels of Mg I transitions.

Table 5.1 – Critical velocity Vc for some upper levels Mg I transitions.

Wavelengths Transitions Vc(cm/s)
2025.824 Å 4p 1P - 3s 1S 8.90×107

4702.990 Å 5d 1D - 3p 1P 7.11×107

5167.732 Å 4s 3S - 3p 3P 9.97×107

5528.404 Å 4d 1D - 3p 1P 7.64×107

2852.127 Å 3p 1P - 3s 1S 9.14×107

Table 5.2 presents the electrons impact half-widths (HWHM: Half Width at Half Maximum) for Mg

49
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I lines for a temperature Te = 20000K and the electron density Ne = 1016 cm−3: for our calculation
(φOur) and those of Griem(1974) (φG74) and STARK-B web site values (φSB) [13,14].

Table 5.2 – Electron impact half-widths φ, for Mg I lines, for our calculation and those of Griem (1974) and
STARK-B web site.

Wavelengths Transitions φOur(Å) φG74 (Å) φSB(Å) φG74/φOur φSB/φOur

2025.824 Å 4p 1P - 3s 1S 0.0247 0.0158 0.0245 63.96% 99.19%
4702.990 Å 5d 1D - 3p 1P 1.036 0.612 0.885 59.07% 85.42%
5167.732 Å 4s 3S - 3p 3P 0.0474 0.0383 0.0582 80.80% 122.7%
5528.404 Å 4d 1D - 3p 1P 0.431 0.282 0.424 65.42% 98.37%

In table 5.2, the ratio of our calculation and those of Griem (1974) [14] is about (59.07-80.80%) and
(85.42-122.7%) with STARK-B website [13] at 20000K and the electron density Ne = 1016 cm−3;
generally, our calculated values are greater. We must notice here, that our result is based on the
broadening of the upper level of the transition, whereas those of Griem (1974) [14] and STARK-B web
site [13] on the broadening of the upper and lower levels. We have contented ourselves with considering
only the broadening of the upper level. We have verified, for these transitions, that the broadening of
the lower levels is negligible. The table 5.3 shows the ratio between the electronic broadening of lower
to upper levels. Because of the large energy gap between the upper and lower levels, we can consider
that each group of levels (upper or lower) is broadened separately.

Table 5.3 – Ratio of the electron broadening of lower level and upper level.

Wavelengths Transitions φUpper φLower φLower/φUpper

2025.824 Å 4p 1P - 3s 1S 0.247×10−1 4.234×10−5 0.17%
4702.990 Å 5d 1D - 3p 1P 1.036 9.06×10−3 0.87%
5167.732 Å 4s 3S - 3p 3P 0.0474 —– —–
5528.404 Å 4d 1D - 3p 1P 0.431 1.25×10−2 2.9%

The calculations show that the upper levels are more broadened than the lower levels. In table 5.3 the
ratio between the electronic broadening of lower to upper levels is less than 3%, So it is sufficient to
keep a few neighbor states for upper level; we neglected contribution of lower level and the term of
interference.

Table 5.4 presents a comparison between experimental ∆λmes Stark full widths (FWHM: Full Width
at Half Maximum) of Dimitrijević & Sahal-Bréchot (1994) [9] and our theoretical full widths ∆λcal
in Angstrom units for some Mg I lines. The comparison shows an acceptable agreement between the
results.

Table 5.4 – Comparison between experimental ∆λmes Stark full widths (FWHM) of Dimitrijević and Sahal-
Bréchot (1994) and our theoretical full widths ∆λcal in Angstrom units for some Mg I lines.

Wavelengths Transitions T(K) Ne(1017cm−3) ∆λmes(Å) ∆λcal(Å) ∆λmes/∆λcal
4702.990 Å 5d 1D - 3p 1P 10000 1 8.33 11.44 72.81%
5528.404 Å 4d 1D - 3p 1P 10000 1 3.87 4.60 84.13%
2852.127 Å 3p 1P - 3s 1S 12970 1.1 0.0409 0.0579 70.63%
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Table 5.5 presents the ratio of weak to the strong contribution on electronic width for some transitions
at electronic density Ne = 1016 cm−3 and various values of temperature.

Table 5.5 – The ratio of weak collisions to the strong collisions as a function of temperature.

T(K) φWeak/φStrong
4p 1P - 3s 1S 5d 1D - 3p 1P 4s 3S - 3p 3P 4d 1D - 3p 1P

5000 12.93 5.42 8.86 8.18
10000 5.77 3.49 4.72 4.04
20000 4.39 3.16 3.51 3.27
30000 4.19 3.14 3.39 3.16
40000 4.14 3.12 3.41 3.14

Table 5.6 presents the ratio of electronic width of our results and those of Griem (1974) and STARK-B
website as a function of temperature for some transitions at electronic density Ne = 1016 cm−3 and
various values of temperature.

Table 5.6 – The ratio of electronic width of our results and those of Griem (1974) and STARK-B website as a
function of temperature.

T(K) 4p 1P - 3s 1S 5d 1D - 3p 1P 4s 3S - 3p 3P 4d 1D - 3p 1P
φG74
φOur

φSB
φOur

φG74
φOur

φSB
φOur

φG74
φOur

φSB
φOur

φG74
φOur

φSB
φOur

5000 4.23 7.87 2.41 4.04 13.04 21.19 2.91 4.99
10000 1.21 2.05 0.94 1.44 2.23 1.62 1.10 1.74
20000 0.64 0.99 0.59 0.85 0.69 1.51 0.65 1.50
30000 - 0.79 - 0.74 - 0.83 - 0.82
40000 0.47 - 0.46 - 0.48 - 0.49 -

In figure. 5.1, we present the variation of the ratio of the weak to strong contribution for some
transitions at electron density Ne = 1016 cm−3 and as a function of temperature.
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Figure 5.1 – Variation of the ratio of weak collisions to the strong collisions as a function of temperature for
some transitions.

We see in figure. 5.1 and table 5.5 that there are two regions; for temperatures of the order of 5000K
this ratio is very high and for temperatures from 10000K to 40000K this ratio varies from 3 to 6 for
φWeak/φStrong, it confirm the importance of contribution of weak term and the use of strong term as
correction.
In figures. 5.2a and 5.2b, we present the ratio of electronic width as a function of temperature for
some transitions of our results and those of a) Griem (1974) [14], b) STARK-B web site [13].
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Figure 5.2 – Variation of the ratio of electronic width as a function of temperature for some transitions.

We see in table 5.6 and figures. 5.2a and 5.2b that for temperatures of the order of 5000K the
calculated width is smaller than those of Griem (1974) [14] and Stak-B [13]. For temperatures from
10000K to 40000K, the calculated width is generally in the same order of values of Griem (1974) [14]
and Stark-B [13]. For Te = 20000K, we have nearest values between the three models.
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5.3 Electron Broadening for other neutral atoms Be I and Ca I

In order to study of validation of the new estimated formula in [7] for other spectral lines in other
atoms, we chose the two atoms in the same column in periodic table Be I and Ca I.
In figures. 5.3, 5.4 and 5.5, we present a comparison between Be I, Mg I, Ca I with Griem 1974
(G74) [14] and Stark-B web site (SB) [13] at Ne = 1016cm−3 for transitions Be I (λ = 4573Å 2p-3d
1P −1D) and Mg I (λ= 4703Å 3p-5d 1P −1D) and Ca I (λ= 4427Å 4s-4p 1S−1P ).
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Figure 5.3 – Comparison of Stark broadening at Ne = 1016cm−3 with (G74) and SB for Be I.
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Figure 5.4 – Comparison of Stark broadening at Ne = 1016cm3 with (G74) and SB for Mg I.
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Figure 5.5 – Comparison of Stark broadening at Ne = 1016cm3 with (G74) and SB for Ca I.
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We see in figures. 5.3,5.4 and 5.5 that our results for beryllium and calcium are also agree nearly with
those of Griem (1974) [14] and those of STARK-B web site [13]. For Be I, Mg I and Ca I spectral
lines, we have found that the three lines have the same temperature dependence in the same plasma
conditions.
In figure. 5.6, we present the variation of Stark broadening with electron density for Be I, Mg I, Ca I
at vc = 1.
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Figure 5.6 – Variation of Stark broadening with electron density at vc = 1 for Be I, Mg I and Ca I.

In figure. 5.7, we present the variation of Stark broadening with electron density for Be I, Mg I, Ca I
at Te = 20000 K.
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Figure 5.7 – Variation of Stark broadening for Be I, Mg I and Ca I at Te = 20000K.

In figures. 5.6 and 5.7 we analyse the electron density dependence for Be I, Mg I and Ca I spectral lines
one time at vc constant and other time at Te constant, we have found that the electronic broadening
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Be I, Mg I and Ca I spectral lines has a linear variation with electron density. Our formula is very
useful for isolated lines of Be I and Ca I in temperature range 10000 K to 50000 K.

5.4 Stark broadening of Mg I in welding conditions

In our welding conditions, Stark broadening calculations have been carried out on low electron density
(Ne ≤ 109cm−3) and low electron temperature (Te ≤ 3000K) and relatively low gas temperature
(Tg ≤ 1800K), under atmospheric pressure. A Stark broadening at Te= 2500 K of STARK-B web
site [13] is extrapolated from Ne = 1011cm−3 to Ne = 109cm−3; electron impact widths and shifts are
linear in Ne [14].

Table 5.7 – Electron impact half-widths φ, for Mg I lines under welding conditions at maximum electron density
Ne = 109cm−3, for our calculation and those of STARK-B web site.

Wavelengths Transitions T(K) φOur(Å) φSB (Å) φOur/φSB

2025.824 Å 4p 1P - 3s 1S 2500 3.0×10−11 1.63×10−10 18.40%
3000 5.3×10−11 _ _

4702.990 Å 5d 1D - 3p 1P 2500 3.0×10−9 6.17×10−9 48.62%
3000 4.9×10−9 _ _

5167.732 Å 4s 3S - 3p 3P 2500 2.7×10−11 3.88×10−10 6.95%
3000 4.2×10−11 _ _

5528.404 Å 4d 1D - 3p 1P 2500 1.2×10−9 3.00×10−9 40.%
3000 2.0×10−9 _ _

The results in Table 5.7 show a difference within (6.95%-48.62%) with STARK-B web site [13].

Table 5.8 – A comparison between Stark broadening ∆λS and Doppler broadening ∆λD, for Mg I lines under
welding conditions.

Wavelengths Transitions T(K) ∆λS (Å) ∆λD(Å) ∆λS/∆λD
2025.824 Å 4p 1P - 3s 1S 2500 3.0×10−11 1.48×10−2 ∼ 10−9

3000 5.3×10−11 1.62×10−2 ∼ 10−9

4702.990 Å 5d 1D - 3p 1P 2500 3.0×10−9 3.44×10−2 ∼ 10−7

3000 4.9×10−9 3.77×10−2 ∼ 10−7

5167.732 Å 4s 3S - 3p 3P 2500 2.7×10−11 3.78×10−2 ∼ 10−9

3000 4.2×10−11 4.14×10−2 ∼ 10−9

5528.404 Å 4d 1D - 3p 1P 2500 1.2×10−9 4.04×10−2 ∼ 10−7

3000 2.0×10−9 4.43×10−2 ∼ 10−7

In Table 5.8 the result show that, in these conditions, the Stark broadening is negligible comparing
with Doppler broadening, so the profiles can be assumed to be purely Gaussian.
So, we can conclude that the profiles of isolated lines of Mg I will be a good tool to evaluate gas
temperature. A more exact calculation of the profile required an integrated calculation over space
and time according to the gas dynamics near the welding surfaces. Indeed, the measurements require
the integration on the lines of sight of the spectrometers (rapid variation along x) and require the
integration over time if the time taken for images by the spectrometers are long. The atoms and the
ions of magnesium are present in the form of traces and must not affect too much the dynamics of the
gas mixture O2/N2 (subject of chapter 4).
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5.5 Conclusion

We calculate Stark widths for isolated lines of the non hydrogenic heavy element Mg I. We have used
a simple formula that we have developed from a formula of electronic broadening in [71]. We calculate
the contributions of weak collisions and strong collisions using two limit case for impact parameter.
Our formula agrees within (59.07-80.80%) with Griem’s results [14] and agrees with (85.42-122.7%)
with STARK-B website [13] at 20000 K. For the temperature range 10000-50000 K, our results are
also agree nearly with those of Griem (1974) [14] and those of STARK-B website [13]. The comparison
between our result and experimental measurements of Dimitrijević and Sahal-Bréchot (1994) [9] shows
that it agrees within (70.63-84.13%). In this method, it is sufficient to keep a few neighbor states for
upper level; we neglected contribution of lower level and the term of interference. Note that the
proposed model can be used, without limitation, to express separately the electronic broadening of
the top and bottom levels by neglecting the terms of interference between the two subsystems. In
order to study the validation of this new estimated formula for other spectral lines in other atoms, we
calculate electronic Stark widths for the two atoms in the same column in periodic table Be I and Ca
I, using the same plasma conditions. Our results for beryllium and calcium are also agree nearly with
those of Griem (1974) [14] and those of STARK-B web site [13]. We analyse the electron temperature
dependence for Be I, Mg I and Ca I spectral lines, we have found that the three lines have the same
temperature dependence in the same plasma conditions. We analyses the electron density dependence
for Be I, Mg I and Ca I spectral lines one time at vc constant and other time at Te constant, we have
found that the electronic broadening has a linear variation with electron density. Our formula is very
useful for isolated lines of Be I and Ca I in temperature range 10000 K to 50000 K.
In order to calculate Stark broadening under welding conditions, we use our formula and STARK-B
web site [13] result. The results show a difference within (6.95%-48.62%) with STARK-B web site [13].
These conditions, the Stark broadening is negligible comparing with Doppler broadening; and the
profiles of isolated lines of Mg I will be a good tool to evaluate gas temperature.
Calculation of Stark Broadening line due to non hydrogenic electrons for several plasma media.
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Physical systems naturally evolve toward higher entropy states. Hence, thermal diffusion is a direct
result of the logical operation of the universe [3].

In this thesis, we are interested in the study of a gas mixture (O2 / N2) near a metal surface during
laser welding. The surface of the metal is brought to a temperature varying with time, we calculated
the spatial and temporal distributions of temperatures and densities of molecules (O2 and N2), ions
(O+

2 and N+
2 ) and electrons.

We used the fluid model coupled to the Poisson’s equation for electric charges. We use the Exponential
Scheme (SG Scheme) to resolve the densities of electrons and ions and the electron energy (electron
temperature). For numerical resolution of the gas temperature and neutral density equations, we use
the Finite Difference Method (FDM), the nonlinear coupled equations have matrix forms and iterative
technique is used to find solutions.
In many processes, such as the arc welding and laser welding, a luminous gas plasma forms near the
weld pool. In welding process, the luminosity of the plasmas is a very important property.
The spectroscopic diagnosis by spectral lines can be very useful tools for understanding phenomena.
These spectral lines can be broadened by Stark broadening (electronic and ionic) or by other causes.
We describe simple method for calculation the contribution of electrons to the broadening using
impact theory with a model based on two limits case for reduced velocity for (vc < 1) and for (vc > 1).
In chapter 1, we have presented the main elements relating to the main themes addressed.
In chapter 2, we have established (1D) fluid model contains a set of gas dynamics equations, at
atmospheric pressure in the presence of air during laser welding, for plasma gas temperature, electron
energy (electron temperature), charged and neutral species densities. We have described the basic
mathematical equations of our model.
In chapter 3, we presented a theoretical implementation to obtain the minimum of the impact pa-
rameter for strong and weak contribution in collision operator. We also presented the contribution
of strong collision and weak collision respectively for magnesium neutral emitters. We neglect the
contribution of ion to the broadening to the widths of isolated lines; ion contribution is usually less
than 20% for many spectral lines. Practically all the broadening is caused by interactions between the
upper state of the line in question and its neighbors, and lower state interactions can be neglected [72].
In chapter 4, we presented and discussed the calculated spatial and temporal distributions of species
near the surface (N2, O2, N+

2 , O+
2 and electrons and temperatures ), during laser welding of magne-

sium alloy.
We calculate the temporal and spatial distributions of densities and temperatures near the surface
during laser welding of magnesium alloy. The induced air plasma can provide high energy electrons
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and it is favorable to ionize the gas. It can provide internal electric field at the order of 1 V/cm and
electron density at the order 9×108 cm−3, and electron temperature at the order 3000 K. Also it can
be seen that particle densities and temperatures has the same trend as surface temperature; when
the surface temperature increase or decrease also the particle densities and temperatures increase or
decrease at the same time approximately.
In chapter 5, we presented the calculated full Stark width (ionic and electronic) of isolated lines Mg
I, Be I and Ca I. A comparison between our result with the theoretical and the experimental results
of Griem (1974) [14], STARK-B web site [13], Dimitrijević and Sahal-Bréchot (1994) results [9], we
presented Stark broadening of Mg I under welding conditions. We calculate the contributions of
weak collisions and strong collisions using two limiting cases for impact parameter. Our formula is
in good agreement with Griem’s results [14] and STARK-B website results [13] at 20000 K. For the
temperature range (10000-50000 K), our results are also agree nearly with those of Griem (1974) [14]
and those of STARK-B web site [13], the comparison between our result and experimental measure-
ments of Dimitrijević and Sahal-Bréchot (1994) [9] also shows a good agreement. In this method,
it is sufficient to keep a few neighbor states for upper level; we neglected the contribution of lower
level and the term of interference. Note that the proposed model can be used, without limitation, to
express separately the electronic broadening of the top and bottom levels by neglecting the terms of
interference between the two subsystems.
In order to study of validation of the new estimated formula for other spectral lines in other atoms,
We calculate Stark broadening for the two atoms in the same column in periodic table Be I and Ca
I,using the same plasma conditions. Our results for beryllium and calcium are also agree nearly with
those of Griem (1974) [14] and those of STARK-B web site [13].
For Be I, Mg I and Ca I spectral lines, we have found that the three lines have the same temperature
dependence in the same plasma conditions. We analyse the electron density dependence for Be I, Mg I
and Ca I spectral lines one time at vc constant and other time at Te constant, we have found that the
electronic broadening Be I, Mg I and Ca I spectral lines has a linear variation with electron density.
Our formula is very useful for isolated lines of Be I and Ca I in temperature range 10000 K to 50000 K.
In order to calculate Stark broadening under welding conditions, we used our formula and STARK-B
web site result [13]. The results show a defference within (6.95%-48.62%) with STARK-B web site [13].
Under these conditions Stark broadening is negligible comparing with Doppler broadening; and the
profiles of isolated lines of Mg I will be a good tool to evaluate gas temperature.

Perspectives

The perspectives for this work include the following points:

1. Using temperatures near the surface metal higher than those studied in this thesis.

2. Studying fluid model for 2 or 3 dimensions.

3. More detailed integrated calculation over time and space of spectral line profiles.
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4. Studying fluid model in the presence of shielding gas.

5. Calculating or investigating Stark broadening for ions and other heavy species.

6. Microscopic study of limit conditions relating to inelastic electronic collision at surfaces.
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