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Abstract
The aim of this work is to propose the finite element approximation of a prestressed

shell model. Because of the constraint involved in the definition of the functional space,
it cannot be discretized by conforming finite element methods, in Cartesian coordinates
system a penalized version and a mixed method of the model and their finite element
discretization are then proposed. We prove the existence and uniqueness results of solutions
for the continuous and discretes problems for a penelized and mixed method, and we derive
a priori error estimates. We present also a new formulation where the unknowns (the
displacement of the midsurface and the infinitisimal rotation) are described in Cartesian
and local covariant basis respectively. Due to the constraint, a penalized version is then
considered. We present a robust a priori error estimation. Moreover, a reliable and efficient
a posteriori error estimator is also presented. Numerical tests that validate and illustrate
our approach are given.

Key words: Finite element approximation, prestressed shell, penalized method, mixed

formulation, a priori and a posteriori error estimate.
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Résumé
Le but de ce travail est de proposer une approximation par éléments finis d’un modèle

de coque précontrainte. À cause de la contrainte fonctionnelle imposée, une discrétisation
par éléments finis conforme n’est pas possible pour le moment, alors en coordonnées
cartésiennes on propose une formulation de pénalisation et une formulation mixte pour le
problème, ceci nous conduit à des problèmes sans contraintes. Nous prouvons les résultats
d’existence et d’unicité des solutions pour les problèmes continus et discrets pour la
méthode pénalisée et la formulation mixte. Nous présentons aussi une nouvelle formulation
où les inconnues (le déplacement de la surface moyenne et la rotation infinitésimale) sont
respectivement décrites dans des bases cartésiennes et locales covariantes. À cause de la
contrainte, une version pénalisée est alors considérée. Nous présentons une estimation
d’erreur a priori robuste. De plus, une estimation d’erreur a posteriori fiable et efficace
est également présentée. Nous donnons finalement des tests numériques qui valident et
illustrent notre approche.

Mots-clés: Approximation par élément fini, coque précontrainte, méthode de pénali-

sation, formulation mixte, estimation d’erreur a priori et a posteriori.
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Notations

X Greek indices {α, β, ρ} take their values in the set {1, 2}.

X Latin indices {i, j, · · ·} and exponents take their values in the set {1, 2, 3}.

X u · v the inner product of u and v in R3.

X u× v, u ∧ v the vector product of u and v.

X
∫
ω

A : B denote
∑
α=1,2

∑
β=1,2

∫
ω

AαβBαβdx.

X A . B denote A ≤ CB.

X ω: be a domain of R2.

X S: a midsurface of the shell.

X Γραβ: The Christoffel symbols of the surface.

X [G]e : denotes the jump of G across e.

X λ, µ: the Lamé moduli of the homogeneous and isotropic material that constitutes the

shell.

X ν, E denote respectively the Poisson modulus and coefficient the Young of the material.

X tr(A): trace of the matrix A, (tr(A) = A11 + A22).

X ⇀: weakly convergence.
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X Hm(ω): Sobolev space of order m.

X ∆(T ) is the union of triangles of Th that intersect T .

X ∆(e) is the union of triangles of Th that intersect e.
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Introduction

Introduction

The thin shell is a three dimensional body, such that the thickness dimension is very

small compared to the other dimensions. It is considered as a part from the ensemble of the

elastic structures. Such structures are abundantly found in nature. Nowadays, it is largely

utilized in industry, especially cars industry, aeronautics as well as in civil engineering

such as bridges construction. This is due to its weak weight and high resistance, making it

useful in constructing big structures[Figure 1].

Figure 1: A plane

13



Obtaining models of plates and shells has been the subject matter in mecanica. Histor-

ically, research on plates topic have started at the end of Nineteenth century by Gustav

Robert Kirchhoff and the early of Twentieth century by Augustus Edward Hough Love.

Regarding shells models, the first attempts dated to fifthies years in the Soviet Union

and to the sixties years in the United State. From the eighties and on, researches on shells

models has attracted a lot of attention in France (works of P. Destuynder [35] [36] [37],

E. Sanchez-Palencia [63] [64] [65], Ciarlet and Miara [23], Ciarlet and Lods [27] [28] [29]

and Ciarlet, Lods and Miara [30]).

Linear shells can be categorized into two categories which are:

Naghdi’s shell model [54] [55] is based on the ideas of E.Cosserat and F.Cosserat [32]

which takes into consideration transfers shear and Koiter’s shells [50] which is based on

Kirchhoff [48] and Love work [51] neglect the shear force. We refer to Bernadou [7] for an

overview of linear shell theory.

For Naghdi’s model a deformation energy can be decomposed on three energies namely:

the flexural energy term, membrane energy term; transverse shear term denoted as af (·, ·),

am(·, ·) and at(·, ·), respectivly.

Prestressing refers to the act of engendering persistent stresses in a structure, aiming at

improving the elastic properties of the structure. Nowadays, prestressing is vastly used in

constructing towers, building,...etc.

The main utility behind using prestressing is that it strengthen the structure and makes it

more stiff [Figure 2]. There are three ways to perform prestressin, which are the following,

• Precompression with mostly the structure’s own weight.

• Pre-tensioning with high-strength embedded tendons.

• Post-tensioning with high-strength bonded or unbonded tendons.

14



Figure 2: Structure with and without prestress.

Historically, prestressing has been adapted in Romanien’s constructions.

Prestressing characterizes several phenomena ranging from in hemodynamics to building

and towers...ect. Hereafter, we cite two typical applications of prestressed models:

1. Nobile and Vergara [57] interested in modeling and numericals simulating interaction

of fluid-structure in vascular dynamics. Authors started from 3D shell model that

take into consideration prestressed terme
∫

Ωs

T∇u : ∇vdωs. Afterwards they reduce

the model to a membrane case. This model works well under the assumptions (the

structure is thin, behaves as a membrane, deforms mainly in the normal direction to

the mean surface). These assumptions are sound and widely accepted in vascular

dynamics.

2. Starting from the nonlinear (Kirchhoff) model of elastic plates and the assumption

of isometric deformation, Marohnic and Tambača[52] derived a model of a flexural

prestressed shell. This model is the same as the model of a parametrized shell up to

the prestressed energy term. In other words, the model is the sum of two bilinear

forms, af (·, ·) and ap(·, ·), which respectively represent the flexural and prestressed

15



energy, and both terms are of the same order of magnitude. The bilinear form ap(·, ·)

is symmetric but not necessarily positive. The derivation of the full model is achieved

by adding membrane am(·, ·) and transverse shear at(·, ·) terms.

Finite element method are used to approximate numerically the solution of the mathe-

matical models. Phenomena in physics, biology, chemistry ...etc, are modeled by partial

differential equations. This transmission from physics to math modeling yield slight error

which is commonly known as model erreur [Figure 3].

This is occur as mathematical model is constrained with assumptions that cannot

perfectly simulate the real problem. Approximating mathematical solution (exact solution)

using finite element method, in turn, produces necessarly errors because of discretization

process. After having obtained the finite element solution, it is important to compute

the solution accuracy, if this accuracy hasn’t reached the desirable target, the numerical

solution should be replicated with a refined set of parameters [21] [59].

The error between the exact solution ( the solution of the mathematical model) and

the approximate solution (the solution of numerical problem) can be found using a priori

error estimate. However, a priori error estimat suffers from one shortcoming which is

dependence of the upper bound with the unknown quantity U , see [25] [39]. One manner

to overcome such as problem is the a posteriori analysis. The early efforts concerned with

a posteriori analysis back to the works of Babuška et Rheinbolt [4, 1978]. Thenceforth, a

posteriori analysis has recieved much and growing interest.

The a posteriori error estimate is based on evaluating the error between exact solution

U and its approximated solution Uh in terms of known terms such as the size of the mesh

cells, the problem data, and the approximate solution, this is called the error indicators.

A posteriori estimates yield global upper and local lower bounds for the error, when the

error estimator provides an upper bound for the error, this means, that our estimator is

16



"reliable" and it is called "efficient" if it provides a lower bound for the error apart from

data resolution.

Mainly, there are three types of a posteriori error estimators which are: residual-based

error estimates [68] [69], hierarchical bases error estimates [1] [5] and duality techniques

error estimates [6]. One appealing feature a posteriori error estimate is that it provides

useful information to construct a new mesh that is used for converging to a more accurate

solution. Replicating this procedure multiple times is commonly called adaptive meshes.

Recently, a lot of works, concerning with a rigorous mathematical justification of the

convergence of adaptive finite element method. The basic idea is to prove a contraction

property of the errors between two consecutive adaptive meshes. Most of this works, are

concerned with simplified model problems. We refer to [19] and [20] for the first works

concerning a plate model and also to Grätsch and Bathe [43] [44] for the first a posteriori

estimates concerning shell models. The first a posteriori estimates concerning shell models

formulated in global coordinate system was done in [9] for Naghdi’s shell model and

Koiter’s shell model in [14].

Contribution

In this work, we are interested on a prestressed shell model which was introduced for

the first time in [52]. The unknown of the problem is the couple (u, r), where u is the

displacement from the reference configuration and r is the infinitesimal rotation of the

cross section of the shell. In [52] both u and r are described in Cartesian coordinates and

they are sought in the Sobolev space H1, each one has three components as follow:
Find U = (u, r) ∈ V(ω) such that

tam(u, v) + tat(U, V ) +
t3

12
af (r, s) +

t3

12
ap(r, s) = L(V ),∀V = (v, s) ∈ V(ω)

17



Physical problem of
a solid thin ≡ shell

Mathematical model of shell:
Kinematical assumptions

:
Boundary conditions

Loading

Finite element solution
of mathematical model:
Selection of elements

Meshing
Imposition of boundary conditions

:
Assessment of error in solution

Figure 3: Finite element analysis of a shell problem[21].

where

V(ω) =

{
(v, s) ∈ H1(ω,R3)×H1(ω,R3) : s · a3 =

1

2
(∂1v · a2 − ∂2v · a1), v|Γ0 = 0

}
.

The bilinear form a(·, ·) which is equal to tam(·, ·) + tat(·, ·) +
t3

12
af (·, ·) is not coercive on

V(ω) but it defines a norm on the same space. To resolve this issue, we introduce a larger

Hilbert space V

V = {(v, s) ∈ H1(ω,R3)× L2(ω,R3) : s · aα ∈ H1(ω,R), s · a3 = γ̃12(v), v|Γ0 = 0},

which turns to be the completion of V(ω) with respect to the norm (a(·, ·))1/2, because we

show that this form is continuous and coercive on V. The nonpositive character of ap(·, ·)

may break the coercivity of the bilinear form (a + ap)(·, ·) on the space V even if a(·, ·)

is V-elliptic. Nevertheless, if the unit normal vector a3 on the deformed surface S has a

18



sufficiently small gradient (more precisely if ‖∇a3‖L∞ is “ sufficiently small ”) the bilinear

form (a + ap)(·, ·) still defines a norm on the space V and that (a + ap)(·, ·) remains

V-elliptic. By the Lax-Milgram lemma, the model has a unique solution in the space

V. We find the assumption (‖∇a3‖L∞ is “ sufficiently small ”) is used in plates and rods

models containing prestressed terms (see Paroni [58]). Moreover, because of the constraint

s · a3− γ̃12(v), it cannot be discretized by conforming finite element methods we propose a

penalized version of the model by adding the bilinear form

1

ε
b(U, V ) =

1

ε

∫
ω

(r · a3 − γ̃12(u))(s · a3 − γ̃12(v))dx

where ε is the penalization parameter, and considering the relax functional space X without

the constraint. We prove the existence and uniqueness results of solutions of the continuous

problems and show that this solution converges to the solution of the original problem

when the penalization parameter tends to zero. We present further perform a robust finite

element approximation of the penalized version that is based on a regularity assumption

on the solution. Hence, under some natural assumptions on the domain, the chart and the

data, we prove that this regularity holds uniformly in the penalization parameter.

Furthermore, we introduce a mixed formulation of the original problem and we demon-

strate its well-posedness, we use the approximation by finite element method for mixed

problem, the existence and uniqueness of a solution to the discrete mixed problem is based

on the discrete inf–sup condition of the bilinear form b(·, ·), the constant βh for the discrete

inf–sup condition is dependent on h then is more damaging for the convergence between

the solution of the mixed problem and the solution of discret mixed problem.

Another track in this work is a robust priori and a posteriori error analysis for a hybrid

formulation of a prestressed shell model. A hybrid formulation is considered here, i.e.,

the unknowns (the displacement and the rotation to the shell midsurface are described

respectively in Cartesian and local covariant basis. The use of hybrid formulation in the
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context of shell problems, was introduced by Blouza [12] for Naghdi’s shell model. The

aim of using hybrid formulation in [12] was to reduce the number of the unknowns ( from

six to five because s · a3 = 0) and to get rid of the tangency constraint for the rotation

which was presented by Blouza and al. [15].

We study the existence and uniqueness of the solution of the new variational formulation.

We then present a penalized version for the problem, we prove its well-posedness, using

the finite element approximation for the penalized problem and we prove the existence

and uniqueness of the discret solution, we derive a priori error estimates, but this a priori

estimat is not robust, then rewriting the penalized formulation as a mixed formulation.

We propose a discrete problem for the last mixed problem and proving again a uniform a

priori error estimates.

The purpose of this work is to provide a posteriori error estimators, we demonstrate

that this a posteriori error estimator is reliable and efficient.

Thesis outline

The outline of the thesis is as follows:

• In chapter 1, firstly we recall the geometry and classification of the surfaces, we

present the Naghdi shell model and Koiter shell model. We present also 2 models

with a presetressed term (a membrane and fluxural prestressed shell models) the first

model is presented in [57] by Nobile and Vergara and the second model is presented

in [52] by Morohnic and Tambača and we point out that this model is not necessarily

positive.

• In chapter 2, we present a new constrained continues problem of a fluxural pre-

stressed shell model and its well-posedness and we introduce a penalized version and
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CHAPTER 0.

mixed method for the constrained problem, and we prove their well-posedness. We

demonstrate the convergence of the solution of the penalized problem to the original

one and a regularity result for smoother data.

• Chapter 3 is devoted to the finite element approximation for the penalized and

mixed problem and we prove the existence and uniqueness of the discrete solution,

we derive a priori error estimates between the discret solution and a solution of a

penalized problem.

• In chapter 4, we present a hybrid formulation of a prestressed shell model where the

unknowns are described in Cartesian and local covariant basis respectively, we study

the existence and uniqueness of the solution. We then present a penalized version

for the new variational formulation, we prove its well-posedness. We give the strong

formulation equivalent to a penalized problem. The finite element approximation for

the penalized problem is presented also in this chapter and we prove the existence and

uniqueness of the discret solution, we derive a priori error estimates. We derive also

a posteriori estimates and we prove the reliability and efficiency of our a posteriori

error estimator.

• In chapter 5, we proved 2 approaches of numerical experiments. The first presented

the bending-dominated behavior of the structure and the second are included that

confirm the efficiency of the residual a posteriori estimator and the strategy of adapt

mesh.
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Chapter 1

Geometrical Preliminaries

1.1 Overview on shell geometry

In this section, we present the characteristics and geometrical notions related to shell,

espicially notations, definitions and fundamentals required for analysis of mathematical

shell models. For more details we refere to [21],[24].

Let (e1, e2, e3) be the canonical orthogonal basis of R3 and let u and v be to vector of

R3. u · v the inner product of R3, and u× v the vector product of u and v. For a given

domain ω of R2 with a Lipschitz boundary, We assume that the boundary ∂ω is divided

into two parts Γ0 and Γ1. We thus consider a shell with a midsurface (denoted by S) defined

by a chart ϕ which is an injective mapping from the closure of a bounded open subset of R2,

S = ϕ(ω̄), where ϕ ∈ W 2,∞ (ω,R3
)

(1.1)
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1.1. CHAPTER 1.

Figure 1.1: Definition of the surface S

such that

ϕ : ω̄ −→ R3

x = (x1, x2) 7−→ ϕ(x).

We define two tangential vectors to the surface S by:

aα(x) =
∂ϕ(x)

∂xα
; α = 1, 2

in each point p = ϕ(x) of S.

The unit normal vector a3 is then defined by

a3 =
a1 × a2

|a1 × a2|
.

The two vectors (a1, a2) defined the tangent plan TpS on every point of S and the

triplet (a1, a2, a3) the covariant basis on each point p of the surface S.

The contravariant basis ai are denoted by the relation ai · aj = δji with a3 = a3 and δji

being the Kronecker symbol1.

1δji = 1 if i = j and 0 otherwise
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1.1. CHAPTER 1.

The restriction of the metric tensor to the tangent plane, also called the first fundamental

form of the surface, is given by its components

aαβ = aα · aβ.

The contravariant components of the metric are given by:

aαβ = aα · aβ = (aαβ)−1 =
1

a

(
a22 −a12

−a12 a11

)
with a = det(aαβ) = a11a22 − (a12)

2 Indeed, the infinitesimal area corresponding to the

differentials (dx1, dx2) of the coordinates can be expressed as dS =
√
adx1dx2.

We have this relations

a1 × a3 = −
√
aa2, and a2 × a3 =

√
aa1.

a1 × a2 = det(aαβ)
√
aa3

a1 × a3 = −det(aαβ)
√
aa2

a2 × a3 = det(aαβ)
√
aa1.

The proof can be found in [24] and [67].

The components of the second fundamental form of the surface are defined by

bαβ = a3 · ∂βaα = −aα · ∂βa3.

The second fundamental form is called the curvature tensor and the mixed components

are defined by

bβα = aβρbρα

The Christoffel symbols of the surface Γραβ take the form

Γραβ = Γρβα = aρ · ∂βaα = −∂βaρ · aα.
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Remark 1.1.1 The first fundamental form aαβ is related to metric characteristics of the

middle-surface, whereas the second fundamental form bαβ is related to characteristics of

middle-surface’ curvature. The forms ( i.e., aαβ and bαβ ) are naturally dependante on the

choice of the selected representation ϕ.

1.2 Classification of surfaces

The surfaces of the shells can be categorized into three types namely elliptic, hyperbolic

and parabolic. In this section, we present these types.

Let p and p∗ two points of S such that p∗ near to p (i.e.
−→
Op = ϕ(x1, x2) and

−−→
Op∗ = ϕ(x1 + dx1, x2 + dx2)), then studing the position of p∗ according to TpS.

We define the distance between the tangent plane TpS and p∗ by

d = (ϕ(x1 + dx1, x2 + dx2)− ϕ(x1, x2)) · a3

then,

ϕ(x∗1, x
∗
2) = ϕ(x1, x2) + (x∗α − xα)aα(x1, x2)

+
1

2
(x∗α − xα)(x∗β − xβ)

∂2ϕ

∂x∗α∂x
∗
β

(x1, x2)

+O(‖(x∗1 − x1, x
∗
2 − x2)‖3)

with x∗1 = x1 + dx1 and x∗2 = x2 + dx2. We then have

∂2ϕ

∂x∗α∂x
∗
β

(x1, x2) = Γραβaρ + bαβa3.

Then we can write the distance d in the following form:

d =
1

2
bαβdxαdxβ

=
1

2
(b11dx1dx1 + 2b12dx1dx2 + b22dx2dx2)
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Note that the asymptotic directions of the surface S are the directions (dx1, dx2) which

makes d = 0.

In the case d = 0, we will have three possible cases:

Case(1) (b12)2−b11b22 > 0, we have two asymptotic directions. The TpS cross the surface

S in p, then p is the hyperbolic point of the surfece S.

Case(2) (b12)2 − b11b22 < 0, we have two imaginary asymptotic directions. The surface

S and the TpS are a longside eatch other, then the point p is elliptic point of the

surface S.

Case(3) (b12)
2 − b11b22 = 0, we have one direction. The TpS and the surface S are

contiguous on p a long the direction, then p is the parapolic point of the surfece S.

Finally we deduce the surface S may be hyperbolic, elliptic or parabolic if the deter-

minant of the second fundamental form is either positive, negative or null, respectively.

Figure 1.2: Hyperbolic surface
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Figure 1.3: Elliptical surface

Figure 1.4: Parabolic surface

1.3 Modeling a shell

In this section, we present both undeformed and deformed shell, that is shell prior and after

applying forces, such that S the middle surface for a shell i.e. S = ϕ(ω̄), with ϕ : ω̄ −→ R3
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1.3.1 Undeformed shell

Let t be the thicknes of the shell. We define the undeformed shell by an ensemble in R3

i.e. the 3D chart, given by

C =

{
(x1, x2, x3) ∈ R3; Φ(x1, x2, x3) = ϕ(x1, x2) + x3a3, (x1, x2) ∈ ω̄,−1

2
t ≤ x3 ≤

1

2
t

}
.

The derivatives of the 3D chart are given by gi, i = 1, 2, 3

gα =
∂Φ

∂xα
= aα + x3

∂a3

∂xα
= aα − x3b

ρ
αaα

hence

gρ = (δρα − x3b
ρ
α)aα.

Moreover,

g3 =
∂Φ

∂x3

= a3.

The vectors g1 and g2 in parallel with the tangent plane of the midsurface at the point

p = ϕ(x1, x2) and the vector g3 is the normale to this plane.

1.3.2 Deformed shell

When the shell is deformed due to some forces the surface S is deformed, and the deformed

surface is denoted by S̃, then we have

ϕ̃(x1, x2) = ϕ(x1, x2) + u(x1, x2).

Such that S̃ = ϕ̃(x1, x2) and u(x1, x2) is the displacement of the points p of the surface.

1.4 Examples of shell models

In this section we present two types of shells namely Naghdi and Koiter shell, Koiter shell

model is a particular case of Naghdi shell model [7].
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1.4.1 Naghdi’s shell model

This model is initially proposed by Naghdi [1963 [54]] based on category of E. and F.

Cosserat [1909 [32]]. In seventies years Coutris [34] studied the existence and uniqueness of

the Naghdi shell model afterwards improved by Ciarlet and Miara in 1992 [23] in the case

the chart ϕ is of the class C3. The unknowns of the Naghdi problem in local coordinates

are the 3 displacements of the midsurface of the shell and a 2 rotations of the normal

vector a3 ( ui : ω̄ −→ R such that u = uia
i and rα : ω̄ −→ R such that r = rαa

α ).

This model takes into consideration effects of the transverse shear, then the normal

vector a3 become a∗3 after the deformation and ā3 is the a unit normal vector of the

deformed midsurface, they are given as follows:

a∗3 = a3 + rαa
α

ā3 = a3 − (∂αu3 + bραuρ)a
α

Now we present the Naghdi shell model in the case when the chart in general case such

that, is the of class W 2,∞ proposed by Blouza [11] and Blouza and Le Dret [17].

Let u ∈ H1(ω,R3) and r ∈ H1(ω,R3) such that r · a3 = 0 and ϕ ∈ W 2,∞(ω,R3) then

the components of the linearized strain tensor are given by

γαβ(u) =
1

2
(∂αu · aβ + ∂βu · aα) (1.2)

define functions of L2(ω).

The components of the change of curvature tensor are given by

χαβ(u, r) =
1

2
(∂αu · ∂βa3 + ∂βu · ∂αa3 + ∂αr · aβ + ∂βr · aα)

define functions of L2(ω).
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The components of the change of shear tensor read

δα3 =
1

2
(∂αu · a3 + r · aα)

define functions of L2(ω).

We define a functional space

V =
{

(v, s) ∈ H1(ω,R3)×H1(ω,R3), s · a3 = 0, v = s = 0 in Γ0

}
equiped with the norm

‖(v, s)‖V =
(
‖v‖2

H1(ω,R3) + ‖s‖2
H1(ω,R3)

) 1
2
.

The space V is a Hilbert space.

Let aαβρσ ∈ L∞(ω) be an elasticity tensor, which we assume to satisfy the usual

symmetries and to be uniformly strictly positive, i.e., for all symmetric tensor ταβ and

almost all x ∈ ω, we have

aαβρσταβτρσ ≥ c
∑
αβ

|ταβ|2

with c > 0. To be more specific, we will concentrate on the case of a homogeneous,

isotropic material with Lamé moduli µ > 0 and λ ≥ 0, in which case

aαβρσ = 2µ(aαρaβσ + aασaβρ) +
4λµ

λ+ 2µ
aαβaρσ.

The Naghdi shel model takes the following variational form: Find U = (u, r) ∈ V such that

a(U, V ) = L(V ),∀V = (v, s) ∈ V.
(1.3)

Such that

a(U, V ) =

∫
ω

(
taαβρσγαβ(u)γρσ(v) +

t3

12
χαβ(u, r)χρσ(v, s) + 4tµaαβδα3(u, r)δβ3(v, s)

)√
adx

(1.4)
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and

L(V ) =

∫
ω

p · v
√
adx+

∫
Γ1

(N · v −M · s)√aαβτατβdΓ.

Lemma 1.4.1 (the rigid displacement lemma)[17] Let u ∈ H1(ω,R3) and r ∈ H1(ω,R3)

such that r · a3 = 0. Let ϕ ∈ W 2,∞(ω,R3).

• If u satisfies γ(u) = 0, then there exists a unique ψ ∈ L2(ω,R3) such that

∂αu = ψ × aα, α = 1, 2 (1.5)

• If, in addition, u and r satisfy δα3(u, r) = 0, then ∂αu = −r × aα belong to H1(ω).

Moreover, r · aα = −εαβaβ · ψ.

• If, in addition, χ(u, r) = 0, then ψ is identified with a constant vector of R3 and we

have for all x ∈ ω:

u(x) = c+ ψ × ϕ(x),

where c is a constant in R3 and

r(x) = −(εαβa
β(x) · ψ)aα(x).

Where

εαβ =
√
aeαβ, ε

αβ =
1√
a
eαβ, eαβ = eαβ =

(
0 1
−1 0

)
.

Theorem 1.4.2 Assume that ϕ ∈ W 2,∞(ω,R3). Let p ∈ L2(ω,R3) be a given force

resultant density and let N ∈ L2(Γ1,R3) and M ∈ L2(Γ1,R3), with M · a3 = 0, be given

traction and moment resultant densities, respectively. Then there exists a unique solution

to the variational problem (1.3).
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1.4.2 Koiter’s shell model

This model is based on Kirchoff-Love hypotheses which correspond to the normals vectors.

Koiter considered the Kirchoff-Love hypotheses and proposed a two dimensional mathe-

matical model for linearity elastic thin shells.

The Koiter shell model is the same as the Naghdi shell model but with neglecting the

transfers shear, i.e. ā3 = a∗3, then the unknown is the displacement field of the points of

the shell midsurface, see [7].

Bernadou and Ciarlet [8] were the first to study the existence and uniqueness for the

koiter shell model in the case the chart is of the class C3. Ciarlet and Miara [1992] were

able to give a simpler existence and uniqueness proof.

In 1999 Blouza and Le Dret [16] generalized the model for surfaces of class W 2,∞

Let u ∈ H1(ω,R3) and r ∈ H1(ω,R3) such that ϕ ∈ W 2,∞(ω,R3) then the components

of the linearized strain tensor are given by

γαβ(u) =
1

2
(∂αu · aβ + ∂βu · aα)

define functions of L2(ω).

The components of the change of curvature tensor are given by

Υαβ(u) = (∂αβu− Γραβ∂ρu) · a3.

Let us introduce the space

Ṽ =
{
v ∈ H1(ω,R3), ∂αβv · a3 ∈ L2(ω), v = ∂αv · a3 = 0 on Γ0

}
equipped with a norm

‖v‖2
Ṽ =

(
‖v‖2

H1(ω,R3) + ‖∂αv · a3‖2
H1(ω)

)
(1.6)
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The Kioter shell model takes the following variational form: Find U = (u, r) ∈ Ṽ such that

ã(U, V ) = L̃(V ),∀V = (v, s) ∈ Ṽ.
(1.7)

Such that

ã(U, V ) =

∫
ω

(
taαβρσγαβ(u)γρσ(v) +

t3

12
Υαβ(u)Υρσ(v)

)√
adx (1.8)

and

L̃(V ) =

∫
ω

p · v
√
adx+

∫
Γ1

(N · v −M · s)√aαβτατβdΓ

Lemma 1.4.3 (the rigid displacement lemma) [16] Assume that ϕ ∈ W 2,∞(ω,R3) Let

u ∈ H1(ω,R3) be a displacement of the surface S.

• If u satisfies γ(u) = 0, then there exists a unique ψ ∈ L2(ω,R3) such that

∂αu = ψ × aα, α = 1, 2 (1.9)

• If, in addition, Υ(u) = 0, then ψ is identified with a constant vector of R3 and we

have for all x ∈ ω:

u(x) = c+ ψ × ϕ(x),

where c is a constant in R3

Theorem 1.4.4 Let P ∈ L2(ω,R3) be a given force resultant density and let N ∈

L2(Γ1;R3) and M ∈ L2(Γ1;R3), with M · a3 = 0, be given traction and moment re-

sultant densities, respectively. Then there exists a unique solution to the variational

problem (1.7).
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1.5 Prestressed shell models

In the case of shells without prestressed term there exist at least three models membrane,

flexural, complete model. In this section we present differents prestressed existent models

(a membrane prestressed model and a flexural prestressed model).

1.5.1 A membrane prestressed shell model

Starting from the 3D nonlinear elasticity equation for a shell type Nobile and Vergara

[57] proposed a membrane prestressed shell model. This model works well under the

assumptions:

• the structure is thin

• behaves as a membrane

• deforms mainly in the normal direction to the mean surface.

Note that these assumptions are sound and widely accepted in vascular dynamics.

Considering the Koiter model with small deformation in local coordinates behaves as a

membrane and neglecting transversal displacements and bending terms [49],[50].

The model takes the following variational formulation:∫
S

%t
∂2u

∂τ 2
vds+

∫
S

taαβρσγαβ(u)γρσ(v)ds =

∫
S

f · vds (1.10)

where f is the force term, % is the density of the structure, γαβ is the change of metric

tensor in local coordinates and aαβρσ is the elastic tensor given by

aαβρσ =
E

1− ν
aαρaβσ +

Eν

1− ν2
aαβaρσ.
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Where ν and E are respectively the Poisson modulus and the Young coefficient of the

material. The functional space K depends on the boundary conditions imposed on the

displacement u. Nobil and Vergara simplified the previous model by considering the

membrane displacement only on the normal direction i.e. u = (0, 0, u3). Then,

aαβρσγαβ(u)γρσ(v) =
E

1 + ν
aαβaρσbαβbρσu3v3

+
Eν

1− ν2
aαβaρσbαβbρσu3v3

=

(
E

1 + ν
bρβb

ρ
β +

Eν

1− ν2
bββb

ρ
ρ

)
u3v3.

Then they obtained: 
%t
∂2u3

∂τ 2
+Bu3 = f in (0, T )× S

u3|τ=0 = u0 in S

∂u3

∂τ
|τ=0 = ur in S

(1.11)

where

B = B(x1, x2) = t
E

1− ν2

(
4κ2

1 − 2(1− ν)κ2

)
(1.12)

u0 and ur are the initial conditions and κ1,κ2 is given by

κ1 =
1

2
bαα

κ2 = 2κ2
1 −

bρβb
β
ρ

2
.

In the following, we present the prestressed model of [57]. Nobil and Vergara [57] derived

a prestressed shell model starting from the 3D nonlinear elasticity equations for a shell

type domain, linearized the shell over a deformed configuration Ωs of thickness t, Ωs =

S × [−t/2, t/2] and adding the term of the form∫
Ωs

T∇u : ∇v dωs (1.13)
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to the other linear terms, T is the prestress tensor in the local curvilinear basis is given by

T 3D =

[
T 0
0 0

]
with T =

[
T 11 T 21

T 12 T 22

]
We introduce the surface covariant derivative of a vector field v, defined as

vsα|β =
∂vα
∂xβ
− Γραβvρ.

The displacement u in the 3D shell is defined as

u = ui(x1, x2)ai − x3(u3,α + bραuρ)a
α

the 3D covariant derivatives of u are given by

uα|β = usα|β − bαβu3

uα|3 = −(u3,α + bραuρ)

u3|α = u3,α + bραuρ

u3|3 = 0.

(1.14)

From (1.13) we obtain

∫
Ωs

uρ|αT
αβvρ|βdωs =

∫
S

∫ t/2

−t/2
bραu3T

αβbρβv3d`ds

=

∫
S

tbραT
αβbρβu3v3ds∫

Ωs

u3|αT
αβv3|βdωs =

∫
S

∫ t/2

−t/2
u3,αT

αβv3,βd`ds

=

∫
S

tTαβu3,αv3,βds

(1.15)

Adding these terms to model (1.11) then the membrane model with a prestress reduces to
%t
∂2u3

∂τ 2
−∇ · (T∇u3) +B2u3 = f in (0, T )× S

u3|τ=0 = u0 in S

∂u3

∂τ
|τ=0 = ur in S

(1.16)

where

B2 = B2(x1, x2) = t

(
E

1− ν2
((1− ν)bρβb

β
ρ + bββb

ρ
ρ) + bσαT

αβbσβ

)
(1.17)

The problem (1.16), (1.17) is the prestressed model .
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1.5.2 A flexural prestressed shell model

Starting from the nonlinear (Kirchhoff) model of elastic plates ([22], [47]) Marohnic and

Tambaca [52] derived a model of a flexural prestressed shell. The model is the same as the

model of shell with surface S up to the prestress energy term. The plate is deformed via

some known isometric deformation ϕ i.e. ϕ ∈ Ad, where

Ad =
{

Ψ ∈ W 2,2(ω,R3); |∂1Ψ| = |∂2Ψ| = 1, ∂1Ψ · ∂2Ψ = 0
}

The model is appropriate when flexural effects dominate over membrane ones.

The unknowns of the problem are u the displacement from the middsurface S and r for

the infinitesimal rotation of the cross-section of the shell are defined in global coordinates.

Since ϕ is isometric then ai · aj = δji and a3 = a1 × a2. The contravariant basis

ai i = 1, 2, 3 is then equal to the covariant basis ai i = 1, 2, 3.

The covariant and contravariant components of the metric (or the first fundamental form)

are equal to the identity matrix:

(aαβ) = (aα · aβ) = (aαβ) =

(
1 0
0 1

)
a(x) = det(aαβ) = 1.

Definition of the model:

We assume that the shell is fixed on a part Γ0 of the boundary of ω, then function space

for the linearized flexural problem is

Vf (ω) =
{

(v, s) ∈ H1(ω,R3)×H1(ω,R3) : ∂αv = s× aα, v|Γ0 = 0
}

(1.18)

The norm on Vf (ω) is defined by ‖(v, s)‖2
Vf (ω) = ‖v‖2

H1(ω,R3) + ‖s‖2
H1(ω,R3).

The variational problem reads as follows
Find U = (u, r) ∈ Vf (ω) such that

t3

12
af (r, s) +

t3

12
ap(r, s) = L(V ),∀V = (v, s) ∈ Vf (ω)

(1.19)
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The flexural term is equal to

af (r, s) = 2µ

∫
ω

Π(r) · Π(s)dx+
2λµ

2µ+ λ

∫
ω

trΠ(r)trΠ(s)dx.

denote Π(r) by a symmetrized linearized second fundamental form

Π(s) =

(
∂1s · a2

1
2
(∂2s · a2 − ∂1s · a1)

1
2
(∂2s · a2 − ∂1s · a1) −∂2s · a1

)
The prestressed bilinear form (corresponding to the prestressed energy) reads

ap(r, s) = 2µ

∫
ω

tr((II0 + IIT0 )τ(r, s))dx+
4λµ

2µ+ λ

∫
ω

trII0τ(r, s)dx.

Where

τ(r, s) =
1

2

(
−∂1r · a1

1
2
(∂1r · a2 − ∂2r · a1)

1
2
(∂1r · a2 − ∂2r · a1) ∂2r · a2

)
(s · a3)

+
1

2

(
−∂1s · a1

1
2
(∂1s · a2 − ∂2s · a1)

1
2
(∂1s · a2 − ∂2s · a1) ∂2s · a2

)
(r · a3)

and

II0 = ∇ϕ>∇a3 =

(
∂1ϕ · ∂1a3 ∂1ϕ · ∂2a3

∂2ϕ · ∂1a3 ∂2ϕ · ∂2a3

)
.

The bilinear form ap(·, ·) is symmetric but not necessarily positive. The linear form (the

force) L(V ) equals

L(V ) =

∫
ω

f · vdx. (1.20)

with f ∈ L2(ω,R3) that represents a given resultant force dencity.

The derivation of the full model is achieved by adding membrane. am(·, ·) and transverse

shear at(·, ·) terms, and we define the space V(ω)

V(ω) =

{
(v, s) ∈ H1(ω,R3)×H1(ω,R3) : s · a3 = γ̃12(v) =

1

2
(∂1v · a2 − ∂2v · a1), v|Γ0 = 0

}
(1.21)

with the norm

‖(v, s)‖2
V(ω) = ‖v‖2

H1(ω,R3) + ‖s‖2
H1(ω,R3).
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The constraint

s · a3 = γ̃12(v) =
1

2
(∂1v · a2 − ∂2v · a1) (1.22)

merely states that the normal part of r is equal to infinitesimal rotation of the cross section

around its own axis.

Remark 1.5.1 We remark that the difference between the definition of the space V(ω)

and the definition of the space Vf(ω), only one out of six conditions is kept, because the

other conditions appear in am and at . This condition can be physically interpreted that

the infinitesimal rotation of the cross-sections around normal is equal to s3.

Following Marohnic and Tambaca [52] the model takes the following variational form:
Find U = (u, r) ∈ V(ω) such that

tam(u, v) + tat(U, V ) +
t3

12
af (r, s) +

t3

12
ap(r, s) = L(V ), ∀V = (v, s) ∈ V(ω)

(1.23)

The membrane and the transverse shear bilinear forms (respectively corresponding to the

membrane and the transverse shear energies) are given by

am(u, v) = 4µ

∫
ω

γ(u) · γ(v)dx+
4λµ

2µ+ λ

∫
ω

trγ(u)trγ(v)dx.

where γ(v) is a linearized strain tensor. This is a standard membrane term in the

theory of shells [24] for St. Venant–Kirchhoff material. In global coordinates, Blouza and

Le Dret showed that this term is equal to (1.2) [16].

at(U, V ) = µ

∫
ω

aT3 (∇u− r ×∇ϕ) · aT3 (∇v − s×∇ϕ)dx

This term is a standard term in the theory of Naghdi shells [17] but in the case that ϕ is

isometric. The rotation in this model is different than the rotation of the Naghdi shell.

Let U = (u, r) and V = (v, s), we introduce the following bilinear forms:

a(U, V ) = tam(u, v) + tat(U, V ) +
t3

12
af (r, s) (1.24)
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ans

ap(r, s) =
t3

12
ap(r, s) (1.25)

Remark 1.5.2 If the transverse shear energy of the shell and the membrane energy are

zero then Π(s) is the linearized change of curvature, which is a standard term in flexural

shell theories [24] [26] .

Remark 1.5.3 For any (v, s) ∈ H1(ω,R3)×H1(ω,R2)× L2(ω), the components of the

tensors γ(v) and Π(s) are well defined as L2(ω) functions.

In Marohnic and Tambaca [52], lemma 2 a new version of the rigid displacement lemma

is proved, by proving that the bilinear form a(·, ·), defines a norm on the space V(ω).

Unfortunately, the bilinear form a(·, ·) is not coercive on V(ω) (see Remark 1.5.4 below).

Remark 1.5.4 The bilinear form a(·, ·) is not V(ω)-elliptic in general. Indeed, let

ω = (0, 1) × (0, 1), Γ0 = {(0, x2), 0 < x2 < 1} ∪ {(x1, 1), 0 < x1 < 1} and suppose that

ϕ(x1, x2) = (x1, x2, 0) which implies that a1 = (1, 0, 0)T , a2 = (0, 1, 0)T , and a3 = (0, 0, 1)T .

We consider the sequence (vk, sk), with k ∈ N∗, defined by

vk =
sin(kπx1)

k
3
2

(x2 − 1)a2 and sk =
π cos(kπx1)

2
√
k

(x2 − 1)a3

Then, it is easy to check that

1. (vk, sk) ∈ V(ω), because

• vk ∈ H1(ω,R3) and sk ∈ H1(ω,R3)

• vk|Γ0 = 0

• sk · a3 =
π cos(kπx1)

2
√
k

(x2 − 1)

γ̃12(vk) =
1

2
(∂1vk·a2−∂2vk·a1) =

1

2
(
kπ cos(kπx1)

k3/2
)(x2−1) =

π cos(kπx1)

2
√
k

(x2−1)

then sk · a3 = γ̃12(vk).
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2. We show that ‖(vk, sk)‖H1(ω,R3)×H1(ω,R3) −→ +∞ as k −→ +∞, as

‖(vk, sk)‖2
H1(ω,R3)×H1(ω,R3) = ‖vk‖2

H1(ω,R3) + ‖sk‖2
H1(ω,R3)

we calculate ‖vk‖2
H1(ω,R3) and ‖sk‖2

H1(ω,R3) then we have

‖vk‖2
H1(ω,R3) = ‖vk‖2

L2(ω,R3) +
∑
α=1,2

‖∂αvk‖2
L2(ω,R3)

since

‖vk‖2
L2(ω,R3) =

1

6k3
− sin(kπx)

12k4π

and

∑
α=1,2

‖∂αvk‖2
L2(ω,R3) = ‖∂1vk‖2

L2(ω,R3)+‖∂2vk‖2
L2(ω,R3) =

π(2kπ + sin(2kπ))

12k2
+

2kπ − sin(2kπ)

4k2π

and

‖sk‖2
H1(ω,R3) = ‖sk‖2

L2(ω,R3) +
∑
α=1,2

‖∂αsk‖2
L2(ω,R3)

since

‖sk‖2
L2(ω,R3) =

π(2kπ + sin(2kπ))

48k2

and

∑
α=1,2

‖∂αsk‖2
L2(ω,R3) = ‖∂1sk‖2

L2(ω,R3)+‖∂2sk‖2
L2(ω,R3) =

1

48
π3(2kπ−sin(2kπ))+

π(2kπ + sin(2kπ))

16k2
.

When k −→ +∞ to ‖vk‖2
H1(ω,R3) + ‖sk‖2

H1(ω,R3) then

‖(vk, sk)‖H1(ω,R3)×H1(ω,R3) −→ +∞
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3. a((vk, sk), (vk, sk)) −→ 0 as k −→ +∞. Because,

am(vk, vk) −→ 0 as k −→ +∞

at((vk, sk), (vk, sk)) −→ 0 as k −→ +∞

af (sk, sk) −→ 0 as k −→ +∞

Hence, a(·, ·) cannot be coercive on V(ω).
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Chapter 2

Mathematical Analysis of a
flexural prestressed model

Introduction

Prestressing refers to the process aiming to strengthen structures by intentionally

applying permanent stresses on them. In [52] Marohnic and Tambača derived a flexural

prestressed shell model. The unknown of the problem is the couple (u, r), where u is

the displacement from the reference configuration and r is the infinitesimal rotation of

the cross section of the shell. More precisely, they end up with the following variational

problem:  Find U = (u, r) ∈ V(ω) such that

a(U, V ) + ap(r, s) = L(v, s), ∀V = (v, s) ∈ V(ω)
(2.1)
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Under some restrictive geometric and mechanical assumptions Marhonic and Tambaca

proved that the bilinear form a(·, ·) defines a norm on the space V(ω). Unforntunatly,

this space is not complet with respect to this norm (see Remark 1.5.4). To resolve this

issue, we introduce a larger Hilbert space V which is nothing but the completion of the

space V(ω) with respect to the norm ‖v‖ = a(v, v)1/2. This implies that the existence

and the uniqueness of the solution can be deduced from the Lax-Milgram Lemma in the

new space. In this chapter, we present a prestressed shell model proposed in [60] we use

a global coordinates system rather than the local coordinates system. The main goal of

this chapter is to introduce the penalized version and a mixed formulation method of this

model. An outline of this chapter is as follows.

• The first section is devoted to the constrained continuous problem we emphasize

the numerical difficulties that can be occur when we try to handle the functional

constraints involved in the space V.

• In section 2, we studies the coercivity of the bilinear form a(·, ·).

• Section 3, is devoted to the well-posedness of the variational problem.

• In Section 4, we introduce a penalized version of the constrained problem, and we

prove its well-posedness.

• In Section 5, we present a mixed formulation of the problem, and we demonstrated

its well-posedness.

2.1 The new constrained continuous problem
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2.1. THE NEW CONSTRAINED CONTINUOUS PROBLEM CHAPTER 2.

For the reason explained in the Remark (1.5.4) in previous chapter, we relax the space

V(ω) to the following space:

V = {(v, s) ∈ H1(ω,R3)×L2(ω,R3) : s · aα ∈ H1(ω,R), s · a3 = γ̃12(v), v|Γ0 = 0} (2.2)

equipped with its natural norm

‖(v, s)‖X =

(
‖v‖2

H1(ω,R3) +
∑
α=1,2

‖s · aα‖2
H1(ω) + ‖s · a3‖2

L2(ω)

) 1
2

. (2.3)

and consider the variational problem

 Find U = (u, r) ∈ V such that

a(U, V ) + ap(r, s) = L(v, s), ∀V = (v, s) ∈ V
(2.4)

Where L ∈ V′. The bilinear forms a(·, ·) and ap(·, ·) are defined by (1.24) and (1.25)

respectively in previous chapter. The well-posedness of this problem requires some

preliminary results.

Lemma 2.1.1 The space V equipped with the norm (2.3) is a Hilbert space.

Proof: Let us introduce the Hilbert space

X = {(v, s) ∈ H1(ω,R3)× L2(ω,R3) : s · aα ∈ H1(ω,R), v|Γ0 = 0} (2.5)

equipped with the natural norm (2.3) and the linear and continuous operator q : X −→

L2(ω) : (v, s) 7−→ s · a3 − γ̃12(v). Then V is a closed subspace of X, because V is simply

the kernel of q.

Lemma 2.1.2 Suppose that ϕ ∈ H2(ω,R3) and that ϕ(Γ0) is not included into a straight

line. Let V = (v, s) ∈ V. Then, a(V, V ) = 0 if and only if V = 0.
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Proof: Let V = (v, s) ∈ V such that a(V, V ) = 0 then by the rigid displacement lemma

[16] as am(v, v) = 0, there exists ψ ∈ L2(ω,R3) such that

∂1v = ψ × a1 and ∂2v = ψ × a2 (2.6)

since (v, s) ∈ V then

ψ · a3 = γ̃12(v) = s · a3 (2.7)

Now we use the fact that at((v, s), (v, s)) = 0 and (2.6) then we get

∂1v · a3 = −s · a2 = −ψ · a2

∂1v · a3 = s · a1 = ψ · a1

Hence

s · ai = ψ · ai i = 1, 2, 3

therefore s = ψ and (2.6) may be written

∂1v = s× a1 and ∂2v = s× a2 (2.8)

implying that

∂2(s× a1)− ∂1(s× a2) = 0 in H−1(ω)×H−1(ω)× L2(ω).

In particular, we have

∂2(s× a1) · a1 − ∂1(s× a2) · a1 = (∂2s× a1 + s× ∂2a1) · a1 − (∂1s× a2 + s× ∂1a2) · a1

= s× ∂2a1 · a1 + ∂1s · a3 − s× ∂1a2 · a1

= ∂1s · a3 = 0 ∈ H−1(ω).

∂2(s× a1) · a2 − ∂1(s× a2) · a2 = (∂2s× a1 + s× ∂2a1) · a2 − (∂1s× a2 + s× ∂1a2) · a2

= s× ∂2a1 · a2 + ∂2s · a3 − s× ∂1a2 · a2

= ∂2s · a3 = 0 ∈ H−1(ω).
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and

∂2(s× a1) · a3 − ∂1(s× a2) · a3 = (∂2s× a1 + s× ∂2a1) · a3 − (∂1s× a2 + s× ∂1a2) · a3

= −∂2s · a2 − ∂1s · a1 = 0 ∈ L2(ω).

Leibniz’s rule yields

∂α(s · a3) = ∂αs · a3 + s · ∂αa3 ∈ H−1(ω) α = 1, 2.

and by the two first identities, we get

∂α(s · a3) = s · ∂αa3 ∈ H−1(ω) α = 1, 2.

Since

s · ∂αa3 ∈ L2(ω) α = 1, 2.

we deduce that

∂α(s · a3) ∈ L2(ω) α = 1; 2.

which directly implies that s · a3 ∈ H1(ω) . Therefore by (2.8) (and recalling that

s · aα ∈ H1(ω)) we obtain that v ∈ H2(ω,R3). Now, again (2.8) yields

0 = ∂21v − ∂12v = ∂2(s× a1)− ∂1(s× a2)

= (∂1s · a3) · a1 + (∂2s · a3) · a2 − (∂2s · a2 + ∂1s · a1) · a3

and thus

(∂1s · a3) = 0

(∂2s · a3) = 0

(∂2s · a2 + ∂1s · a1) = 0.
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Further as af (s, s) = 0, we get in addition

(∂1s · a2) = 0

(∂2s · a1) = 0

(∂2s · a2 − ∂1s · a1) = 0.

Hence,

∂αs · ai = 0 i = 1, 2, 3; α = 1, 2 , or equivalently ∇s = 0.

This means that s is a constant vector c ∈ R3 , hence (2.8) implies there exists c ∈ R3

such that

∂αv = c× aα = c× ∂αϕ. (2.9)

Otherwise, from (2.9) we deduce that ∂α(v(x) − c × ϕ(x)) = 0 which implies v(x) =

c× ϕ(x) + c̃, where c̃ is a constant. We now notice that the set of points y ∈ R3 such that

c × y + c̃ vanishes is either the whole space if c = c̃ = 0, or a straight line if c 6= 0 and

c̃ 6= 0, or empty else. Since v vanishes on Γ0 and ϕ(Γ0) is not included in a straight line,

then there exists at least three non-aligned points mi, i = 1, 2, 3 such that c×mi + c̃ = 0,

i = 1, 2, 3 and therefore only the first possibility is possible, i.e. c = c̃ = 0, which means

that v = 0.

2.2 Gärding type inequality

In order to reveal that a(·, ·) is V-elliptic, we need to prove that the bilinear form a(·, ·)

in fact defines an equivalent norm to the natural norm of the space X.

Lemma 2.2.1 Under the assumptions of Lemma (2.1.2), we obtain

C‖V ‖2
X ≤ a(V, V ) ∀V = (v, s) ∈ V (2.10)
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Proof: The proof is by a contradiction argument. Indeed if a(·, ·) is not V−elliptic, there

exists a sequence Vk = (vk, sk) in V such that

‖(vk, sk)‖X = 1 and a(Vk, Vk) −→ 0 as k −→ +∞ (2.11)

Then by the compact embedding of H1(ω) into L2(ω), up to a subsequence, still denoted

Vk , there exists V ∈ V such that

Vk ⇀ V = (v, s) weakly in V

and

vk −→ v strongly in L2(ω,R3), and sk · aα −→ s · aα strongly in L2(ω). (2.12)

Note again, that the second property of (2.11) implies that

γαβ(vk) −→ 0 strongly ∈ L2(ω) (2.13)

aT3 · (∂αvk − sk × aα) −→ 0 strongly ∈ L2(ω) (2.14)

Παβ(vk, sk) −→ 0 strongly ∈ L2(ω). (2.15)

Let wk = (vk · a1, vk · a2) then we have

2eαβ(wk) = 2γαβ(vk) + vk · (∂αaβ + ∂βaα).

Hence by the previous properties, we have

2eαβ(wk − w`) converges strongly to 0 in L2(ω), as k, ` −→∞

By two dimensional Korn’s inequality [24]

wk − w` −→ 0 strongly in (H1(ω))2, as k, ` −→∞. (2.16)

This amounts to say ∂α((vk − v`) · aβ) −→ 0 strongly in L2(ω) or equivalently

∂α((vk − v`) · aβ) + (vk − v`) · ∂αaβ −→ 0 strongly in L2(ω)
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Hence,

∂α(vk − v`) · aβ −→ 0 strongly in L2(ω), as k, ` −→∞. (2.17)

For the normal component of vk , we have

‖∂α(vk − v`) · a3‖L2(ω) ≤ ‖∂α(vk − v`) · a3 − (sk − s`) · aβ‖L2(ω) + ‖(sk − s`) · aβ‖L2(ω)

Then from (2.14) and (2.12), we get

∂α(vk − v`) · a3 −→ 0 −→ 0 strongly in L2(ω), as k, ` −→∞. (2.18)

Then, by Poincaré’s inequality, we deduce that (vk)k is a Cauchy sequence in H1(ω,R3) ,

and therefore

vk converges strongly to v in H1(ω,R3) (2.19)

As (vk, sk) belongs to V, we have

sk · a3 = γ̃12(vk)

hence (2.19) also implies that

sk · a3 −→ γ̃12(v) strongly inL2(ω) (2.20)

On the other hand, observe that

Π(sk) =

(
∂1sk · a2

1
2
(∂2sk · a2 − ∂1sk · a1)

1

2
(∂2sk · a2 − ∂1sk · a1) −∂2sk · a1

)

=

(
∂1(sk · a2) 1

2 (∂2(sk · a2)− ∂1(sk · a1))
1

2
(∂2(sk · a2)− ∂1(sk · a1)) −∂2(sk · a1)

)
+

(
−sk · ∂1a2

sk
2
· (∂2a2 − ∂1a1)

sk
2
· (∂2a2 − ∂1a1) sk · ∂2a1

)
Let zk = (sk · a2,−sk · a1) then by (2.15) (2.12) and (2.20), we get

2e11(zk − z`) = 2Π11(sk − s`)− (sk − s`) · ∂1a2 −→ 0 strongly in L2(ω)

2e22(zk − z`) = 2Π22(sk − s`)− (sk − s`) · ∂2a1 −→ 0 strongly in L2(ω)

2e12(zk − z`) = 2Π12(sk − s`)− (sk − s`) · (∂1a1 − ∂2a2) −→ 0 strongly in L2(ω) as k, ` −→∞.
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By two dimensional Korn’s inequality, which gives

‖zk − z`‖H1(ω,R2×2) . ‖e(zk − z`)‖L2(ω,R2×2) + ‖zk − z`‖L2(ω,R2×2)

we deduce that

zk − z` −→ 0 strongly in H1(ω)as k, ` −→∞ (2.21)

or equivalently

(sk − s`) · aβ −→ 0 strongly in H1(ω) as k, ` −→∞ (2.22)

This means that

sk · aβ −→ s · aβ strongly in H1(ω) as k −→∞ (2.23)

In conclusion, Vk converges strongly to V in X, which, by (2.11) satisfies

‖V ‖X = 1 and a(V, V ) = 1

Hence, by Lemma (2.1.2) , V = 0, which is a contradiction with ‖V ‖X = 1.

Remark 2.2.2 Note that the choice of the space V (defined by (2.2)) is reasonable, because

it coincides with the completion of the space V(ω) with respect to the norm ‖·‖a = (a(·, ·)) 1
2 .

Lemma 2.2.3 Under the assumptions of Lemma (2.1.2), there exist two positive constants

C1 and C2 (depending on t) such that

C1‖V ‖2
X ≤ a(V, V ) + ap(s, s) + C2‖∇a3‖L∞(ω,R3×2)‖s · a3‖2

L2(ω), ∀V = (v, s) ∈ V (2.24)

Proof: Let V = (v, s) ∈ V be fixed. Then, from Lemma (2.2.1), there exists a positive

constant C1 such that

C1‖V ‖2
X ≤ a(V, V )

≤ a(V, V ) + ap(s, s) + |ap(s, s)|
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By Cauchy-Schwarz’s and Young’s inequalities, for all ε > 0, we find

C1‖V ‖X ≤ a(V, V ) + ap(s, s) + Cp‖∇a3‖L∞(ω,R3×2)

(∑
α=1,2

‖s · aα‖2
H1(ω)

)
‖s · a3‖2

L2(ω)

≤ a(V, V ) + ap(s, s) +
εC2

p

2

(∑
α=1,2

‖s · aα‖2
H1(ω)

)
+
‖∇a3‖L∞(ω,R3×2)

2ε
‖s · a3‖2

L2(ω)

The estimate (2.24) follows by choosing 0 < ε <
2C1

C2
p

.

2.3 Well posedness for problem (2.4)

Corollary 2.3.1 Let the assumptions of Lemma (2.1.2) be satisfied. If ‖∇a3‖L∞ is

sufficiently small, it holds

‖V ‖2
X . a(V, V ) + ap(s, s), ∀V = (v, s) ∈ V. (2.25)

Theorem 2.3.2 For ‖∇a3‖L∞(ω) small enough problem (2.4) admits a unique solution.

Moreover, this solution satisfies

‖U‖X ≤ C‖L‖. (2.26)

Proof: We apply the Lax-Milgram lemma.

Remark 2.3.3 Under the assumptions of this corollary, if we eliminate r · a3 by γ̃12(u)

(respectively s · a3 by γ̃12(v)), problem (2.4) may be transformed into an elliptic problem in

H1(ω,R5) (with unknown (u, r · a1, r · a2). Hence, by the ellipticity of the variational form,

the standard shift regularity holds (see Costabel et al [33], theorem 3.2.6). Namely, for L

given by

L(v, s) =

∫
ω

(f · v + g1s · a1 + g2s · a2)dx

with f ∈ L2(ω,R3) and gα ∈ L2(ω), the solution (u, r · a1, r · a2) belongs to H2(ω,R5), if

∂ω is C1,1 and Γ̄0 ∩ ∂ω\Γ0 is empty.
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2.4 Penalized versions of problem (2.4)

We note that at least two numerical issues appear for problem (2.4); the first one is the

fact that the constraint (1.22 ) cannot be implemented in a standard conforming way. In

other words, the problem (2.4) cannot be approximated by robust conforming methods for

a general shell. The second one is the lack of coercivity for a general shell. In this section,

we present a penalized version of the prestressed model (2.4), in order to reformulate

the original constrained problem as an unconstrained one. To this end, let us consider

again the functional space X introduced in (2.5), equipped with the norm (2.3). Let

ε ∈ R, 0 < ε ≤ 1. We consider the following variational problem:

 Find Uε = (uε, rε) ∈ X such that

a(Uε, V ) + ap(rε, s) + ε−1b(Uε, V ) = L(V ),∀V = (v, s) ∈ X.
(2.27)

where the bilinear form b(·, ·) is defined by

b(W,V ) =

∫
ω

q(W )q(V )dx (2.28)

Such that

q(V ) = s · a3 − γ̃12(v)

2.4.1 A convergence theorem

We assume that the data (the coefficients and the boundary) are smooth enough. We

recall that the bilinear form a(·, ·) is coercive on V (see Lemma 2.2.1) and

V = ker b := {V ∈ X, b(V, V ) = 0} .
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Lemma 2.4.1 Under the assumptions of Lemma (2.1.2), we have

a(V, V ) + b(V, V ) ≥ C3‖V ‖2
X, ∀V = (v, s) ∈ X (2.29)

(2.30)

Proof: We argue by contradiction as in Lemma (2.2.1). Indeed, if a(·, ·) + b(·, ·) is not

X-elliptic, then there exists a sequence Vk = (vk, sk) in X such that

‖(vk, sk)‖X = 1 and a(Vk, Vk) + b(Vk, Vk) −→ 0 as k −→ +∞. (2.31)

Then, by extracting a subsequence, still denoted Vk, there exists V ∈ X such that

Vk ⇀ V = (v, s) weakly in X,

and satisfying (2.12). Note again that the second property of (2.31) implies that (2.13)

to (2.15) hold. Therefore, as in the proof of Lemma (2.2.1), we deduce that (2.19) is still

valid.

Now writing

sk · a3 = sk · a3 − γ̃12(v) + γ̃12(v)

and using (2.31) and (2.19), we deduce that (2.20) remains valid. Finally using (2.15),

(2.20), and (2.12), as before, we deduce that (2.22) holds. All together this guarantees

that Vk converges strongly to V in X, which, owing to (2.31), satisfies

‖V ‖X = 1 and a(V, V ) = b(V, V ) = 0

Thus, V ∈ V and by Lemma 2.1.2, we deduce that V = 0, which is a contradiction.

Theorem 2.4.2 Let the assumptions of Lemma 2.1.2 be satisfied. Suppose further that

‖∇a3‖L∞ is sufficiently small. Let L ∈ X′. Then, the variational problem (2.27) has a

unique solution in X.
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Proof: Exactly as in Lemma 2.2.3, when ‖∇a3‖L∞ is sufficiently small, the form

a(·, ·) + ap(·, ·) + b(·, ·) is coercive on X, and we apply Lax-Millgram lemma to con-

clude.

Now, we need to prove that the solution of penalized problem (2.27) provides an approxi-

mation of the solution of the constrained problem (2.4). Note that the solution U ∈ V of

(2.4) is the unique solution of the minimization problem

J(U) = min
V ∈X

J(V ) with J(V ) =
1

2
(a(V, V ) + ap(V, V ))− L(V )

while the solution Uε ∈ X of (2.27) is the unique solution of the minimization problem

Jε(Uε) = min
V ∈X

Jε(V ) with Jε(V ) = J(V ) +
1

2ε
b(V, V )

Theorem 2.4.3 Let the assumptions of Theorem 2.4.2 be satisfied. Let U = (u, r) and

Uε = (uε, rε) be the respective solutions of problems (2.4) and (2.27). Then, up to a

subsequence, we have

‖rε · a3 − γ̃12(uε)‖L2(ω) .
√
ε‖L‖X′ . (2.32)

lim
ε→0
‖Uε − U‖X = 0. (2.33)

Proof: Due to Theorem 2.4.2, we can equip X with the inner product

(U, V )X̃ = a(U, V ) + ap(U, V ) + b(U, V ), ∀U, V ∈ X

Let further ‖ · ‖X̃ = (·)
1
2

X̃ be its associated norm that is equivalent to the natural norm

‖ · ‖X. Thanks to Lemma 2.4.1, we have

‖Uε‖X̃ . 1 (2.34)

By taking V = Uε in (2.27), we have
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‖rε · a3 − γ̃12(uε)‖L2(ω) = b(Uε, Uε) ≤ ε|L(Uε)− a(Uε, Uε)− ap(Uε, Uε)|

Applying Cauchy-Schwarz’s inequality and using (2.34), we deduce the estimate (2.32).

Let us now prove (2.33). Again owing to (2.34), up to a subsequence still denoted by (Uε),

there exists a unique U∗ = (u∗, r∗) ∈ X such that (for the inner product (·, ·)X̃ ),

Uε ⇀ U∗ weakly in X,

or equivalently

a(Uε − U∗, V ) + ap(Uε − U∗, V ) + b(Uε − U∗, V ) −→ 0,∀ V ∈ X. (2.35)

In particular, by taking V = (0,Ψa3), with Ψ ∈ L2(ω), this implies that rε · a3 − γ̃12(uε)

converge weakly in L2(ω) to r∗ · a3 − γ̃12(u∗). Hence, by (2.32), we deduce that

r∗ · a3 − γ̃12(u∗) = 0,

which means that U∗ belongs to V.

Now, for any V ∈ V, we have

a(Uε−U∗, V )+ap(Uε−U∗, V )+
1

ε
b(Uε−U∗, V ) = a(Uε−U∗, V )+ap(Uε−U∗, V )+b(Uε−U∗, V )

and by (2.27) and (2.35), we deduce that

L(V )−(a(U∗, V )+ap(U
∗, V )) = a(Uε−U∗, V )+ap(Uε−U∗, V )+b(Uε−U∗, V ) −→ 0 ∀ V ∈ V

In other words, U∗ = U ∈ V is the unique solution of (2.4).

It remains to prove the strong convergence. For that purpose, we notice that

Jε(Uε) ≤ Jε(U).
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Hence, for ε < 1, we deduce that

1

2
(a(Uε, Uε) + ap(Uε, Uε) + b(Uε, Uε))− L(Uε) ≤

1

2
(a(Uε, Uε) + ap(Uε, Uε) + ε−1b(Uε, Uε))− L(Uε)

≤ 1

2
(a(U,U) + ap(U,U)+)− L(U).

Hence, taking the limit and using the weak convergence, we get

lim
ε→0

a(Uε, Uε) + ap(Uε, Uε) ≤ a(U,U) + ap(U,U)

With the help of (2.32), we deduce that

lim
ε→0
‖Uε‖X̃ ≤ ‖U‖X̃

As the weak convergence guarantees the converse estimate

‖U‖X̃ ≤ lim
ε→0
‖Uε‖X̃

we conclude that

limε→0‖Uε‖X̃ = ‖U‖X̃

The strong convergence of Uε to U immediately follows.

2.4.2 A regularity result for smoother data

In this subsection, we want to prove some regularity result of our penalized problem (2.27)

for smoother data. For that purpose, for U = (u, r) and V = (v, s) in X, we notice that

the bilinear form a(U, V ) + ap(r, s) can be written as

a(U, V )+ap(r, s) = ã(Ũ , Ṽ )+

∫
ω

((r ·a3)(m(s ·a3)+R(Ṽ ))+(s ·a3)(m(r ·a3)+R(Ũ)))dx,

(2.36)

where Ũ = (u, r · a1, r · a2) (resp. Ṽ = (v, s · a1, s · a2)), ã is a continuous bilinear form

on H1(ω,R5) × H1(ω,R5), m is a function in L∞(ω), and R is a first-order differential
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operator (with variables coefficients) such that

‖R(Ṽ )‖L2(ω) . ‖Ṽ ‖H1(ω,R5)

A first consequence of this identity is the next expression for rε · a3.

Lemma 2.4.4 Let the assumptions of Theorem 2.4.2 be satisfied. Let Uε = (uε, rε) be the

solution of problem (2.27) with L given by

L(v, s) =

∫
ω

(
f · v +

3∑
i=1

gis · ai

)
dx (2.37)

where f ∈ L2(ω,R3) and gi ∈ L2(ω), i = 1, 2, 3. Then, for ε small enough, rε · a3 is given

by

rε · a3 = (1 + 2mε)−1(γ̃12(uε) + ε(g3 −R(Ũε))). (2.38)

Proof: In (2.27), we take test-functions V such that Ṽ = 0 and find∫
ω

(2m(rε · a3) +R(Ũε))(s · a3)dx+
1

ε

∫
ω

(rε · a3 − γ̃12(uε))(s · a3)dx =

∫
ω

g3s · a3dx

for all s · a3 in L2(ω). In other words, we have

2m(rε · a3) +R(Ũε) +
1

ε
(rε · a3 − γ̃12(uε)) = g3 (2.39)

which is equivalent to (2.38) for ε small enough.

Corollary 2.4.5 Under the assumptions of Lemma 2.4.4, for ε small enough, we have

‖rε − γ̃12(uε)‖L2(ω) . ε (2.40)

Proof: The identity (2.39) being equivalent to

rε − γ̃12(uε) = ε(g3 −R(Ũε))− 2εmrε · a3,

using (2.38), we find

rε − γ̃12(uε) = ε(g3 −R(Ũε))

(
1− 2mε

1 + 2mε

)
+

2mε

1 + 2mε
γ̃12(uε) (2.41)

This yields (2.40) due to the weak convergence of Uε.
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Theorem 2.4.6 In addition to the assumptions of Lemma 2.4.4, assume that ∂ω is C1,1

and Γ̄0 ∩ ¯∂ω\Γ0 is empty. Then, for ε small enough, the solution Uε = (uε, rε) of problem

(4.12) with Lgiven by (2.37), with f ∈ L2(ω,R3) and gα ∈ L2(ω), α = 1, 2 and g3 ∈ H1(ω),

satisfies uε ∈ H2(ω,R3), rε · aα ∈ H2(ω,R), α = 1, 2, and rε · a3 ∈ H1(ω,R) with

‖uε‖H2(ω,R3) +
∑
α=1,2

‖rε · aα‖H2(ω) + ‖rε · a3‖H1(ω) . ‖f‖L2(ω,R3) +
∑
α

‖gα‖L2(ω) + ‖g3‖H1(ω).

(2.42)

Proof: We first use the identity (2.38) and (2.41) to eliminate rε · a3 in problem (2.27).

More precisely, in problem (2.27), taking test functions such that s · a3 = 0 and using

(2.38), we see that Ũε ∈W satisfies

bε(Ũε, Ṽ ) = Lε(Ṽ ), ∀Ṽ ∈W, (2.43)

where

W
{
Ṽ = (v, s1, s2) ∈ H1(ω,R3) : v = 0 on Γ0

}
;

equipped with its natural norm, the bilinear form bε is given by (see (2.36))

bε(Ũ , Ṽ ) = ã(Ũ , Ṽ )

+

∫
ω

(1 + 2mε)−1(γ̃12(u)− εR(Ũ))R(Ṽ )dx∫
ω

(
R(Ũ)(1− 2mε

1 + 2mε
) +

2mε

1 + 2mε
γ̃12(u)

)
γ̃12(v)

and the linear form Lε(Ṽ ) is given by

Lε(Ṽ ) =

∫
ω

(
f · v +

∑
α

gαsα

)
dx

+

∫
ω

g3

(
(1− 2mε

1 + 2mε
)γ̃12(v)− ε(1 + 2εm)−1R(Ṽ )

)
dx.

It turns out that problem (2.43) is well-posed since the bilinear form bε is continuous

and coercive in W and the linear form Lε is continuous. But themain point is that the
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involved constants are independent of ε (small enough). Indeed, the independence of

the continuity constants is direct as 1 + 2mε is ≥ 1

2
if ε is small enough. The main

difficulty is then the uniform coerciveness property. It actually follows from the following

fact. By direct calculations, we see that the bilinear formmentioned in Remark 2.3.3 and

obtained by eliminating s · a3 by γ̃12(v) (respectively r · a3byγ̃12(u)) in the bilinear form

a(V, V ) +ap(s, s) is nothing else than b0, which by Corollary 2.3.1 is coercive on W. Now,

we remark that

bε(Ũ , Ṽ )−b0(Ũ , Ṽ ) = −ε
∫
ω

(
2mε

1 + 2mε

(
γ̃12(u)γ̃12(v) + γ̃12(u)R(Ṽ ) + γ̃12(v)R(Ũ)

)
+R(Ũ)R(Ṽ )

)
dx

Hence, by Cauchy-Schwarz’s inequality, there exists a positive constant C (independent of

ε) such that

bε(Ũ , Ũ) ≥ b0(Ũ , Ũ)− Cε‖Ũ‖2
H1(ω,R5)

Using the coerciveness of b0, namely, the property

b0(Ũ , Ũ) ≥ α‖Ũ‖2
H1(ω,R5) ∀Ũ ∈ H1(ω,R5)

with α > 0 , we deduce that

bε(Ũ , Ũ) ≥ α

2
‖Ũ‖2

H1(ω,R5) ∀Ũ ∈ H1(ω,R5)

if ε is small enough. These properties imply that problem (2.43) has a unique solution

Ũε ∈ W and that the associated system is elliptic (uniformly in ε), due to Costabel et

al,[33] theorem 3.2.6 Hence, under our assumptions, Ũε belongs to H2(ω,R5) with

‖uε‖H2(ω,R3) +
∑
α=1,2

‖rε · aα‖H2(ω) . ‖f‖L2(ω,R3) +
∑
α

‖gα‖L2(ω) + ‖g3‖H1(ω).

This yields the H1 regularity of rε · a3 and (2.42) due to (2.38).
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2.5 Mixed formulation for problem (2.4)

Actually, one reason behind opting for the mixed formulation is that the flexural model

is among the models which suffer from the locking phenomena, while mixed formulation

resolve this problem[3]. As a second reason, the condition number of the penalized problem

matrix is very large and it is equals to t−1 × ε−1 × h−2 [53].

The approach used here consists in introducing a mixed formulation of the problem (2.4),

we introduce a Lagrange multiplier in order to handle the constraint (1.22).

Let us consider the functional space:

X = {(v, s) ∈ H1
(
ω,R3

)
× L2(ω,R3) : s · aα ∈ H1(ω,R), v|Γ0 = 0} (2.44)

equipped with the norm (2.3).

and we set

M = L2(ω). (2.45)

We consider the following variational problem: for all ρ ≥ 0,
Find (U, ψ) = (u, r, ψ) ∈ X×M such that

a(U, V ) + ap(U, V ) + ρb(U, V ) + b̃(V, ψ) = L(V ),∀V ∈ X.

b̃(U, φ) = 0, ∀φ ∈M

(2.46)

For V = (v, s) ∈ X and φ ∈M, the bilinear form b̃(·, ·) is defined by

b̃(V, φ) =

∫
ω

(s · a3 − γ̃12(v))φdx (2.47)

Moreover, the following characterization holds:

V =
{

(v, s) ∈ X, ∀φ ∈M, b̃(V, φ) = 0
}

The bilinear form a(·, ·) + ρb(·, ·) + ap(·, ·) is V-elliptic( and even X-elliptic for ρ > 0). In

order to prove that problem(2.46) has a unique solution, we therefore just need to prove
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that b̃(·, ·) satisfies the inf-sup condition.

Lemma 2.5.1 There exists a constant C > 0 such that

∀φ ∈M sup
V ∈X

b̃(V, φ)

‖V ‖X
≥ C‖φ‖L2(ω) (2.48)

Proof: We prove that b(·, ·) satisfie the inf-sup condition see [61] [42].

Let φ ∈M and let V̄ = (v̄, s̄) ∈ X such that v̄ = 0, s̄ · aα = 0, s̄ · a3 = φ.

Therefore,

sup
V ∈X

b̃(V, φ)

‖V ‖X
≥ b̃(V̄ , φ)

‖V̄ ‖X

=
‖φ‖2

L2(ω)

‖φ‖L2(ω)

= ‖φ‖L2(ω).

Whence the result.

Theorem 2.5.2 If ‖∇a3‖L∞ is sufficiently small, the problem (2.46) has a unique solution

(U, ψ), such that U is the solution of the problem (2.4).

Proof: Combining the ellipticity property for a(·, ·) + ρb(·, ·) + ap(·, ·) and the Inf-Sup

condition (2.48). Let us now check that U is the solution to the problem (2.4). Taking

φ = r · a3 − γ̃12(u) in the second equations of (2.46), obtain U ∈ V. Then taking V ∈ V

cancels the term b in the first equation of (2.46), then we have the result.
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Chapter 3

Approximation by finite element
methods

Introduction

Finite element method are used to numerically and approximating the solution of the

mathematical models. In this chapter we use the approximation by finite element method

for the penalized and mixed problem which are presented in the previous chapter.

Let Th be a regular affine family of triangulation which cover the domain ω, ω̄ =
⋃
i

Ti

such that Ti ∈ (Th)h>0 and Ti
⋂
Tj = φ or a vertice or a edge for i 6= j. We note si the

vertices of the triangles. The size of triangle defined by hT = max
si,sj∈T

|si − sj| and we set

h = max
T

hT

such that h is the size of the mesh.

Let Eh be the set of (open) edges in Th, E ih the set of interior edges (Eh \ E ih) and Ebh

the set boundary edges (which are contained in Γ̄1). Nh the set of all nodes.
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In the rest of the thesis we use a polynomials Pk, k ≥ 0 total degrees less than or equal

to k.

3.1 Finite element method (Penalized versions)

Here, our purpose is the approximation of the penalized version (2.27) by a conforming

finite element method. Therefore, we introduce the finite dimensional space Xh ⊂ X

Xh = {Vh = (vh, sh) ∈ (C0(ω̄)3)2/Vh|T ∈ (Pk(T )3)2, ∀T ∈ Th, vh|Γ0 = 0}. (3.1)

based on a triangulation Th of ω (h > 0 being its mesh size) and the polynomial order

k is ≥ 1. Then, we consider the following discrete problem: Find Uh = (uh, rh) ∈ Xh such that ,

a(Uh, Vh) + ap(Uh, Vh) + ε−1b(Uh, Vh) = L(Vh),∀Vh = (vh, sh) ∈ Xh

(3.2)

Theorem 3.1.1 Under the assumptions of Theorem 2.4.2, the problem (3.2) is well-posed.

Proof: We recall that Xh ⊂ X then owing to the continuity and the coercivity of the

bilinear form a(·, ·)+ap(·, ·)+ε−1b(·, ·). the problem has a unique solution by a Lax-Milgram

lemma.

Lemma 3.1.2 Let Uε be the solution of problem (2.27) and Uh the solution of problem

(3.2). Then, ∃C > 0 such that

‖Uε − Uh‖X ≤
C

ε
inf

Vh∈Xh
‖Uε − Vh‖X (3.3)

Proposition 3.1.3 Let the assumptions of Theorem 2.4.2 be satisfied and assume that

the solution Uε = (uε, rε)of problem (2.27) satisfies Ũε ∈ H2(ω,R5) and rε · a3 ∈ H1(ω).

Then, the following error estimate

‖Uε − Uh‖X ≤ C
h

ε
(‖uε‖H2(ω,R3) +

∑
α=1,2

‖rε · aα‖H2(ω) + ‖rε · a3‖H1(ω)) (3.4)
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holds.

Proof: Let Ch be the Clément interpolation operator (see [31]). Then we have the following

interpolation error estimates, ∀T ∈ Th,

∀V ∈ Hm(ω), and 0 ≤ m ≤ `, ‖V − Ch(V )‖Hm(T ) . h`−mT ‖V ‖H`(∆(T )), (3.5)

where, ∆(T ) the set of elements in Th sharing at least one vertex with T , see Figure

(3.1). We assume that the solution Uε of the problem (2.27) satisfies uε ∈ H2(ω,R3),

rε · aα ∈ H2(ω,R), α = 1, 2 and rε · a3. ∈ H1(ω,R) For proving the estimat (3.4) we define

Vh = Ch(Uε), taking this Vh in (3.3) we have

‖Uε − Uh‖X ≤ C
h

ε
‖Uε − Ch(Uε)‖X

. Then by (3.5) we have the result.

Figure 3.1: ∆(T )

Corollary 3.1.4 Under the assumptions of Theorem 2.4.6, we have

‖Uε − Uh‖X .
h

ε
(‖f‖L2(ω,R5) +

∑
α=1,2

‖gα‖L2(ω) + ‖g3‖H1(ω)). (3.6)

Proof: Assuming that the theorem 2.4.6 be satisfied then we combine between (3.4) and

(2.42) we have (3.6)
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3.2 Finite element method (Mixed problem)

This section is concerned with the mixed finite element approximation of the problem

(2.46). We introduce the finite dimensional spaces

X̄h ={Vh = (vh, sh) ∈ (C0(ω̄)3)2/Vh|T ∈ P2(T )3 × P1(T )3, ∀T ∈ Th}. (3.7)

Mh ={µh ∈ C0(ω̄)/µh|T ∈ P1(T ), ∀T ∈ Th}. (3.8)

Then we consider the following discrete problem: for all ρ > 0,
Find (Uh, ψh) = (uh, rh, ψh) ∈ X̄h ×Mh such that

a(Uh, Vh) + ap(Uh, Vh) + ρb(U, V ) + b̃(Vh, ψh) = L(Vh), ∀Vh ∈ X̄h.

b̃(Uh, φh) = 0, ∀φh ∈Mh

(3.9)

Proposition 3.2.1 The discrete problem (3.9) has a unique solution.

Proof: The existence and uniqueness of a solution to (3.9) is based on the discrete inf–sup

condition given in Lemma(3.2.4).

Lemma 3.2.2 Let ϕ(ω) be a W 2,∞ chart. There exists a constant C > 0 such that for all

x, y in ω,

|a3(x) · (a3(x)− a3(y))| ≤ C‖x− y‖2.

Proof: We adapt an argument of [2, Lemma 3.5]. Let the function

G(x) = (a3(x)− a3(x0)) · a3(x0)

the normal vector as is Lipschitz on ω̄. Hence, for all x0 ∈ ω̄, the function G(x) is also

Lipschitz. Therefore,by Rademacher’s theorem it is almost everywhere differentiable and

we have

∇G(x) = ∇a3(x)Ta3(x0), ∀x ∈ ω.
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Therefore, there exists a constant Cω depending only on ω such that

|G(x)| = |G(x)−G(x0)| ≤ Cω‖∇aT3 a3(x0)‖L∞(B̄(x0,‖x−x0‖)∩ω,R2)‖x− x0‖.

due to the identification between Lipschitz and W 1,∞ functions in a Lipschitz domain (see

[2]for a proof).

Now, a3 is a unit vector. Hence, at any point y of differentiability of a3, a3(y) is orthogonal

to the image of ∇a3(y), that is to say,∇a3(y)Ta3(y) = 0. Consequently, we have that

almost everywhere in B̄(x0, ‖x− x0‖) ∩ ω

∇a3(y)Ta3(x0) = ∇a3(y)Ta3(x0)−∇a3(y)Ta3(y)

so that

‖∇a3(y)Ta3(x0)‖ ≤ ‖∇a3(y)T‖‖a3(x0)− a3(y)‖ ≤ Cω‖∇a3‖2
L∞(ω,M22)‖y − x0‖

almost everywhere. Therefore,

‖∇aT3 a3(x0)‖L∞(B̄(x0,‖x−x0‖)∩ω,R2) ≤ Cω‖∇a3‖2
L∞(ω,M22)‖x− x0‖

hence the result with C = C2
ω‖∇a3‖3

L∞(ω,M22).

Lemma 3.2.3 For all µh ∈ Mh , Vh = (0, Rh(µh)) such that Rh(µh) = πh(µha3) ( πh

denote the vector valued P1 Lagrange interpolation operator ). Then, there exists a constant

C > 0 such that

b̃(Vh, µh) ≥ C‖µh‖2
M (3.10)

Proof: We note that µh is scalar piecewise P1 function, µha3 is vector-valued and Rh(µh)

is vector-valued piecewise P1 function. Let us set δh = Rh(µh) ·a3−µh and Vh = (0, Rh(µh))

then

b̃(Vh, µh) =

∫
ω

(Rh(µh) · a3)µhdx = ‖µh‖2
L2(ω) +

∫
ω

δhµhdx (3.11)
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with ∣∣∣∣∫
ω

δhµhdx

∣∣∣∣ ≤ ‖µh‖L2(ω)‖δh‖L2(ω).

Now, we estimat ‖δh‖L2(ω). By Lagrange interpolation we get

µh(x) =
∑
sj

µh(sj)θ
h
j (x)

such that θhj (x) is the shape function associated with the vertex sj and

Rh(µh)(x) =
∑
sj

µh(sj)θ
h
j (x)a3(sj)

then

δh(x) =
∑
sj

µh(sj) [a3(sj)− a3(x)] a3(x)θhj (x)

a3(x) is a unit vector it holds that

‖δh(x)‖L∞(ω) ≤ 3‖µh‖L∞(ω) max
j

max
Tj

[
C

h
|(a3(sj)− a3(x)) · a3(x)|

]
where Tj stands the set of triangles sharing the vertex sj. Then using a 3.2.2 we have

‖δh(x)‖L∞(ω) ≤ Ch‖µh‖L∞(ω).

By classical discrete Sobolev estimate [18] we deduce that

‖δh(x)‖L2(ω) ≤ C‖δh(x)‖L∞(ω) ≤ Ch‖µh‖L∞(ω) ≤ Ch(ln(h)
1
2 )‖µh‖L2(ω).

Taking h small enough so that Ch(ln(h)
1
2 ) ≤ 1

2
.

Lemma 3.2.4 There exists βh > 0 dependent of h such that

inf
µh∈Mh

sup
Vh∈X̄h

b̃(Vh, µh)

‖Vh‖X‖µh‖L2(ω)

≥ βh (3.12)

Proof: Let

B̃h = inf
µh∈Mh

sup
Vh∈X̄h

b̃(Vh, µh)

‖Vh‖X‖µh‖L2(ω)
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We see that Vh = (0, Rh(µh)) ∈ Xh then by lemma (3.2.3), b(Vh, µh) ≥ C‖µh‖2
M. Then

‖Vh‖2
X = ‖vh‖2

H1 +
∑
α=1,2

‖sh · aα‖2
H1 + ‖sh · a3‖2

L2 (3.13)

≤ ‖sh‖2
H1 (3.14)

we have

‖Vh‖X ≤ ‖sh‖H1 .

Then ‖Vh‖X ≤ ‖Rh(µh)‖H1 .

We get

B̃h ≥ C inf
µh∈Mh

‖µh‖M
‖Rh(µh)‖H1

.

We put

Rh(µh) = Rh(µh)− µha3 + µha3

we have

‖Rh(µh)‖H1 ≤ ‖Rh(µh)− µha3‖H1 + ‖µha3‖H1

≤ c1‖∇(µha3)‖L2(ω,M32) + ‖µha3‖H1

≤ c1‖µha3‖H1 + ‖µha3‖H1

≤ Ch−1‖µh‖L2

then we obtain

‖Rh(µh)‖H1 ≤ Ch‖µh‖L2

which completes the proof.

Theorem 3.2.5 Let (U, ψ) be a solution of the problem (2.46) and (Uh, ψh) be a solution

of the problem (3.9) then this following estimate is hold

‖U − Uh‖X ≤ c1h inf
Vh∈X̄h

‖U − Vh‖X + c2 inf
φh∈Mh

‖ψ − φh‖M. (3.15)

‖ψ − ψh‖M ≤ c3h inf
Vh∈X̄h

‖U − Vh‖X + c4h inf
φh∈Mh

‖ψ − φh‖M. (3.16)
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Such that c1h, c3h and c4h dependent on 1/βh and c2 independent on h.

Proof: Firstly, we prove (3.15), because of X̄h ⊂ X we have

C1‖Uh −Wh‖X ≤ sup
Yh∈X̄h

a(Uh −Wh, Yh) + ρb(Uh −Wh, Yh) + ap(Uh −Wh, Yh)

‖Yh‖X

then

C1‖Uh −Wh‖X ≤ sup
Yh∈X̄h

b̃(Yh, φh − ψ) + a(U −Wh, Yh) + ρb(U −Wh, Yh) + ap(U −Wh, Yh)

‖Yh‖X

implying

‖Uh −Wh‖X ≤
c̃1

C1

‖U −Wh‖X +
c̃2

C1

‖ψ − φh‖M

by the triangle inequality we have

‖U − Uh‖X ≤ (1 +
c̃1

C1

)‖U −Wh‖X +
c̃2

C1

‖ψ − φh‖M. (3.17)

The Inf-Sup condition (3.12) is satisfied, then by Lemma A.42 in [40] there existe rh ∈ X̄h

and let Vh ∈ X̄h such that

∀φ ∈Mh b̃(rh, φh) = b(U − Vh, φh) and βh‖rh‖X ≤ C‖U − Uh‖X, C > 0.

then we estimat the term ‖U −Wh‖X, we have

‖U −Wh‖X ≤ ‖U − Vh‖X + ‖rh‖X (3.18)

≤
(

1 +
c

βh

)
‖U − Vh‖X (3.19)

Now we prove the estimat (3.16) subtracting the first equation of (3.9) from the first

equation of (2.46), then we obtain

a(U − Uh, Vh) + ρb(U − Uh, Vh) + ap(U − Uh, Vh) + b̃(Vh, ψ − ψh) = 0 ∀Vh ∈ X̄h

then for φh ∈Mh we have

a(U −Uh, Vh) +ρb(U −Uh, Vh) +ap(U −Uh, Vh) + b̃(Vh, ψ−ψh) + b̃(Vh, φh)− b̃(Vh, φh) = 0
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then to obtain

b̃(Vh, φh − ψh) = a(Uh − U, Vh) + ρb(Uh − U, Vh) + ap(Uh − U, Vh) + b̃(Vh, φh − ψ).

By the Inf-Sup condition (3.12)

‖φh − ψh‖M ≤
1

βh
sup
Vh∈X̄h

b̃(Vh, φh − ψh)
‖Vh‖X

=
1

βh
sup
Vh∈X̄h

a(Uh − U, Vh) + ρb(Uh − U, Vh) + ap(Uh − U, Vh) + b̃(Vh, φh − ψ)

‖Vh‖X
.

One obtains therefore

‖φh − ψh‖M ≤
C1

βh
‖U − Uh‖X +

(
1 +

C2

βh

)
‖ψ − φh‖M.

Then we use the triangle inequality, hence the result.

Remark 3.2.6 In the estimate on ‖U − Uh‖X and ‖ψ − ψh‖M the constants depend on
1

βh
and

1

β2
h

. This means that if βh −→ 0 when h −→ 0, the suboptimal behavior of βh is

more damaging for the convergence.
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Chapter 4

Hybrid Formulation and A
posteriori analysis

Introduction

Differently than the chapter 3, the unknowns of the problem in this chapter (the

displacement and the rotation) to the shell midsurface are described respectively in

Cartesian and local covariant basis, this is called a hybrid formulation, in this way

(u, r) ∈ H1(ω,R3) × L2((ω))3,, rα ∈ H1(ω) where r = ri · ai, i = 1, 2, 3. The purpose of

this chapter is to provide a robust a priori error analysis and a posteriori error estimators.

• In section 1 we present a hybrid formulation of a prestressed shell model where the

unknowns (the displacement and the rotation of fibers normal to the midsurface) are

described in Cartesian and local covariant basis respectively, we study the existence

and uniqueness of the solution. We then present a penalized version for the new

variational formulation, we prove its well-posedness.
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• section 2 is devoted to the finite element approximation for the penalized problem

and we prove the existence and uniqueness of the discret solution, we derive a priori

error estimates.

• In section 3 we define the strong formulation equivalent to the penalized problem

(4.12).

• In section 4 we derive a posteriori estimates we prove the reliability and efficiency of

our a posteriori error estimator.

4.1 A hybrid formulation

Let us introduce the space W such that the displacement and the rotation are described

in Cartesian and local covariant or contravariant basis respectively, we assume that the

shell is clamped on a part Γ0

W = {(v, s =
3∑
i=1

siai) ∈ H1
(
ω,R3

)
×(L2(ω))3 | sα ∈ H1(ω), s3 = γ̃12(v) =

1

2
(∂1v·∂2ϕ−∂2v·∂1ϕ), a.e. in ω, v|Γ0

= sα|Γ0
= 0},

(4.1)

equipped with the norm

‖(v, s)‖X =

(
‖v‖2

H1(ω,R3) +
∑
α=1,2

‖sα‖2
H1(ω) + ‖s3‖2

L2(ω)

) 1
2

. (4.2)

The difference between the definition of W and V(defined in chapter 2) is that the

regularity of the rotation variable r and the constraint is expressed in curvilinear variables

instead of cartesian ones. Let us now show that the definitions are equivalent. Indeed if

r = (rca
1 , r

ca
2 , r

ca
3 ) is the expression of the rotation in cartesian coordinates, then it can also

be written as

r =
3∑
i=1

riai,
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where ri, i = 1, 2, 3 are its curvilinear coordinates. Then we get

ri = r · ai.

This simply means that W coincides with V, and therefore the bilinear forms a and ap are

well defined (and continuous with respect to the norm (4.2)) on W.

Before going, we want to emphasize that from now on for (u, r) ∈W, ri always mean

the curvilinear coordinates of r.

Lemma 4.1.1 The space W equipped with the norm (4.2) is a Hilbert space.

Proof: We remark that W is a closed subspace of

X = {(v, s =
3∑
i=1

siai) ∈ H1
(
ω,R3

)
× (L2(ω))3 | sα ∈ H1(ω), v|Γ0 = sα|Γ0 = 0}, (4.3)

equipped with the norm (4.2) because W is simply the kernel of the linear and continuous

operator Q defined by

Q : X −→ L2(ω) : (v, s) 7−→ s3 − γ̃12(v).

Then, the new variational formulation reads Find U = (u, r) ∈W such that

a(U, V ) + ap(U, V ) = L(V ), ∀V = (v, s) ∈W.
(4.4)

The bilinear forms a(·, ·) and ap(·, ·) are defined by (1.24) and (1.25) respectively in chapter

1. We can write the bilinear forms am(·, ·), af(·, ·) and at(·, ·) respectively corresponding

to the membrane, flexural, and the transverse shear energies by

am(u, v) =
4λµ

λ+ 2µ

∫
ω

trγ(u)trγ(v) dx+ 4µ

∫
ω

γ(u) : γ(v) dx, (4.5)

af (r, s) =
2λµ

λ+ 2µ

∫
ω

trΠ(r)trΠ(s) dx + 2µ

∫
ω

Π(r) : Π(s) dx, (4.6)

at((u, r), (v, s)) = µ

∫
ω

a>3 (∇u− r ×∇ϕ)
[
a>3 (∇v − s×∇ϕ)

]>
dx, (4.7)
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where

M : N =
∑

α,β=1,2

mαβ · nαβ.

for two 2× 2 matrices M = (mαβ)1≤α,β≤2 and N = (nαβ)1≤α,β≤2 with real or vector valued

coefficients. As usual ∇v is the jacobian matrix of v, namely

∇v = (∂1v, ∂2v) =

 ∂1v1 ∂2v1

∂1v2 ∂2v2

∂1v3 ∂2u3

 .

Furthermore as in [60], we have s×∇ϕ = (s× a1, s× a2).

The contribution of the prestressed term is represented by

ap(r, s) =

(
2µ

∫
ω

tr
(
(II0 + II t0)τ(r, s)

)
dx+

4λµ

2µ+ λ

∫
ω

trII0trτ(r, s) dx

)
, (4.8)

where

τ(r, s) = θ(r)(s · a3) + θ(s)(r · a3) (4.9)

with

θ(s) =
1

2

(
−γ11(s) γ̃12(s)
γ̃12(s) γ22(s)

)
, (4.10)

and

II0 = (∇ϕ)> · ∇a3 =

(
∂1ϕ · ∂1a3 ∂1ϕ · ∂2a3

∂2ϕ · ∂1a3 ∂2ϕ · ∂2a3

)
.

Note that II0 is symmetric and therefore in (4.8) the factor II0 + II t0 may be replaced by

2II0. Note further that the prestressed term ap(r, r) is not necessarily positive The linear

form L is given by

L(v, s) =

∫
ω

f · v dx,

with f ∈ L2(ω,R3) that represents a given resultant force density. Since the bilinear form

a + ap and the form L are clearly continuous on W, the well-posedness of problem (4.4)

will be guaranteed if a + ap is coercive on W. For that purpose, we need the following

lemmata.
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Lemma 4.1.2 Suppose that ϕ ∈ H2(ω,R3) and that ϕ(Γ0) is not included into a straight

line. Let V = (v, s) ∈W. Then a(V, V ) = 0 if and only if V = 0.

Lemma 4.1.3 Under the assumptions of Lemma 4.1.2, the bilinear form a(·, ·) is coercive

on W.

The proofs are fully similar to those given in Lemma 2.1.2 and 2.2.1 in chapter 2 and are

then omitted.

Theorem 4.1.4 If ‖∇a3‖L∞(ω) is small enough problem (4.4) admits a unique solution.

Moreover, this solution satisfies

‖U‖X . ‖L‖. (4.11)

Proof: If ‖∇a3‖L∞(ω) is small enough, the bilinear form a(·, ·) + ap(·, ·) remains coercive

on W. Hence, the well-posedness of (4.4) follows from the Lax-Milgram lemma.

4.1.1 Penalized versions for problem (4.4).

In this subsection, we present a penalized version for the prestressed model (4.4). The

approach used here consists in adding a penalized term in (4.4) used to reformulate the

original constrained problem as an unconstrained one, set on the variational space X

defined by (4.3) and equipped with the norm (4.2).

For a real number ε ∈ (0, 1), we consider the following variational problem: Find Uε = (uε, rε) ∈ X such that

a(Uε, V ) + ap(rε, s) + ε−1b(Uε, V ) = L(V ),∀V = (v, s) ∈ X.
(4.12)

For W = (w, t), V = (v, s) ∈ X, the bilinear form b(·, ·) reads

b(W,V ) =

∫
ω

Q(W )Q(V )dx (4.13)

where,

Q(V ) = s3 − γ̃12(v), for any V = (v, s) ∈ X.
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Lemma 4.1.5 Under the assumption of Lemma 4.1.2, we have

a(V, V ) +
1

ε
b(V, V ) & ‖V ‖2

X, ∀V = (v, s) ∈ X (4.14)

Proof: Since b(U,U) ≥ 0 for any U ∈ X, the coercivity of a +
1

ε
b on X (with a coercivity

constant independent of ε) follows from Lemma 4.1.3.

Theorem 4.1.6 Under the assumptions of Lemma 4.1.2 and Theorem 4.1.4, the varia-

tional problem (4.12) has a unique solution Uε in X that satisfies

‖Uε‖X . ‖L‖. (4.15)

Proof: The existence and uniqueness of Uε directly follows from the Lax-Milgram Lemma.

Proposition 4.1.7 Let U := (u, r) be the solution of the problem (4.4) and Uε := (uε, rε)

be the solution of problem (4.12) and let as assume that the assumption of theorem (4.1.6)

are satisfied. Then

‖rε3 − γ̃12(uε)‖L2(ω) .
√
ε (4.16)

lim
ε→0
‖Uε − U‖X = 0. (4.17)

Proof: To prove (4.16), we recall that ‖Uε‖X is uniformly bounded. Then take V = Uε

in (4.12) we then have

1

ε
b(Uε, Uε) = L(Uε)− a(Uε, Uε) ≤ C

this implies that

‖rε3 − γ̃12(uε)‖2
L2(ω) ≤ Cε.

Let us now show (4.17). Since ‖Uε‖X is uniformly bounded, then it is not difficult to prove

that

Uε ⇀ U weakly in X
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By the definition of the space X and using the fact that the space H1(ω,R3) is compactly

embedded in L2(ω,R3), then

uε → u strongly in L2(ω,R3) (4.18)

On the other hand, we have

‖Uε − U‖2
X . a(Uε − U,Uε − U) + ap(Uε − U,Uε − U) +

1

ε
b(Uε − U,Uε − U)

= a(Uε, Uε − U) + ap(Uε, Uε − U) +
1

ε
b(Uε, Uε − U)− a(U,Uε − U)− ap(U,Uε − U)

= L(Uε − U)− a(U,Uε − U)− ap(U,Uε − U)

= a(U,U) + a(U,U)− L(U)− a(Uε, U)− ap(U,Uε) + L(Uε − U) + L(U)

= L(Uε − U)

then

‖Uε − U‖2
X . ‖f‖L2(ω,R3)‖uε − u‖L2(ω,R3)

then (4.18) implies that (4.17) holds true.

4.2 Approximation by finite elements and a priori error
analysis for the problem (4.12)

As we have mentioned, the constrained problem (4.4) cannot be approximated by robust

conforming methods for a general shell, hence we purpose the approximation of a penalized

version. Note that in this section we need not to assume that the bilinear form of the right

hand side is coercive, we only suppose that both problem the contrained and the relaxed

one has a unique solution which supposed to be sufficiently regular.

Let (Th)h>0 be a regular affine family of triangulations which covers the domain ω. Let

Eh be the set of (open) edges in Th, E ih the set of interior edges (Eh \ E ih) and Ebh the set

boundary edges(which are contained in Γ̄1). Nh the set of all nodes. ωT is the union of
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triangles of Th that share an edge with T .

We introduce the finite dimensional space

Xh = {Vh = (vh, sh =
3∑
i=1

sihai) ∈ X | vh|T ∈ Pk(T )3, sih ∈ Pk(T ), ∀T ∈ Th, k ≥ 1},

(4.19)

and consider the following discrete problem: Find Uh = (uh, rh) ∈ Xh such that

a(Uh, Vh) + ap(Uh, Vh) + ε−1b(Uh, Vh) = L(Vh),∀Vh = (vh, sh) ∈ Xh.
(4.20)

4.2.1 A priori error analysis of the penalized problem.

In this subsection we derive a non robust a priori error analysis of the penalized problem

(4.12).

Proposition 4.2.1 Under the assumptions of Theorem 4.1.6, problem (4.20) has a unique

solution Uh ∈ Xh that satisfies

‖Uh‖X . ‖L‖, (4.21)

Furthermore if we assume that the solution Uε of the problem (4.12) belongs to [H2(ω;R3)]×

[H2(ω)]2 × [H1(ω)], then the following a priori error estimate holds

‖Uε − Uh‖X .
h

ε

(
‖uε‖H2(ω;R3) +

∑
α=1,2

‖rεα‖H2(ω) + ‖rε3‖H1(ω)

)
. (4.22)

Proof: Since Xh ⊂ X, the existence of Uh and the a priori bound (4.21) follow from the

that the bilinear form a + ap + ε−1b has an ellipticity constant that behaves like 1, see

the proof of Theorem 4.1.6. On the other hand as its continuity constant behaves like 1
ε
,

Céa’s lemma and standard interpolation error estimates directly yield (4.22).

Remark 4.2.2 It is clear that the estimate provided by Proposition 4.2.1, is not robust

as ε goes to zero unless h = o(ε).
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4.2.2 A priori error analysis of the mixed formulation of the pe-
nalized problem.

In order to obtain a uniform a priori estimate, we use a mixed formulation of the penalized

problem (4.12) (as in [53, sec.4]). Let us first introduce the following new unknown

ψε :=
Q(Uε)

ε
,

and the functional space M = L2(ω). Then we rewrite the continuous penalized problem

(4.12) as 
Find (Uε, ψε) ∈ X×M such that

ã(Uε, V ) + (ψε,Q(V )) = L(V ), ∀V ∈ X,

(Q(Uε), φ)− ε(ψε, φ) = 0, ∀φ ∈M,

(4.23)

where ã(·, ·) = a(·, ·) + ap(·, ·) and consider its discrete version:
Find (Uh, ψh) ∈ Xh×Mh such that

ã(Uh, Vh) + (ψh,Q(Vh)) = L(Vh), ∀Vh ∈ Xh,

(Q(Uh), φh)− ε(ψh, φh) = 0, ∀φh ∈Mh,

(4.24)

where

Mh ={φh ∈M | φh|T ∈ Pk(T ),∀T ∈ Th, k ≥ 0}. (4.25)

Theorem 4.2.3 Let (Uε, ψε) be the solution of (4.23) and let (Uh, ψh) be the solution of

problem (4.24). Then we have the following error estimate

‖Uε − Uh‖X +
√
ε‖ψε − ψh‖M . inf

Wh∈Xh
‖Uε −Wh‖X + inf

ϕh∈Mh

‖ψε − ϕh‖M. (4.26)

Proof: Let Ũ ∈ Xh, and ψ̃ ∈Mh. Then

ã(Uh − Ũ , Vh) + (Q(Vh), ψh − ψ̃) = ã(Uε − Ũ , Vh) + (Q(Vh), ψε − ψ̃), ∀Vh ∈ Xh,
(4.27)

(Q(Uh − Ũ), φh)− ε(ψh − ψ̃, φh) = (Q(Uε − Ũ), φh)− ε(ψε − ψ̃, φh), ∀φh ∈Mh.
(4.28)
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By taking Vh = Uh − Ũ , and φh = ψh − ψ̃ and subtracting (4.28) from (4.27), we get

‖Uh − Ũ‖2
X + ε‖ψh − ψ̃‖2

M . ã(Uε − Ũ , Uh − Ũ) + (Q(Uh − Ũ), ψε − ψ̃)− (Q(Uε − Ũ), ψh − ψ̃)

+ ε(ψε − ψ̃, ψh − ψ̃)

. ‖Uε − Ũ‖X‖Uh − Ũ‖X + ‖Uh − Ũ‖X‖ψε − ψ̃‖M + ‖Uε − Ũ‖X‖ψh − ψ̃‖M

+ ε‖ψε − ψ̃‖M‖ψh − ψ̃‖X. (4.29)

According to Young’s inequality we deduce that

‖Uh − Ũ‖X +
√
ε‖ψh − ψ̃‖M .

1√
ε
‖Uε − Ũ‖X + ‖ψε − ψ̃‖M +

√
ε‖ψε − ψ̃‖M

.
1√
ε
‖Uε − Ũ‖X + ‖ψε − ψ̃‖M.

Remark 4.2.4 Again, the estimate provided by Theorem 4.2.3 is not uniform in ε.

In order to get a uniform estimate in ε we first need to the following uniform discrete

inf-sup condition.

Lemma 4.2.5 For Xh defined in (4.19) and Mh given by (4.25), we have the following

inf-sup condition:

∀φh ∈Mh, sup
Vh∈Xh

(Q(Vh), φh)

‖Vh‖X
& ‖φh‖M. (4.30)

Proof: Let φh ∈Mh, then by choosing Vh = (vh, sh =
∑

i shiai) with vh = 0, sαh = 0, α =

1, 2 and s3h = φh we get
(Q(Vh), φh)

‖Vh‖X
≥ ‖φh‖M.

Theorem 4.2.6 Let (Uε, ψε) be the solution of (4.23) and let (Uh, ψh) be the solution of

problem (4.24). Then for ε small enough, we have the following error estimate

‖Uε − Uh‖X + ‖ψε − ψh‖M . inf
Wh∈Xh

‖Uε −Wh‖X + inf
ϕh∈Mh

‖ψε − ϕh‖M. (4.31)
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Proof: We use the same choice of test functions as in the proof of Theorem 4.2.3, but

treating the term

(Q(Uε − Ũ), ψh − ψ̃)

differently. Indeed, form (4.27) and (4.30) we have

‖ψh − ψ̃‖M . ‖Uh − Ũ‖X + ‖Uε − Ũ‖X + ‖ψε − ψ̃‖M.

Exploiting this estimate in (4.29), we get

‖Uh − Ũ‖2
X + ‖ψh − ψ̃‖2

M + ε‖ψh − ψ̃‖2
M .‖Uε − Ũ‖X‖Uh − Ũ‖X + ‖Uh − Ũ‖X‖ψε − ψ̃‖M

+ ‖Uε − Ũ‖X
(
‖Uh − Ũ‖X + ‖Uε − Ũ‖X + ‖ψε − ψ̃‖M

)
+ ε‖ψε − ψ̃‖M

(
‖Uh − Ũ‖X + ‖Uε − Ũ‖X + ‖ψε − ψ̃‖

)
+
(
‖Uh − Ũ‖X + ‖Uε − Ũ‖X + ‖ψε − ψ̃‖M

)2

.

Then using Young’s inequality we obtain the desired estimate.

Corollary 4.2.7 Let (Uε, ψε) be the solution of (4.23) and let (Uh, ψh) be the solution of

problem (4.24). Assume that Uε = (uε, rε) satisfies uε ∈ H2(ω,R3), rε · aα ∈ H2(ω) and

rε · a3 ∈ H1(ω). Then for ε small enough, it holds

‖Uε − Uh‖X + ‖ψε − ψh‖M . h(‖uε‖H2(ω,R3) +
∑
α=1,2

‖rε · aα‖H2(ω) + ‖rε · a3‖H1(ω)). (4.32)

Proof: Using (4.23), we find

ã(Uε, V ) + (ψε,Q(V ))− (Q(Uε), φ) + ε(ψε, φ) = L(V ), ∀V ∈ X,∀φ ∈M. (4.33)

Take φ = 0 and V = (v, s =
∑

i siai), with v = 0, sα = 0, α = 1, 2 and s3 ∈ L2(ω) in (4.33)

to get

(ψε, s3) = −tat((uε, rε), (0, 0, s3))− t3

12
af (r

ε, (0, 0, s3))− t3

12
ap(r

ε, (0, 0, s3)),∀s3 ∈ L2(ω).
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Then the regularity of Uε and the form of the bilinear form ã(·, ·) amount to write

(ψε, s3) = (f̃ , s3), ∀s3 ∈ L2(ω).

with f̃ ∈ H1(ω) which implies that ψε = f̃ belongs to H1(ω) with the estimate

‖ψε‖H1(ω) . ‖uε‖H2(ω,R3) +
∑
α=1,2

‖rε · aα‖H2(ω) + ‖rε · a3‖H1(ω).

Taking in (4.31), (Wh, ϕh) = Ch(Uε, ψε), where Ch is the Clément interpolation operator

and using a standard interpolation estimate (see below), the conclusion follows by using

the previous estimates in (4.31).

4.3 The strong formulation (PDEs form).

Usually, a posteriori estimator is computed by element-wise integration by parts starting

from the classical formulation or the PDE form of the problem. Hence in this section we

give the strong formulation of problem (4.12). As before we use the covariant representation

of the unknowns, i.e, in the following s =
∑3

i=1 siai, which makes it easier to obtain the

PDEs form. We use also the following notation ŝ = (s · a1, s · a2)
T . We recall that the

elasticity coefficients in local coordinates are given by

aαβρσ = 2µ(aαρaβσ + aασaβρ) +
4λµ

λ+ 2µ
aαβaρσ.

Let us then denote by A the elasticity tensor whose components are aαβρσ ∈ L∞(ω) and

define

T (u) := t Aγ(u),

that is a 2× 2 matrix with coefficients in R3. Note that the property of the identity matrix

(aαβ) we have

AM : N = 4µM : N +
4λµ

λ+ 2µ
trMtrN, (4.34)
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for all symmetric 2× 2 matrices M and N . According to am(·, ·), using the definition of

the bilinear form am(·, ·) and this last property, we have

am(u, v) =

∫
ω

Aγ(u) : γ(v) dx, (4.35)

and hence

am(u, v) =

∫
ω

Tαβ(u) · γαβ(v)dx

=

∫
ω

Tαβ(u)∂αv · aβ dx.

Hence if u is smooth enough, by Green’s formula we have

tam(u, v) = −
∫
ω

∂α(Tαβ(u)aβ) · v dx+

∫
∂ω

Tαβ(u)nαaβ · v dσ(x)

= −
∫
ω

Div (T (u)A) · v dx+

∫
Γ1

nT (u)A · v dσ(x), (4.36)

where dσ is the surface measure on the boundary ∂ω of ω, n = (n1, n2) is the unit outward

normal vector (written in line) along ∂ω, A = (a1, a2)> is 2× 3 matrix and here and below

for a 2× 3 matrix valued function M = (mαi)α,i, Div M = (
∑

α ∂αmαi)i=1,2,3 (hence is a

column vector valued function).

Let us now consider the contribution of the bilinear form at(·, ·). For that purpose,

recalling that ∇ϕ = (a1, a2), a1 × a3 = −a2 and a2 × a3 = a1, we remark that

a>3 (∇v − s×∇ϕ) = a>3 (∂1v, ∂2v)− (a>3 · (s× a1), a>3 · (s× a2))

= (a>3 · ∂1v + s · (a1 × a3), a>3 · ∂2v + s · (a2 × a3))

= (a>3 · ∂1v + s2, a>3 · ∂2v − s1).

Hence if we set

J =

(
0 1
−1 0

)
,

we have

a>3 (∇v − s×∇ϕ) = a>3∇v + ŝ>J>.
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This expression of at(·, ·) yields

at((u, r), (v, s)) = µ

∫
ω

(a>3∇v + ŝ>J>)((∇u)>a3 + Jr̂) dx. (4.37)

We therefore introduce the 2× 1 vector valued function

S(u, r) := t µ((∇u)>a3 + Jr̂).

Using this notation and (4.37), we get

tat((u, r), (v, s)) =

∫
ω

(a>3∇v + ŝ>J>)S(u, r) dx

=

∫
ω

(
a3 · ∂αvSα(u, r) + ŝ>J>S(u, r)

)
dx,

where Sα(u, r) are the two components of S(u, r). As before if Sα(u, r) is smooth enough,

by Green’s formula we will obtain

tat((u, r), (v, s)) =

∫
ω

(−∂α(Sα(u, r)a3) · vdx+

∫
Γ1

Sα(u, r)nαa3 · v dσ(x) +

∫
ω

J>S(u, r) · ŝ dx

= −
∫
ω

Div (S(u, r)a3) · v dx+

∫
Γ1

nS(u, r)a3 · v dσ(x) +

∫
ω

J>S(u, r) · ŝ dx.

(4.38)

Next we consider the bilinear form af(r, s). Due to the definition of the tonsor Π(·)

and the definition of the tensor A, we may write

af (r, s) =
1

2

∫
ω

AΠ(r) : Π(s) dx. (4.39)

Hence if we set

M(r) :=
t3

24
AΠ(r) =

t3

24
(aαβρσΠρσ(r))α,β,

we obtain
t3

12
af (r, s) =

∫
ω

M(r) : Π(s) dx. (4.40)

We now need to transform Π(s). For that purpose, by setting

s̄ =

(
s2

−s1

)
= J

(
s1

s2

)
,
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using the property (see [26, Theorem 2.6-1])

∂αs · aβ = ∂αsβ − Γραβsρ − bαβs3, (4.41)

we get

Π(s) = e(s̄)− ¯̀(s), (4.42)

where e(·) is the usual deformation tensor of the two dimensional elasticity, i.e

e

(
w1

w2

)
=

(
∂1w1

1
2
(∂1w2 + ∂2w1)

1
2
(∂1w2 + ∂2w1) ∂2w2

)
,

and ¯̀(·) is an operator of order zero which acts on any three dimensional vector field s as

follows

¯̀(s) = Γ̄ρsρ + B̄s3 =

 Γρ12

1

2
(Γρ22 − Γρ11)

1

2
(Γρ22 − Γρ11) −Γρ21

 sρ +

 b12
1

2
(b22 − b11)

1

2
(b22 − b11) −b12

 s3.

The splitting (4.42) into (4.39) and (4.40) yields

af (r, s) =
1

2

∫
ω

A(e(r̄)− ¯̀(r)) : (e(s̄)− ¯̀(s)) dx, (4.43)

and
t3

12
af (r, s) =

∫
ω

M(r) : (e(s̄)− ¯̀(s)) dx,

and if M(r) is smooth enough by Green’s formula we obtain

t3

12
af (r, s) = −

∫
ω

Div M(r) · s̄ dx+

∫
∂ω

nM(r)s̄ dσ(x)−
∫
ω

M(r) : ¯̀(s) dx

= −
∫
ω

JT Div M(r) · ŝ dx+

∫
∂ω

JTM(r)n> · ŝ dσ(x)−
∫
ω

M(r) : ¯̀(s) dx.

Finally using the above expression of ¯̀(s)

t3

12
af (U, V ) = −

∫
ω
J>Div(M(r))·ŝdx+

∫
Γ1

JTM(r)n>·ŝ dσ(x)−
∫
ω

((
M(r) : Γ̄1

M(r) : Γ̄2

)
· ŝ+

(
B̄ : M(r)

)
s3

)
dx.

(4.44)

86



4.3. CHAPTER 4.

Now we give the contribution of the prestressed term ap(·, ·). First as II0 and τ(r, s)

are symmetric, we directly check that

1

2
tr((II0 + II t0)τ(r, s)) = tr(II0τ(r, s)) = II0 : τ(r, s),

furthermore, we have

trτ(r, s) = (s · a3)tr θ(r) + (r · a3)tr θ(s).

Hence we have

2µtr
(
(II0 + II t0)τ(r, s)

)
+

4λµ

2µ+ λ
trII0trτ(r, s) = (s · a3)

(
4µII0 : θ(r) +

4λµ

λ+ 2µ
tr II0tr θ(r)

)
+ (r · a3)

(
4µII0 : θ(s) +

4λµ

λ+ 2µ
tr II0tr θ(s)

)
.

= (s · a3)AII0 : θ(r) + (r · a3)AII0 : θ(s),

this last identity following from (4.34). Accordingly, ap(r, s) takes the equivalent form

ap(r, s) =
t3

12

∫
ω

(s3AII0 : θ(r) + r3AII0 : θ(s)) dx. (4.45)

Now setting

P (r) =
t3

12
AII0r3,

κ(r) =
t3

12
(II0 : Aθ(r)),

we deduce that

ap(r, s) =

∫
ω

P (r) : θ(s) dx+

∫
ω

κ(r)s3 dx. (4.46)

At this stage we need to transform the matrix θ(s). First using (4.41), we check that

−γ11(s) = −∂1s1 + Γρ11sρ + b11s3,

γ̃12(s) =
∂1s2 − ∂2s1

2
,

γ22(s) = ∂2s2 − Γρ22sρ − b22s3.
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Hence introducing s̃ = J̃ ŝ with

J̃ =

(
−1 0
0 1

)
and the operator of order zero ˜̀ which acts on any three dimensional vector field s as

follows

˜̀(s) = Γ̃ρsρ + B̃s3 =

(
Γρ11 0
0 −Γρ22

)
sρ +

(
b11 0
0 −b22

)
s3,

we obtain

θ(s) =
1

2

(
e(s̃) + ˜̀(s)

)
. (4.47)

This expression in (4.46) yields

ap(r, s) =
1

2

∫
ω

P (r) : (e(s̃) + ˜̀(s)) dx+

∫
ω

κ(r)s3 dx.

Again if r is smooth enough, we can apply Green’s formula and find

ap(r, s) = −
∫
ω

1

2
J̃ Div (P (r))·ŝ dx+

∫
Γ1

1

2
J̃P (r)n>·ŝ dσ(x)+

∫
ω

(κ(r)+
1

2
B̃ : P (r)) s3 dx+

∫
ω

1

2

(
P (u) : Γ̃1

P (u) : Γ̃2

)
·ŝ dx.

(4.48)

For the bilinear form b(·, ·), as γ̃12(v) =
1

2
(∂1v · ∂2ϕ − ∂2v · ∂1ϕ), if Q(U) is sufficiently

regular we find

1

ε
b(U, V ) =

1

ε

∫
ω

Q(U)(s3−γ̃12(v)) dx =
1

2ε

∫
ω

Div (Q(U)JA)·v dx− 1

2ε

∫
Γ1

Q(U)A>Jn>·v dσ(x)+
1

ε

∫
ω

Q(U)s3 dx.

(4.49)

Using the identities (4.36), (4.38), (4.44), (4.48), (4.49), we see that the solution

Uε = (uε, rε) ∈ X of problem (4.12) satisfies

−Div (T (uε)A)−Div (S(Uε)a3) + 1
2εDiv (Q(Uε)JA) = f in ω,

−J>Div M(rε)−
(
M(rε) : Γ̄1

M(rε) : Γ̄2

)
+ J>S(Uε)−

1

2
J̃Div (P (rε)) +

1

2

(
P (uε) : Γ̃1

P (uε) : Γ̃2

)
= 0 in ω,

−
(
B̄ : M(rε)

)
+ κ(rε) +

1

2
B̃ : P (rε) +

1

ε
Q(Uε) = 0 in ω,

uε = rεα = 0 on Γ0,
nT (uε)A+ nS(Uε)a3 − 1

2εQ(Uε)A
>Jn> = 0 on Γ1,

1

2
J̃P (rε)n

> + J>M(rε)n
> = 0 on Γ1.

(4.50)
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Note that by taking test functions in D(ω)6 in (4.36), (4.38), (4.44), (4.48), (4.49), we find

that the three first identities are valid in the distributional sense. This means that the

left-hand side of this identities belongs to L2(ω)3, L2(ω)2, and L2(ω) respectively.

4.4 Residual a posteriori error estimate

For obtain a posteriori error estimate of the problem, we focus only on residual a posteriori

estimate. For the problem (4.12). The residual RUh(·) is then defined as follows:

RUh = a(U ε − Uh, V ) + ap(U
ε − Uh, V ) + ε−1b(U ε − Uh, V )

= L(V − Vh)− a(Uh, V − Vh)− ap(Uh, V − Vh)− ε−1b(UhV − Vh),
(4.51)

for an arbitrary Vh ∈ Xh. From the fact that a(·, ·) + ap(·, ·) + ε−1b(·, ·) is coercive with a

coercivity constant equivalent to 1, we infer that

‖U ε − Uh‖X . ‖RUh‖X′ .

We first observe that the bilinear forms a(·, ·),ap(·, ·) and b(·, ·) have variable coefficients.

In such a case, in order to construct error indicators we need to approximate the data and

the coefficients by piecewise polynomials, see [9].

4.4.1 Approximation of the data and coefficients

We introduce the approximation spaces M̃(`)
h , with ` ∈ N and Zh as follows

M̃(`)
h =

{
χh ∈ L2(ω);∀T ∈ Th, χh|T ∈ P`(T )

}
,

Zh =
{
gh ∈ L2(ω)3;∀T ∈ Th, gh|T ∈ P0(T )3

}
,

and consider an approximation fh of f in Zh and an approximation bhαβ of the coefficient

bαβ in M̃(1)
h (as b12 = b21, we assume that bh12 = bh21). Similarly, we consider approximations

ahk of the vectors ak and dhαβ of ∂αaβ in (M̃(2)
h )3 and (M̃(1)

h )3 respectively. Obviously we

89



4.4. CHAPTER 4.

assume that these approximated coefficients are uniformly bounded (with respect to the

L∞-norm) in h. We introduce the approximations ah(·, ·),ahp(·, ·) and bh(·, ·) of the bilinear

forms a(·, ·),ap(·, ·) and b(·, ·) respectively where ai, ∂αaβ, and bαβ are replaced by their

approximations. More precisely, for U = (u,
∑

i riai) ∈ X, we set (compare with (1.2),

(4.47), and (4.42))

γhαβ(u) =
1

2

(
∂αu · ahβ + ∂βu · ahα

)
,

γ̃h12(u) =
1

2

(
∂1u · ah2 − ∂2u · ah1

)
,

Πh(s) = e(s̄)− ¯̀h(s),

θh(s) =
1

2

(
e(s̃) + ˜̀h(s)

)
,

IIh0 = −
(
bh11 bh12

bh12 bh22

)
,

Qh(U) = r3 − γ̃h12(u),

where ¯̀h(s) and ˜̀h(s) are defined as ¯̀(s) and ˜̀(s), the coefficents bαβ and Γραβ being

replaced by bhαβ and ahρ · dhαβ respectively. Then we set (compare with (4.35), (4.43), (4.37)

and (4.45))

ahm(u, v) =

∫
ω

Aγh(u) : γh(v) dx,

ahf (r, s) =
1

2

∫
ω

A(e(r̄)− ¯̀h(r)) : (e(s̄)− ¯̀h(s)) dx,

aht ((u, r), (v, s)) = µ

∫
ω

((ah3)>∇v + ŝ>J>)((∇u)>ah3 + Jr̂) dx,

ahp(r, s) =
t3

12

∫
ω

(s3AIIh0 : θh(r) + r3AIIh0 : θh(s)) dx,

and finally

ah(U, V ) = tahm(u, v) + taht ((u, r), (v, s)) +
t3

12
ahf (r, s),

bh(U, V ) =

∫
ω

Qh(U)Qh(V )dx.
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We also introduce the approximation Lh of the linear form L, namely,

Lh(V ) =

∫
ω

fh · v dx.

Then for any Vh ∈ Xh, we may write the residual as

RUh =L(V − Vh)− a(Uh, V − Vh)− ap(Uh, V − Vh)−
1

ε
b(Uh, V − Vh)

=(L − Lh)(V − Vh)− (a− ah)(Uh, V − Vh)− (ap − ahp)(Uh, V − Vh)−
1

ε
(b− bh)(Uh, V − Vh)

−ah(Uh, V − Vh)− ap(Uh, V − Vh)−
1

ε
bh(Uh, V − Vh) + Lh(V − Vh).

(4.52)

We again recall the properties of the Clément operator Ch [31], for 0 ≤ m ≤ l ≤ 1

∀h,∀T ∈ Th,∀w ∈ H l(ω) ‖w − Chw‖Hm(T ) . hl−mT ‖w‖Hl(∆(T )), (4.53)

∀h,∀e ∈ Eh,∀w ∈ H l(ω) ‖w − Chw‖Hm(e) . h
l−m− 1

2
e ‖w‖Hl(∆(e)), (4.54)

where ∆(T ) = ∪T ′∈Th:T ′∩T 6=∅T
′ (resp. ∆(e) = ∪T ′∈Th:e⊂T ′T

′) is the patch associated with

the element T (resp. the edge e) and Eh is the set of edges of the triangulation.

Lemma 4.4.1 Let V = (v,
∑

i siai) and Vh = (vh, sh) = (Chv,
∑

i(Chsi)ai), then we have

the following estimate

∣∣(L − Lh)(V − Vh)− (a− ah)(Uh, V − Vh)− (ap − ahp)(Uh, V − Vh)− ε−1(b− bh)(Uh, V − Vh)
∣∣

.
(
εdh + εch

)
‖V ‖X,

where

εch = (ε−1 max
k=1,2,3

‖ak − ahk‖L∞(ω) + max
α,β=1,2

‖∂αaβ − dhαβ‖L∞(ω) + max
ρ,σ=1,2

‖bρσ − bhρσ‖L∞(ω)) ‖L‖,

εdT = hT‖f − fh‖L2(T )3 ,

and

εdh = (
∑
T

(εdT )
2
)

1

2 .
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Proof: First one estimates the term (L − Lh)(V − Vh). As we have

(L − Lh)(V − Vh) =

∫
ω

f · (v − Chv)dx−
∫
ω

fh · (v − Chv)dx =

∫
ω

(f − fh) · (v − Chv)dx

=
∑
T∈Th

∫
T

(f − fh) · (v − Chv)dx,

Cauchy-Schwarz’s inequality and the property (4.53) of Ch yield

|(L − Lh)(V − Vh)| ≤ εdh‖V ‖X.

Secondly we estimate

(a− ah)(Uh, V − Vh) + (ap − ahp)(Uh, V − Vh) + ε−1(b− bh)(Uh, V − Vh).

We only give an abridged proof of this technical result. We first estimate

(a−ah)(Uh, V −Vh) = t(am−ahm)(uh, v−vh)+t(at−aht )(Uh, V −Vh)+
t3

12
(af−ahf )(rh, s−sh).

To estimate the term (am − ahm)(Uh, V − Vh), we typically have to estimate a term like

Ah(uh, v − vh) :=

∫
ω

(γ11(uh)γ11(v − vh)− γh11(uh)γ
h
11(v − vh)) dx.

That we transform as

Ah(uh, v− vh) =

∫
ω

(γ11(uh)(γ11(v− vh)−γh11(v− vh)) + (γ11(uh)−γh11(uh))γ
h
11(v− vh)) dx.

For the first term, we use the identity γ11(u) − γh11(u) = ∂1u · (a1 − ah1), and apply

Cauchy-Schwarz’s inequality and (4.21) to get∣∣∣∣∫
ω

γ11(uh)(γ11(v − vh)− γh11(v − vh)) dx
∣∣∣∣ . ‖L‖‖∂1(v − vh) · (a1 − ah1)‖L2(ω).

As

‖∂1(v − vh) · (a1 − ah1)‖L2(ω) ≤ ‖a1 − ah1‖L∞(ω)‖∂1(v − vh)‖L2(ω),

92



4.4. CHAPTER 4.

by the property (4.53), we deduce that∣∣∣∣∫
ω

γ11(uh)(γ11(v − vh)− γh11(v − vh)) dx
∣∣∣∣ . εch‖L‖‖V ‖X.

The second term is estimated in the same manner, which leads to

|Ah(uh, v − vh)| . εch‖L‖‖V ‖X.

The same techniques on the remaining terms of a− ah and on all terms of ap − ahp yield

|(a− ah)(uh, v − vh)| . εch‖L‖‖V ‖X,

|(ap − ahp)(rh, s− sh)| . εch‖L‖‖V ‖X.

The last term ε−1(b− bh) requires a more specific attention. First it is split up as follows

ε−1(b− bh)(Uh, V − Vh) = ε−1

∫
ω

(
Q(Uh)Q(V − Vh)−Qh(Uh)Qh(V − Vh)

)
dx

= ε−1

∫
ω

Q(Uh)(Q(V − Vh)−Qh(V − Vh))dx

+ ε−1

∫
ω

Qh(V − Vh)(Q(Uh)−Qh(Uh))dx.

Hence using Cauchy-Schwarz’s inequality, and the property

Q(u, r)−Qh(u, r) = −1

2
((a2 − ah2)∂1u− (a1 − ah1)∂2u),

we find

ε−1|(b− bh)(Uh, V − Vh)| . ε−1 sup
k=1,2,3

‖ai − ahi ‖L∞(ω) ‖Uh‖X‖V − Vh‖X.

Using the bound (4.21) and the estimate (4.53), we find

ε−1|(b− bh)(Uh, V − Vh)| . ε−1 sup
k=1,2,3

‖ai − ahi ‖L∞(ω) ‖f‖ω‖V ‖X.

The previous estimates yield the conclusion.
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Now we need to estimate the term

Lh(V − Vh)− ah(Uh, V − Vh)− ahp(Uh, V − Vh)−
1

ε
bh(Uh, V − Vh).

In order to define appropriately the indicators, we introduce

Th(u) = t Aγh(u),

Ah = (ah1 , a
h
2)>,

Sh(u, r) = t µ((∇u)>ah3 + Jr̂),

Mh(r) =
t3

24
AΠh(r),

Ph(r) =
t3

12
AIIh0 r3,

κh(r) =
t3

12
(IIh0 : Aθh(r)).

Now for all T ∈ Th, we can define the following indicators (compare with problem (4.50))

η
(1)
T = hT‖fh + Div (Th(uh)Ah) + Div (Sh(Uh)a

h
3)− 1

2ε
Div (Qh(Uh)JAh)‖L2(T,R3)

+
∑

e∈Eih∩∂T

1

2
h

1
2
e ‖[nTh(uh)Ah + nSh(Uh)a

h
3 −

1

2ε
Qh(Uh)A>h Jn>]e‖L2(e,R3)

+
∑

e∈Ebh∩Γ̄1∩∂T

h
1
2
e ‖nTh(uh)Ah + nSh(Uh)a

h
3 −

1

2ε
Qh(Uh)A>h Jn>‖L2(e,R3),

η
(2)
T = hT‖J>Div Mh(rh) +

(
Mh(rh) : Γ̄1

h

Mh(rh) : Γ̄2
h

)
− J>Sh(Uh) +

1

2
J̃Div (Ph(rh))

− 1

2

(
Ph(uh) : Γ̃1

h

Ph(uh) : Γ̃2
h

)
‖L2(T )2 +

∑
e∈Eih∩∂T

h
1
2
e ‖[

1

2
J̃Ph(rh)n

> + J>Mh(rh)n
>]e‖L2(e)2

+
∑

e∈Ebh∩Γ̄1∩∂T

h
1
2
e ‖

1

2
J̃Ph(rh)n

> + J>Mh(rh)n
>‖L2(e)2 ,

η
(3)
T = ‖B̄h : Mh(rh)− κh(rh)−

1

2
B̃h : Ph(rh)−

1

ε
Qh(Uh)‖L2(T ),

where Ebh is the set of edges of the triangulation included into the boundary of ω, while

E ih = Eh \ Ebh. We further introduce the local indicator

ηT = η
(1)
T + η

(2)
T + η

(3)
T ,
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and the global one

ηh =
( ∑
T∈Th

η2
T

) 1
2
.

Proposition 4.4.2 Let V = (v,
∑

i siai) ∈ X and let Vh = (Chv,
∑

i(Chsi)ai) be the

Clément interpolant of V , then

|ah(Uh, V − Vh) + ahp(Uh, V − Vh) + ε−1bh(Uh, V − Vh)− Lh(V − Vh)| . ηh‖V ‖X. (4.55)

Proof: We split up the left-hand side of (4.55) in three terms as follows

Lh(V − Vh)− ah(Uh, V − Vh)− ahp(Uh, V − Vh)− ε−1bh(Uh, V − Vh) = A1(Uh, V − Vh)

+ A2(Uh, V − Vh) + A3(Uh, V − Vh),

where

A1(Uh, V − Vh) = Lh(v − Chv)− ah(Uh, (v − Chv, 0))− ε−1bh(Uh, (v − Chv, 0)),

A2(Uh, V − Vh) = −ah(Uh, (0,
∑
α

(sα − Chsα)aα))− ahp(Uh, (0,
∑
α

(sα − Chsα)aα))

− ε−1bh(Uh, (0,
∑
α

(sα − Chsα)aα)),

A3(Uh, V − Vh) = −ah(Uh, (0, (s3 − Chs3)a3))− ahp(Uh, (0, (s3 − Chs3)a3))

− ε−1bh(Uh, (0, (s3 − Chs3)a3)).

For the first term, by elementwise Green’s formula we directly have

A1(Uh, V − Vh) =
∑
T∈Th

∫
T

(fh + Div (Th(uh)Ah) + Div (Sh(Uh)a
h
3)− 1

2ε
Div (Qh(Uh)JAh) · (v − Chv) dx

+
∑
T∈Th

∑
e∈Γ̄1∩∂T

∫
e

(
1

2ε
Qh(Uh)AThJn> − nTh(uh)Ah − nSh(Uh)ah3) · (v − Chv) dσ(x).

(4.56)

Cauchy-Schwarz’ inequality and the properties of the Clément interpolant Ch yield

|A1(Uh, V − Vh)| .

(∑
T∈Th

(
η

(1)
T

)2
) 1

2

‖V ‖X.
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In a fully similar manner, we have

|A2(Uh, V − Vh)| .

(∑
T

(η
(2)
T )2

) 1
2

‖V ‖X.

Finally we directly check that

A3(Uh, V − Vh) =
∑
T

∫
T

(B̄h : Mh(rh)− κ(rh)−
1

2
B̃h : Ph(rh)−

1

ε
Qh(Uh))(s3 − Chs3)dx,

(4.57)

hence using (4.53), we directly get

|A3(Uh, V − Vh)| .

(∑
T

(η
(3)
T )2

) 1
2

‖V ‖X.

The estimates on |Ai(Uh, V − Vh)| directly yield the conclusion.

4.4.2 Upper and lower error bounds

At this stage we are able to prove the following robust upper bound.

Theorem 4.4.3 The following a posteriori error estimate holds between the solution Uε

of problem (4.12) and the solution Uh of problem (4.20)

‖Uε − Uh‖X . ηh + εdh + εch. (4.58)

Proof: The estimate (4.58) follows from the fact that a(·, ·)+ap(·, ·)+ ε−1b(·, ·) is coercive

with a coercivity constant equivalent to 1, by using the identity (4.52), Lemma 4.4.1 and

Proposition 4.4.2.

Let us go with the lower bound.

Theorem 4.4.4 Let Uε be the solution of problem (4.12) and Uh the solution of problem

(4.20). Then we have the following bound

η
(i)
T . ε−1‖Uε − Uh‖X(ωT ) + εdωT + εcωT , i = 1, 2, 3, (4.59)
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where the index ωT means that the quantity is taken only in ωT and the norm X(ωT ) means

the norm of X with integrals restricted to ωT .

Proof: The proof is quite standard and is based on standard inverse inequaltiy, see [69]

for instance. We will only prove the inequality (4.59) for η(1)
T since it is fully similar for

η
(2)
T and η(3)

T . For shortness, we write η(1)
T in the following compact form

η
(1)
T = hT‖Fh‖L2(T,R3) +

∑
e∈Eih∩∂T

h
1
2

L2(e,R3)‖[Gh]e‖e +
∑

e∈Ebh∩∂T

h
1
2
e ‖Gh‖L2(e,R3).

First of all, let us fix the standard bubble function ψT associated with T and set

v =

FhψT in T,

0 in ω \ T.
(4.60)

By the definition of ψT , we may notice that v ∈ H1
0 (ω,R3) and hence (v, 0) belongs to X.

It follows from (4.56) with Vh = 0 that

Lh(v, 0)− ah(Uh, (v, 0))− ε−1bh(Uh, (v, 0))

=

∫
T

(fh + Div (Th(uh)Ah) + Div (Sh(Uh)a
h
3)− 1

2ε
Div (Qh(Uh)JAh) · v dx

= ‖Fhψ
1
2
T ‖

2
L2(T )3 .

Using the identity (4.52), we may write

a(U ε − Uh, (v, 0)) + ε−1b(U ε − Uh, (v, 0)) = (L − Lh)((v, 0))− (a− ah)(Uh, (v, 0))

− 1

ε
(b− bh)(Uh, (v, 0))− ah(Uh, (v, 0))

− 1

ε
bh(Uh, (v, 0)) + Lh((v, 0)).

Hence

Lh(v, 0)− ah(Uh, (v, 0))− ε−1bh(Uh, (v, 0)) =a(U ε − Uh, (v, 0)) + ε−1b(U ε − Uh, (v, 0))

− (L − Lh)((v, 0)) + (a− ah)(Uh, (v, 0))

− 1

ε
(b− bh)(Uh, (v, 0)).
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By the previous identities, we get

‖Fhψ
1
2
T ‖

2
L2(T )3 =a(U ε − Uh, (v, 0)) + ε−1b(U ε − Uh, (v, 0))

− (L − Lh)(v, 0) + (a− ah)(Uh, (v, 0))

− 1

ε
(b− bh)(Uh, (v, 0)).

So by Cauchy-Schwarz’s inequality and the arguments of Lemma 4.4.1, we find

‖Fhψ
1
2
T ‖

2
L2(T,R3) .

(
ε−1‖Uε − Uh‖X(T ) + εdT + εch

)
‖v‖H1(T,R3). (4.61)

Using the following inverse inequality

‖v‖H1(T,R3) . h−1
T ‖v‖L2(T,R3), (4.62)

and using that the function ψT takes it values between 0 and 1, we deduce

‖v‖H1(T,R3) . h−1
T ‖Fh‖L2(T,R3). (4.63)

In addition we have

‖Fh‖L2(T,R3) ≤ c‖Fhψ
1
2
T ‖L2(T,R3). (4.64)

Combining (4.61), (4.63) and (4.64) we get

hT‖Fh‖L2(T,R3) . ε−1‖Uε − Uh‖X(T ) + εdT + εcT .

The second step is to bound the second term of η(1)
T , for all edges e of T shared with the

element T ′. In this case we choose the function v in (4.56) as follows

v =

Me,κ([Gh]e)ψe for κ ∈ {T, T ′} ,

0 in ω \ (T ∪ T ′),
(4.65)

where ψe is the standard edge bubble function associated with e andMe,κ(q) is an extension

operator that sends a polynomial q in the edge coordinate of e to a polynomial in cartesian
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coordinates in κ. As before we see that

‖[Gh]eψe‖2
L2(e,R3) = ah(Uh, (v, 0, 0, 0)) + ε−1bh(Uh, (v, 0, 0, 0))− Lh(v, 0, 0, 0)

+

∫
∆(e)

(fh + Div (Th(uh)Ah) + Div (Sh(Uh)a
h
3)− 1

2ε
Div (Qh(Uh)JAh) · vdx.

Using the identity (4.52) and the arguments of Lemma 4.4.1, we then have

‖[Gh]eψe‖2
L2(e,R3) . ε−1‖Uε−Uh‖X(∆(e)‖v‖X(∆(e))+

(
εd∆(e) + εch

)
‖v‖X(∆(e))+‖Fh‖L2(∆(e),R3)‖v‖X(∆(e)).

By a standard inverse inequality, we conclude

h
1
2
e ‖[Gh]eψe‖2

L2(e,R3) . ε−1
∑

κ∈{T,T ′}

‖Uε − Uh‖X(∆(e)) + εd∆(e) + εch.

The third term is bounded in the same manner than the second one. In the same way, we

bound the two remaining η(i)
T ; i = 2, 3. The proof is therefore complete.
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Chapter 5

Numerical experiments

Introduction

FreeFem++ is a well-known framework, which serves for solving, numerically, the

Partial Differential Equations (PDE) in 2 and 3 dimension, where 1 dimension is under

consideration. FreeFem++ is widely-used for learning the finite element method. Yet, it is

a very useful tool by researchers to examine complex applications. FreeFem++ is written

in C++, and it can be integrated on different machine systems such as Windows, Macs

and Unix.

In this chapter we present a numerical experiments using the finite element code FreeFem++

[46].

• In section 1 we implement the penalized version (2.27) using the finite element

package Freefem++.

• Section 2 describes how the error indicators exhibited can be used to adapt the mesh
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for the discrete problem (4.20).

5.1 Bending dominant shell problem

In this section, we implement the penalized version (2.27) using the finite element package

Freefem++. For bending dominant shell problems, when the thickness is too small,

standard finite element methods fail to give good approximation because of locking

phenomena (see previous studies [21],[53],[56] for instance). Arnold and Brezzi [3] have

successfully avoided numerical locking by using mixed formulation where new variables

are introduced and the finite element space is enriched by bubble functions. The present

prestressed model, has as new unknown, which is the normal component of the rotation

r · a3. Since the model has been derived under the assumption of the domination of the

bending energy, it is natural to test the model for a bending dominant shell problem.

We consider a cylindrical shell that is shown in Figure 5.1 , which is a literature benchmark

for shell elements. We take the radius R = 3/2, the length L = 2R, and the angle α = 40◦.

We take E = 200GPa for the Young modulus and ν = 0.3 for the Poisson ratio of the

material. In Cartesian coordinates, the 3D shell occupies the region

St =

{
(x1, X2, X3)| − L < X1 < L, (R− t

2
)2 < X2

2 +X2
3 < (R +

t

2
)2

}
.

The curved ends of the shell at X1 = ±L are assumed to be free and the boundary at

X3 = 0 is clamped, namely, u = r · aα = 0 at X3 = 0. Note that in curvilinear coordinates,

the middle surface S can be parametrized by the chart (ω, ϕ), with

ω = ]−L,L[× ]−R sinα,R sinα[

ϕ(x1, x2) = (x1, R sin(x2/R), R cos(x2/R)) .

It is well known that the subspace VF (ω) of pure-bending displacements, i.e., displacements

that have zero membrane energy: VF (ω) := {(v, s) ∈ V, γ(v) = 0}, plays an important role
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in the finite element analysis of shells. For the considered example, VF (ω) contains some

nonzero elements, i.e., VF (ω) 6= 0. So, we are in the so-called noninhibited pure-bending

case (see previous studies[21],[62]). The asymptotic behavior of the shell as the thickness

goes to zero depends on the fact that the loading f belongs to the polar set of VF (ω) or

not (see Blouza et al. [13]). For the considered geometry, since the coefficients of the

second fundamental form bαβ are such that b11 = b12 = 0 and b22 = − 1

R
, if we consider

vertical constant loading, i.e., f in the form f = (0, 0, q), where q is a constant pressure, it

is easy to show that, for the considered example, we have

〈f, v〉 = 0, ∀(v, s) ∈ VF (ω),

i.e., f belongs to the polar set of VF (ω). It is well known that this kind of loadings

do not activate pure bending displacements (see previous studies [21], [62]for instance),

furthermore, the solution has a mixed asymptotic behavior, and neither the membrane

energy nor the bending energy dominate. For linear models without a prestressed term,

the appropriate scaling for bending dominated problems is ρ = 3.0. But for loading of the

form f = (0, 0, q) where q is a constant, the scale 3.0 gives a zero limit in the continuous

problem, and therefore, the approximate solution is very close to zero. Hence, in our

numerical test, we prefer to consider a bending-dominated problem, namely, we chose

f = t3 × q × cos(2x2)a3, with q = −5× 107, which means that we take

L(V ) = t3q

∫
cos(2x2)a3 · vdx.

Note that, for this case of loading, F ′0(x2) and F ′′1 (x2) are not identically zero, where

F0(x2) =

∫ L

−L
f(x1, x2)dx1, and F1(x2) =

∫ L

−L
x1f(x1, η)dx1

which, together with the fact that VF (ω) 6= 0, are necessary and sufficient conditions

to ensure that the flexural energy is dominant (see Pitkaranta[59], p7). For the numerical
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Figure 5.1: The shell geometry

Energies t=0.01R t=0.001R t=0.0001R t=0.00003R
em 5.75962 6.81387 0.140034 0.00564802
et 0.176713 0.0257213 0.000509613 2.03899 ×10−5

ef 30.5737 3.00906 0.000619921 9.99722 ×10−7

ep -9.90932 ×10−5 -9.18144×10−8 -3.03847 ×10−12 -1.89608 ×10−15

e 36.5099 9.84865 0.141163 0.00566941

Table 5.1: Energy values for P2 − P1 elements

approximation, because of the constraint γ̃12(v)− s ·a3 = 0 in the definition of the space V,

we may use a one order higher elements for u to that used for the micro-rotation r. This

leads to conforming finite element approximations of problem (2.27) with less degrees of

freedom compared with the scheme (3.1). Let em, et, ef and ep are the membrane, shear,

bending(flexural) and prestressed energy terms respectively. e is the total energy.

Table 5.1 presents the obtained results for the different parts of the energy computed

using P2 elements for the displacement and P1 for the rotation. We observe that the

obtained energy partition does not correspond to the expected bending-dominated behavior

of the structure. In fact, the membrane energy is dominant for
t

R
≤ 10−3. This unstable

behavior for small thicknesses can be interpreted as consequence of a "numerical locking."
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Energies t=0.01R t=0.001R t=0.0001R t=0.00003R
em 5.12205 0.410782 0.0914724 0.009412
et 0.169229 0.0034947 0.0002709 271297 ×10−5

ef 34.6118 33.7115 32.1919 32.211
ep -0.000150652 -1.39831 ×10−7 -6.95845×10−11 -3.29225 ×10−13

e 39.9029 34.1258 32.2836 32.2205

Table 5.2: Energy values for P3 − P2 elements

Energies t=0.01R t=0.001R t=0.0001R t=0.00003R
em 5.12074 0.0609105 0.00700619 0.00794386
et 0.168618 0.00196899 4.09061 ×10−5 7.93953 ×10−6

ef 34.6458 34.5506 34.52 34.9203
ep -0.000154659 -3.1463 ×10−7 -1.84628 ×10−8 -2.81355 ×10−6

e 39.935 34.6135 34.5349 34.9283

Table 5.3: Energy values for P4 − P3 elements

Tables 5.2 and 5.3 show the obtained results for the different parts of the energy

computed using P3−P2 and P4−P3 elements. Pathological behavior does not occur for low

thicknesses. The obtained energy partition corresponds to the expected bending-dominated

behavior of the structure. In fact, the bending energy is dominant for 10−2 ≤ t

R
≤ 3×10−5.

We also observe that the prestressed energy is of negative sign and converges to zero

as the thickness tends to zero. At least for the considered example, we conclude that

our displacement-based shell finite elements respect the bending-dominated asymptotic

behavior when we use higher order finite elements. It would be very interesting if one

can provide general analytical proofs showing that the mixed reformulation of problem

(3.2) with suitable choice of the finite element spaces leads to optimal error estimates

independent of the thickness (as in Arnold-Brezzi [3] for Naghdi’s shell model), which

amounts to say that the mixed method is locking-free.
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5.2 Adapt mesh

We now describe how the error indicators exhibited in previous chapter can be used to

adapt the mesh for the discrete problem. We use Dörfler [38] marking strategy, which is a

practical procedure to estimate and equidistribute the local error. An efficient indicator

identifies the parts of the domain that induces large errors and use this information to

locally refine and then repeat the finite element computation. We start with an initial

coarse triangulation Th followed by an iterative loops procedure of the form:

SOLVE → ESTIMATE → MARK → REFINE

The numerical experiments that we now present have been performed using the finite

element code FreeFem++ [46]. Note that Freefem++ contains an anisotropic mesh

generator (BAMG1)[45], thus the mesh is refined automatically, the adapted mesh is not

necessarily quasi uniform. The results obtained will be used to test the reliability of the

anisotropic adaptive mesh procedure.

5.2.1 Numerical examples

Numerical computations are made using the scheme (4.20) with P3-Lagrange elements for

the displacement and P2-Lagrange element for the rotation.

First example

In the first example, we consider a cylindrical shell (see Figure 5.2), we take the radius

R = 1, the length L = 2R, and the angle α = 40◦. The middle surface S can be

parametrized by the chart ϕ, with

ϕ(x1, x2) = (R sin(x1/R), x2, R cos(x1/R))

1Bidemnsional Anisotropic Mesh Generator
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Figure 5.2: The shell geometry

then the covariant basis is :

a1 = (cos(x1/R), 0,− sin(x1/R))

a2 = (0, 1, 0)

a3 = (sin(x1/R), 0, cos(x1/R))

and

bαβ =

(
− 1
R

0
0 0

)

The asymptotique direction X1 = Cte. We chose the loading f consistant with flexural

regime, namely,

f = t3 × q × cos(2x2)a3, q = −5× 107

and the thickness of the shell t = 0.01. Using the residual error indicator defined in previous

chapter, we obtain the following results

Table 5.4 presents the values of ηiT from step 1 to step 6. We notice that values decrease

and converge to zero, which confirm the effectiveness of our estimator. The results given
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Iteration η
(1)
T η

(2)
T η

(3)
T

1 234.789 0.009235 0.397252
2 4.03933 0.00012 0.0765021
3 0.728751 9.343 ×10−5 0.0233028
4 0.166929 2.69733×10−5 0.007233
5 0.05298 1.03×10−5 0.00776843
6 0.0165 6.25×10−6 0.001313

Table 5.4: Values of η(1)
T , η

(2)
T and η(3)

T for example 1

Figure 5.3: Initial mesh

in Table 5.4 show that our adaptive algorithm do converge. But a rigorous mathematical

justification of such a result is still an open problem even for simple problems with constant

coefficients.
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Figure 5.4: Adapt mesh (first iteration)

Figure 5.5: Adapt mesh (sixth iteration)

Figure 5.3 represents the initial coarse mesh and Figure 5.4 is the refined mesh after

the first iteration. From Figure 5.5 ( after six iterations), we notice that the number of

triangles is dense only in the vicinity of the clamped edge, and get decreased whenever we

go for away from the clamped boundary. This is due to the boundary layer effect.
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Second example

In this example we consider the same shell but we consider the edge {X2 = 0} as the

clamped edge. We use a loading f the same as in the previous test but it applied only on

a part of the shell s defined as follows (see Figure 5.6 ) :

s ={(x1, x2) ∈ ω;−R0 ≤ x1 ≤ R0 and 0 ≤ x2 ≤
x1

2R0

+
1

2
}

∩ {(x1, x2) ∈ ω;−R0 ≤ x1 ≤ R0 and 0 ≤ x2 ≤ −
x1

2R0

+
1

2
}.

s

Figure 5.6: The region s

So, the loading f is defined as follows:

f =

 t3×q × cos(2x2)a3, if (x1, x2) ∈ s

0 elsewhere
(5.1)

This kind of loading will generate singularities along the curves:

x2 =
x1

2R0

+
1

2
; 0 ≤ x2 ≤ 1/2 and x2 = − x1

2R0

+
1

2
; 0 ≤ x2 ≤ 1/2

which implies the appearance of internal layers (in the interior of the domain). In this test

we consider two values of thickness t = 0.01 and t = 0.001. Our objective is to compare

the internal and the boundary layers for the considered example. Note that for the Koiter

shell model it is shown in [66] that internal layers are more important than boundary

layers for very small values of the thickness. For the value of thickness t = 0.01, after six
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Figure 5.7: Initial mesh

iterations we obtain the following adapted mesh.

We observe that, for this value of t, the internal and the boundary layers are relatively

of the same order of magnitude Figure 5.8. Whereas, for the value of thickness t = 0.001,

after six iterations the internal layers are clearly more important than the boundary

layers Figure 5.9. This may explain that elliptic nature of the problem for fixed t may be

influenced by the type of the surface, which is here parabolic for the considered example,

when t tends to 0.

Figure 5.8: Adapted mesh for t = 0.01
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Figure 5.9: Adapted mesh for t = 0.001
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Conclusion and Perspectives

In this work, we have mainly focused on the finite element method of a prestressed shell.

In particular, we have showed that the bilinear form a(·, ·) is not coercive on V(ω), which

is defined by Marohnic and Tambača in [52]. We have solved this problem by defined a

relax space V when s ∈ L2(ω,R3) but s · aα ∈ H1(ω,R) and proved the well-posedness

of the new constrained continues problem. We have presented a penalized and mixed

problem and their well-posedness and we have proposed an approximation by finite element

method for the penalized and mixed problem and the existence and uniquness of the

discret problems is proved and derived a priori estimates. However, in the a priori for a

mixed method the estimate on ‖U −Uh‖X and ‖ψ− ψh‖M the constants depend on
1

h
and

1

h2
. This means that if h −→ 0, the behavior of h is more damaging for the convergence.

A hybrid formulation is considered here, i.e., the unknowns (the displacement and

the rotation to the shell midsurface are described respectively in Cartesian and local

covariant basis). We have defined a new variational formulation and proved the existence

and uniqueness results of the solution. Due to the constraint, a penalized version is then

considered. Besides, we have presented a robust a priori error estimation and a posteriori
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error estimator and we demonstrated that it is reliable and efficient.

The numerical experiments which are carried out using FreeFem++ code confirmed the

obtained results. Experimental results have revealed that this model is bending dominant

problem and confirmed the efficiency of the residual a posteriori estimator.

Several extensions are possible for this work. As instance, giving a rigorous analysis for

a mixed formulation with suitable choice of the finite element spaces (as in Arnold-Brezzi

[3] for Naghdi’s shell model and [41] for Koiter’s shell model) to obtain uniform estimate

independent of the thickness t and locking-free.
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