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Abstract. This paper considers a special class of multiobjective stochastic in-
teger linear programming (MOSILP) problems involving random variable co-
efficients in the constraints. The presumed constraints reliability levels are less
than one, then chance constrained programming (CCP) is used to handle with
the randomness. It is shown how these problems can be transformed into equiv-
alent multiobjective nonlinear integer programming (EMONLIP) problem when
the random variables are independent and normally distributed with mean and
variance that are linear in the decision variables. The algorithm developed here
is based on the notion of level sets and level curves. It finds the Pareto optimal
solutions throughout a linear integer program defined by eigenvalue relaxation.
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1 Introduction and background

Much of decision making in the real-world takes place in an environment where the
objectives, constraints or parameters are not known precisely (see Lai and Hwang [14]
and Liu [15]). Therefore a decision is often made on the basis of vague information
or uncertain data.The uncertainty may be interpreted as randomness or fuzziness. The
randomness occurring in the multiobjective linear programming (MOLP) problems is
categorized as the multiobjective stochastic linear programming (MOSLP) problems.
As we have known in the stochastic optimization problems, the coefficients of the prob-
lem are assumed as random variables with known distributions in most of cases. The
books written by Birge and Louveaux [7], Kall [11], Prékopa [18], Klein Haneveld &
Van der Vlerk [12] provide many interesting ideas and useful techniques for tackling the
stochastic optimization problems. (MOSLP) models are appropriate when data evolve
over time and decisions need to be prior to observing the entire data stream. Then, the
way of modeling the (MOSLP) problems and obtaining efficient solutions depends in
large part on the nature of available information about the random parameters.

The (MOSLP) models have been developed for a variety of applications, includ-
ing portfolio selection (Aouni and al. [3], Ballestero and al. [4], Shing and al. [20],
Ogryczak [17]), investment planing (Ben Abdelaziz and al. [5]) and electric power gen-
eration (Teghem and al. [22]), to mention a few.

Most previous efforts in this field have been devoted to positive decision variables
(see, Stancu-Minasian [21] and Caballero [8]. In many situations, however, fractional
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values of the variables are not physically meaningful. Therefore, modeling with mul-
tiobjective stochastic integer linear programming (MOSILP) programs and the devel-
opment of solution algorithms for such problems are of great interest to management
scientists.

Progress has not been substantial on (MOSILP) and the present literature on it is
surprisingly thin (see for example, Abbas and Bellahcene [1], Saad and Kittani [19],
Teghem [23]). In [1], the Benders decomposition method [6] and four types of cuts
are used to develop a generating technique for identifying a compromise solution from
a set of available candidates. The stochastic data are treated by a recourse approach
to obtain an equivalent deterministic two-stages multiobjective integer linear program-
ming (MOILP) problem and duality proprieties are used to check for feasibility of the
recourse function. In [19], a solution algorithm is presented for solving integer linear
programming problems involving dependent random parameters in the objective func-
tions and linearly independent random parameters in the constraints. The STRANGE-
MOMIX method presented by Teghem in [23] is interactive and based on the general-
ized Tchebycheff norm to generate efficient solutions.

In this paper we consider a special stochastic model called the multiobjective chance
constrained integer linear problem. The random variables are assumed to be normally
distributed with mean and variance that are linear in the decision variables. Since prob-
lems including randomness are usually transformed into nonlinear programming prob-
lems, it is difficult to find a global optimal solution efficiently. Furthermore, since our
proposed models are multi-criteria stochastic programming problems, it is almost im-
possible to solve them directly. We manage to construct efficient solution methods for
them using the equivalent transformations to the main problem based on the properties
of random variable. Based on the notion of level sets and level curves, the algorithm
developed here computes all the Pareto optimal solutions respecting given reservation
levels.

The next section describes the considered stochastic model and shows how to con-
vert it into an equivalent multiobjective deterministic nonlinear program. In section 3,
we review some basic properties of level sets. Section 4, presents the eigenvalue re-
laxation of the resulting nonlinear program. The algorithm development is detailed in
section 5. We conclude the paper with some considerations on possible future research
in this field.

2 Problem statement and structural properties

We consider the multiobjective linear programming problems involving random vari-
able coefficients in the objectives functions formulated as:

"mazimize” (ui, U, . .., Up)
subject to P.[CHw)r > u;] =a;, i=1,...,p (P1)
ze s

Where S = {z € R" | Az < b, z > 0 and integer} .
The parameters u;, t = 1,...,p, A € R™*", b € R™ and x € R" represent de-
terministic problem data; w is a random vector from the probability space ({2, X, P)
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and C;(w) € R™ represent stochastic parameters; P, {t} denotes the probability of the
eventt € Y under the probability measure P, ; and «;, ¢ = 1, ..., p are probability lev-
els. This model deals with the optimization of upper allowable limits u;, ¢ = 1,...,p
for given probabilities «;, ¢ = 1, ..., p. For instance, this is a situation when expected
value of the profit is considered not to be a good measure of criteria. In the following, the
basic technique of chance constrained programming (CCP) is used to transform prob-
lem (P1) into an equivalent multiobjective nonlinear integer programming (EMONLIP)
problem according to the predefined probabilities cv;, ¢ = 1,...,p.

Assume that each random variable C;(w) has a multinormal distribution function
with mean value vector C; = (éi,l , 6i,2, ... ,ém) and variance-covariance matrix V;.

Therefore, it is known that C!(w)x has a normal distribution function with mean C,z
and standard deviation (2*V;x)'/2. Then the probabilistic constraints can be written as:

—t
u; — Cix

= u(x) = ézx — & Y (2 V)2

Where &(-) is the distribution function of the standard normal distribution. The (EMOIP)
of problem (P1) is shown in problem (P2) :

mazximize u;(x) = 621‘ — & Yay) (Vi)Y i=1,....p (P2)
subjectto x € S

Kataoka [13] is credited for formulating problem (P1) and the development of the
(EMONLIP) problem (P2). When «; > 0.5, the objective functions u;, ¢ = 1,...,p
are concave. That is because z!V;x is convexe for i = 1,...,p (see Ishii [10,p 184]).
The values &1 («;) which are positive can be obtained from any standard normal dis-
tribution table.

3 Multiobjective optimization and level sets

In the following, we will use the concept of Pareto optimality to define the minimization
in (P2).

Definition 1. A solution x* € S is called Pareto optimal if and only if there is no
x € S such that u;(x) > ui(z*), i = 1,...,p and u;(x) > w;(z*) for at least one
i € {1,...,p}. The set of all Pareto optimal solutions is denoted by Spar. If x* is
Pareto optimal then u(z*) = (u1(z*), ..., up(z*)) is called efficient.

Independent of the properties of the objective functions u; or the constraint set
S, Pareto optimal solutions can be characterized geometrically. In order to state this
characterization, we introduce the notion of level sets and level curves.
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Definition 2. Let 3, € Rfori=1,...,p

1. The set LY (B3;) = {z € S | wi(x) > B;} is called the level set of u; with respect to
the level 3;

2. The set LL.(3;) = {x € S | u;(x) = B;} is called the level curve of u; with respect
to the (3;.

The following characterization of Pareto optimal solutions by level sets and level
curves was given by Ehrgott and al. [9].

Lemma 1. Let x* € S . Then x* is Pareto optimal if and only if
P 7 * P 7 *
AL (i) = A L (ui(2)

i.e. x* is Pareto optimal if and only if the intersection of all p level sets of u; with respect
to levels u;(x*) is equal to the intersection of the level curves of u;, i = 1,...,p with
respect to the same levels.

Because we will use the result of Lemma 1 throughout the paper the following
notation will be convenient.
For 3 € RP let

$(B8) = {z e S|ua) = B i =1,....p} = (O LL(5)

Correspondingly, S(5)pqer Will denote the Pareto set of S(/5).

Note that the range of values that efficient points can reach is given by a lower
and upper bound on the efficient set defined by the ideal and the nadir point of the

multiobjective programming (P2). The ideal point u’ = (u{,u},...,u}) is given by
ul = max u;(z) and the nadir point ¥ = (uf,u)’,...,u))) is given by ul =
min u;(z). With the nadir point, we can choose 3; = ul¥ for i = 1,...,p as lower

bounds. The major difficulty in this choice is the need for a nonlinear algorithm. This
article introduces an eigenvalue relaxation to define two linear functions as lower and
upper bounds for the nonlinear objective function ;.

4 The eigenvalue relaxation

In order to define the eigenvalue relaxation problem, we state some of well known
results regarding the eigenvalues of symmetric positive definite matrices. The proofs of
these results can be found in [16].

Proposition 1. If Vis an n by n symmetric positive definite matrix, then its eigenvalues
are real and positive.

Proposition 2. If V is an n by n symmetric positive definite matrix, o1 and o, are its
smallest and largest eigenvalue respectively, then

ozt <2'Va < opatz Ve e R®
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Knowing that a and b are two nonnegative numbers, the following inequality will
hold:

(a+b)? < al/? + b1/ (1

P .
According to a property of inequality (1), the linear function > (0%)'/?z; may be
i=1
used as an upper bound for the nonlinear term (x!V;z)'/? appearing in (P2). This can

be stated as :

P
(@' Vi)' <y (oh) ' ?ay 2
i=1
For generalization purposes and for having both the upper and lower bound linear func-
tions to correspond with the nonlinear term of problem (P2), we define inequality (3) as
shown below :

P P
=D (o0) Py < —(a"Vim) 2 <Y (o) P 3

i=1 i=1
By multiplication of the positive constant ¢~ (o) by all terms of inequality (3) and

addition of a linear function of all decision variables, such as C,x, to those terms,
inequality (4) would be obtained:

P »
Cra—0~ (i)Y (03)"?2; < Cla—0~" () (@' Viw)'/? < Cla+d~ ()Y (oh) 22
i=1 i=1
“4)
Another way of exhibiting inequality (4) is shown in (5).

filz) Sui(z) < gi(x) , i=1,....p ©)
Since inequality (5) would hold for all values of the feasible decision variables, there-
fore inequality (6) would also hold :

In (6), u} is the optimal value of problem (P3) restricted to the ith objective function and
f and g} are the optimal values of problems (P4) and (P5) that are presented below.

p
) — O (. iy1/2,,
mag filx) =Ciz — @ (az);:l(ffn) z; (P4)
and
t P /
. _t —1/, . iN1/2,.
mag gi(x) = Cix + (az);ﬂ:(an) z; (PS)
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5 Pareto optimal solutions with reservation levels

In this section, we develop a method for the determination of Pareto optimal solutions
in the multiobjective (P2) based on the characterization given in Lemma 1. The pro-
cedure uses an algorithm which solves the problem of finding a K-best solution in a
multiobjective integer programming problem (see for example [2] or [24]). The goal is
to find all Pareto optimal solutions of problem (P2) respecting given reservation levels
Bi, i=1,...,p. In other words we want to to compute S(3)pq,. Instead of an explicit
computation of the intersection of level sets and checking the condition of Lemma 1, we
will generate one level set L> (1) (without loss of generality) in order of decreasing
values of the corresponding objective function, and then check for each element of this
level set if it is also contained in the other level sets and if it dominates or is dominated
by a solution found before.

Algorithm

Input: Instance of a (MOSILP) with p criteria, reservation levels 51, ..., 3.
Output: The set S(5),qr of all Pareto optimal solutions respecting reservation levels .

Step 1: Set (B1,82,...,8p) = (fi, fs,. -, [)-

Step 2 : Let 1 be the optimal solution of problem mag g, (x).
S

If g1 (21) < 1 then stop S(B)par = @
k=1
S(B)par = {zF}.
Step3:k=k+1
Apply a ranking algorithm to compute the k-best solution z* of g .
If g1 (z%) < 31 then stop S(B)par = @.

Step 4 : If 2 € Ly forall: = 2,...,pthen goto step 5
else goto step 3.
StepS:Forl <¢:<k—-1
If z*dominates z* then S(8)par = S(B)par \ {2'}
else if 2° dominates z* then goto step 3.
else if g (z%) = uy(2) then S(B)par = S(B)par U {z*} goto step 3.

Step 6 : S(B)par = S(B)par U {2}
goto step 3.

6 Conclusion
In this paper, we attempted to solve a particular multiobjective stochastic integer linear

problem by level sets. The nondominated solutions are determined by solving a linear
integer program defined by eigenvalue relaxation. The construction of the lower bounds
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(levels) is fairly simple. Our method does not require specific mathematical properties
to be satisfied by the objectives. It appears—on several examples— that the algorithm
performs faster, however further experimental validation of this observation is needed.
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