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Introduction

The domain of fractional calculus is interested with the generalization of the classical inte-
ger order dierentiation and integration to an arbitrary order. Fractional calculus has found
important applications in different fields of science, especially in problems related to biol-
ogy, chemistry, mathematical physics, economics, control theory, blood flow phenomena and
aerodynamics, etc. The fractional hybrid differential equations have also been studied by
many researchers. In this type of equation, the perturbations of the original differential
equations are included in different ways.

In this work, we discuss existence of approximate solutions for hybrid fractional differen-
tial equations with initial condition, these results are determined, by applying Dhage’s fixed
point theory. Our assumed problem will general than the problems considered [14] and [26].
This work is structured as follows.

The first chapter contains some basic concepts in addition to the notions of the functions
and spaces that play an important role in the fractional calculus

The second chapter is devoted to concepts and characteristics of integrals and partial
derivatives related to the two most important approaches to fractional computation, the
Riemann-Liouville approach and the Caputo approach while showing the difference between
the derivatives.

In the final chapter, we investigate the existence of approximate solutions to fractional
differential equations including the Caputo derivative of order 0 < k ≤ 1. Our results are
based on Dhage’s fixed point theory.In the last section, we give one illustrative example.
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Chapter 1
prelimnaries

1.1 Some spaces of functions continue
Definition 1.1.1. Let Ω = [a, b] (−∞ ≤ a < b ≤ +∞) and n ∈ N = {0, 1, ...}. We denote
by Cn(Ω) a space of functions f which are n continuously differentiale on Ω, with the norm.

‖f‖Cn =
n∑
k=0
‖fk‖c = max

x∈Ω
|fk(x)| n ∈ N

. In particular if n = 0, C0(Ω) = C(Ω) the continuous f function space on Ω equipped
with the norm:

‖f‖C = max
x∈Ω
|f(x)|

.

Definition 1.1.2. ([1]) Let now Ω = [a, b] with (−∞ < a < b < +∞) a finite interval, on
designates by AC([a, b]) the space of the primitive functions of the integrable functions, It
to be said:

f(x) ∈ AC([a, b])⇔ f(x) = c+
∫ x

a
ϕ(t)dt (ϕ(t) ∈ l([a, b]))

and ϕ(t) = f ′(t), c = f(a)
The primitive functions and we call AC([a, b]) the space of the absolutely continuous func-
tions f continuous [a, b].

Definition 1.1.3. ([8]) For n ∈ N = {1, 2, 3, ...}, We denote by ACn([a, b]) the space of
complex function f(x) which have continuous derivatives up to the order (n− 1) continuous
on [a, b] such that f (n−1)(x) ∈ AC([a, b])

ACn([a, b]) = {f : [a, b]→ C and(Dn−1f) ∈ AC([a, b])(D = d

dx
)}

In particularAC1([a, b]) = AC([a, b])

Definition 1.1.4. Let E be a real vector. We introduce a partial order ≤ in E as follows.
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1.1. SOME SPACES OF FUNCTIONS CONTINUE

Arelation ≤ in E is said to be partial order if it satisfies the following properties
1- Reflexivity
2- Antisymmetry
3-Transitivity
4.Order linearity

Definition 1.1.5. [7] Two elementsxandy in a partially ordered space E are called compa-
rable if either the relation x ≤ y or y ≤ x holds

Definition 1.1.6. ([21]) Let E = (E,≤, ‖.‖). An operator T : E → E is called nonde-
creasing if order relation is preserved T , that is for any x, y ∈ E such that x ≤ y, we have
Tx ≤ Ty.

Definition 1.1.7. [7] Let E = (E,≤, ‖.‖) be a normed space equipped with a partial order
relation ≤. The space E is said to be regular if, for any nondecresing sequence {xn}n∈N in
E such that xn → x∗ as n→∞, we have xn ≤ x∗ for all n ∈ N. In particular, the space
C(Ω,R) is regular.

Definition 1.1.8. ([22]) An operator T : E → E is called partially continuous at a ∈ E if
for any ε > 0, there exists δ > 0 such that ‖TX − Ta‖ < ε for all x coparablt to a in E
with ‖x− a‖ < δ.

Definition 1.1.9. ([21])Let E be a nonempty set equipped with an order relation ≤ and a
metric d.we say that the order relation ≤ and the metric d are copatible if the following
property is satisfied if {xn}nN converges to x∗. Similarly,if (E,≤, ‖.‖) is a partially odered
normed linear space ,we say that the order relation ≤ and the norm ‖.‖ are compatible
whenver the relation ≤ and the metric d in duced by the norm ‖.‖ are compatible .

Definition 1.1.10. ([21])An upper Semi- continuous and nondecresing fuction ψ : R+ →
R+ is clled a D- function if ψ(0) = 0

Definition 1.1.11. ([22]) let (E,≤, ‖.‖) be a normed liner space equipped with a partial
order relation ≤ .A mapping T : E → E is called a partially nonlinear D-Lipschitz if there
is D- Function ψ : R+ → R+ suh that

‖Tx− Ty‖ ≤ ψ(‖x− y‖)

• For all commparable point x, y ∈ E. If ψ(r) = kr. For some positive constant k,
then T is called a partially lipchitz with a lipschitz constant k.

• If k < 1 , we say that T is a partial contraction with contraction constant .

• T is said to be a nonlinear D -contraction if it is non linear D- lipschitz with ψ(j) < j

for all j > 0.
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1.2. USEFUL FUNCTIONS

1.2 Useful functions
We learn about some of its functions The Gamma function , the Beta function and Mittag-
leffler functions.

1.2.1 The Gamma Function

Definition 1.2.1. [11] We recall the definition

Γ(x) =
∫ ∞

0
tx−1 exp−t dt

For x > 0 .Elementary considerations from the theory of improper integrals reveal that the
integral exists upon setting x = 1.
Γ(1) =

∫∞
0 exp−t dt = limz→∞

∫ z
0 exp−t dt = limz→∞[− exp−t]z0 = 1

for arbitray x > 0, manipulate the integral in the definition of the Gomma function by meons
of a partial itegration .This yields

Γ(x+ 1) =
∫ ∞

0
tx exp−t dt = lim

z→∞,y→0+

∫ z

y
tx exp−t dt

= lim
z→∞,y→0+

(
[− exp−t tx]t=zt=y + x

∫ z

y
tx exp−t dt

)
= x

∫ ∞
0

tx−1 exp−t dt = xΓ(x)

Theorem 1.2.1. [11](Functional Equation for Γ) We have thus shown
If x > 0 then xΓ(x) = Γ(x+ 1).
Now we may prove the all important relation between the Gamma function and the facto-
rial.The induction basis (n = 1) reads Γ(1) = 0! = 1 which is true in view of(theorem1.2.1
)For the induction step ,we use the functional equation and the induction hypothesis:

Γ(n+ 1) = nΓ(n) = n(n− 1)! = n!

There is one other important application of the functional equation of the Gamma func-
tion .We solve it for Γ(x); it then reads

Γ(x) = Γ(x+ 1)
x

Theorem 1.2.2. Let 0 < x < 1.Then

Γ(x)Γ(1− x) = π

sin πx
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1.2. USEFUL FUNCTIONS

Definition 1.2.2. We define the Gamma function by: [24]

Γ(x) =
∫ +∞

0
tx−1e−tdt ;x ∈ C and <e(x) > 0, (this integral is convergent). (1.1)

[ht]

1.2.2 The beta function

Definition 1.2.3. The beta function is a unique function where it is classified as the first
kind of euler’s integral. B(x, y) is defined by

B(x, y) =
∫ 1

0
tx−1(1− x)y−1dt Re(x), Re(y) > 0

.

This function is connected with the gamma functions by the relation:

B(x, y) = Γ(x)Γ(y)
Γ(x+ y) (x, y ∈ C,Re(x),Re(y) > 0)

For example to find:
B(2, 3) =

∫ 1
0 t(1− t)2dt

=
∫ 1

0 (t− 2t2 + t3)dt
= 1

12 .

Lemma 1.2.1.
Γ(x)Γ(y) =

∫+∞
0

∫+∞
0 tx−1

1 ty−1
2 e−t1e−t2dt1dt2.

=
∫+∞

0 tx−1
1

(
ty−1
2 e−(t1+t2dt2

)
dt1.

5



1.2. USEFUL FUNCTIONS

Proof. By change of variable t′2 = (t1 + t2). We find

Γ(x)Γ(y) =
∫ +∞

0
tx−1
1 dt1

∫ +∞

0
(t′2 − t1)y−1e−t

′
2dt

′

2.

=
∫ +∞

0
e−t

′
2dt

′

2

∫ +t1

0
(t′2 − t1)y−1tz−1

1 dt1.

If we put t′1 = t1
t
′
2
, we arrive at:

=
∫ +∞

0
e−t

′
2dt

′

2

( ∫ 1

0
(t′1t

′

2)z−1(t′2 − t
′

1t
′

2)y−1t
′

2dt
′

1

)
.

=
∫ +∞

0
e−t

′
2dt

′

2

(
(t′2)x+y−1B(z, y)

)
.

=
∫ +∞

0
e−t

′
2(t′2)x+y−1dt

′

2B(x, y).
= Γ(x+ y)B(x, y).

Which gives the desired result.

Lemma 1.2.2. [29] Beta is symmetrical : B(x, y) = B(y, x)

Proof. We have : B(x, y) = Γ(x)Γ(y)
Γ(x+ y) = Γ(y)Γ(x)

Γ(y + x) = B(y, x)

1.2.3 Mittag-Leffler Functions

The function Eα(Z) defined by[10]

Eα(Z) :=
∞∑
K=0

zK

Γ(αk + 1) (Z ∈ C;R(α) > 0)

,
In particular, when α = 1,we have

E1(Z) = expz

and the generalized Mittag-Leffler function Eα,β(z) is defined as follows:
When α = n ∈ N,the following differentiation formulas had for the function En(λZn)

(
d

dz

)n
En(λzn) = λEn(λzn) (n ∈ N;λ ∈ C)

The function Eα,B(Z) the integral repretation

Eα,B(Z) = 1
2π

∫
c

tα−β

tα − Z
dt

Eα,β(x) =
+∞∑
n=0

zn

Γ(nα + β) , (α, β > 0) (1.2)
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1.2. USEFUL FUNCTIONS

,
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Chapter 2
Derivation and fractional integration

This chapter contains the definitio s and some properties of fractional integrals and frac-
tional derivatives of different types

2.1 Fractional integral of Riemann Liouville
Definition 2.1.1. Let Ω = [a, b](−∞ < a < b < ∞) be a finite interval on the real axis
R.The Riemann -Liouville fraction integrale Iαa+f and Iαb−f of order α ∈ C (a > 0;R(α) > 0)
are defined by

Iαa+f(x) := 1
Γ(α)

∫ x

a

f(t)dt
(x− t)1−α (a > 0;R(α) > 0) (2.1)

and
Iαb−f(x) := 1

Γ(α)

∫ x

a

f(t)dt
(x− t)1−α (a > 0;R(α) > 0) (2.2)

Here Γ(a) is the Gamma function
When α = n ∈ N,the definition (2.1) coincde with the n th integrals of the form

(Ina+f)(x) =
∫ x

a
dt1

∫ t1

a
dt2.........

∫ tn−1

a
f(tn)dtn (2.3)

= 1
(n− 1)!

∫ x

a
(x− t)n−1f(t)dt (n ∈ N) (2.4)

(Inb−f)(x) =
∫ x

a
dt1

∫ t1

a
dt2.........

∫ tn−1

a
f(tn)dtn (2.5)

= 1
(n− 1)!

∫ x

a
(t− x)n−1f(t)dt .(n ∈ N) (2.6)

The semigroup property of the fractional itegration operators Iαa+ and Iαb− are given by
the follwing result (Definition 2.1.1)

Lemma 2.1.1. If α > 0 and β > 0 then the equations

8



2.1. FRACTIONAL INTEGRAL OF RIEMANN LIOUVILLE

(
Iαa+I

β
a+f

)
(x) =

(
Iα+β
a+ f

)
(x) and

(
Iαb−I

β
b−f

)
(x) =

(
Iα+β
b− f

)
(x)

Definition 2.1.2. The Rieman-Liouville fractional itegration and fractional differtiation op-
erators of the power functions (x− a)β−1 yied power functions of the same form. If α > 0
and β ∈ C (β > 0),then

(
Iαa+(x− a)β−1

)
(x) = Γ(β)

Γ(β + α)(x− a)β+α−1 (α > 0)

and

(
Iαb−(b− t)β−1

)
(x) = Γ(β)

Γ(β + α)(b− x)β+α−1 (α > 0)

The fractional integration operators Iαa+f from the space Lp(a, b) (1 ≤ p ≤ ∞) with
the norm ‖f‖p, defined according to (2.1) with c = 1

p
by

‖f‖p :=
(∫ b

a
|f(x)|p

) 1
p

Lemma 2.1.2. The fractional integration operators Iαa+f with α > 0 are bounded in
Lp(a, b) (1 ≤ p ≤ ∞):

‖Iαa+f‖p ≤ k‖f‖p, ‖Iαb−f‖p ≤ k‖f‖p
(
k = (b− a)α

α|Γ(α)|

)

Remark 2.1.1. We use the spaces of functions Iαa+(Lp) and Iαb−(Lp) defined for α > 0 and
1 ≤ p ≤ ∞ by

Ia+
α (Lp) := {f : f = Iαa+Q, Q ∈ Lp(a, b)}

and

Ia+
b− (Lp) := {f : f = Iαb−Q, Q ∈ Lp(a, b)}

2.1.1 The fractional derivation in sence of caputo

fractional derivative in the sense of Caputo In this section we present the definitions and
some properties of the caputo fractional derivatives

Definition 2.1.3. Let α > 0 and let n be .If y(x) ∈ ACm[a, b], then the caputo fractional
derivatives

(
cDα

a+y
)

(x) and
(
cDα

b−y
)

(x) exist almost everywhere on [a, b],
(
cDα

a+y
)

(x) and(
cDα

b−y
)

(x) are represented by

• If y(a) = y‘(a) = ...... = y(n−1)(a) = 0.

• If y(b) = y‘(b) = ...... = y(n−1)(b) = 0.

9



2.2. PROPERTIES OF FRACTIONAL DERIVATIVES

Whene α = n ∈ N0,

(
cDn

+y
)

(x) = yn(x),
(
cDn
−y
)

(x) = (−1)nyn(x)

.
(
cDα

a+y
)

(x) =
(
In−α+ y

)
( d
dx

)n(x) = 1
Γ(n− α)

∫ x

a

yn(t)dt
(x− t)α−n+1 =:

(
In−αa+ Dny

)
(x) (2.7)

and

(
cDα

b−y
)

(x) =
(
In−α− y

)
( d
dx

)n(x) = (−1)n
Γ(n− α)

∫ x

a

yn(t)dt
(x− t)α−n+1 =: (−1)n

(
In−αb− Dny

)
(x)

(2.8)
respectively, where n = α + 1.
In particular ,when 0 < α < 1 and y(x) ∈ AC[a, b],

(
cDα

a+y
)

(x) = 1
Γ(n− α)

∫ x

a

y′(t)dt
(x− t)α =:

(
I1−α
a+ Dy

)
(x) (2.9)

and

(
cDα

b−y
)

(x) = − 1
Γ(n− α)

∫ x

a

y′(t)dt
(x− t)α =: −

(
I1−α
b− Dny

)
(x) (2.10)

we have if α = n ∈ N0 (
cD0

a+y
)

(x) =
(
cD0
−b

)
(x) = y(x).

Using the above argument again, we derive that

(
cDα

a+y
)

(x) = 1
Γ(n− α)

∫ x

a
(x− t)α−n+1yn(t)dt

2.2 Properties of fractional derivatives

2.2.1 Properties of the fractional derivation in the sense of Rimann-
Liouville

Theorem 2.2.1. [17]
Let f and g be two functions whose Riemann-Liouville fractional derivatives exist, for λ and
µ ∈ R, then: Dα(λf + µg) exists, and we have:

Dα(λf + µg)(t) = λDαf(t) + µDαg(t) (2.11)

Proof. For the demonstration we will use the linearity of the fractional integral (2.9) and

10



2.2. PROPERTIES OF FRACTIONAL DERIVATIVES

the linearity of the classical shunt (Dn)

RDα(λf + µg)(t) :=DnIn−α(λf + µg)(t)
=Dn(λIn−αf(t) + µIn−αg(t))
=λDnIn−αf(t) + µDnIn−αg(t)
=λDαf(t) + µDαg(t)

Lemma 2.2.1. [18]
Let n = [α] + 1 and f be a function checking Dαf = 0. Then

f(t) =
n−1∑
j=1

cj
Γ(j + 1)

Γ(j + 1α− n)(t− a)j+α−n (2.12)

Where cj are constants of some kind.

Proof. according to the definition (2.14) we have

(Dαa f)(t) = Dn[In−αf ](t) = 0

So, first we have

[In−αf ](t) =
n−1∑
j=0

cj(t− a)j

and by the application of Iαa we get

[Inf ](t) =
n−1∑
j=0

cjIα[(t− a)j]

Taking into account the relationship (2.7), we will have

[Inf ](t) =
n−1∑
j=0

cj
Γ(j + 1)

Γ(j + 1 + α)(t− a)j+α

Then using the classical derivation and the fact that

Dn(t− a)λ = Γ(λ+ 1)
Γ(λ+ 1− n)(t− a)λ−n

one finds
f(t) =

n−1∑
j=0

cj
Γ(j + 1)

Γ(j + 1 + α− n)(t− a)j+α−n

Theorem 2.2.2. [18]
Let α, β > 0 and n = [α] + 1,m = [β] + 1 such that (n,m ∈ N∗), then :

11



2.2. PROPERTIES OF FRACTIONAL DERIVATIVES

1. If α > β > 0, then for f ∈ L1([a, b]) equality:

Dβ(Iαf)(t) = Iα−βf(t) (2.13)

is true of almost everything about [a, b].

2. If the fractional derivative of order α, of a function f(t) is integrable, then

Iαa+(Dαa+f(t)) = f(t)−
n∑
j=1

[Dα−ja+ f(t)]t=a
(t− a)α−j

Γ(α− j + 1) . (2.14)

Proposition 2.2.1. The fractional derivation and the classical derivation (integer order)
only switch that if f (k)(a) = 0 for all k = 0, 1, 2, · · · , n− 1

dn

dtn
(Dαf(t)) = Dn+αf(t). (2.15)

But
Dα

(
dn

dtn
f(t)

)
= Dn+αf(t)−

n−1∑
k=0

f (k)(a)(t− a)k−α−n
Γ(k − α− n+ 1) (2.16)

2.2.2 Properties of the fractional derivation in the sense of Caputo

Theorem 2.2.3. [17, 18, 19]
Let α > 0 and n = [α] + 1 such that n ∈ N∗ then the following equals

1.
CDαIαa f = f (2.17)

2.
Iαa (CDαf(t)) = f(t)−

n−1∑
k=0

f (k)(a)(t− a)k
k! (2.18)

are true for almost everything t ∈ [a, b].

Proof. 1. By (2.24) and the use of semi-group property (2.9), one finds
(
CDαIαa f

)
(t) =

(
In−αa DnIαa f

)
(t) = I0

af

2. (
Iαa (CDαf)

)
(t) =

(
Iαa In−αa Dα

)
f(t)

According to the property (2.9), we have
(
Iαa In−αa Dαf

)
(t) = Iαa Ina I−αa Dnf(t)

= InaDnf(t)}

12



2.2. PROPERTIES OF FRACTIONAL DERIVATIVES

and like,

(InaDnf)(t) = f(t)−
n−1∑
k=0

f (k)(a)
k! (t− a)k

one finds
Iαa
(
CDαf(t)

)
= f(t)−

n−1∑
k=0

f (k)(a)
k! (t− a)k

So the Caputo bypass operator is a left-handed inverse of the operator of fractional
integration but it is not a right inverse.

Theorem 2.2.4. Let fand g be two functions whose fractional derivatives of Caputo exist,
for λ and µ ∈ R, then: CDα(λf + µg) exists, and we have :

CDα(λf(t) + µg(t)) = λCDαf(t) + λCDαg(t)

13



Chapter 3
Existence and approximation of solutions to
fractional order hybrid differential

In this literature, we show some contributions of researchers to the finding of the existence
and uniqueness of the solution for the different fractional differential equations. Dhage
and Jahav [14] studied the existence and uniqueness of solutions of the first order ordinary
differential equation which involves a perturbation of the addition or subtraction term given
by 

d
dt

(
x(t)− f(t, x(t))

)
= g(t, x(t))

x(t0) = x0 ∈ R+
(3.1)

Dussadee Somjaiwang1 and Parinya Sa Ngiamsunthorn1 [26] studied the existence and
uniqueness of and approximation solutions of the frctional differential equation which in-
volves a Cabuto of the addition or subtraction term given by


Dα

(
x(t)− f(t, x(t))

)
= g(t, x(t))

x(t0) = x0 ∈ R+
(3.2)

The main objective of this work is to extend the existence results in Dussadee Somjai-
wang1 and Parinya Sa Ngiamsunthorn1 to construct an iterative sequence that approximates
the solution based on some fixed point theorem. Our result gives both the existence and
approximation of solutions to Caputo fractional order hybrid differential equations and also
extends the existence results for hybrid differential equations. Moreover, the procedure in
this paper allows us to approximate the solutions numerically.


Dα

(
x(t)−∑n

i=1 I
qif(t, x(t))

)
= ∑n

i=1 I
βig(t, x(t))

x(t0) = x0 ∈ R+
(3.3)

Where Dα is the caputo derivative with respect to t ∈ [t0, t0+a]
where t0 > 0 and a > 0

14



3.1. EXISTENCE AND APPROXIMATION OF SOLUTIONS

Lemma 3.0.1. If x is a solution function for the hybrid differential equation

Dα

(
x(t)−∑n

i=1 I
qif(t, x(t))

)
= ∑n

i=1 I
βig(t, x(t))

x(t0) = x0 ∈ R+
(3.4)

if and only if x satisfies the integral equation

x(t) =
n∑
i=1

Iα+βig(t, x(t)) + x0 +
n∑
i=1

Iqif(t, x(t))

Proof. we have
Dα

(
x(t)−

n∑
i=1

Iqif(t, x(t))
)

=
n∑
i=1

Iβig(t, x(t))

By taking α-th order Riemann-Liouville integral

x(t)−
n∑
i=1

Iqif(t, x(t)) =
n∑
i=1

Iα+βig(t, x(t)) + c0 (3.5)

Where c0 ∈ R. By simplifing

x(t) =
n∑
i=1

Iqif(t, x(t)) +
n∑
i=1

Iα+βig(t, x(t)) + c0 (3.6)

Using the initial condition, we find

x(t0) =
n∑
i=1

Iqif(t0, x(t0)) +
n∑
i=1

Iα+βig(t0, x(t0)) + c0 = x0

Therefore
c0 = x0.

Substituting the value c0 into 3.6, we find

x(t) =
n∑
i=1

Iqif(t, x(t)) +
n∑
i=1

Iα+βig(t, x(t)) + x0 (3.7)

3.1 Existence and approximation of solutions
This section is devoted to a proof of our main result on the existence

and approximation of solutions of fractional hybrid differential equations.

Theorem 3.1.1. [6] Let (E,�, ‖ · ‖),be regular partially ordeder complete normed space.
Suppose that the order order relation � and the norm ‖ · ‖ are compatible. Let P : E → E

15



3.1. EXISTENCE AND APPROXIMATION OF SOLUTIONS

and Q : E → E be two nondecrasing operatars suh that:

• a) P is a partially nonlinear D-contraction.

• b) Q partially continuous and partially compact.

• c) There exists an element x0 ∈ E suh that x0 � Px0 +Qx0.

Then there exists a solution x∗ in E of the operator equation Px+Qx = x In addition ,the
sequence {xn}∞n=0 of successive iterations given by
xn+1 = Pxn +Qxn, n = 0, 1, ....,
converges monotonically to x∗

For proving the main result on the existence and approximation of solutions, we assume
the following conditions

• (H0) The functions f : [t0, t0 + a]× R→ R and g : Ω× R→ R are continuous.

• (H1) The function f is nondecreasing in x for each t ∈ [t0, t0 + a] and x ∈ R.

• (H2) There exists a constant Mf > 0 such that ≤ |f(t, x)|≤ Mf for all t ∈ [t0, t0 + a]
and x ∈ R

• (H3) There exists a D-contraction φ such that

0 ≤ f(t, x)− f(t, y) ≤ φ(x− y),

for t ∈ [t0, t0 + a], and x, y ∈ R with x > y.

• (H4) g is nondecreasing in x for each t ∈ [t0, t0 + a] and x ∈ R.

• (H5) T here exists a constant Mg > 0 such that 0 ≤ |g(t, x)|≤Mg for all t ∈ [t0, t0 + a]
and x ∈ R.

• (H6) There exists a function x ∈ C([t0, t0 + a],R) such that x is lower solution the
problem (3.3) that is,


Dα

(
x(t)−∑n

i=1 I
qif(t, x(t))

)
≤ ∑n

i=1 I
βig(t, x(t))

x(t0) ≤ x0 ∈ R+
(3.8)

Theorem 3.1.2. Suppose that the hypothesses (H0)− (H6) are satisfied. Then the initial
value problem has a solution x∗ : [t0, t0 + a]→ R and the sequence of successive approxima-
tions xn, n = 1, 2, ..., defined byXn+1(t) = ∑n

i=1 I
qif(t, xn(t)) +∑n

i=1 I
α+βig(t, xn(t)) + x0

x1(t) = x0
(3.9)
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3.1. EXISTENCE AND APPROXIMATION OF SOLUTIONS

converges monotonically to x∗

Proof. We take the partially ordere Banach space E = C([t0, t0 + a],R),we prowe the exis-
tence of a solution to problem 3.3 by considering the equivalent operator equation

Px(t) +Qx(t) = x(t)

where

Qx(t) =
n∑
i=1

Iα+βig(t, x(t)) + x0, (3.10)

Px(t) =
n∑
i=1

Iqif(t, x(t)). (3.11)

First of all . We prove that Q and P are nondecreasing operators. For any x, y ∈ E with
x > y, we obtain from assumption (H3)

x > y

f(t, x(t)) > f(t, x(t))
n∑
i=1

Iqif(t, x(t)) >
n∑
i=1

Iqif(t, x(t))

Px(t) > Px(t)

This means P is nondecreasing
For Q we have from assumption (H4)

Qx(t)−Qy(t) =
∫ t

t0

(t− s)α+βi−1

Γ(α + βi)

[
g(s, x(s))− g(s, y(s))

]
ds > 0

For any x > y in E, Therefore the operator Q is also nondecreaing.
STEP1: In this we show that the operetor P satisfies condition (a) in Theorm 3.1.1, that
P is a partially bounded and partially nonlinear D−contraction on E. For this purpose, let
x ∈ E be aritarary. By the boundedness of f in condition (H2), we see that :

|Px(t)|= |
n∑
i=1

Iqif(t, x(t))|≤
n∑
i=1

Iqi|f(t, x(t))|≤
n∑
i=1

aqi

Γ(qi + 1)Mf ,

for all t ∈ [t0, t0 + a]. Therefore, we get ‖P‖ ≤ Mf , which shows that P is bounded on E
and so P is partially bounded. Moreover, for any x, y ∈ E such that x > y, we see from

17



3.1. EXISTENCE AND APPROXIMATION OF SOLUTIONS

assumption (H3) that

|Px(t)− Py(t)| = |
n∑
i=1

Iqif(t, x(t))−
n∑
i=1

Iqif(t, y(t))|

≤
n∑
i=1

Iqi|f(t, x(t))− f(t, y(t))|

≤
n∑
i=1

Iqiφ(|x(t)− y(t)|)

≤ aqi

Γ(qi + 1)φ(‖x(t)− y(t)‖)

For each t ∈ Ω, we have ‖Px−Py‖ ≤ aqi

Γ(qi+1)φ(‖x(t)− y(t)‖) for x, y ∈ E with x > y. This
means that P is a partially nonlinear D-contraction on E and continuous.
STEP2
we verify the first proprety Q in condition (b) of Theorem 3.1.1 , we have that Q is partially
continuous on E. Let{xn}n∈N be a squence in E xn → x as n → ∞ we obtain from the
bondedeness of g in H5 ,the continuity of g in (H0), and the dominated conrgence theorem

lim
n→∞

Q(xn(t)) = lim
n→∞

(
n∑
i=1

Iα+βig(t, xn(t)) + x0

)

=
n∑
i=1

Iα+βi lim
n→∞

g(t, x(t)) + x0

= (Qx)(t)

For each t ∈ [t0, t0 +a]. This implies that {Qxn} converges to {Qx} pointwise on [t0, t0 +a]
and the convergence is monotonic by the property of g.
Next, we show that Qxnn∈N is equicontinuous in E. Let t1, t2 ∈ Ω = [t0, t0+a] with t1 < t2.

18



3.1. EXISTENCE AND APPROXIMATION OF SOLUTIONS

We have

|(Qxn)(t2)− (Qxn)(t1)|=
∣∣∣∣∣
n∑
i=1

Iα+βig(t2, xn(t))−
n∑
i=1

Iα+βig(t1, xn(t))
∣∣∣∣∣

≤
n∑
i=1

∣∣∣∣∣
∫ t2

t0

(t2 − s)α+βi−1

Γ(α) g(s, xn(s))ds−
n∑
i=1

∫ t1

t0

(t1 − s)α−1

Γ(α + βi)
g(s, xn(s)ds)

∣∣∣∣∣
=

n∑
i=1

∣∣∣∣∣
∫ t2

t1

(t2 − s)α+βi−1

Γ(α) g(s, xn(s))ds
∣∣∣∣∣

+
n∑
i=1

∣∣∣∣∣ 1
Γ(α)

∫ t1

t0
[(t2 − s)α+βi−1 − (t1 − s)α−1]g(s, xn(s))ds

∣∣∣∣∣
≤

n∑
i=1

Mg

Γ(α)

∫ t2

t1

∣∣∣(t2 − s)α+βi−1
∣∣∣ds

+
n∑
i=1

Mg

Γ(α)

∫ t1

t0
|(t2 − s)α+βi−1 − (t1 − s)α−1)|ds

=
n∑
i=1

Mg

Γ(α + βi + 1)a
α+βi(t2 − t1) + Mg

Γ(α)

∫ t1

t0

∣∣∣(t2 − s)α−1 − (t1 − s)α−1
∣∣∣ds

→ 0

as t2−t1 → 0 uniformly for all n ∈ N ,where we use the dominated convergence (theorem) for
the limt in the second term above. This implies that Q(xn)→ Q(x) uniformly .Therefore,
Q is partially continuous on E

STEP4 : Next we need to prove the remaining condition of opertor ϕ in( theorem 3.1.1),
that is Q is partially compact .
Let C be a chain in E .We shall show that Q(C) is uniformly bounded and equincontinuous
in . let y ∈ Q(x) be arbitrary . We have y = Q(x) for some x ∈ C. By hypothesis (B2),we
see that

|y(t)| =
n∑
i=1

Iα+βig(t, x(t)) + x0|

= |
n∑
i=1

Iα+βig(t, x(t))|+|x0|

≤ |x0|+|
n∑
i=1

Mf

Γ(α + βi)

∫ t1

t0
|(t1 − s)α+βi−1|ds

= |x0|+|
n∑
i=1

Mf

Γ(α + βi + 1)(t1 − t0)α+βi

= |x0|+|
n∑
i=1

Mf

Γ(α + βi + 1)a
α+βi = K

for all t ∈ Ω,we obtain ‖y(t)‖ = ‖(Q)x‖ ≤ K for all y ∈ Q(C).
This means Q(C) is uniformly bounded .we next show that Q(c) is equicontinuous .Let

y ∈ Q be arbitrary and t1, t2 ∈ Ω with t1 < t2.we have

19



3.2. NUMERICAL EXAMPLES

|(Qx)(t2)− (Qx)(t1)|=
∣∣∣∣∣
n∑
i=1

Iα+βig(t2, x(t))−
n∑
i=1

Iα+βig(t1, x(t))
∣∣∣∣∣

≤
n∑
i=1

∣∣∣∣∣
∫ t2

t0

(t2 − s)α+βi−1

Γ(α) g(s, x(s))ds−
n∑
i=1

∫ t1

t0

(t1 − s)α−1

Γ(α + βi)
g(s, x(s)ds)

∣∣∣∣∣
=

n∑
i=1

∣∣∣∣∣
∫ t2

t1

(t2 − s)α+βi−1

Γ(α) g(s, x(s))ds
∣∣∣∣∣

+
n∑
i=1

∣∣∣∣∣ 1
Γ(α)

∫ t1

t0
[(t2 − s)α+βi−1 − (t1 − s)α−1]g(s, x(s))ds

∣∣∣∣∣
≤

n∑
i=1

Mg

Γ(α)

∫ t2

t1

∣∣∣(t2 − s)α+βi−1
∣∣∣ds

+
n∑
i=1

M g

Γ(α)

∫ t1

t0
|(t2 − s)α+βi−1 − (t1 − s)α−1)|ds

=
n∑
i=1

Mg

Γ(α + βi + 1)a
α+βi(t2 − t1) + M g

Γ(α)

∫ t1

t0

∣∣∣(t2 − s)α−1 − (t1 − s)α−1
∣∣∣ds

→ 0

as t2 − t1 → 0 uniformly for y ∈ Q(C)this means Q(C)is equicontinous .It follows that
Q(c)is relatively (compact).Hence ,Q is partially(compact).

SETEP4: By hypothesis (H6),the fractional hybrid eqution 3.1 has a lower solution x
defined on [t0, t0 + a],that is,
Dα

(
x(t)−∑n

i=1 I
qif(t, u(t))

)
≤ ∑n

i=1 I
βig(t, x(t)), t ∈ Ω

x(t0) ≤ x0

By formulating mild solution we see that

x(t) ≤
n∑
i=1

Iqif(t, x(t)) +
n∑
i=1

Iα+βig(t, x(t)) + x0 (3.12)

for t ∈ Ω. It follows that u satisfies the operatour inequality x ≤ Px + Qx. Thus ,we
conclude that operators QandP satisfy all conditions in (theorem 3.1.1) then the opertor
equation Px + Qx = x has a slution .Moreover ,we have the approximation of solutionsxn
as n = 1, 2, ..., for equation 3.1

3.2 Numerical examples
In this section we give an example of hybrid fractional differential equation that our main

result can be applied to construct an approximmte sequence for sequence a solution.

Example 3.2.1. According to the proposed Caputo hybrid initial problem, we present the
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following hybrid:

Dα[x(t)− Iq1f(t, x(t))] = Iβ1
1
2tan

−1x(t), t ∈ Ω = [0.1], x(0) = 1 (3.13)

where

f(x) =


1
2( x

x+1) x > 0
0 x < 0

We have g(t, x) = 1
8(1 + tanh x).The graphs of these two functions are shown in figure 1.

−20 −15 −10 −5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

s

(a)

Figure 3.1: Graph of function f(t, x)
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Figure 3.2: Graph of function g(t, x)
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Remark 3.2.1. that f and g continuous functions on [0, 1]×Rthe assumption (H0) is sat-
isfied.
Moreover ,both functions f and g are nondecreasing .This verifies assumption (H1) and
(H4).The conditions (H2) and (H5) are also true since the function f is bonded by Mf = 1

2
that is,

0 ≤ |f(t, x)|≤ 1
2 |

x

x+ 1 |≤
1
2

and the function g is bounded by Mg,that is

0 ≤ |g(t, x)|= 1
8 |(1 + tanh(x))|≤Mg = 1

4 ,

for all tx ∈ R.
to verify assumption (H3),we show that there existe a D-contraction φ : R+ → R+ de fined
by φ(t) = 1

2t for all t > 0 such that 0 ≤ f(t, x) − f(t, y) ≤ φ(x − y) for allt ∈ [0, 1] and
x, y ∈ R withx > y.first consider x > y > 0,we see that

0 ≤ f(t, x)− f(t, y) = 1
2( x

x+ 1 −
y

y + 1)

≤ 1
2

 (x− y) + y

(x− y) + y + 1 −
y

(x− y) + y + 1


= 4

5

 x− y
(x− y) + 1


≤ 1

2 |x− y|

= φ(x− y)

for t ∈ [0, 1]. it is easy to that 0 ≤ f(t, x)− f(t, y) ≤ Q(x− y) for all t ∈ [0, 1] also holds for
0 > x > y .Hence, (H3) is satisfied

Finally,for assummption (H6), we see that u(t) = 0.2 for all t ∈ [0, 1] is a lower solution
of 3.12 This can be seen from

x0 +
∫ t

t0

(t− s)q1−1

Γ(q1) f(s, x(s))ds+
∫ t

t0

(t− s)α+β1−1

Γ(α + β1) g(s, x(s))ds

= 1 +
∫ t

0

(t− s)q1−1

Γ(q1)
1
2(1 + tanh x)ds+

∫ t

0

(t− s)α+β1−1

Γ(α + β1)
1
2(1 + tanh x)ds

= 1 + tq1

2Γ(q1 + 1)
0.2

1 + 0.2 + tα+β1

2Γ(α + β1 + 1)(1 + tanh(0.2))

fort ∈ [0, 1].this means
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0.2 = x(t) ≤ x0 +
∫ t
t0

(t− s)q1−1

Γ(q1) f(s, x(s))ds+
∫ t
t0

(t− s)α+β1−1

Γ(α + β1) g(s, x(s))ds

for t ∈ [0, 1] and u(t) = 0.4 is a lower solution assumptions are satisfied ,we conclude from
our main result in Theorem 3.1.2 has a solution
x∗ : [0, 1]→ R which is a limit of the monotone sequence un, n = 0, 1, 2, ...,N defined

un+1(t) = 1 +
∫ t

t0

(t− s)q1−1

Γ(q1) f(s, xn(s))ds+
∫ t

t0

(t− s)α+β1−1

Γ(α + β1) g(s, xn(s))ds (3.14)

For all t ∈ [0, 1], Where u0(t) = 0.4 for t ∈ [0, 1].
The iterative sequence for the solution of numerically illustrated in figure for the fractional
order derivative α = 0.5 and α = 0.77.
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n=2

n=3

n=4

Figure 3.3: Iteration for solution when α = 0.77

In the above iteration scheme for the sequence un ,we apply the trapezoidal rule for a
numerical integration with step size 0.008.Since the solution is not explicitly known ,we use
the relative error between two iterates ‖un − un−1‖as a criterion to stop the iteration when
its value is less than 0.002 .In our example ,the relative errors between two iterates
‖u4 − u3‖ are 7.681510−4,and 4.11−3 for the case of α = 0.5 and α = 0.77, respectively .The
results show that the sequence of approxime solutions un coneverges monotonnically.
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Figure 3.4: Iteration for solution when α = 0.5
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Conclusion

We consider fractional hybrid differential equations involving the Caputo fractional deriva-
tive. Using fixed point theorems developed by Dhage et al
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Résumé  

Dans ce travail, nous étudions l'existence de solutions approchées aux équations 

différentielles fractionnaires incluant la dérivée de Caputo d'ordre 0 < k<1. Nos 

résultats sont basés sur le théorème du point fixe de Dhage  

Mots-clés :   Dérivée de Caputo - Existence  - Théorème du point fixe 

 
 

Abstract 

In this work, we study the existence of approximate solutions to fractional differential 

equations including the Caputo derivative of order 0 <k<1. Our results are based on 

Dhage's fixed point theory. 
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 ملخص

 كابيتى تحىي مشتق  هجيىت نمعادلاث تفاضهيت كسشيت حهىل تقشيبيت وهتم بذاسست مسانت وجىد  نعممهزي ا في

  نذاجنثابتت  احيث استخذمىا  وظشيت انىقطت . 1 و 0 راث ستبت محصىسة بيه 

 

   وظشيت انىقطت انثابتت–– انىجىد  – كابيتىمشتق :  الكلمات المفتاحية
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