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Abstract— In this paper we present an improved compact
Quadratic Programming (CQP) methodology, to solve the
constrained Dynamic Economic Dispatch (DED) problem taking
into account the ramp rate limit and the transmission line
losses. The techniques include, the use of very compact and
efficient code of QP Matlab function iteratively for solving the
Economic Dispatch (ED), using a full quadratic form of losses
based B-coefficients. We adapt the QP function by an external
loop to adjust the equalities constraints, until convergence of the
process. Another loop is dedicated to solve the DED problem by
taking into account the ramping rate constraints. The
effectiveness of the developed CQP method is identified through
its application to three test systems. Computational results
manifest that the method has a lot of excellent performances,
and it is superior to other methods in many respects.

Key-Words— compact quadratic programming, economic
dispatch, dynamic economic dispatch, ramping rate.

I. INTRODUCTION

D problem is one of the most important problems in
power system operation. It involves meeting the load

demand at minimum total fuel cost while satisfying various
unit and system constraints. The ED model is a nonlinear
optimization problem which may consider some nonlinear
constraints like discontinuous prohibited zones, power
balance constraints, generation limit constraints, valve point
effects constraints, ramp rate limits, spinning reverse and
cost functions [1].

The ED for power systems can be divided into traditional
static ED and DED. The static ED seeks to achieve an
optimal objective for the power system at a specific time, but
will not take into account the intrinsic link between the
systems at different time moments. The DED takes into
account of the coupling effect of system at different time
moments, such as the limit on the generator ramping rate. As
a result, its computation process is more complex than that of
a static optimal dispatch [2].

QP is an effective optimization method to find the global
solution if the objective functions is quadratic and the
constraints are linear. It can be applied to optimization

problems having non-quadratic objective and nonlinear
constraints by approximating the objective to quadratic
function and the constraints as linear [3].

In power markets there is an increasing need for
improving the representation of high-voltage transmission
networks in order to better support market design
alternatives, price formation mechanisms, and for general
operation and planning decisions. In most cases, this process
involves the definition of more complex mathematical
models. Different optimization approaches based on QP
formulations are extensively used in this field [4].

The paper is laid out as follows. In the next section, we
give some general mathematical results that can be applied to
the dispatch problem. A general mathematical formulation of
the ED problem is then presented in section III, and we
present a quadratic model of ED to illustrate the formulation
in Section IV, and we describe an algorithm given in section
V which give the manner to map the QP to the ED problem.
In section VI we generalize this algorithm to solve the DED
by including the power balance and ramping rate constraints.
In section VII the IEEE-30 test system is used to illustrate
the application of the improved CQP method to solve the ED
and DED problems.

II. QUADRATIC PROGRAMMING PRELIMINARIES

QP involves minimizing or maximizing an objective
function subject to bounds, linear equality, and inequality
constraints. Example problems include portfolio
optimization in finance, power generation optimization for
electrical utilities, and design optimization in engineering.

Consider the general optimization problem

min (x) x x xTF C Q  
(1)


xA B 
(2)

x 0 (3)

where C is an n - dimensional row vector describing the
coefficients of the linear terms in the objective function; Q is
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an ( n × n ) symmetrical matrix describing the coefficients of
the quadratic terms and T in (1) denote the transposed vector
[5].

As in linear programming, the decision variables are
denoted by the n - dimensional column vector x, and the
constraints are defined by an ( m × n ) matrix (A) and an m -
dimensional column vector B of right - hand - side
coefficients. For the real power ED problem, we know that a
feasible solution exists and that the constraint region is
bounded.

When the objective function F (x) is strictly convex for all
feasible points, the problem has a unique local minimum,
which is also the global minimum. A sufficient condition to
guarantee strict convexity is for Q to be positive definite.
This is generally true for most of economic dispatch
problems [6], [7].

III. ECONOMIC DISPATCH PROBLEM

The basic ED problem can described mathematically as a
minimization of problem [8].

1

min ( )
N

i i
i

F P

 (4)

where Fi (Pi) is the fuel cost equation of the i-th plant. It is
the variation of fuel cost ($) with generated power (MW).

2( )  + +i i i i i iF P a P b P c (5)

If ai > 0 then the quadratic fuel cost function is
monotonic. The total fuel cost is to be minimized subject to
the following constraints.

1

N

i L
i

P D P


  (6)
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N N N
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i j i

P P B P B P B
  

    (7)

min max
i i iP P P  (8)

where D is the real power load; Pi is the real power output at
generator bus i; Bij, B0j, B00 are the B-coefficients of the
transmission loss formula; Pi

min is the minimal real power
output at generator i; Pi

max is the maximal real power output
at generator i; PL is the transmission line losses; Fi is the fuel
cost function of the generator i and N is the number of
generators.

By applying Lagrangian multipliers method and Kuhn
tucker conditions the following conditions for optimality can
be obtained.

0
1

2 1 2 ( 1, 2, .... )
N

i i i i ij i
j

a P b B B P i N


 
     

 
 (9)

The non linear equations and inequalities are solved by the
following procedure.

1) To initialize the procedure, we allocate the lower limit
of each plant as the power generation Pi = Pi

min, evaluate the
transmission loss Pl

old and incremental loss coefficients and
update the demand Dnew =D + PL

old.
2) Substitute the incremental cost coefficients and solve

the set of linear equations to determine the incremental fuel
cost.

2 2

N N
newi i

i ii i

b
D

a a


 
  

 
  (10)

where,
0

1

1 2
N

i i ij i
j

B B P


    

3) Determine the power allocation of each plant

2new i i
i

i i

b a
P 

 
    

(11)

If plant violates its limits it should be fixed to that limit
and the remaining plants only should be considered for next
iteration.

4) Check for convergence

1

N
new

i L
i

P D P 


   (12)

IV. COMPACT QUADRATIC PROGRAMMING MODEL OF

ECONOMIC DISPATCH

Let the initial operation point of generator i be Pi
0. The

nonlinear objective function can be expressed by use of
Taylor series expansion, and only the first three terms are
considered, that is,

0 0

2
0 2( ) ( )1

( ) ( )
2

i i

i i i i
i i i i i i

i iP P

dF P dF P
F P F P P P

dP dP
     (13)

2
i i i i ic b P a P     (14)

or

2( )i i i i i iF P a P b P    (15)

where
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0( )i i ic F P (18)

are constant and

0
i i iP P P   (19)

Linearizing the constraints using the same approach used
in [9], the quadratic programming model of real power
economic dispatch can be written as below.

2

1

min ( ) ( )
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i i i i i i
i

F P a P b P


     (20)

Subject to

0

1
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 (21)

min 0 max 0 1, ...,i i i i iP P P P P i N      (22)

V. ECONOMIC DISPATCH PROBLEM SOLUTION BY

COMPACT QUADRATIC PROGRAMMING

QP is the mathematical problem of finding a vector x that
minimizes a quadratic function (23):

1
min x x ' x

2
T

x
H f

  
 

(23)

Subject to the linear inequality (24), equality (25) and
bound constraints (26):

xA b (24)

xeq eqA b (25)

xlb ub  (26)

We use the flowing Matlab code formulated as:
x=quadprog (H, f, A, b, Aeq, beq, lb, ub)
% solves the the quadratic programming problem:
min 0.5*x'*H*x + f'*x
% while satisfying the constraints
A*x ≤ b
Aeq*x = beq

lb <= x <= ub

To map the ED to QP, the objective function variables are
given by the power generation output vector as follow:

1 2[ , , ..., ]T
Nx P P P (27)
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To satisfy the equality constraint Aeq* x = beq, we set

  2 Lbeq D P   (30)

where D is a power demand and PL is losses calculated
by:
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The limits of power generated are imposed in the
formulation of QP as follows:

min min min
1 2[ , , ..., ]Nlb P P P (33)

max max max
1 2[ , , ..., ]Nub P P P (34)

To map the ED to CQP in Matlab, we propose the
following Matlab code:
for i=1:10

Pl=P'*B*P+B01*P+B00;
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Aeq =ones(1,n)+(P'*B+B01+B00/P);
beq=Pd+2*Pl;
ll=diag(1-2*B*P-B01');
A1=inv(ll)*a;
f=inv(ll)*b;
H=2*diag(A1);

P=quadprog(H,f,[],[],Aeq,beq,l,u);
pln=P'*B*P+B01*P+B00;
acu=(Pd+pln)-sum(P);
end

VI. CONSTRAINED DYNAMIC ECONOMIC DISPATCH

Since the DED problem is a challenging operational task
in modern power system operation, the proposed method is
applied to solve the DED problem. Because of the ramping
rate limits, the DED problem is a non-smooth, non-convex
optimization problem. The DED problem minimizes the total
production cost function associated to dispatchable units.
The ramping rate limits constraint can be introduced by the
following equation

1down t t up
i i i iP P     (35)

where ζ i
down and ζ i

up are the ramping down and ramping up
rate limit for the i-th thermal unit, respectively [14].

VII. CASE STUDY AND RESULTS

A. Case Study 1

The IEEE 30 bus system has 6 generating units with the
characteristics shown in Table I. The line loses are
calculated by the B-coefficients method and given in Table
II. The network topology and the test data for the IEEE 30
bus system are given in [10].

TABLE I. THE 6 UNIT TEST SYSTEM CHARACTERISTICS

Unit n° Pi
min Pi

max ai bi ci

1 100 500 0.007 7 240
2 50 200 0.0095 10 200
3 80 300 0.009 8 220
4 50 150 0.009 11 200
5 50 200 0.008 10.5 220
6 50 120 0.0075 12 190

TABLE II. B- COEFFICIENTS OF IEEE 30-BUS 6-UNIT SYSTEM

-4

    2.231   1.162    -0.122    -0.017   0.113      0.39

    1.162   1.89      -0.077    -0.048    0.069      0.28

   -0.122  -0.077     2.004    -0.74   -0.724    -0.599
10

   -0.017  -0.048
B  

-5
0

 -0.74      -1.479     0.538     0.342

    0.113    0.069    -0.724     0.538    1.185     0.053

    0.39      0.28      -0.599     0.342     0.053     2.34

10 0.38     1.79B

 
 
 
 
 
 
 
 
  

 

00

-5.32     1.52     2.33     1.26

0.00154B

  
   

We have compared the developed algorithm to other ED
algorithm, Table III show the comparison between CQP
algorithm and λ iteration algorithm [11] for 8 times intervals
with accuracy less than 10-6.

TABLE III. THE TOTAL GENERATION COST OF 8 TIME PERIOD FOR CASE
STUDY 1 USING CQP METHOD

Hour
(h)

Load
(MW)

Total Cost with
QP ($/h)

Total Cost with λ
iteration method ($/h)

saving
($/h)

1 955 11797.8396 11839.803 41.963

4 930 11464.9621 11505.290 40.327

7 989 12253.9174 12298.848 44.930

10 1150 14478.1677 14538.501 60.333

13 1190 15049.3433 15117.104 67.760

16 1250 15946.8412 16025.133 78.291

19 1159 14605.7259 14667.566 61.840

22 984 12186.569 12231.043 44.473

The results of the economic dispatch for the 6-units test
system are listed in Table III, and it show the performance of
the proposed CQP method with a valuable ($/h) saving
comparing to λ iteration method. The execution time of the
adapted CQP algorithm for ED is faster than the lambda
method where the computational time is about 0.2 second on
a Pentium IV, 3 GHz.

B. Case Study 2

The same IEEE 30 bus system with 6 units is used to
solve DED problems by the proposed approach where the
losses and the ramping rate are taken into account. The B-
coefficients B, B0, B00 and ramping rate limits are taken from
Table II and IV, respectively. The hourly load over the 24
hour horizon is shown in Table V.

TABLE IV. RAMPING RATE LIMITS OF THE 6-UNIT TEST SYSTEM

Unit N° ζ i
up ζ i

down

1 80 120
2 50 90
3 65 100
4 50 90
5 50 90
6 50 90

TABLE V. THE HOURLY LOAD DATA OF 24 TIME ONTERVAL OF THE 6
UNIT TEST SYSTEM

Time(h) Load(MW) Time(h) Load(MW)

1 955 13 1190
2 942 14 1251
3 953 15 1263
4 930 16 1250
5 935 17 1221
6 963 18 1202
7 989 19 1159
8 1023 20 1092
9 1126 21 1023
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10 1150 22 984
11 1201 23 975
12 1235 24 960

The loop of the dynamic power demand and selection of
the new constraint limits, at each time period considering
ramping rate limits is added into the developed algorithm.
Then we can use a vector of a power demand and a matrix of
ramping rate limits to accomplish a DED solution using the
same ED algorithm.

The figure 1 shown the power generation allocation of
each unit for each time interval where the power limits and
ramping rate limits constraint is satisfied.

Fig.1. DED results of the 6 units for the 24 time interval using CQP method

The results of DED using the proposed CQP algorithm for
the IEEE 30 bus, 6 unit test system [12]over 24 hours are
showed in Table VI with a total generation cost equal to
325549.963 $, with a saving of 1256.16 $ compared to the λ
iteration method [11]. The computational time for this case
study was about 1.4 second. A comparison with respect to
total production cost and computational time is given in
Table VII.

The results demonstrate that the developed approach
based on the CQP can be used to solve the both ED and
DED and many other quadratic problems easily with the
proposed algorithm and with a faster computation time.

TABLE VI. THE TOTAL COST OF POWER GENERATION OF EACH TIME
INTERVAL FOR THE 6 UNIT CASE STUDY USING CQP METHOD

Hour
(h)

Production
cost ($/h)

Hour
(h)

Production
cost ($/h)

Hour
(h)

Production
cost ($/h)

1 11797.8396 9 14139.6942 17 15506.2977

2 11624.3601 10 14478.1677 18 15223.4571

3 11771.0964 11 15208.8619 19 14605.7259

4 11464.9621 12 15717.739 20 13664.3623

5 11531.2921 13 15049.3433 21 12714.6242

6 11904.8287 14 15962.4207 22 12186.569

7 12253.9174 15 16152.6037 23 12065.6013

8 12714.6242 16 15946.8412 24 11864.7326

TABLE VII. DED TOTAL COST AND COMPUTATIONAL TIME
COMPARISON OF CASE STUDY 2

Method
Total Production cost

($)
Computational
Time (sec)

Proposed QP Approach 325549,963 1.4

λ iteration method [11] 326806,123 3

C. Case Study 3

A more realistic case study which consist of 40 units taken
from [13], where the characteristics are shown in Table VIII.
The line loses are ignored in [13] for this reason we have
ignored the losses to show comparison of results. The ED
solution of case study 3 using the proposed CQP is done for
one time period with the same power demand of 8484 MW
as in [11] and [13].

TABLE VIII. THE 40 UNIT TEST SYSTEM CHARACTERISTICS

Unit n° Pi
min Pi

max ci bi ai

1 40 80 170.44 8.336 0.03073
2 60 120 309.03 7.0706 0.02028
3 80 190 369.03 8.1817 0.00942
4 24 42 135.48 6.9467 0.08482
5 26 42 135.19 6.5595 0.09693
6 68 140 222.23 8.0543 0.01142
7 110 300 287.71 8.0323 0.00357
8 135 300 391.98 6.999 0.00492
9 135 300 455.76 6.602 0.00573
10 130 300 722.82 12.908 0.00605
11 94 375 635.2 12.986 0.00515
12 94 375 654.69 12.796 0.00569
13 195 500 913.4 12.501 0.00421
14 195 500 1760.4 8.8412 0.00752
15 195 500 1728.3 9.1575 0.00708
16 195 500 1728.3 9.1575 0.00708
17 195 500 1728.3 9.1575 0.00708
18 220 500 647.85 7.9691 0.00313
19 220 500 649.69 7.955 0.00313
20 242 550 647.83 7.9691 0.00313
21 242 550 647.81 7.9691 0.00313
22 254 550 785.96 6.6313 0.00298
23 254 550 785.96 6.6313 0.00298
24 254 550 794.53 6.6611 0.00284
25 254 550 794.53 66.6611 0.00284
26 254 550 801.32 7.1032 0.00277
27 10 550 801.32 7.1032 0.00277
28 10 150 1055.1 3.3353 0.52124
29 10 150 1055.1 3.3353 0.52124
30 20 150 1055.1 3.3353 0.52124
31 20 70 1207.8 13.052 0.25098
32 20 70 810.79 21.887 0.16766
33 20 70 1247.7 10.244 0.2635
34 20 70 1219.2 8.3707 0.30575
35 18 60 641.43 26.258 0.18362
36 18 60 1112.8 9.6956 0.32563
37 20 60 1044.4 7.1633 0.33722
38 25 60 832.24 16.339 0.23915
39 25 60 834.24 16.339 0.23915
40 25 60 1035.2 16.339 0.23915
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The ED solution of case study 3 for a power demand of
8484 MW using the proposed CQP method is given Table
IX. A comparison with respect to total production cost and
computational time is given in Table X.

TABLE IX. THE ED SOLUTION OF 1 TIME PERIOD FOR CASE STUDY 3
USING CQP METHOD (D = 8484 MW)

Unit
Pi

(MW)
Unit

Pi

(MW)
Unit

Pi

(MW)
Unit

Pi

(MW)
Unit

Pi

(MW)

1 77.52 9 300 17 278.43 25 254 33 20
2 120 10 130 18 500 26 550 34 20
3 190 11 94 19 500 27 550 35 18
4 36.27 12 94 20 550 28 10 36 18
5 33.74 13 195 21 550 29 10 37 20
6 140 14 283.17 22 550 30 20 38 25
7 300 15 278.43 23 550 31 20 39 25
8 300 16 278.43 24 550 32 20 40 25

TABLE X. ED TOTAL COST AND COMPUTATIONAL TIME COMPARISON
FOR CASE STYDY 3 (D = 8484 MW)

Method
Total Production cost

($/h)
Computational
Time (sec)

Proposed CQP Approach 130926.14 0.6

λ iteration method [17] 130926.15 4.2

HNN [13] 130930.31 3

VIII. CONCLUSION

This paper presents a CQP formulation for both ED and
DED problems taking into account the generation limits,
transmission losses and the ramping rate limits. The demand
is assumed to be periodic. The techniques include the use of
very compact and efficient proposed code of QP in Matlab
iteratively for solving the ED. The transmission line losses
are taken into account using a full quadratic form of losses
based B-coefficients. To apply the proposed CQP approach
for the DED problem, an iterative implementation of the
optimal solutions of ED problem problems is accomplished
by modifying constraints data iteratively. The convergence
and robustness of the proposed CQP algorithms are
demonstrated through the application of CQP to a 6 unit
IEEE and a 40 unit test system.

The results showed that the differences in total cost
between the proposed CQP approach and the λ iteration
method are satisfactory, which checks the validity of this
study. Concerning the execution time, the performance of
our method is much faster than the λ iteration method and the
HNN given in [11] and [13], respectively.
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