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Abstract

Dans ce travail, deux nouvelles approches pour déterminer les paramètres de Judd-Ofelt

pour les ions de terres rares dans les verres ont été présentées : l’inférence bayésienne et

l’apprentissage profond. Ces approches sont un cadre alternatif de l’ajustement conventionnel

des moindres carrés des données expérimentales utilisées actuellement. La technique

d’inférence bayésienne a été testée avec succès, et les paramètres de Judd-Ofelt estimés des

verres halogéno-phosphates dopés à l’holmium et à l’erbium montrent un bon accord avec

la méthode des moindres carrés. La deuxième technique est un perceptron multicouche de

régression non linéaire (MLP) qui a été utilisé pour ajuster une matrice de composition de

verres de tellurite dopés à l’erbium avec leurs paramètres Judd-Ofelt correspondants. Nous

réussissons à détecter la corrélation avec un intervalle d’erreur raisonnable, en général la

méthode a réussi et peut être encore améliorée pour prédire les paramètres de Judd-Ofelt.

keywords: Judd-Ofelt theory; Rare earth doped glasses; Bayesian Inference; Deep Learning;

prediction.
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Résumé

Dans ce travail, deux nouvelles approches pour déterminer les paramètres de Judd-Ofelt

pour les ions de terres rares dans les verres ont été présentées : l’inférence bayésienne et

l’apprentissage profond, ces approches sont un cadre alternatif de l’ajustement conventionnel

des moindres carrés des données expérimentales utilisées actuellement, La technique d’inférence

bayésienne a été testée avec succès, et les paramètres de Judd-Ofelt estimés des verres

halogéno-phosphates dopés avec l’Holmium et l’Erbium montrent un bon accord avec la

méthode des moindres carrés. La deuxième technique est un perceptron multicouche de

régression non linéaire (MLP) qui a été utilisé pour ajuster une matrice de composition de

verres de tellurite dopés à l’erbium avec leurs paramètres Judd-Ofelt correspondants. Nous

réussissons à détecter la corrélation avec un intervalle d’erreur raisonnable, en général, la

méthode a réussi et peut être encore améliorée pour prédire les paramètres de Judd-Ofelt.

Mots-clés: Théorie de Judd-Ofelt ; Verres dopés terres rares; Inférence bayésienne ;

Apprentissage profond; Prédiction
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General Introduction

1 Introduction

In 1962 B.R. Judd [8] and G.S. Ofelt [9] published separately two scientific paper on the

intensities of optical transitions in rare-earth ions, we now refer their work as Judd-Ofelt

theory which is the centerpiece of rare-earth spectroscopy.

Judd Ofelt theory is a mathematical model consist of calculating irradiative transition

probabilities of tivalent Rare earth ions (RE+3), intensity parameters {Ω2,Ω4,Ω6} are the

key to calculate and predict many optical properties of Rare earth doped glasses, such

as oscillator strength, luminescence branching ratios, excited-state radiative lifetimes,

energy-transfer probabilities, and estimates of quantum efficiencies.

Generally the JO parameters are obtained empirically from absorption spectrum by

minimizing the differences between the calculated fcal and the experimental transition

line strengths fexp of a series of excited multiplets by standard linear fit least-squares or

chi-square methods, however the computational power is cheap nowadays which hides the

diverse mathematical concepts as well as the highly laborious calculations underlying the

Judd Ofelt theory.

2 Thesis scope

As we pointed in the beginning the JO parameters are obtained by a conventional least

square fit of experimental data, another alternative framework to fit the data is Bayesian

inference [10], by a Bayesian linear regression we can fit the experimental data under

uncertainty in more flexible way, by construct a probability distribution for the parameters

of interest (JO parameters) using probability distribution of experimental data, further

we will focus on use this framework to estimate the JO parameters for halogeno phosphate

14



glasses [6, 7].

The second framework we will use along this thesis is machine learning to predict Judd

Ofelt parameters, by studying the correlation between glasses composition and the JO

parameters, the calculation of these parameters is considered complicated especially for

the non specialist furthermore it require laboratory procedure to be done, like providing

the necessary laboratory equipment, preparing the samples, the measurement of the

absorption spectrum, so forth. . . , therefore going from calculation to prediction may avoid

all these specialized procedure and enable even the non-specialist to benefit from Judd

Ofelt theory framework in the innovation of glasses.

3 Thesis structure

In addition to this general introduction, this thesis is organized as followed :

1. Chapter 1 : we start by introducing Rare earth ions and their spectroscopy

after that we will focus on Judd Ofelt theory and the calculation of JO intensity

parameters.

2. Chapter 2 : The second chapter will be on using Bayesian inference framework to

estimate Judd Ofelt parameters and the simulation technique that we used in our

work.

3. Chapter 3 : we will present our machine learning method we used to predict JO

parameters from glasses compositions.

4. Chapter 4 : we will present the different results of our experiments for each

technique we used, the comparison result with related works and discus these

obtained results.

In the end of this thesis, we present principals conclusions of our work, and some perspectives

and future works.

15



Chapter 1

Rare Earths And Judd Ofelt Theory

1 Introduction

Since the beginning of the twentieth century, Rare earths (RE) have received academic

and industrial attention, the study of their photophysics has given rises to intriguing

science , Moreover they are widely used in technological applications such as Luminophore

of TV screens, scintillators or laser materials, these are mainly made of inorganic solid

materials doped with impurities (dopant ions), the optical proprieties depends on the host

material which tends to be transparent, after doping with rare earths they show several

fine emission bands in a spectral range from UV to near IR, depending on the dopant RE

which are optically active centers.

2 Rare Earths

Basing on Mendeleev’s periodic table of elements, Rare earths are a set of seventeen

chemical elements, consists of the 15 lanthanide elements (lanthanum, cerium, praseodymium,

neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium,

erbium, thulium, ytterbium, and lutetium) plus Scandium and Yttrium, Sc and Y are

considered RE because they have similar optical and chemical properties as the lanthanides

and occur in the same ore deposits.

Rare earths are not necessarily “rare” as their name implies, Thulium and lutetium e.g.

are the least abundant RE elements but they each have a greater crustal abundance than

Gold (nearly 200 times greater), however they are very difficult to mine because it is

unusual to find them in a high enough concentrations for economical extraction.

16



Figure 1.1: Rare Earths elements on the periodic table [1]

2.1 Rare Earths ions

RE ions are known for their magnetic and luminescence proprieties, they are very weak

electronegative elements with an oxidation degree +3 (RE+3) (triply charged), some

ions like Cerium (Cr),Praseodymium (Pr) and Terbium (Tr) have the possibility of being

stabilized at degree +4 and others like Europium(Eu), Ytterbium (Y) and Samarium

(Sm) at degree +2

These ions are characterized by the progressive filling of the 4f shells of their electronic

configuration, the 4f shells are the main responsible of the optical proprieties of RE ions

and an incomplete 4f generates intensive radiations (from UV to IR)[11]

[Xe]4fn5d6s

Where n = 0, 1. . . , 14

17



Elements Z A Configuration

Scandium Sc 21 45 (3d4s)3

Yttrium Y 39 89 (4d5s)3

Lanthanum La 57 139 4f 0(5d6s)3

Cerium Ce 58 140 4f 1(5d6s)3

Praseodymium Pr 59 141 4f2(5d6s)3

Neodymium Nd 60 144 4f 3(5d6s)3

Promethium Pm 61 145 4f 4(5d6s)3

Samarium Sm 62 150 4f 5(5d6s)3

Europium Eu 63 152 4f 7(5d6s)2

Gadolinium Gd 64 157 4f 7(5d6s)3

Terbium Tb 65 159 4f 8(5d6s)3

Dysprosium Dy 66 163 4f 9(5d6s)3

Holmium Ho 67 165 4f 10(5d6s)3

Erbium Er 68 167 4f 11(5d6s)3

Thulium Tm 69 169 4f 12(5d6s)3

Ytterbium Yb 70 173 4f 14(5d6s)2

Lutetium Lu 71 175 4f 14(5d6s)3

Table 1.1: Rare Earths electronic configuration table

2.2 Rare Earths Spectroscopy

2.2.1 Energy Levels

The energy level of triply charged ions may be obtained with high accuracy by spectral

analysis or theoretical calculations, such calculations are important for the interpretation

of the empirical results moreover these calculations are the only way to obtain eigenvectors

[12], furthermore this method has been used to classify electronic states and evaluate

energy levels of Lanthanides by Judd [8] and Actinides by Carnal with Wybourne [13].

We begin with free ion Schrodinger equation [14]:

ĤFψ = Eψ (1.1)

Where ψ is the wave function and E is the total energy of the system

Ĥ is the free ion Hamiltonian with :

ĤF = Ĥ0 + Ĥ1 + Ĥ2 (1.2)

Ĥ0 is the first order approximation, it presents the sum of kinetic energies of N electron

and consider the outer electrons in a field produced by Xenon-like shell :
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Ĥ0 = − h

2m

N∑
i=1

∇2
i −

N∑
i=1

Ze2

ri
(1.3)

In this approximation all states of configuration have the same energy and the state of a

single electron is characterized by four quantum numbers e.g. n, l,ml, s, the degeneracy

of zero order approximation is given 2(2l + 1) for all outer electrons when no equivalent

electron involved however for the 4fN shell which consist of equivalent electron the

degeneracy is given by the binomial coefficient
(

14
N

)
[12]

Ĥ1 is the repulsive coulomb potential between pair of electrons i and j :

Ĥ1 =
N∑
i<j

Ze2

rij
(1.4)

Ĥ2 is the spin-orbit interaction which stands for coupling between spin angular momentum

and orbital angular momentum and can be understood as magnetic dipole-dipole interaction

:

Ĥ2 =
N∑
i=1

ζ(ri)(sili) (1.5)

Where ζ(ri) is the spin-orbit interaction constant of the ith electron, for a Coulomb with

an effective nuclear charge Z
′

:

ζ(ri) =
α4RZ

′

r3
i

(1.6)

With :

α is the fine structure constant, R Rydberg constant, The effective charge Z
′

is in general

different from the effective charge Z occurring in the electrostatic interactions [12].

2.2.2 Schrodinger equation solution in central field approximation

The exact Schrodinger equation solutions are not possible in systems with more than

one electron, but it is possible to construct a potential energy function U(ri) which is

spherically symmetric and it is a good approximation to the actual potential energy in

the field of the nucleus and Xenon-like shell [14] , thus (1.3) can be replaced by :

Ĥ
′

0 =
N∑
i=1

[
}

2m
∇2
i + U(ri)

]
(1.7)

19



With :

N∑
i=1

U(ri) = −
N∑
i=1

Ze2

ri
+ 〈

N∑
i=1

e2

rij
〉 (1.8)

The term 〈
∑N

i=1
e2

rij
〉 stands for the average over a sphere of the electron repulsion.

the 2nd term in (1.2) can be written as :

Ĥ
′

1 =
N∑
i<j

e2

rij
− 〈

N∑
i<j

e2

rij
〉 (1.9)

The previous term along with the spin-orbit term are small enough to be treated as

perturbation, thus the next step is to apply Hartree-Fock Method [15] and obtain the

eigenfunction of the central field Hamiltonian :

ψnlmlms(r,ms) =
1

r
Rnl(r)Yml(θ, φ)σ(ms) (1.10)

Where Rnl is the radial function, Yml is the sperical harmonic function, and σ(ms) is the

spin function.

For electrons in 4fn shell we have :

n = 4

l = 3

ml = −3,−2, ...,+3

ms = ±1

2

(1.11)

Thus the wave function can be written as :

ψ(λ1, λ2, ..., λN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(λ1) ψ2(λ1) . . . ψN(λ1)

ψ1(λ2) ψ2(λ2) . . . ψN(λ2)
...

ψ1(λN) ψ2(λN) . . . ψN(λN)

∣∣∣∣∣∣∣∣∣∣∣∣
(1.12)
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Where ψi(λj) is are spin orbitals, i is an electron of n, l,ml,ms quantum numbers and λj

is the space and spin coordinates of the jth electron.

The main purpose of this approximation is to use (1.12) as the basis wave functions for the

perturbation terms such as the coulomb interactions in (1.9) and spin-orbit perturbation

in (1.5) [14]

2.2.3 LS and Intermediate Coupling

In the previous section we talked about the central field approximation in which all

the electron are in spherically symetric field, the rest part of (1.2) or in more explicite

form (1.5) is the spin orbit interaction which is not spherically symetric, to construct

wave fuction in this approximation, we need to choose a coupling scheme of momentum

summation.

in lighter atoms, the spin orbit interaction is not important because the coulomb interaction

dominates in this case LS scheme fig(1.2) is a good approximation, whereas in heavier

atoms s-o interaction becomes much stronger thus more important then JJ coupling

scheme fig(1.3) would be a good choice.

Figure 1.2: LS coupling scheme
Figure 1.3: JJ coupling scheme
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In our case (Rare Earths), the coulomb and s-o interactions have the same order of

magnitudes thus neither LS coupling nor JJ coupling is is appropriate scheme therefore

the calculation of energy levels are involved in a scheme called intermediate coupling

which is developed from the LS scheme. [14]

In LS coupling we have :

L =
N∑
i=1

li

S =
N∑
i=1

si

(1.13)

And the total angular momentum :

J = L+ S (1.14)

The electronic state in this coupling scheme can be written as:

ψ = |4fnLSJmj〉 (1.15)

We use the spectroscopic symbol 2S+1Lj to name a free ion state or a multiplet, where

L = (0, 1, . . . ), S = (0, 1
2
, 1, . . . ) and | L− S |< j < L+ S, then we construct table(1.2) :

Z Element R+2 R+3

57 La Lanthanum 4f 1,2F 5
2

4f 0,1S0

58 Ce Cerium 4f 2,3H4 4f 1,2F 5
2

59 Pr Praseodymium 4f 3,4I 9
2

4f 2,3H4

60 Nd Neodymium 4f 2,5I4 4f 4, 4I 9
2

67 Ho Holmium 4f 11,4I 15
2

4f 11, 5I8

68 Er Erbium 4f 12,3H6 4f 11, 4I 15
2

Table 1.2: Spectroscopic symbols of some (R+2) and (R+3) RE ions
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Since there are states with the same L and S quantum numbers, a new quantum number

τ (the seniority number) has been added to differentiate between these states, thus the

eigenfunctions in this intermediate coupling scheme are written as :

ψ(nlJ) =
∑
τLS

aτLSJ |4fnτLSJ〉 (1.16)

With :

aτLSJ =
∑
τ ′L′S′

〈4fnτLSJ | Ĥ1 + Ĥ2 |4fnτ
′
L

′
S

′
J

′〉 (1.17)

this new eigenstate describes the energy state of the Hamiltonian including Coulomb and

spin-orbit interaction [8, 14]

In the below Diagram representing the interactions that leads to the splitting of the

electronic energy levels for a lanthanide ion fig(1.4) [2]

Figure 1.4: RE energy levels degenerncy [2]
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2.2.4 Crystal field approximation

In Crystal Field Theory (CFT), the lanthanides are considered to be in crystalline host

(fig1.5) thus the RE are perturbed by a crystal field which decreases the symmetry of

the spherically-symmetric free ion Hamiltonian.

Ĥ = Ĥf + Ĥcf (1.18)

Figure 1.5: Rare Earth in atomic structure[2]

The crystal field interactions Hamiltonian are written as sum of spherical tensor operators

:

Ĥcf =
∑
k,q

Ak,q
∑
i

rki Ykq(θ, φ) (1.19)

Where Ykq(θ, φ) are are spherical harmonic functions and (k, q) are combinations that give

non-zero matrix elements depends on the symmetry of RE sites.

Ak,q = −e
∑
i

ZiYkq(θ, φ)

Rk+1
i

(1.20)

Ri are the positions of the surrounding atoms composing the crystal.

24



These terms are considered in the calculation of the energy levels and they are estimated

empirically from experimental data [2].

the effect of the crystal field interaction are weaker than coulomb interactions or spin

orbit interaction (fig1.6) [11, 16]

Figure 1.6: Energy perturbations scheme of lanthanide series atoms [3]

The degenerancy in electric dipole approximation g = 2j + 1
2

whereas g = 2j + 1 in

magnetic dipole approxiamation

energy levels of R+3 of lanthanides based on computed crystal field energies in the range

0− 50000cm−1 are depicted in (fig1.7)[17]
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Figure 1.7: Energy level diagram for R+3 ions doped in a low-symmetry crystal, LaF3

3 Judd Ofelt theory

Judd Ofelt (JO) theory [8, 9] was developed to calculate the radiation transition probabilities

between the 4f energy levels of excited trivalent rare earth ions within a material, it is

based on the free-ion and single configuration approximations explained in the previous

sections.

This section represents an essential summary and some important formulas for the JO

theory and the procedure for the Judd-Ofelt analysis as shown in fig1.8

Figure 1.8: Procedure of the Judd-Ofelt analysis[4]
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For a free ion, electrical dipole transitions between configurations of the same parity are

prohibited by Laporte’s parity rule, however they are observed between 4f shells in RE

thus they are forced transitions, the main reason is that RE are in an asymmetric crystal

field.[18]

Such transition are imposed by ED selection rules [19] :

∆l = ±1

∆S = 0

∆L ≤ 2l

∆J ≤ 2l

(1.21)

Whereas in magnetic dipole approximation :

∆L = ±0

∆S = 0

∆J = 0,±1, 0 /→0

(1.22)

These transition are electrons decay from excited state |4fnLSJ〉 to lower energy final

state
∣∣4fnL′

S
′
J

′〉
, the dacay lifetime is given by :

τ =
1∑

L′S′J ′ (ALSJ→L′S′J ′ )
(1.23)

Where ASLJ→L′S′J ′ is the total spontaneous emission probability, it takes into account

the ED and MD transition:

ALSJ→L′S′J ′ = AED
LSJ→L′S′J ′ + AMD

LSJ→L′S′J ′ (1.24)
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3.1 Electric dipole approximation

The spontaneous emission probability AED
LSJ→L′S′J ′ is related to the oscillator strength

fED and given by:

AED
LSJ→L′S′J ′ =

2πe2

meε0λ2c
f emiED (1.25)

Where λ is the mean wavelength :

λj→j′ =

∫
j→j′ λI(λ)dλ∫
j→j′ I(λ)dλ

(1.26)

The ED oscillator strength f emiED given by (1.27) is obtained by solving the electric dipole

matrix elements 〈ψ| ~P
∣∣ψ′〉

, ~P is the ED operator.

f emiED =
8πmecνχ

3h(2J + 1)

∑
k=2,4,6

Ωk | 〈4fnSLJ |U (k) |4fnS ′
L

′
J

′〉 |2 (1.27)

The JO theory succeed in finding an expression for the ED absorption intensity, by

proposing four assumptions in order to simplify the calculations [20]:

1. All sub-levels of 4fn−15d are degenerate in J.

2. the 4f → 4f and 4f → 4fn−15d energy separation are the same.

3. All Stark sub-levels within the ground state are equally populated

4. The host material is optically isotropic

Where :

χ = (n2+1)2

9n
is the local-field correction factor, Ωk are JO parameters with k = 2, 4, 6 arises

from selection rule simplification ∆J = 2, 4, 6 and the parameterization of the crystal field

[21], furthermore Ω2 is related to the co-valency of the chemical bond between the RE

ions and the ligand ions thus it is more sensitive to the local symmetry of the environment

while Ω4 and Ω6 less sensitive [22], Moreover Ω4 and Ω6 may relate to the viscosity and

rigidity of the environment.

The dimensionless doubly-reduced matrix elements | 〈U (k)〉 | are values already tabulated

in [23]
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3.2 Magnetic dipole approximation

the the oscillator strength of magnetic dipole transitions only depends on one reduced

matrix element 〈4fnLSJ |L+ gS |4fnL′
S

′
J

′〉[20]:

f emiMD =
hn3

6mecλ(2J + 1)
〈4fnLSJ |L+ gS |4fnL′

S
′
J

′〉 (1.28)

Where L + gS is the magnetic dipole operator and g = 2.002319304362 is the electron

factor [22], however this term is generally negligible in compare of Electric dipole term.

3.3 Judd-Ofelt parameters calculation

The calculation of JO parameters depends on absorption coefficient α(λ) which is part of

the experimental line strength of the transition:

f exp =
3hc(2J + 1)n

8π3λe2Naχ

∫
α(λ) (1.29)

Next we compare (1.29) with the JO theoretical line strength calculation to fit JO

parameters .

f cal = e2
∑

k=2,4,6

Ωk | 〈4fnSLJ |U (k) |4fnS ′
L

′
J

′〉 |2 (1.30)

thus :


f exp1

f exp2

...

f expN

 =


| 〈U (2)

1 〉 |2 | 〈U
(4)
1 〉 |2 〈U

(4)
1 〉 |2

| 〈U (2)
2 〉 |2 | 〈U

(4)
2 〉 |2 〈U

(4)
2 〉 |2

...
...

...

| 〈U (2)
N 〉 |2 | 〈U

(4)
N 〉 |2 〈U

(4)
N 〉 |2




Ω2

Ω4

Ω6

 (1.31)

Hence :

y = xΩ→ Ω = (xTx)−1xty (1.32)

Where y is vector of f exp and xT is the transpose matrix of (U (k))2 (x) and Ω is vector of

JO parameters.

After we obtain the JO parameters, we can use it to calculate the theoretical line strength

in (1.30) then measure the root mean squared error :
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RMSE =

[
(f exp − f cal)2

N − 3

] 1
2

(1.33)

Where N is the number of transitions and 3 is the number of JO parameters [21].

3.4 Conclusion

In this chapter we have outlined the required background in the context of our work : Rare

earth ions, its spectroscopy and a brief introduction to Judd Ofelt theory with emphasis

on Judd Ofelt intensity parameters We also present the classical approach to obtain JO

parameters using least square method however the next chapters we will introduce another

approaches in determining and predicting these parameters

30



Chapter 2

Bayesian Inference

1 Introduction

In statistics, there are two major paradigms to inference, conventional (or frequentist) and

Bayesian, the Bayesian methods provide a consistent framework for inference and making

decisions under uncertainty, unlike frequentist paradigm, Bayesian inference gave us the

possibility to incorporate scientific hypothesis by using prior distribution in our problem

of interest, and fitting a probability model to a set of data using probability distribution

on the parameters of the model and on unobserved quantities such as predictions for new

observations [24, 25].

In this chapter we will discover Bayesian approach to inference principals and use this

framework in determining the JO parameters.

2 Conditional Probability

Conditional probability is the probability of one event occurring with some relationship

to one or more other events, and we note:

P (A | B) =
P (A ∩B)

P (A)
(2.1)

where P (A | B) is the event A given B to occur, P (A ∩ B) the intersection of all A and

B set of events as shown in the below figure.
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Figure 2.1: Venn diagram of A intersection B

The conditional probability thus measures the probability of B given that we know that

A has occurred. The numerator in (2.1) is the probability that both of them occur, and

the denominator rescales this number in order for conditional probabilities to satisfy the

Kolmogorov axioms [26, 27]

3 Bayes theorem

In the previous section we introduced conditional probability the next steps in deriving

Bayes formula are as follow.

From (2.1) we have :

P (A ∩B) = P (B | A)P (A) (2.2)

Also :

P (B ∩ A) = P (A | B)P (B) (2.3)

Hence from P (A ∩B) = P (B ∩ A) :

P (B | A)P (A) = P (A | B)P (B)→ P (B | A) =
P (A | B)P (B)

P (A)
(2.4)

This equation known as Bayes theorem and is the basis of our statistical inference.
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If we have a partition S of Bi sub-events then for any A ⊂ S:

P (A) =
n∑
i=1

P (A | Bi)P (Bi) (2.5)

Then (2.4) becomes :

P (Bk | A) =
P (A | Bk)P (Bk)∑n
i=1 P (A | Bi)P (Bi)

(2.6)

Suppose we have continuous parameter θ with density f(θ) in range [a, b] and discrete

random data x, in this case, the total probability of x is :

P (x) =

∫ b

a

P (x | θ)P (θ)dθ (2.7)

And Bayes Formula becomes:

P (θ | x) =
P (x | θ)P (θ)∫ b

a
P (x | θ)P (θ)dθ

(2.8)

We call P (θ | x) a posterior, P (θ) a prior, P (x | θ) the likelihood and the denominator

presents a normalized constant, hence:

posterior =
likelihood× prior

constant
(2.9)

When we apply Bayes rule, we usually wish to infer the parameters θ and the data x is

already given, the normalized constant in (2.7) is intractable and hard to calculate most

of the time.

Since we approximate our calculations by drawing samples from the posterior we don’t

include the normalized factor and re-write Bayes rule in term of proportionality [26, 28, 29]

posterior ∝ likelihood× prior (2.10)
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4 Linear regression

Before presenting Bayesian viewpoint of linear regression, we introduce conventional linear

regression in the next section.

4.1 Conventional linear regression

Consider our problem of interest, which is determining the JO parameters, we had from

(1.27) :

f emiED =
8πmecνχ

3h(2J + 1)

∑
k=2,4,6

Ωk | 〈4fnSLJ |U (k) |4fnS ′
L

′
J

′〉 |2

The above equation can be reformulated as follows [10]:

3h(2(j + 1))

8π2mcνχ
fi = Ω2(U2

i )2 + Ω4(U4
i )2 + Ω6(U6

i )2 (2.11)

Where fi = SexpED, hence we can re-describe the model by:

yi = Ω2x
(2)
i + Ω4x

(4)
i + Ω6x

(6)
i + εi (2.12)

Where, the response variable yi = 3h(2(j+1))
8π2mcνχ

fi with i = 1, 2, 3, . . . , n number of observations,

Ω2,Ω4,Ω6 are our parameters of interest, x
(j)
i = (U

(j)
i )2 is the jth with j = 2, 4, 6

explanatory variable of the ith observation, εi is the ith associated error.

Thus we can establish our model in matrix form as follows :

Y = ΩX + ε (2.13)

Where Y is n × 1 vector of the response variable, Ω = (Ω2,Ω4,Ω6), X is n × 3 matrix

and ε is n× 1 residuals vector, furthermore, by Central limit theorem the residuals ε are

assumed to be normally distributed (Gaussian) with mean 0 and standard deviation σ2,

thus (ε ∼ N(0, σ2))

We assume that the probability density function of the ith observation yi is an normal

distribution with mean Ωjx
(j)
i and variance σ2:

yi ∼ N(Ωjx
(j)
i , σ2)
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We can now obtain the likelihood function by :

L(Y | Ω, σ2) =
n∏
i=1

1√
2πσ2

exp

(
−(yi − Ωxi)

2

2σ2

)
=

1

(2πσ2)
n
2

exp

(
−(Y − ΩX)T (Y − ΩX)

2σ2

) (2.14)

In order to make inference, we can obtain Ω by maximizing the likelihood or its log for

mathematical convenience, which is given by:

Log(L(Y | Ω, σ2)) = −n
2
Log(2π)− n

2
Log(σ2)− 1

2σ2
(Y − ΩX)T (Y − ΩX) (2.15)

Differentiating equation (2.15) with respect to Ω and solving for Ω, we have :

∂Log(L(Y | Ω, σ2))

∂Ω
=

1

2σ2
2XTY − 2XTXΩ = 0

Ω = (XTX)−1XTY

(2.16)

Which is the same result in (1.32), furthermore the variance of Ω is :

V ar[Ω] = V ar[(XTX)−1XTY ]

= (XTX)−1XV ar[y]((XTX)−1X)T

= σ2(XTX)−1XTX(XTX)−1

= σ2(XTX)−1

(2.17)
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Similarly the maximum likelihood estimation for σ2 is :

∂Log(L(Y | Ω, σ2))

∂σ2
= − n

2σ2
+

(Y − ΩX)T (Y − ΩX)

2(σ2)2
= 0

σ2 =
(Y − ΩX)T (Y − ΩX)

n
(2.18)

4.2 Bayesian linear regression

In Bayesian linear regression the parameters Ω and σ2 can be estimated in different

ways, usually through stochastic simulation methods such as Markov chain monte carlo

(MCMC), from classical viewpoint and by the theorem of central limit the asymptotic

distribution of our parameter of interest will be Ω ∼ N((XTX)−1XTY, σ2(XTX)−1) [30,

31], in other hand the choice of Ω distribution may differ according to the choice of the

conjugate priors.

In this section we will present Bayesian linear model to estimate Judd Ofelt parameters,

we will use the same perspective established in (2.12) and (2.13), details in the below

Consider our model :

Y = ΩX + ε

With Y is n× 1 vector, Ω = (Ω2,Ω4,Ω6) and X is n× 3 matrix.

In the Bayesian viewpoint, we formulate linear regression using probability distributions

rather than point estimates. The response Y is not estimated as a single value, but is

assumed to be drawn from a probability distribution ,the model for Bayesian Linear

Regression with the response Y sampled from a normal distribution depicted in the

previous section (2.14).

L(Y | Ω, σ2) =
1

(2πσ2)
n
2

exp

(
−(Y − ΩX)T (Y − ΩX)

2σ2

)
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4.2.1 Prior

Since we don’t have any prior knowledge about our data we have an alternative way to

define a prior, non-informative priors or flat [10]

Figure 2.2: Non-informative and informative prior plot

Box [32] and Tiao [33, 34] define a non-informative prior as a prior which provides

little information relative to the experiment, Bernardo [35] and Smith [36] use a similar

definition they say that non-informative priors have minimal effect relative to the data.

Jeffreys also described how to construct such a prior for a multiparameter model(Ω, σ2),

which is based on the Fisher information function[37, 38]

In our model where yi ∼ N(Ωxi, σ
2) for single observation, the Jeffreys proposal of a

non-informative prior pdf is :

p(Ω, σ2) ∝
√
det(FI(Ω, σ2) (2.19)

The fisher information matrix element is defined by :

FI(Ω, σ2) = −E
[
∂2Log(L(Y | Ω, σ2))

∂θi∂θj

]
(2.20)

Where {θi, θj} ∈ {Ω, σ2}
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Thus :

FI(Ω, σ2) =

∂2Log(L(Y |Ω,σ2))
∂Ω2

∂2Log(L(Y |Ω,σ2))
∂Ω∂σ2

∂2Log(L(Y |Ω,σ2))
∂σ2∂Ω

∂2Log(L(Y |Ω,σ2))
∂(σ2)2



= −E

 1
σ2

2(Y−ΩX)
σ2

2(Y−ΩX)
σ2

2(Y−ΩX)2

σ4 − 1
σ2


(2.21)

Since E[Y − ΩX] = 0 and E[(Y − ΩX)2] = σ2, then :

FI(Ω, σ2) =

− 1
σ2 0

0 1
σ2

 (2.22)

Next, we construct Jeffreys prior :

p(Ω, σ2) ∝

∣∣∣∣∣∣−
1
σ2 0

0 1
σ2

∣∣∣∣∣∣
1
2

∝ 1

σ2
(2.23)

Which is a very popular and a default choice of a non-informative prior for such a model.

4.2.2 Posterior

From (2.10) we have :

P (Ω, σ2 | Y ) ∝ L(Y | Ω, σ2)× p(Ω, σ2) (2.24)

Thus :

P (Ω, σ2 | Y ) ∝ 1

σ2

1

(2πσ2)
n
2

exp

(
−(Y − ΩX)T (Y − ΩX)

2σ2

)
(2.25)

This posterior differs from the likelihood function only in the leading exponent, the

absolute value of the exponent for σ2 is increased from n/2 to n/2+ 1, which is an

asymptotically irrelevant modification of the likelihood function. this result highlights

that with large samples, the prior may matter very little in affecting posterior inference.
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4.2.3 Markov Chain Monte Carlo simulation

In order to estimate the model parameters in Bayesian framework, Markov Chain Monte

Carlo methods are useful tool to sample from the posterior, the term Markov chain refers

to a discrete-time stochastic process on a general state space that has the Markov property:

”the future is independent of the past given the present state” [39, 40].

We can summarize Markov chain process in mathematical expression shown below :

P (Ωt+1, σ
2 | y1, y2, . . . , yn) = P (Ωt+1, σ

2 | yt) (2.26)

There are two major MCMC algorithms : Gibbs sampling and Metropolis Hastings, in

this section we briefly introduce Gibbs sampling since, Metropolis Hastings is beyond the

scope of our work.

The Gibbs Sampling is a stochastic simulation method via Markov chain, applied when

the joint posterior distribution has no famous form (normal, gamma. . . ) but the full

conditionals do, the main advantage of this algorithm is the covergence of the Markov

chain is ensured without any tuning, however, Gibbs sampling requires fully conditional

probability distributions to be specified for all the parameters (Ω, σ2) [31, 41]

To derive the full conditionals we have :

P (Ω | Y, σ2) =
P (Ω, σ2 | Y )

P (σ2 | Y )
(2.27)

P (σ2 | Y,Ω) =
P (Ω, σ2 | Y )

P (Ω | Y )
(2.28)

From (2.27) and since P (σ2 | Y ) = 1
σ2 we get :

P (Ω | Y, σ2) =
P (Ω, σ2 | Y )

σ−2

∝ 1

(2πσ2)
n
2

exp

(
−(ΩX − Y )T (ΩX − Y )

2σ2

)
∝ 1

(2πσ2)
n
2

exp

(
−(XTX)2(Ω− (XTX)−1XTY )T (Ω− (XTX)−1XTY )

2σ2

)
∝ 1

(2πσ2)
n
2

exp

(
−(Ω− (XTX)−1XTY )T (Ω− (XTX)−1XTY )

2(σ(XTX)−1)2

)
(2.29)

Hence the full conditional for Ω is :
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P (Ω | Y, σ2) ∼ N((XTX)−1XTY, σ(XTX)−1) (2.30)

From (2.28) ,with P (Ω | Y ) ∝ 1, we derive P (σ2 | Y ) as following:

p(σ2 | Y,Ω) ∝ P (Ω, σ2 | Y )

∝ 1

σ2

1

(2πσ2)
n
2

exp

(
−(Y − ΩX)T (Y − ΩX)

2σ2

)
∝ 1

(σ2)1+n
2

1

(2π)
n
2

exp

(
−(Y − ΩX)T (Y − ΩX)

2σ2

) (2.31)

This full conditional is easily seen to be an inverse gamma distribution [10, 42] with

parameters α = n
2

and β = (Y−ΩX)T (Y−ΩX)
2

, thus :

P (σ2 | Y,Ω) ∼ IG(
n

2
,
(Y − ΩX)T (Y − ΩX)

2
) (2.32)

With the conditionals derived, we can implement Gibbs sampling from the full conditionals

by [42]:

1. Establishing starting values for the parameters

2. Sampling Ω from its multivariate normal distribution with σ2 fixed

3. Sampling σ2 from its inverse gamma distribution with Ω fixed

5 Conclusion

In this chapter we outlined a Bayesian framework to estimate JO intensity parameters by

sampling from the joint posterior distribution (P (Ω, σ2 | Y )), we put more attention in

deriving the full conditionals to apply MCMC Gibbs sampling method, we will use the

framework we constructed to estimate our parameter of interest from some Rare earth

doped glasses.
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Chapter 3

Judd Ofelt parameters prediction

1 Introduction

In recent decades, the world has experienced a real explosion in the volume of data which is

the main reason that made scientists use data to infer and obtain information about many

unexplained phenomena therefore a smart data analysis leads to a significant scientific

progress, one of the domains that deals with data is machine learning.

Machine learning is a sub-domain of intelligence artificial focuses on the development of

models capable of representing certain characteristics,learn and detect some statistical

pattern from data in order to accomplish various tasks , the term intelligence stands for

the ability of these models to generalize, i.e. to extract information from the studied data

during an updating process called training, and use these information to automatically

infer another information from new data.

there are many predictive technique in machine learning, we will focus on supervised

regression model to solve our task.

1.1 Regression

Regression is to map an input data to a numerical value [29]. In another words for an

input Xi ∈ Rd that represents d dimensional features vector and a continues output space

Y ⊂ R , the learning algorithm is asked to produce a function f : Rd → Rn that maps

any given input Xi to a corresponding value y ∈ Y . Examples Neural Networks, Support

Vector Regression, Linear Regression, Polynomial Regression . . .

41



1.2 States of the art

In order to predict JO parameters M.Konstantinidis et al[43] used the composition percentage

to investigate the relationship between JO parameters and the bulk composition percentage

of Er+3 doped tellurite glasses using Support vector machine regression (or SVR) with

sparse Principal Component Analysis (sparse PCA) in data prepossessing for more details

see [43, 44, 45, 46, 47], the collected data is of 135 observation and 25 glasses oxide

composition thus they composed a matrix of 135× 25

However we will use a similar technique in machine learning regression, a Multylayer

perceptions to fit the data and predict the JO parameters from the same dataset of glasses

oxide composition, we will give, in this chapter, a global principals about artificial neural

networks after that we will focalize on deep neural network (DNN) mainly perceptrons

and our technique Multilayer perceptron (MLP)

2 Neural networks and deep learning

The idea goes back to 1943 by neurophysiologist Warren McCulloch and mathematician

Walter Pitts, they made a model of connected circuits in order to simulate intelligent

behavior [29, 48], they called it “threshold logic” which basically converts continues input

to discreet output.

Deep learning is a subset of machine learning methods that deals with artificial neural

networks (ANN). A neural network is a mathematical function that can be used in

a different machine learning tasks such as classification, regression, clustering, feature

extraction and dimensional reduction . . . etc, All neural networks architectures consist

of stack interconnected layers, each layer contains a number of neurons, the simplest

neural network has an input layer and output layer as for deep neural networks (DNN)

they contains a multiple hidden layers (the intermediate layers between the input and

output)[29]. The depth of the network allows it to learn more and more representation

and patterns about the inputs data, thus allowing them to achieve a higher accuracy

especially in none-linear problems .

There are a lot of DNN architectures each has its own advantages at some tasks like

convolution neural network (CNN), Recurrent neural networks (RNN)...etc, in our case

we will use multi-layer preceptron (MLP).
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2.1 Perceptron(artificial neuron)

The perceptron is the building block of MLP.It compute dot product of its weights and

the inputs followed by an activation function. A single perceptron can perform a simple

classification or regression task depending on the used activation function, the output of

a percepton is calculated directly as follows.

Consider a single neuron with inputs ~x = (x1, x2, . . . , xn) with weights ω1, ω2, . . . , ωn and

a bias b as ilustrated in figure 3.3

x2

x1

x0 = 1

...

xn

∑
∑n

i=0wixi

w2

w1

w0

...
wn

inputs

weights

activation function

Figure 3.1: Model of an artificial neuron

the potential of the neuron can be computed as :

n =
n∑
i=1

ωixi + b (3.1)

let’s consider a well known activation function Sigmoid :

f(n) =
1

1 + e−n
(3.2)

The output of the perceptron y is :

y = f(n) = f

(
n∑
i=1

ωixi + b

)
(3.3)

In the following table we present some of the most used activation functions:
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Name Function Derivative

Sigmoid φ(x) =
1

1 + e−x
φ′(x) = φ(x)(1− φ(x))

TanH φ(x) =
2

1 + e−2x
− 1 φ′(x) = 1− φ(x)2

ReLU φ(x) =

{
0 x ≤ 0

x x > 0
φ′(x) =

{
0 x ≤ 0

1 x > 0

Leaky ReLU φ(x) =

{
αx x ≤ 0

x x > 0
φ′(x) =

{
α x ≤ 0

1 x > 0

Table 3.1: Activation functions and their derivatives.

An activation function must be none-linear, continious and non-polynomial.[29, 49, 50]

figure (3.5) presents a plot of the most commonly used activation function Sigmoid.

−6 −4 −2 0 2 4 6

0.5

1

f(x)
f ′(x)

Figure 3.2: Sigmoid activation function and its derivative

However a single perceptron are trivial in complex representations, thus we present

Multilayer perceptron (MLP) in the flowing section which is more flexible and universal

approximator [29, 49]

2.2 Multilayer perceptron

The Multilayer perceptron is a feed-forward network consist of multiple fully connected

layers of perceptrons (every perceptron in a layer is connected to all perceptron in the

next layer), the purpose behind using MLP is to solve none-linear (complex) tasks.

The architecture of our MLP model illustrated in figure 3.6 of 25 input and 3 output

which are the JO parameters {Ω2,Ω4,Ω6}, and of a given number of hidden layers
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. . .

Figure 3.3: Architecture of MLP

The output of the model is computed sequentially, layer by layer, it starts by assuming

~y0 = ~x then it assign that ~xi = ~yi−1 for the hidden layer Hi, the activation function and the

weights are given by the network, therefore, the output of the current layer depends only

on the output of the previous layer and the final output of interest is ~yk = {Ω2,Ω4,Ω6}

produced from the output layer.

3 Training Neural neural networks

In order to achieve the the desired results using an ANN it needs to be trained. Fitting

the network is to find optimal parameters (wights, bias . . . ) for solving our task, in the

beginning of the training process the parameters needs to be initialized.

Learning process is then feeding the training data to the model in iterative way, where

the output produced each iteration are compered to the actual values and the network

is repeatedly adjusted till it returns the desirable result, this technique is the so called

supervised learning, unsupervised learning will not be discussed here.

Some of the problems that we may encountered in this process are underfitting and

overfitting.

1. Underfitting :Is when a machine learning model can not properly learn from

the training data (have low accuracy) [29]. Some of the reasons why underfitting

happens in neural networks is to have a small model or using a linear model with
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none linear dataset (features in the dataset are complex). Another reason is the

noisy data (containing wrong labels).

2. Overfitting : is when a machine learning model gives a high prediction accuracy

on the training data, but the prediction accuracy gets low if the model tested

on previously unseen data (a data that was not present during the training) [29],

another term for describing overfitting is “high generalization error”. Overfitting

occurs when the model gets closely fit to the training data, this is because the

training data is not all the possibilities of input data. A good model should have

a good accuracy on the training data and the other. In other word, ( it should be

able to generalize).

The main reason for overfitting is the learning process performed for too long (many

epochs). Also using a big model (too much layers) for small dataset.

The elustrated figures (3.7, 3.8, 3.9) show the difrence between overfitting, underfitting

and Robust fit

Figure 3.4: Overfitting Figure 3.5: Underfitting Figure 3.6: Robust Fit

To avoid the previous problems, the data needs to be divided into training and testing

sets, it is preferable to use 80% of the available data as training set and the rest as testing

set [51]
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3.1 Loss function

In training process the network is meant to be adjusted to return the desirable output

each epoch, this adjustment is based on the calculation and minimizing the error (Loss)

There exists many metrics to calculate the error, we will focalize on mean squared error

(MSE).

Consider a training set of {(xi,Ωi)} where x is glasses composition and Ω JO parameters,

every x from the training set yields an output y and we want y be as close as possible to

Ω, we define the error as :

ei = yi − Ωi (3.4)

Then the mean squared error for is :

Ep =
1

m

m∑
i=1

(yi − Ωi)
2 (3.5)

Where m is the number of output neurons (3 in our case).

3.2 Gradient decent

Gradient descent is an optimization algorithm for finding a local or global minimum for

a differential function.

minf(ω) and/or ω∗ = arg(minf(ω)) (3.6)

This is effective when f is convex, the algorithm is iterative and aims to find the the

direction where f can decrease, so it may not give the exact value of ω∗, but it can reach

a closer value, for mathematical convenience we introduce the learning rate 0 < η < 0,

it controls how fast the gradient descent algorithm works in order to reach the global

minimum.

The general form of gradient descent formula :

ωk+1 = ωk − η∇f(ωk) (3.7)

We give the gradient descent algorithm :
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Algorithm 1 Gradient Descent

Require: Differentiable loss function f
Require: Maximum number of iterations T

Initialize ω = ω0

for t = 1→ T do
ωk+1 = ωk − η∇f(ωk)

EndFor
Return ωk

Note: Generally the gradient descent stops when it reach the global minimum ω∗ which

is hard to guarantee, an alternative way to implement a stoping condition is to run the

algorithm for fixed number of steps in order to reach a asymtotic convergence to the

minimum.

3.3 Backpropagation

To adjust a DNN, we need to minimize the loss function by applying the gradient descent

in all its layers, suppose we aim to minimize mean squared error to adjust the weights

between ith and jth layer.

By applying the gradient descent we calculate the adjustment as follows :

∆ωij = −η∇E = −η ∂E
∂ωij

(3.8)

By chain rule we get :

∆ωij = −η ∂E
∂yj

∂yj
∂ωij

(3.9)

from (3.1) and (3.3) we have:

∂E

∂yj
= yi − Ωi (3.10)

∂yj
∂ωij

=
∂yi
∂n

∂n

∂ωij
= f

′
(n)yi (3.11)

Thus :

∆ωij = −η(yi − Ωi)f
′
(n)yi (3.12)

For mathematical convenience let :

48



δj =
∂E

∂nj
= (yi − Ωi)f

′
(n) (3.13)

Then :

∆ωij = −η ∂E
∂ωij

= −ηδjyi (3.14)

However this result is applicable only in the output layer, for the hidden layers lets return

to the definition of δj :

δj =
∂E

∂nj
=
∂E

∂yj

∂yj
∂nj

=
∂E

∂yj
f

′
(n) (3.15)

Now we define ∂E
∂yj

for hidden layers l :

∂E

∂yj
=

ml+1∑
k=1

∂E

∂nk

∂nk
∂yj

=

ml+1∑
k=1

δkωjk (3.16)

Thus :

δj =

(
ml+1∑
k=1

δkωjk

)
f

′
(nj) (3.17)

From equation (3.18) we can compute local gradient layer l using local gradient of layer l+

1, basing on that we can adjust the network recursively from the output layer to the input

layer, this technique is used in the most common learning algorithm, Backpropagation

algorithm [52, 49]

Then the adjustment of the weights in all layers is as follows :

∆ωij = −η ∂E
∂ωij

= −ηδjyi (3.18)

Where :

For hidden layers δj =

(
ml+1∑
k=1

δkωjk

)
f

′
(nj)

For output layers δj = (yi − Ωi)f
′
(n)yi

(3.19)

The training set {~xi, ~Ω} is then treated in two phase, the first phase is forward, consist of

feeding the data to the network and compute the output without any weights adjustment,
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next the backward phase starts to adjust the weights, this process is repeated for a number

of epochs, hence we summarize the backpropagation algorithm as follows :

Algorithm 2 Algorithm : Backpropagation

Require: Training set (~xi, ~Ωi)
k
i=1

Require: Learning rate 0 < η < 1
Require: feed-forward neural network with randomly initialized weights
Require: Number of epochs

for e in (Number of epochs) do

for all (xi,Ωi) ∈ (~xi, ~Ωi)
k
i=1 do

Compute y
(i)
j according current parameter

Compute δj for the output layer

Compute δj for Hidden layers

Update ωij

EndFor

EndFor
End

3.4 Regularization

Regularization is set of technique that are used in order to reduce the generalization error

(overfitting) of a neural network, some of the most used regularization are : Dropout,

Drop connect, Data augmentation and Stochastic depth

We will focus on Dropout in the next section

3.4.1 Dropout

this technique refers to randomly drop neuron by removing all of its connections from the

network architecture temporally during the training as discribed in figure 3.9 . In other

words, a neuron is present in the training phase with a probability p by consequence it is

absent with a probability(1-p) [5]
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Figure 3.7: applying dropout on neuron [5]

Figure 3.8: applying dropout on neural networks [5]

4 conclusion

In this chapter we have discussed several technique we need to construct our MLP

predictive model, the way to incorporate the data set to train the machine learning model

and the network adjustment using backpropagation algorithm, In the next chapter we

will present the different experiments we done in this framework and discuss the obtained

results as well.
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Chapter 4

Results and discussion

1 Introduction

This chapter will be divided into two parts, the first one will be a Bayesian analysis of Judd

Ofelt intensity parameters of holmium (Ho) and Erbium (Er) doped halogeno-phosphate

glasses [6], we will compare and discuss the results with previous calculations namely [6, 7]

In the second part we will focalize on the second technique we introduced in chapter 3,

predicting Judd Ofelt parameters from glasses oxide compositions, stating by presenting

the dataset we used and the machine leaning model (MLP) we established then we discuss

the results.

2 Bayesian Inference

In this section we will begin with introducing the MCMC algorithm we used to sample

from the posterior, then we will apply it to estimate the parameter of interest of glasses

we mentioned in the previous section.

2.1 Gibbs sampling algorithm

Since we derived the full conditionals of Ω and σ2, we can apply Gibbs sampling directly

and estimate parameter of interest by sampling from the posterior thus JO parameters will

be presented in term of their mean, standard deviation and probability density function

Our posterior in term of full conditionals is :

P (Ω, σ2 | Y ) ∝ P (Ω | Y, σ2)× P (σ2 | Y,Ω) (4.1)
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Where the full conditionals are :

P (Ω | Y, σ2) ∼ N((XTX)−1XTY, σ2(XTX)−1) (4.2)

P (σ2 | Y,Ω) ∼ IG(
n

2
,
(Y − ΩX)T (Y − ΩX)

2
) (4.3)

Hence Gibbs sampling algorithm is as follows :

Algorithm 3 Algorithm : Gibbs sampling

Require: X = Matrix of (U
(j)
i )2 where j = 2, 4, 6

Require: Y = Vector of f expi

Require: Random initialization : σ2
0

Require: number of iteration
for t in (number of iteration) do

P (Ωt | Y, σ2
t )← N((XTX)−1XTY, σ2

t (X
TX)−1)

P (σ2
t+1 | Y,Ωt)← IG(n

2
, (Y−ΩtX)T (Y−ΩtX)

2
)

end for
Return{Ω2,Ω4,Ω6} and σ2

We implemented the above algorithm using python with the help of its libraries such as

NumPy and SciPy, however similar algorithm is integrated in PyMC3 library or RJAGS

library (in R programming language)

2.2 Studied samples and results

the studied glasses are halogeno phosphate glass doped with Holmium (Ho+3) and Erbium

(Er+3), systems general formula are (100 − x − y)NaPO3–xPbCl2–yBaCl2 : LnF3 with

(Ln = Ho or Er) and NaPO3–ZnF2–SrF2 : HoF3

2.2.1 System (100− x− y)NaPO3–xPbCl2–yBaCl2 : LnF3

the doping consecration of rare earth was set at 1%, glasses composition, densities and

refractive index are summarized in the tables below
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Name of
Series

Glasses compositions
(mol%)

NaPo3 PbCl2 BaCl2 HoF3 ErF3

NPE1 90 9 0 0 1
NPBE1 80 9 10 0 1
NPH1 90 9 0 1 0
NPBH1 80 9 10 1 0

Table 4.1: Compositions of glass samples [6]

Sample
Density
(g/cm3)

Refractive
index

NPE1 2.901 1.525
NPBE1 3.065 1.528
NPH1 2.894 1.521
NPBH1 2.981 1.522

Table 4.2: Physical properties of glass samples [6]

Figure 4.1: Absorption Spectra of Er3+

doped NPE1 and NPBE1 glasses [6]

Figure 4.2: Absorption Spectra of
Ho3+ doped NPH1 and NPBH1 glasses
[6]

• Holmium cross section : For glasses doped with Holmium, the absorption spectra

are presented in the figures 4.2 .There can be ten absorption bands centered at 1957,

1155, 642, 538, 486, 472, 448, 418, 386 and 360nm corresponding to the optical

transitions of the Ho3+ ion from its 5I8 state to the different excited states: 5I7,

5I6, 5F5, 5F4 , 5F3, (5F2, 3K8), 5G6, 5G5, 5G4 and 3H6 respectively. These are the ten

bands that are used for the calculation of Judd-Oflet parameters

• Erbium cross section : The absorption spectra of lenses doped with erbium are

presented in the Figure (4.1). From these spectra, one can count ten bands of

absorptions centered at 1533, 974, 800, 651, 544, 520, 488, 451, 406 and 378nm

which are attributed to optical transitions of the Er3+ ion from its 4I15/2 state to
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the different excited state 4I13/2 ,4I11/2 ,4I9/2 ,4F9/2 ,4S3/2 ,3H11/2 ,4F7/2 ,4F5/2 ,2H9/2

and 4G11/2, These are the ten bands that are used for the calculation of Judd-Oflet

parameters.

5I8 → λ(nm)
Oscillator

strength fexp(×10−6)
NPH1 NPBH1

5I7 1957 1,454 1.040
5I6 1155 0,765 0.593
5F5 642 2,364 1.571
5F4 538 3,371 1.366
5F3 486 1,203 0.716

5F2, 3K8 472 0,681 0.323
5G6 448 16,752 9.611
5G5 418 2,937 1.525
5G4 386 1,586 0.589
3H6 360 5,234 2.281

Table 4.3: Measured oscillator strength for Ho3+ ions in NPH1 and NPBH1 glasses [6]

4I15/2 → λ(nm)
Oscillator

strengthfexp(×10−6)
NPE1 NPBE1

4I13/2 1533 1,607 1,989
4I11/2 974 0,401 0,400
4I9/2 800 0,159 0,167
4F9/2 651 1,583 1,563
4S3/2 544 0,246 0,164

3H11/2 520 6,473 6,654
4F7/2 488 1,385 1,195
4F5/2 451 0,233 0,272
2H9/2 406 0,353 0,496
4G11/2 378 11,486 11,072

Table 4.4: Measured oscillator strength for Er3+ ions in NPE1 and NPBE1 glasse[6]

The tensors U j
i are tabulated by carnal et al [53, 54], thus gibbs sampling algorithm was

executed to obtain the following results.
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Figure 4.3: NPH1 Figure 4.4: NPBH1

Figure 4.5: NPE1 Figure 4.6: NPBE1

Ω (×10−20)
NPH1 NPBH1 NPE1 NPBE1

BI LS BI LS BI LS BI LS

Ω2 4.283±0.19 4,280 2.450±0.29 2.442 2.033±0.18 2.031 2.018±0.13 2.017

Ω4 2.642±0.22 2,654 1.390±0.44 1.407 0.525±0.30 0.525 0.446±0.22 0.449

Ω6 1.742±0.15 1,746 1.326±0.34 1.312 0.491±0.13 0.489 0.530±0.10 0.531

Table 4.5: Judd Ofelt parameters using least square method [7] and Bayesian inference
method

2.2.2 System NaPO3–ZnF2–SrF2 : LnF3 (Ln = Ho)

Table (4.4) gives molar composition for the System NaPO3 – ZnF2 – SrF2: LnF3 (Ln =

Ho):

Composition (mol%) NPSZ0 NPSZH0.5 NPSZH1 NPSZH1.5 NPSZH2
NaPO3 80 79.5 79 78.5 79.5
SrF2 10 10 10 10 10
ZnF2 10 10 10 10 10
HoF3 - 0.5 1 1.5 2

Table 4.6: Compositions of glass samples [7]
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Oscillator forces and Judd-Ofelt parameters are presented in tables (4.6) and (4.7) respectively.

5I8 →
Oscillator stregth fexp(×10−6)

NPZSH0.5 NPZSH1 NPZSH1.5 NPZSH2
5I7 1,1608 1,1951 1,2077 1,2446
5I6 0,5794 0,5946 0,5845 0,6287
5F5 2,3700 2,3739 2,3503 2,5009
5F4 3,2740 3,3668 3,2975 3,4516
5F3 0,6234 0,8187 0,7174 0,8406

5F2, 3K8 0,5343 0,5251 0,5275 0,5338
5G6 11,9114 12,4917 12,2562 11,7716
5G5 2,2525 2,3285 2,2879 2,1654
5G4 0,6056 0,3533 0,6052 0,4850
3H6 3,5322 3,4714 3,7526 3,7152

Table 4.7: Oscillator strength of ho3+ absorption bands of NPZSHn (n=0.5, 1, 1.5, 2)[7]

The result after applying Gibbs sampling is as follows :

Figure 4.7: NPSZH0.5 Figure 4.8: NPSZH1

Figure 4.9: NPSZH1.5 Figure 4.10: NPSZH2
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Ω (×10−20 )
NPZSH0.5 NPZSH1 NPZSH1.5 NPZSH2

LS BI LS BI LS BI LS BI

Ω2 2.243 2.828±0.21 3.035 2.972±0.24 2.983 2.946±0.21 2.85 2.802±0.20

Ω4 3.035 2.188±0.31 2.262 2.238±0.34 2.248 2.209±0.28 2.164 2.129±0.28

Ω6 1.65 1.621±0.23 1.721 1.695±0.24 1.675 1.645±0.21 1.832 1.799±0.21

Table 4.8: Calculated Judd Ofelt parameters using least square method [7] and
Bayesian inference method

2.3 Discussion

The Bayesian inference framework allows us to estimate quantities of interest (Ω parameters)

from their probability densities, the fit of the 10 observed transition band of Ho+3 and

Er+3 and the calculation of JO parameters by sampling from the posterior (P (Ω, σ2 | Y ))

exhibits a good accuracy with least square method with a reasonable marge of error,

however when the transition bands are small the contribution of the prior may affect the

accuracy of the obtained JO parameters thus in such cases we must be careful to choose

the appropriate prior.

3 Judd Ofelt parameters prediction

In this section we will begin by presenting the data-set and data prepossessing we proceeded

after that we are going to present the MLP model we established to predict the JO

parameters, finally we will discuss the result we obtained in our experiment

3.1 Dataset

The data consist of 135 × 28 matrix, 135 observation and the first 25 features are the

glasses oxide compostions, the rest are the target parameters (W2,W4,W6)

Figure 4.11: Dataset head Of bulk oxide composition percentage of Er+3 doped glasses
and the target JO parameters

The dataset summary is given in the below table in term of count, mean, standard

deviation (std), minimum, 25% quartile, 50% quartile (median), 75% quartile and maximum.
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count mean std min 25% 50% 75% max

TeO2 135.0 64.847922 21.065089 6.934969 50.060732 71.115493 80.616337 97.257630
ZnO 135.0 4.174459 6.595924 0.000000 0.000000 0.000000 8.730498 49.512032
Na2O 135.0 1.963268 3.574073 0.000000 0.000000 0.000000 4.456195 26.931667
Er2O3 135.0 3.336365 3.710409 0.000000 1.344193 2.457325 3.377692 21.030062
TiO2 135.0 0.025896 0.231621 0.000000 0.000000 0.000000 0.000000 2.667932
BaO 135.0 1.466929 5.954325 0.000000 0.000000 0.000000 0.000000 33.463789
Na2CO3 135.0 0.083639 0.722122 0.000000 0.000000 0.000000 0.000000 7.526298
GeO2 135.0 1.165608 5.559750 0.000000 0.000000 0.000000 0.000000 43.531003
B2O3 135.0 7.591094 13.292711 0.000000 0.000000 0.000000 16.516620 60.207354
MgO 135.0 0.843718 1.948374 0.000000 0.000000 0.000000 0.000000 7.459648
K2O 135.0 1.386261 4.039041 0.000000 0.000000 0.000000 0.000000 17.436695
SrO 135.0 0.305779 1.423135 0.000000 0.000000 0.000000 0.000000 6.927211
WO3 135.0 3.550777 11.675218 0.000000 0.000000 0.000000 0.000000 56.782274
CaF2 135.0 0.553852 1.947162 0.000000 0.000000 0.000000 0.000000 10.236133
Bi2O3 135.0 2.043205 8.801733 0.000000 0.000000 0.000000 0.000000 62.304563
CdO 135.0 0.112292 0.793789 0.000000 0.000000 0.000000 0.000000 7.573747
La2O3 135.0 1.085141 4.089506 0.000000 0.000000 0.000000 0.000000 21.560515
Li2O 135.0 0.553126 3.976812 0.000000 0.000000 0.000000 0.000000 45.225111
Nb2O5 135.0 0.950098 3.050474 0.000000 0.000000 0.000000 0.000000 16.780489
PbO 135.0 0.948978 5.074445 0.000000 0.000000 0.000000 0.000000 43.015395
PbCl2 135.0 0.499573 3.036708 0.000000 0.000000 0.000000 0.000000 29.724166
PbBr2 135.0 0.845390 6.161590 0.000000 0.000000 0.000000 0.000000 59.582157
PbF2 135.0 0.201201 2.337748 0.000000 0.000000 0.000000 0.000000 27.162173
CaO 135.0 0.500664 2.615281 0.000000 0.000000 0.000000 0.000000 19.044058
P2O5 135.0 0.964765 5.554707 0.000000 0.000000 0.000000 0.000000 36.235489
W2 135.0 5.506743 2.207121 0.900000 3.890000 5.620000 6.575000 11.990000
W4 135.0 1.760747 0.742383 0.171000 1.363500 1.610000 1.970500 5.018000
W6 135.0 1.360110 0.652335 0.020000 0.900100 1.200000 1.770000 3.540000

Table 4.9: Dataset summery
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Figure 4.12: dataset heat map

3.2 Experiment settings

• Data Pre-processing : We scaled the dataset using the Min-Max scaling to make

the features in range [−1, 1], lower the standard deviation and to suppress the effect

of outliers, the general formula of Min-Max scaling in range [a, b] is :

x
′
= a+

(x−min(x))(b− a)

max(x)−min(x)
(4.4)

Where x
′

is the scaled value of the actual value x.

• Number of test: is the number of times that we repeat the model training and

evaluation to ensure that the acquired results are not exclusive to one experiment

only, thus we repeated the experiment for 1000 times, each time 80% of dataset is

being selected randomly as a training set

• Batch size : We used the whole dataset, because it is small and will not overflow

the memory.
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3.3 MLP structure

We give the below table to sum up the different hyper-parameters we used to construct

our MLP predictive model

Model type Multilayer perceptron (MLP)
Analysis type Regression
Number of layers 5 (3 hidden layers)

Hidden layer neurons
H1 : 110
H2 : 100
H3 : 40

Layers activation
function

H1 : Sigmoid
H2 : Sigmoid
H3 : ReLu
Output layer : Linear

Loss function Mean squared error (MSE)
Learning algorithm Backpropagation

Regulariztion
H1 : No dropout
H2 : Dropout rate (0.25)
H3 : Dropout rate (0.25)

Optimizer
Adaptive Moment Estimation
(Adam)

Learning rate 0.001
Number of epochs 1050

Table 4.10: Summary of the options and parameters selected for our MLP model

The implementation of the model has been done using Pytorch, an open source machine

learning framework with python front end, extended with other python libraries such as

Scikit learn and NumPy.

As the table shows the number of neuron decreases as the number of layers increases to

get the best representation of input data and the output has only 3 dimensions, dropout

is used to prevent overfitting the model because the model contains fairly big number of

neurons and layers in comparison to the small dataset (135 observation), Adam was used

as gradient decent optimizer to speed up the training process, however this parameters

are adjusted based on experimentation and observation with model and are not 100%

explainable.

3.4 Result

As we pointed in experimental settings section, we repeated the experiment 1000 time

with random selection of the training set which allocate 80% and the rest allocated for

testing set. We calculated the root mean squared error to get a better observation on how
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much the model predictions are shifting from the target values, the RMSE for testing is

given by :

RMSE =

√√√√ 1

14

14∑
i=1

(Ω− Ω′)2 (4.5)

Where Ω
′

are the predicted JO parameters,for 1000 iteration the average RMSE is then :

R̂MSE =
1

1000

1000∑
i=1

RMSE (4.6)

The result corresponding training and testing RMSE, standard deviation,max and min

RMSE values are recapitulated in the next table.

Parameter
Training (10−20) Testing (10−20)

Ω2 Ω4 Ω6 Ω2 Ω4 Ω6

RMSE 0.7464 0.4882 0.4213 1.4843 0.5938 0.5136
Min RMSE

Value
0.5623 0.3405 0.2913 0.7648 0.2492 0.2434

Max RMSE
Value

0.8950 0.6428 0.6044 3.6887 0.9747 0.8597

Standard deviation 0.0537 0.0607 0.0551 0.2822 0.1376 0.0893

Table 4.11: The estimated Root mean squared error for training and testing data from
1000 iteration of MLP regression model

3.5 Discussion

the MLP predictive model we proposed to predict Judd Ofelt intensity parameters from

the bulk oxide compositions, give us reasonable results from which we can infer the

existence of correlation between glasses compositions and JO parameters, such relationship

has no physical justification, however, during our experimentation we observe that:

• The RMSE and standard diviation of Ω2 (first output) is high in comparison to the

other parameters (Ω4, Ω6) RMSE .

• It is also worth noting that the model overfitts the training data fast Thus the model

is significantly sensitive to the selected training and testing data.

Moreover, the selected training set notably affect the model prediction thus we can say

besides small observations, the dataset contains outliers, there is undoubtedly much more

to improve in this framework with more data, proper parameter distribution and include

other physical factors such as refractive index, temperature and densities.
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Finally we point that the result we obtained aren’t final.

4 Conclusion

In this chapter we presented the details of different tests we have done on our work,

Bayesian inference and Judd Ofelt parameters prediction, with their corresponding results.

We conclude that the first technique (Bayesian inference) we used is a good alternative

framework in calculating JO intensity parameters, however it can be tasted more with

different priors family and other MCMC simulation techniques such as Metropolis Hastings

and Rejection Sampling.

The second technique we tested in our work, predicting JO parameters using Multilayer

perceptron model is at first effective in detecting the correlation between quantity of

interest (Ω) and glasses compositions, nevertheless, it can be more tested with more data

and more physical properties included.
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General Conclusion

Judd Ofelt theory have been widely used in glasses scientific research in the past five

decade, it is considered as the centerpiece of 4f shell transition spectroscopy, moreover,

the theory have proven itself to be a valuable tool in the innovation of lasers, optical

amplifiers, phosphors for displays and solid-state lighting, the calculation of Judd Ofelt

parameters is known to be a specialized task as it require laboratory, mathematics and

quantum mechanics comprehension, onece the observation bands fexp are obtained, JO

parameters can be determined using the well known least square methodology.

Our attempt in this thesis is to use different framework in calculation and further predicting

Judd Ofelt parameters, we explained the theory behind every model and tested them in

the context of our work.

The first model we used is estimating JO parameters via Bayesian inference, we fitted

the observation bands fexp and the matrix elements of tesors (U
(j)
i )2 via Bayesian linear

regression model, we constructed a posterior P (Ω, σ2 | Y ) from which we sampled our

quantity of interest (Ω), the estimated JO parameters of Halogeno phosphate glasses

under this framework was at high accuracy with least square method thus the method

was successfully tested, in fact there still tasks to appraise, therefor, we suggest :

• Using Bayesian inference method in estimating Judd ofelt parameters for other

glasses systems

• Test different non-informative prior or informative priors if preliminary experimental

knowledge are considered

• Use another MCMC algorithms, like Metropolis Hastings and Rejection sampling.

The second method we established is a Non-linear regression Multilayer perceptron (MLP),

we tried to fit a matrix of (Er+3) tellurite glasses composition [43] with their corresponding

JO parameters, we succeed in detecting the correlation with reasonable interval of error,

yet, the first parameter of interest (Ω2) exhibits higher interval of error, in general the
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method was successful, however, there still a room of improvement. Hence, we give the

following perspectives:

• Include more physical and thermal properties as features to improve the accuracy

of the model

• Collect more data with proper JO parameters distribution

• Test the model with different glasses systems and different dopant rare earths

• Implement a K-fold cross-validation with ideal distribution of the targets in each

fold.

At the end of this thesis we conclude that the different technique we used in the framework

of Judd Ofelt theory are successful and certainly can be further enhanced.

65



Bibliography

[1] Steve Barrett and S. Dhesi. The structure of rare-earth metal surfaces. 01 2001.

[2] Brian M. Walsh. Judd-ofelt theory: principles and practices. In Baldassare Di Bartolo

and Ottavio Forte, editors, Advances in Spectroscopy for Lasers and Sensing, pages

403–433, Dordrecht, 2006. Springer Netherlands.

[3] Shang-Da Jiang, Bing-Wu Wang, and Song Gao. Advances in Lanthanide Single-Ion

Magnets, volume 164. 06 2014.

[4] Yong-Ill Lee. Application of the judd ?ofelt theory to dy3+-doped

fluoroborate/sulphate glasses. Journal of Korean Physical Society, 59:3300–, 11 2011.

[5] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 15:1929–1958, 06 2014.

[6] Omar Bentouila, Aiadi Kamal Eddine, F. Rehouma, and Marcel Poulain.

Spectroscopic studies of rare earth-doped halogeno-phosphate glasses. Journal of

Optoelectronics and Advanced Materials, 15:11–12, 11 2013.
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