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Introduction

Fractional differential equations are of interest in many areas of applications, such as eco-
nomics, signal identification and image processing, optical systems, aerodynamics, bio-
physics, thermal system materials and mechanical systems, control theory, etc.

In recent years, there has been a great deal of research on the questions of existence and
uniqueness of solutions to boundary value problems for differential equations of fractional
order

In this work, we study fractional differential equations with the three-point boundary
conditions in the article [12]

This work is divided into three chapters:

The first chapter is devoted to the basic concepts and fractional tools used in this work.

In the second chapter, we give the notions and preliminary properties related to the
most important approaches of fractional derivation the approach of Riemann-Liouville and
Caputo.

In the last chapter, we consider a fractional differential problem of the Caputo type we
prove the existence and uniqueness result. These results are given by applying some classical
fixed-point theorems for the existence and uniqueness of solutions, end this chapter with an

illustrative example.



General Notations

We will use the following notations throughout this work:

sets

C%a,b]) = C([a,b]) the space of functions f continuous on [a,b] with real values.
b
LP([a, b]) space of functions « measurable on [a,b] and satisfying / | u(t) P dt < 0.

AC([a,b]) space of absolutely continuous functions on |[a, b]

(= {ue C(lab]);u € L'([a,b])})

Functions
INEY! The Gamma function.
B(z,vy) The Beta function
Eo(x) the Mittag-Le function fller with one parameter.
E, () the two-parameter Mittag-Le fHer function.



Chapter 1

Preliminaries

1.1 Some elements of topology

Definition 1.1.1. (Norm)(/[2]

Let E a vector space on R. a norm on ||.|| is an application ||.| : E — R
(1)Vz € E,||z]| >0

(2)Vx € E.NA€R, || Az| = |Al||l=]|;

(3)¥(z,y) € E? ||z +y| < |lz|| + ||yl (triangular inequality);

(4) Izl =0z =0

Definition 1.1.2. (spaces of continuous function), [3]

Let Q = [a,b] where a,b € R a finite or infinite interval. We define the space C™(Q)
m € Ny =1{0,1,2,...} as:

1. C°(Q) = C(Q) is the space of continuous function on 0 with the norm

| flleie) = max| ()

2. In the general case C™(Q2) space of continuously differentiable function m times on Q

where

_ (k)
| fllem@) = kz_olglgg | [ (x)],m € Ny

Definition 1.1.3. (Banach space)[2]

We call Banach space any vector complete normed space on the body K =R or C




Example 1. C([a,b];R) space of continwows functions on J and with values in R is of

Banach.

Definition 1.1.4. ( Open Parts ) [5]:we say that M is an open part of metric space E if we
can create a open ballat each of the points contained in M (of radins > 0 ) having its point

at its center, that is to say
(Vx € M)(3p > 0) : Bo(x,p) C M

Definition 1.1.5. (Closed parties) [5]

we say that M is a closed part of E if its complement is open to it
Example 2. Any closed ball is a clased part.

Definition 1.1.6. (Compact parts) [4]:
To be M C R we say it is compact parts if for any covering of which by openings one an
extract a finished underlaying.
briefly: if (U;);c s an open family such as C C (U;),c; then there is a finite subset

JclI, Cc U Ui

ieJ

Definition 1.1.7. (Relatively compact parts) [4] :
We say that part of a metric space X compact part if its adhesion is a compact part of X.

Definition 1.1.8. (Operator) [6]
consider E be a normed space vector ; a linear mapping M to E the latter is called the linear

operator in E . and Dy domain of M, where Dy = {x € E, Mx € E}

Definition 1.1.9. (Continuous operator) [6]
we say that operator M s continuous

ifVe >0,36 >0: (2,2

5

"€ Dy): Hx, —7||<é= HMx/ - Mx'|| <€

Definition 1.1.10. (Bounded Linear Operators) [0]

Let E be a normed vector space and M : E — E. M is a bounded linear operator if

(Vo € Dy) « |[Mz]| < [|M]].[l]].



where

Mzx
1M = sup | Ma]| = sup 12421

2] <1 seny 2]l
Definition 1.1.11. (Compact operator) [8]

We say that M it is compact operator if the image of set X C R by M that is to say the set
M (X) is relatively compact

1.2 Fixed point theorems

Definition 1.2.1. (Fized point)
Let T be an application of a set E in it itself. We call fized point of T any point e € E such
that T'(e) = e.

Theorem 1.1. [8/(Banach contraction principle)

Let E be a complete metric space and let T : E — E be a contracting application, i.e. there
erists 0 < k < 1 such that d(Tx,Ty) < k(z,y),Vz,y € E. Then T admits a single fized
point e € .

Theorem 1.2. [12] Let X be a Banach space, let B be a nonempty closed convex subset of
X. Suppose that T : B — B is a continuous compact map. Then T has a fixed point in B.

Theorem 1.3. [1] (Nonlinear alternative for single-valuedmaps)

Let X be a Banach space, let B be a closed, convex subset of X, let U be an open subset of
B and 0 € U. Suppose that P : U — B s a continuous and compact map. Then either

(a) P has a fized point in U, or (b) there exist an x € OU (the boundary of U) and A € (0,1)
with x = AP(x).

Theorem 1.4. Let [U,d} be a nonempty complete metrie spece, and let wy > 0 be such a

map that, for every k € N and for every u,v € U, the reiation
d (T*u, Tk") < wid(u,v) (k € N)

uo € U, the seqaenee {T*wy}.°, conterges to this fired point u*.



1.3 Useful functions

1.3.1 The Gamma functioa

Definition 1.3.1. [4] - The Gamma function is important as it is an extension to the
factorial function f(n) =mn! for alln € N.

- The Gamma function is defined as the single variable function
[(x) :/ e "M dt, x>0
0
- By using integration by parts we find that

Iz+1)= / e "trdt = x/ e 'l dt = o (z).
0 0
and
Lz+1)=2z!, ifzeZ".

- From I'(x + 1) = al'(x), it is clear that if I'(z) is known throughout a unit interval say:
1 < x <2, then the value of I'(x) throughout the next unit interval 2 < x < 3 are found and
S0 on.

In this way, the values of I'(x) for all positive values of x > 1 may be found.
- From I'(x) = @, it is clear that if T'(x) is known throughout a unit interval say:
1 <z <2, then the value of I'(x) throughout the previous unit interval 0 < z < 1 are found

and so on.

Remark 1.3.1. From I'(x 4+ 1) = zI'(x) and I'(x) = @, it is clear that T'(x) is exists

for all values of x except when x = 0 or a negative integer.

1.3.2 The Beta function
Definition 1.3.2. [4] - The Beta Function is defined as the two variable function
1
B(z,y) = / t" N1 =) dt, forx,y >0
0

The function can take some form
_1-
w/2
B(z,y) = 2/ (sin 0)*(cos 0)*df, put t =sin®0
0

10



oo uzfl
B -/ =4 tt = .
(-/L‘ay) /07 (1 +u)$+y u, pu 1 T u

- From the definition it is easily seen that B(x,y) = B(y,x).
dx

Example 3. Evaluate fol :
—x

=
Solution
Substitute % = sin 6, then we obtain
1 /2
T 1
— = sin 0) /%0,
| A==5[ o)

Using the defintion of Beta function, we get

VALY

/0 Vi—azt 4 T(3/4)

1.3.3 The Mittag-Lefller function
(see[5])
Definition 1.3.3. Let n > 0. The function E, defined by
+oo L
_;;r@n+1)
whenever the series converges is called the Mittag-Leffler function of order n. This function

has been introduced by Mittag-Leffler . We immediately notice that

+0o0

: S
El(z)_]z NOE ZO—‘eXp
1s just the well known exponential function. The more general class of functions is defined

as follows

+o0
Z’I’L

Eop(z) = Z:; Tlna £ B) (,8) >0

Example 4. For some special choices of the parameters ny and mwo, we can recover certain

well known functions:

11



(a) For x € C, Fy (—2?) = Fyy (—2?%) = cosz.

(b) For x € C, By (2*) = Fa; (2°) = cosh

(c) For x>0, E1s (/%) = Eyja1 (2'?) = (1 + erf(z)) exp (2?).
(d) For x € C and r € N.

r—2
1 x
o) = 31 (- 35

k=0
(In the case x = 0, appropriate limits need to be taken on the right-hand side.) In (c), erf

denotes the error function defined by

erf(x / exp t2 dt
f

We leave the proof of these identities as an exercise for the reader. One last property of
Mittag-Leffler functions that we mention before building the bridge to fractional calculus is

a relation between two Mittag-Leffler functions with different parameters.

12



Chapter 2

Derivatives and fractional integrals

This section will be devoted to elementary definitions: the integral and the fractional
derivative of Rimeann-Liouville, as well as the derivative in the sense of Caputo and some

properties.

2.1 Fractional integral

Definition 2.1.1. Let f : [a,b) — R be a continuous function on b € R. On define:

1) = [ s

T2 f(t) = /: dt /:f(s)ds.

(1) = / (t — )/ (s)ds.

The second primitive
We use Fubini’s theorem

For n-th iteration:

I”f(t):/:dtl /:1 dt2..-/at“ Ft)dt, = (n_11>!/at(t—s)(”1)f(s)ds neN. (21)

This formula is called Cauchy’s formula.

Definition 2.1.2.

13



The Riemann-Liouville fractional integral of order o € R

Tof(t) = ﬁ/ (t— )" f(s)ds. (=00 <a<t<oo)

Where f : a,b) — R a continuous function

Example 5. Consider the function f(x) = (x — a)?, Then

To(e—a)’ = o~ / (@ — 02Nt — a)t.

(@)
We get to
I'B+1)
Tr —a)P = — 2 T g)Pte 2.2
2o -0 = s @) (2.
we can see that this is a generalization of the case a = 1 where we have
I'(B+1)
T —a)f = _ \B+1
Mo - =gy @ - a)
B (x — a)/3+1
B+1
Properties

1- Z2 f(t) exists almost everything ¢ € [a,b] if f € L'([a,b]) and a > 0
2-For f € L'([a, b]) the fractional integral of Riemann-Liouville has the property of a semi-

group:
TALf O] =T3P f(6) = I f(1)] for a>0,8>0. (2.3)

is true of almost everything ¢ € [a, b].

3- For any function f € L([a,b]), the fractional integral has the property of linearity .i.e.

TEOF(E) + g(t) = NTf(£) + T%(t) a € Ry, A€ C (2.4)

2.2 Fractional derivation in the sense of Rimann-Liouville

Definition 2.2.1. [1/]
Let f be a function that can be integrated on [a,b] and « € [n — 1,n| with n € N*. We call

14



the fractional order o derivative of a function fin the sense of Riemann-Liouville left and

right is defined by :

D, f(t) = ﬁ% / (t— 7)1 f(r)dr. (2.5)
and ,
Dy f(t) = ﬁ (—%) /t (r — )" f(7)dr. (2.6)
respectively.

where n = o] + 1 and o] designates the integer part of the real number «.
The relation between the fractional derivative and the ordinary derivative, we have :
DL f(t) = DT (1)), (2.7)
and
Dy f(t) = (=D)" (L= [ (1))- (2.8)
In particular , when a =n € N we get :
Dy f(t) = f™(t) and Dy f(t) = (-1)"f™ ().

Example 6. 1- The derivative of f(t) = (t — a)? in the sense of Riemann-Liouville

Let o be non-integer and 0 <n —1 < a <n and B > —1 then we have :

Dot — a) — ﬁ% / (t — 7)o \dr (2.9)

After simple calculation we find:

LB+1)

[} o g__~\~ T . B—a
Dt —a) _F(ﬂ—a—i—l)(t a)
Then
ap_ s _LBHD s
Dt —a) _F(ﬁ—a—i—l)(t a)’ e, (2.10)
For a =1.5 and B = 1.5 we have :
s D(25)
DS = T - ['(2.5) (2.11)
2- The derivative of f(t) =C
ay C —«

For the demonstration it s enough to take g = 0.

15



2.3 Fractional derivation in the sense of Caputo

Definition 2.3.1. [1/]

dn
Let f a function such that %f € Ly([a,b]) and o € |n — 1,n| with n € N*. The fractional
derivative of order o of f in the Caputo sense on the left and on the right are defined by:

DL = gy [ =T e (213)
and
1\ b
CD,?_f(t) = —an 1—)a) /t (1 — t)"_o‘_lf(")(T)dT (2.14)
respectively.

The relation between the fractional derivative and the ordinary:

D f(t) = (117D F)(1) (2.15)
and
“Dy-f(t) = ()" (L= D" f)(t) (2.16)
If  =n € N then:
“pr, = fM() and 9Dy = (—1)"fMO), (2.17)

Example 7.

1- The derivative of a constant function
“D*C =0 (2.18)

2- The derivative of f(t) = (t — a)?
Let o be an integer and 0 <n —1 < a <n with § >n — 1, then we have

Lpg+1)

Dt - a) = Fn—a)l(6—n+1

] / (t — 7)o (1 — a)ﬂ_"dT (2.19)

When changing the variable T = a + s(t — a) and after simple calculation we find

LpB+1)

A i v ey

(t — a)ﬁ_o‘

16



2.4 Properties of fractional derivatives

1- The fractional derivative operator is linear, let f and g betwo functions, for A and u € R,

then: DY(\f + pg) exists, and we have:
D*(Af + pg)(t) = ADf(t) + uDg(t) (2.20)

Lemma 2.4.1. If D*f = 0, D“ is fractional derivation in the sense of Rimann-Liouville.

Then
f(t) = ; C]F(]Fff—;l—)n)(t — a)j—i—a—n (221)

Where ¢; are constants, n = [a] + 1 and f be a function checking.

The relation 2.21 it writes in many books as follows

n—1

F(t) =3 ky(t — ay e (2:22)

j=1

Where k; are constants
Proof. according to the definition (2.14) we have
(D f)(t) =D "Z"f|(t) =0

So, first we have

[z f1(1)

I
O
—~

~+
|
S
~—
<

and by the application of Z we get
n—1
Zf1(t) = Y &ZI°((t — a)]
j=0

Taking into account the relationship (2.2), we will have

A0 =X ey gt

Then using the classical derivation and the fact that

T(A+ 1)

A e g

(t —a)*™

17



one finds

Theorem 2.1.
Let a, 8 >0 and n = [a] + 1,m =[] + 1 such that (n,m € N*), then :

1. Ifa> B3>0, then for f € L'([a,b]) equality:
DY f)(t) = I°77f(t) (2.23)
is true of almost everything about [a, b].
2. If there is a function p € L*([a,b]) such that f = T%p then :
DI f (1)) = f(b)- (2.24)
is true of almost everything t € |a, b].

3. If the fractional derivative of order «, of a function f(t) is integrable, then

n

2010 = 10~ S0 e =

RS (2.25)

j=1
Proof. 1. For o > 8 > 0, then n > m, we have:

DT f)(t) =D"I" (T ) (¢)
=D"(I" 7 f)(1)
—D"T" (T 1) (1),

hence

DY (1) (1) = T (1) (2.26)
2. If we substitute § by « in (2.26), we get

DI (1) = D (Z%(t)) = T%(t) = f(t)

18



Proposition 2.4.1. The fractional derivation and the classical derivation (integer order)

only switch that if f*)(a) =0 for all k =0,1,2,--- ,n—1

dn fo% o n-+ao
& () = Do) .20
But
n n—1 ¢(k) a —a k—a—n
D~ (%f(t)) =D f() = fmi Z(Z - 73+ 0 (2.28)

2.4.1 Properties of the fractional derivation in the sense of Ca-

puto

Theorem 2.2. [1/]
Let a > 0 and n = [a] + 1 such that n € N* then the following equals

1.
“peTef = f (2.29)

—_

n—

¥ (a)(t — a)t
72D (1) = (1) - Y L)

o (2.30)

B
Il
o

are true for almost everything t € [a,b].

Proof. 1. By (2.24) and the use of semi-group property (2.9), one finds

(DI f) (t) = (Zy D If) (t) = IO f

(Z2(“D* ) (1) = (T2Z;~°D") £ (1)

According to the property (2.9), we have

(Igzg*amf) (t) =ZJIT D" f(t)

=1, D"f(t)}

and like,

19



one finds

/)
Za(C'Dozf Z o t—ak
k=0

So the Caputo bypass operator is a left-handed inverse of the operator of fractional

integration but it is not a right inverse.

O

Theorem 2.3. Let fand g be two functions whose fractional derivatives of Caputo exist,

for X and p € R, then: “D*(\f + ug) exists, and we have :

CDYN(t) + ng(t)) = XD f (1) + XD(1)

20



Chapter 3

Existence and uniqueness for boundary value

problems involving Caputo derivative

3.1 Introdution

on a fractional Caputo-conformable problem with boundary value conditions via different

orders of the boundary

c“Dx (t) = f(t,z(t)), t€[0,T], 1< <2,T >0,
a12(0) + b1z(T') = ¢4, (3.1)
as(°DYx(n)) + ba(‘D'x(T)) = 2,0 < < T,0 <y < 1,

where ¢D? denotes the Caputo fractional derivative of order q,a;,b;,c;,i = 1,2 are real

constants such that a; + by # 0,a,n'™ + b7 # 0, and f is a given continuos function.

Lemma 3.1.1. For any y € C([0,T],R) , the unique solution of the three -point boundary

value problem
Dz (t) =y(t), t€[0,T], 1<a <2,

a12(0) + byz(T) = ¢, (3.2)

az(“D7x(n)) + ba(“D7x(T)) = 2,0 < <T,0 < <1,

21



18 given by

() = /0 %y(s)ds_ albibl /0 (TF_(;);_ y(s)ds (3.3)

Cq b1TF(2 — ’)/) — (&1 + bl)F(Q — ’}/)t
a; + by (a1 + bi)(agn'=7 + b T'7)

« (a2 /On =) s+ by /OT %y(s)ds—@)

_|_

[ —77) a—7)
Proof 3.1.1. For 1<a < 2, by lemma 2.1 we know that the general solution of the equation

D%z(t) = y(t) can be written as

DO (t) = y(t) (3.4)
t—s)t

IE(t) = Iay<t) — ko — klt = /0 ( F(a)

wher ko, k1 € R are arbitrary constants.

y(s)ds — ko — kqt (3.5)

Since
'

Dy = 0D = —
o T2 —7)

SDVIy(t) = 197y(1),

we have

kfltli’y

cDVa(t) = " Ty(t) — Rt — /0 my(s)ds “ T )

['(2—-7) I(a—7)
Using the boundary condition ,we obtain

a12(0) + biz(T) = ¢

as(“D7a(n)) + by(D (1)) = ¢y

T (n—s) 0t (T — s)o1 ki(aan'™" +b,T7)
) Py v | iy v g =

22



Therefore ,we have

b (T — s) ! c b TT(2 —
k:() = : / ( ) y(S)dS - : - : (1, 7) 1—
ap + bl F(Oé) ap + bl ((11 -+ bl)(&gn 74 b2T ’y)

X (az /077 %y(s)ds + by /OT %y(s)ds - 02),

<a2 fo Wrszaa J Ly(s)ds + by fO % (s)ds — Cg)
CL27]1 7+ bQTl v

]{31:

Substiting the values of ko, ki in (3.3) ,we obtain the result ,this completes the proof.

3.2 The study of existence and uniqueness

Let J = [0,7] and C' = C(J,R) be the banach space of all continuous real function from
J into R equipped with the norm ||z| = supies|z(t)| . in view of lemma 3.1, we define an

operator F: C — C as follows

Fo = [ reatends - e [ s aas

X blTF(Q — ’7) — (a1 + bl)F(Q - ’y)t
(a1 + bl)(CLin_’y + bng_W)

8 (a2 /0” Mf(safc(S))dSJrlb /OT wf(&x(s))ds—cg) LG

Do —7) C(a—7) a; + by
Note that problem (3.1) has solutions if and only if the operator F'z has fixed points.

We denote by Fx = Fix + Fox, where
_ )afl

(Fix)(t) = /0 % F(s,2(s))ds, (Foz)(t) = —kTt — k2.

Here the constants ky and k{ are given by

b (T — 5)o! o (s — L bTT(2 —7)
b=t e S e e )
a ﬂw s,x(s))ds + b Tw s, xz(s ds—c)
([ U satenas v [ T patends - ),
. _F(2—7)<a2 on%f( ()d3+b2f0 %f(s,x(s))ds—@)

aon' =7 + b T

Now, we are in a position to present our main results

23



Theorem 3.1. suppose that f: J x R — R s continuous and satisfies

[F(t,2) = [t y)l < m(t)|z =yl

forte Jox,y €R, and m € L*>®°(J,RT).If

(U+V)<1+ 1] ><1 (3.6)

|(11 + b1|
then problem (3.1) has a unique solution, where

T|ml _ ImlIT2 = y)(Tn*as| + T |ba)
I(a+1) I'(a =7+ 1)]agn' =7 + b T

[l = sup [m(t)], U =
teJ

Proof 3.2.1.

[(Fa) (@) — (Fy) )] S/ %U(&I(S))—ﬂ&y@)lds

0

by [T (T —s)!
" a; + by /o ['(a) |f(s,2(s)) = f(s,2(s))lds

bI'(2 =) — (a1 +b)I'(2 — )T
(Cbl + bl)(a2n1—7 + bQTl_'Y)

X <a2[7’|f(n,x) — f(n,y)| + oI f(T, ) — f(T, y)\)

24



Denote N (z,y) = f(s,2(8))-f(s,y(s)). For any z,y € C and each t € J, we have
t— S)ozfl

waxw—oam@ws[:i?@y—maawus

summm—yuzfi%ggl@

< Ullz =yl
|(Fax)(t) — (Fay)| < TIRY — kY| + [k§ — kg,

TT(2 — 7)|az| /77 (n —s)* 1
TIK{ — K{| < N(z,y)d
K il= laon'=7 + 6T 7]y D(a—7) (2, y)ds

(T = s)t
/0 —F(a ) N(x,y)ds

TT(2 — )by
laon'=7 + by T

[ ]| TT(2 = ) [bs

< Iml[TT 2 = 7)[as|
|asn' =7 + b1 7|

|
< =yl

Iz =yl +

< Vlz -y,
T T — g)e—1

T A= ST
0

ay + bl F(Oé)
"=
/0 (o —7) N (z,y)ds

I

kg — kgl <

|b1as|TT'(2 — )
|CL1 + bl||CI/2’f]1_’Y + b2T1_7

0162 TT(2 — )
\al + blHagnl*V + bQTli’Y‘

“\ar +b1  |ar+ b '

Therefore, we have

IFa)0) = Fn] < @+ V(14 2 e -l

This together with (3.4) implies that F is a contraction mapping. The contraction mapping
principle yields that F has a unique fized point, which is the unique solution of problem

(3.1). This completes the proof.
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3.3 The study of existence
Theorem 3.2. Let f: J x R — R be a continuous function. Assume that
(£, )| < m(t) +d|z|”

for eacht € Jyo € Rym € L*(J,R),d > 0 and 0 < p<1 .Then problem (3.1) has at least

one solution.
Proof 3.3.1. Let B, ={x € C: ||z(t)|| <r and t € J}, M = ||m]| + dr* ,where
r > max{2k, (2Ld)T7 },

- (1+ ] )(T“IImH L TmlIC2 = )" ag] +Tav|b2|>)
lay + 01| ) \T'(a+ 1) Do — 7+ 1)]agn=7 + byT17]

TT(2 = 7)lcol
|agn'=7 + b T |

b1C2TF(2 — ’7) &1
(a1 -+ bl)(a2771*7 -+ bQTlfw) ay + b1

e (v ) (e o T2 Dl 1)
lay + 01| ) \I'(a+1)  T(a—v+1)|an'=7 + b,T|

Y

Observe that B, is a closed, bounded convex subset of the Banach space C'. Firstly, we prove

26



that F: B, — B,. For any x € B,., we have

NE@@HSZZg%ég;OM@+dm®WMSSf€%%y

TU(2—7)|es]  TT |a2 Jo' (n— )27 f(s,2(s))ds|
17 4 by T17] F( — )lazn' =7 + b1

TIkT| < e

)16 fo — )7 f (s, x(s))ds|
F( )‘(ZQT]l ’Y‘Fbng 7’

TL(2 =)o TMI(2 =) (1" as| + T bs)
= o™ 5.7 T T — v+ Dagn'™ + 6T

+

Y

blchF(2 — ’Y) C1

(a1 + bl)(a2n1_7 + bQTl_’Y) ay + bl

by T(T — s)ot
a + by /0 T'(a) f(s,2z(s))ds| +

dl

k5] <

TT(2 —7)[b]
](al + bl)(&27717'y + bQTlfﬂf)‘

_l_

T (T _ S)a—y—l

n—(n_s)a—'y—l s, x(s))ds T oy Jisx(s))as
o [ O atoisl + b [ S psa(s)a

blclTF(2 — ’Y) C1

(CLl + bl)(a2n1_7 + bQTl_’Y) a + bl

)

TM|b|
F(a+1)|ay + b4

Hance ,we have

[ Faf| < (1 + 164 ) < T |[m|| T|lm|T(2 = v)(n*"]as] -|—Tav|b2|)>
< la; + 01| ) \T(a+1) T(a—v+1)|asn'=7 + bT |
TF(2 — 7)|CQ‘ blchF(Q — f}/) B ¢
(a1 + b1)(agn™=" + b,T7)  a; + by

|asn' =7 + 0T |

T TT(2 — o= T
+drp(1 n |b1] )( n (2 —=7)(n*az| + ||bz|))
la; + by Na+1) Do — v+ 1)|agn*=7 + b T |

§k+dr”L§g+—:r.

N3

This implies that F: B, — B. Secondly, we prove that F maps bounded sets into equicon-

tinuous sets. Let B be any bounded set of C. Notice that f is continuous on J, therefore,

without loss of generality, we can assume that there is an N such that

[F(t,2(1)] < N
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foranyt e J and x € B. Now, we let 0 < t; <ty <T. Then for each x € B we have

/Tl (tz — S)a_l — (tl — S)a_l
0 T(a)f(s,x(s))ds| + | [[2 = f(s,2(s))dsl

I(a)

[(Frz)(ta) — (Frz)(T1)] <

N(ty —t)" N+ (o =) —15) _ 2N(ty — )"
['(a+1) ['a+1) - T(a+1) ’

and

|(Fa)(tz) — (Fox)(ta)] < |R7|(f2 — 1)

< (2 =) (Nn®*ag| + NT*V|by| +T'(av — 7 + 1)[ca| ) (t2 — t1)
- C(a — v+ 1)|agn™=" + b T

Hence, we have

[(Fz)(t2) = (F)(t)l| — 0

as to — t1, andthelimitisindependentof x € B Therefore, the operator F: B, — B,
is equicontinuous and uniformly bounded. The Arzela-Ascoli theorem implies that F(B,) is
relatively compact in C. By Theorem 1.2, we know that problem 3.1 has at least one solution.

The proof is completed.

Theorem 3.3. let f: J x R — R be a continuous function. Assume that
(1) there ezists a function

@: [0,00) — [0, 00) such that

where t € J,x € R;

(2) there ezists a constant K > 0 such that

K

Rio(K)Q "
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wher

TT(2 — 7)|co

. C1 blchF(Q — ’y)
a |CL2771_7 + b2T1_7|

a; + b1 B (a1 + bl)(a2n1_7 + bQTl_W)

Y

T*||m|  TT(2 —)mll(Jazln'= + [bo|T"77)
[a+1) Do — v+ 1)|agn*=7 + b T 7|

7721161 <TF(2—7)(\G2\771_”+ [b2|T7) r )
lay + 01 \ T'(av — v+ D)|agn*=7 + b7  T'(a+1)

Q=

Then problem (3.1) has at least one solution

Proof 3.3.2. Firstly, we prove that F maps bounded sets into bounded sets in C. Let B be

a bounded subset of C and ||z|| < r for any x € B As in the proof of Theorem 3.2, we have

t—<t_8)aa_1 s, x(s
| St

|(Fax)(8)] < TIkT| + [K5 ],

2 < Telmler)

[(Frz)(t)] < = F(a——i—l)’

(2 — 1=y T TT(2 —
Tk < TE2 = Dl () faahy' ™ + [T'7) | TT(2 =)o

Pl =7+ Dlagn' ™7 + 52T Jasn' + 6T
e < lmlle@iba] (TT2 =) (asln™ 7 + [T T
0l —= |CL1 + b1 F(Oé - —+ 1)|a2771—7 + b2T1—7| F(Oé + 1)

C1 61C2TF<2 — "}/)

+ - .
ay + bl (Gq + bl)(agT}l*’Y -+ b2T177>

Hance

| Fz|| < R+ ¢(r)Q.

Secondly, we claim that F s equicontinuous. The proof of this claim is the same as the one

in the proof of Theorem 3.3. Finally, we let x = A\Fz for some X\ € (0,1) Then for each
t € J we have

|z = [AFz| < R+ o(]2]))Q.

This implies that

R+o(lz)Q ~
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According to the assumptions, we know that there exists K such that K # ||x||. Let
O={yeC: |yl <K}

The operator F: O — C is continuous and completely continuous. Combining the choice
of O and Theorem 1.3, we can deduce that F has a fized point in O, which is a solution of
problem (3.1).

Example 8. Consider the boundary value problem

eDix(t) = (562 — 3t)e=="® + Ljz(t)|5, t € [0,1],

27

) (3.7)
32(0) + 52(1) =2, “Dra(y) + 1(*Dgz(1)) = —3

2 1
f(t.x) = (56° = 3t} + —|a(t)]?
(e

since
2 1 1
|f<t,$)| S |5t - 37f| + —|ZE|4,
3T

let d = 5-,p =1 and m(t) = |5t* — 3t| Thus, by Theorem 3.2, problem 3.7 has at least one

solution on [0, 1].
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- J

K Resumé N

Dans ce travail, nous étudions I'existence et I'unicité de solutions d'équations
difféerentielles fractionnaires incluant une dérivée de Caputo avec une condition aux
limites a trois points. Nos résultats sont bases sur un théoreme standard du point fixe
pour I'existence et I'unicité et un théoreme classique du point fixe pour I'existence.

Mots-clés : derivée de Caputo - Existence et a l'unicité -- théoréme du point fixe

O

K Abstract

In this work, we study the existence and uniqueness of solutions of fractional differential
equations including a Caputo derivative with three points boundary condition. Our
results are based on a standard fixed point theorem for existence and uniqueness and a
Classic fixed point theorem for existence.

Keywords: Caputo derivative - fixed point theorem - Existence and uniqueness




