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Abstract

In In this work, we analyzed the Deep Galerkin method, starting with deep learn-

ing,beginning with the emergence of artificial neural networks, using Universal Approximation

Theorem of Neural Networks,where we applied this method to an parabolic problem to con-

solidate the study and demonstrated the convergence of the neural network to solve the PDE

through an example of Trifinyl with tight conditions in which the error function is zero.

Résumé

Dans ce travail, nous avons analysé la méthode Deep Galerkin, en commençant par

l’apprentissage profond, en commençant par l’émergence de réseaux neuronaux artificiels,en

utilisant Universal Approximation Theorem of Neural Networks, où nous avons appliqué cette

méthode à un problème parabolic pour consolider l’étude et démontré la convergence du réseau

neuronal pour résoudre le PDE à travers un exemple de Trifinyl avec des conditions serrées dans

lesquelles la fonction d’erreur est zéro.
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INTRODUCTION GENERAL

numerical method that are based on grids can fail when the dimensionality of the problem

becomes too large. Furthermore, even if we were to assume that the computational cost was

manageable, ensuring that the grid is set up in a way to ensure stability of the nite dierence

approach can be cumbersome. With this motivation, Sirignano and Spiliopoulos propose a

mesh-free method for solving PDEs using neural networks. The Deep Galerkin Method (DGM)

This circumvents the curse of dimensionality which is encountered with the latter approach

PDEs using neural networks. With this parameterization, a loss function is set up to penalize

the tted function’s deviations from the desired dierential operator and boundary conditions.

In this thesis, we study the Deep Galerkin Method This thesis is split into fort main chapters as

follows:

• The first chapter contains some basic concepts The most important functions, spaces and

theories, with brief definitions, facilitate the study of this method.

• The second chapter is devoted to the study of deep learning, what it is, what its purpose is,

why we are interested in studying it and giving it this attention from the study and what

it has to do with the deep Galerkin Method and the neural network We looked at artificial

neural networks in an integrated manner with their algorithms and their emergence up to

1



the latest developments.

• In the final chapter, we began to study the deep Qalerkin method that we had prepared to

study in the rest of the previous chapters, where we introduced the method and its algo-

rithm with the auxiliary theories to study with the thoughtful examples to which to apply

this method. We chose the problem of the equivalent pieces to apply this method.



CHAPTER I

SOME MATHEMATICAL

PRELIMNARIES

I.1 Some important theorems

I.1.1 Sobolev spaces:

Let p be a real number with 0 ≤ p ≤ ∞, ω is an open subset of Rn,The Sobolev spaceWm,p(Ω)

is defined to be:

Wm,p(Ω) = {u ∈ Lp(Ω)|Dαu ∈ Lp(Ω), |α| ≤ m}.

Where Dαv is the derivative in the sense of the distributions for all v ∈ Lp(Ω) ,The space

Wm,p(Ω) equipped with the norm

‖u‖Wm,p =
∑

0≤|u|≤m

‖Dαu‖p

Definition I.1.1. In the special case where p = 2, we define the Hilbert-Sobolev spaceHm(Ω) =

Wm,2(Ω)

for,m ∈ N, Hk(Ω) = {u ∈ L2(Ω)|Dαu ∈ L2(Ω), |α| ≤ k}

2



Chapter I Some Mathematical prelimnaries

The space Hm(Ω) is equipped with the inner product

〈u, v〉Hm =
∑
|α|≤k

∫
Ω

DαuDαvdx,

and the norm

‖u‖Hm =
∑

0≤|α|≤m

‖Dαu‖2

Theorem I.1. (Rellich-Kondrachov) Ω ⊂ Rn be a Lipschitz domain,m ∈ N and 1 ≤ p ≤ ∞.

Then, the following mappings are compact embeddings:

1.Wm,p(Ω) ↪→ Lq(Ω), 1 ≤ q ≤ p∗, 1
p∗

= 1
p
− m

d
, ifm < d

p
,

2.Wm,p(Ω) ↪→ Lq(Ω), q ∈ [1,∞), ifm = d
p
,

3.Wm,p(Ω) ↪→ C0(Ω̄) , ifm > d
p
.

Proof. see [3]

Proposition I.1.1 ( Poincaré’s inequality). [2] Let Ω a bounded open then there is a constantC >

0 which depends only on, such as

‖u‖Lp(Ω) ≤ C‖∇u‖Lp(Ω) ∀u ∈ W 1,p
0 (Ω) (1 ≤ p <∞)

In particular, the expression ‖u‖Lp(Ω) is a standard on u ∈ W 1,p
0 (Ω) which is equivalent to the.

standard ‖u‖1,p
W (Ω)

Theorem I.2 (Hölder’s inequality). [4] Let f ∈ Lp(Ω)and g ∈ Lq(Ω) with 1 ≤ p < ∞, Then

f, g ∈ L1(Ω) and ∫
Ω

|(f(x)g(x))|dx ≤ ‖f‖p.‖g‖q

Definition I.1.2. The dual V
′

of a normed vector space V is the normed vector space of con-

tinuous linear forms onV . The dual space is equipped with the (operator) norm

‖f‖V ′ = sup
06=v∈V

|f(v)|
‖v‖V

3



Chapter I Some Mathematical prelimnaries

Theorem I.3. [5] Let H be a Hilbert space and let l ∈ H ′ (dual of H). Then there is a unique

u ∈ Hsuch that

l(v) = (u, v) ∀v ∈ H

Moreover

‖l‖H′ = ‖u‖H

I.2 Auxiliary Functions and Theories in Universal

Approximation Theorem

I.2.1 σ-algebra

Definition I.2.1. An algebra of sets on X is a nonempty collection A of subsets of X that is

closed under finite unions and complements.If E1, ..., En ∈ A, then ∪n1Ej ∈ A; and if E ∈ A,

then Ec ∈ A.

Definition I.2.2. [6] σ-algebra is an algebra that is closed under countable unions.

Since ∩jEj = (∪jEc
j )
c, algebras are also closed under finite intersections. Also, if A is an

algebra,

then ∅ ∈ A andX ∈ A since ∅ = E ∩ Ec and X = E ∪ Ec forE ∈ A.

Definition I.2.3. [6] If X has a topology, then we define a Borel σ-algebra on X , as the

σ-algebra generated by the family of open sets in X, which is denoted by BX .

I.2.2 Measure

We follow Folland [7] that we want the range of our measure to be [0, 1], and we just defined a

family of sets algebra for the domain of the measure. Let’s define measure.

4



Chapter I Some Mathematical prelimnaries

Definition I.2.4. Let X be a set that is able to generate a σ-algebra onM from it A measure on

M(oron(X,M)) is a function µ :M→ [0, 1] such that

1.µ(∅) = 0,

2.If {Ej}∞1 is a sequence of disjoint sets inM, then µ(∪∞1 Ej) =
∑∞

1 µ(Ej).

Property (2) is called countable additivity and implies finite additivity: If Ej}n1 disjoint sets in

M, then µ(∪∞1 Ej) =
∑∞

1 µ(Ej).

If X is a set and M ⊆ P(X) is a σ-algebra, (X,M) is called a measurable space and the

sets inM are called measurable sets. If µ is a measure on (X,M), then (X,M, µ) is called a

measure space.

If µ(X) <∞, then µ is called finite.

If X = ∪∞1 Ej where Ej ∈M and µ(Ej) <∞ for all j, µ is called σ- finite.

Theorem I.4. [6] Let (X,M, µ) be a measure space.

1. (Monotonicity) If E,F ∈M, and E ⊆ F ,thenµ(E) ≤ µ(F )

2. (Subadditivity) If {Ej}∞1 ⊆M, thenµ(∪∞1 Ej) ≤
∑∞

1 µ(Ej)

3. (Continuity from below) If {Ej}∞1 ⊆M andE1 ⊆ E2 ⊆ ... then µ(∪∞1 ) = lim
j→∞

µ(Ej).

4.(Continuity from above) If {Ej}∞1 ⊇ M, E1 ⊆ E2 ⊇ ... andµ(E1) < ∞ then µ(∩∞1 Ej) =

lim
j→∞

µ(Ej)

Definition I.2.5. [6] If (X,M, µ) is a measure space, a set E ∈ M such that µ(E) = 0 is

called a null set. A measure whose domain includes all subsets of null sets is called complete.

Outer Measure

Definition I.2.6. An outer measure on a nonempty set X is a functionµ∗ : P(X) → [0; 1] that

satisfies:

i µ∗(∅) = 0,

ii µ∗(A) ≤ µ∗(B) ifA ⊆ B,

iii µ∗(∪∞1 Aj) ≤
∑∞

1 µ∗(Aj).

5



Chapter I Some Mathematical prelimnaries

The domain of the outer measure is easier to find since is just the power set of X . We now show

that why it’s also easy to fulfill the properties of a outer measure.

Proposition I.2.1. Let ε ⊆ P(X) be arbitrary and ρ : ε → [0,∞] be such that ;∅ ∈ ε,X ∈ ε,

and ρ(∅) = 0.For any A ⊆ X , define

µ∗(A) = inf{
∑∞

1 ρ(Ej) : Ej ∈ εandA ⊆ ∪∞1 Ej}

Thenµ∗ is an outer measure.

Proof. see[6]

Definition I.2.7. If µ∗ is an outer measure on X ,a set A ⊆ X is called µ∗- measurable if

µ∗(E) = µ∗(E ∩ A) + µ∗(E ∩ Ac), ∀E ⊆ X

Since E ⊆ (E ∩ A) ∪ (E ∩ Ac), by the definition of outer measure, ∀E ⊆ X ,

µ∗(E) ≤ µ∗((E ∩ A) ∪ (E ∩ Ac)) ≤ µ∗(E ∩ A) + µ∗(E ∩ Ac)

Thus, to show that A is µ∗-measurable, it suffices to show that the reverse inequality and if

µ∗(E) =∞,then the reverse inequality works, so A is µ∗-measurable iff

µ∗(E) ≥ µ∗(E ∩ A) + µ∗(E ∩ Ac), ∀E ⊆

Xs.tµ∗(E) ≤ ∞

Theorem I.5. (Caratheordory’s Theorem)If µ∗is an outer measure on X , the collectionM of

µ∗-measurable sets is a σ-algebra, and the restriction of µ∗ toM is a complete measure.

Proof. see[6]

I.2.3 Measurable Functions

Definition I.2.8. If (X,M) and (Y,N ) are measurable spaces, a mapping f : X → Y is

called (M,N )-measurable, or just measurable, if f−1(E) ∈M,∀E ∈ N

6



Chapter I Some Mathematical prelimnaries

Proposition I.2.2. • A function f : X → C isM-measurable iff Ref and Imf areM-

measurable.

• If f, g : X → C areM-measurable, then so are f + g and fg.

• If f, g : X → R̄ are measurable, then so are max(f, g) and min(f, g).

Proof. see[6]

Definition I.2.9. If f, g : X → R̄ where R̄ = R∪{−∞,∞}, we define the positive and negative

parts of f to be

f+(x) = max(f(x), 0),

f−(x) = max(−f(x), 0).

Then by this definition f = f+ + f−. If f is measurable, so are f+ and f−, by Proposition 2.3.

We just defined the measurable function and now we try to discuss functions that are building

blocksfor the theory of integration.

Definition I.2.10. (Folland Section 2.1) Suppose that(X,M) is a measurable space. IfE ⊆ X ,

the charac- teristic function XE of E (sometimes called indicator function of E denoted by 1E)

is defined by

XE(x)


1 ifx ∈ E

0 ifx /∈ E

Since the image of the characteristic function is {0, 1}, then XE is measurable iff E ∈M.

Definition I.2.11. (Folland Section 2.1) A simple function on X is a finite linear combination,

with complex coeffcients, of characteristic functions of sets inM. Equivalently, f : X → C is

simple iff f is measurableand the range of f is a finite subset of C. The standard representation

of f is:

f =
n∑
1

zjXEj ,whereEj = f−1({zj})and range(f) = {z1, ..., zn}.

7



Chapter I Some Mathematical prelimnaries

This definition show that f is a linear combination of characteristic functions and the union of

thesecharacteristic functions is X .

Theorem I.6. Let (X,M) be a measurable space.

i If f : X → [0,∞] is measurable, there is a sequence {φn} of simple functions such that

0 ≤ |φ1| ≤ |φ2| ≤ ... ≤ |f |, φn → f point-wise, and φn → f uniformly on any set on which f

is bounded.

ii If f : X → C is measurable, there is a sequence {φn} of simple functions such that 0 ≤ φ1 ≤

φ2 ≤ ... ≤ f, φn → f point-wise, and φn → f uniformly on any set on which f is bounded.

Proof. see[6]

I.2.4 Integration of nonnegative functions

In this section we fix a measure space (X,M, µ), and we define

L+ = {f |f : X → [0,∞], fmeasurable.g}

Definition I.2.12. If φ is a simple function in L+ with standard representation φ =
∑n

1 ajXEj ,

we define the integral of φ with respect toµ by∫
φdµ =

n∑
1

ajµ(Ej)

We note that
∫
φdµ may equal to∞ since µ(Ej) may be infinite. If A ∈ M, then φXA is also

simple by definition(φXA =
∑
ajXA∩Ej), and we define

∫
A
φdµ =

∫
A
φ =

∫
A
φ(x)dµ(x) and∫

=
∫
X

.

Proposition I.2.3. Let φ and ψ be simple functions in L+

1.if c ≥ 0,
∫
cφ = c

∫
φ

2.
∫

(φ+ ψ) =
∫
φ+

∫
ψ

3.if φ ≤ ψ, then
∫
φ ≤

∫
ψ

4.The map A→
∫
A
φdµis measure onM.

8



Chapter I Some Mathematical prelimnaries

Proof. see[6]

Definition I.2.13. ∫
fdµ = sup

{∫
φdµ : 0 ≤ φ ≤ f, φsimple

}
The above definition makes sense because the family of simple functions over which the supre-

mum istaken includes f itself. By the definition of
∫
f and Proposition (1, 2, 3), we have that∫

f ≤
∫
g.wheneverf ≤ g.and

∫
cf = c

∫
f for allc ∈ [0, 1)

Theorem I.7. The Monotone Convergence Theorem. If {fn} is a sequence in L+ such that

fj ≤ fj+1 for all j , andf = lim
n→∞

fn, then
∫
f = lim

n→∞

∫
fn

Proof. see[6]

Theorem I.8. If {fn} is a finite or infinite sequence in L+ and f =
∑

n fn , then
∫
f =∑

n

∫
fn.

Proof. see[6]

9



CHAPTER II

AN INTRODUCTION TO DEEP

LEARNING

II.1 Introduction

Deep Learning it’s a branch of machine learning that relies on artificial neural networks in-

spired by the structure and functions of the human brain, and it’s made a big fuss in the field of

artificial intelligence since its emergence, especially in 2006It has many characteristics, one of

the most important of which is

1.Deep learning has its roots in neural networks.

2.Deep learning is way of classifying, clustering, and predicting things by using a neural net-

work that has been trained on vast amounts of data.

3.Deep learning creates many layers of neurons, attempting to learn structured representation

of big data, layer by layer.

And what’s given him all this attention is that it’s a very important branch of machine learning,

which in turn is a branch of artificial intelligence So what’s machine learning, what’s artificial

10



Chapter II An introduction to Deep Learning

intelligence, what’s their relationship to the artificial neural network?

Machine learning:It’s a form of artificial intelligence, giving computers the ability to learn and

improve through experiments The machine learning algorithm can learn how to provide predic-

tions or solve problems when provided with sufficient data, as in Object recognition in pictures

or winning certain games[1] The algorithm contains three basic concepts: Mission,. perfor-

mance, experience.

Artificial intelligence:Techniques that have the ability to perform tasks that require human in-

telligence, such as speech recognition and visual perception,machine translation Current AI

systems have the potential to adapt to new experiences..[1]

II.1.1 Historical Trends in Deep Learning

Deep learning has had a long and rich history, but has gone by many names reflecting different

philosophical and Mathematical viewpoints, and has waxed and waned in popularity it’s a brief

reminder of the names of the creators and a statement of what you’re talking about it was the

beginning of human thinking that we could make a smart machine.

• In 1943, the first artificial neuron was invented by scientists and researchers "warren Mc

cullochet and water pitts ". This was through a scientific article in 1943 [8]

• (the perceptron).And then in 1957, the world did Frank Resemblatt developpem the first

dhistor daprisentage algorith

• 1974-1986:invention of multi-layered perception (antelegence artificiel)

• 1990.network ae neurones convelutututifs-lenet yann le cun

• 1997.neur-recurrent networks-LSTMs

• 2012.(Geeky Hinton)concours image net Envoldu deep learning
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Chapter II An introduction to Deep Learning

II.2 Neural Network

Neural networks are a model of machine learning inspired by the structure and activity of the

human brain to create a computer program that learns from data that first emerged in the 1890s

by psychology"W.James"It started in the 1940s by the worlds’ W. Pitts ’ and ’ J. Mc Culloch’

Neural networks are divided into two sections.

1.Biological Neural Networks

2.Artificial Neural Networks:It’s divided into three sections.

• nput layer(It’s the primary data of the neural network that transmits the information of the

hidden layers machine.)

• Hidden layers(is the intermediate layer between the input layer And the output layer is

where all the calculations are done.)

• Output layer(It’s the class that gives results to certain inputs.)

II.2.1 perceptron Network

It’s a set of experiments by the world(Frank Resemblatt) that he started by mimicking the human

mind that led to his creation of the first neural network in history called Perceptron, which would

later become the cornerstone of artificial intelligence, as shown in figure (2,1).

Remark II.2.1 (He described the Perseptron network). This network consists of two basic

layers The first layer is the input(X1, X2, ..., XK) And the second layer has neurons, or it’s

called the assembly function
∑

Links the two layers to weights (W1,W2, ...,WK)With an es-

timated one-on-one bias over Percptron Which also links the two layers apply the activation

function to the output end of the process So that in Perceptron this relationship applies to get

the result

yj =
n∑
i=1

Wi.Xi (*)

12



Chapter II An introduction to Deep Learning

Output results are as follows 
0 ify ≤ threshold

1 ify ≤ threshold
(II.1)

Set weights until we reach the lowest possible error rate

Corollary II.1. All output from the network is either 0 or 1

II.2.2 The functioning of the artificial neural network with different

activation functions

An artificial neuron is a function fj of the input [9]x = x1, x2 . . . , xd weighted by a vector of

connection weights wj = (wj,1 . . . wj,d) completed by a bias bj , and associated to an activation

functionϕ , namely

yj = fj(x) = φ(〈wj, x〉+ bj) (II.2)

Definition II.2.1 (Activation functions). Activation functions determine whether the informa-

tion (weight and bias) received by the nerve from the previous layer is sufficient to activate

neurons or not and then send the output to the next layer of neurons as input.

The activation function is chosen by shape, and there are several activation functions, of

which we note the following.

• The identity function

φ(x) = x (II.3)

• The sigmoid function (or logistic)

φ(x) =
1

1 + exp(−x)
(II.4)

• The hyperbolic tangent function ("tanh")

φ(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
=
exp(2x)− 1

exp(2x) + 1
(II.5)

13



Chapter II An introduction to Deep Learning

• The hard threshold function

φβ(x) = 1x≥β (II.6)

• The Rectified Linear Unit (ReLU) activation function

φ(x) = max(o, x) (II.7)

Here is a schematic representation of an artificial neuron where
∑

= 〈wj, x〉+ bj

∑neuron j
W2j

W1j

W3j

Wkj

X1

X2

X3

Xk

Activation function

eg: ReLU,sigmoid

output yj

input
variables

variable
weights

Figure II.1 – source: andrewjames turner.com.uk[9]

−2 −1 0 1 2

−2

−1

0

1

2

x

y

Id
Sigmoid
tanh
Treshold
ReLu

Figure II.2 – represents the activation function described above[9] .
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II.2.3 Neural network learning algorithms

In supervised learning, network training is a repeat process of going back and forth in the

network We compare the outcome and the real result, and this comparison is using the error

function to measure the quality of the prediction in the network.Expresses the end process of b

Forward propagation And about the process of returning b Back propagation.

• Forward propagation: The spread of initial input data In hidden web layers, after appli-

cation Neurons calculate on these data we reach the final layer as a result of predicting

.

• Back propagation It’s a method of training artificial neural networks based on weights

control based on error ratio.

• Loss function It’s an important factor in determining how close the neural network is

to the ideal weight. It helps us calculate the difference between the real results and the

results obtained, which we express in loss, and which we aim to reduce. There are several

ways to measure the Loss function, which is

MSE =
1

n

n∑
j=1

(yi − ŷi)2 (Mean Square Error) (II.8)

RMSE =

√√√√ 1

n

n∑
j=1

(yi − ŷi)2 (Root Mean Square Error) (II.9)

BCE = − (y ∗ log(ŷ) + (1− y) ∗ log(1− ŷ)) (Binary cross entropy) (II.10)

n:The number of input data

yi:real results,i:number of categories

ŷi:Results obtained after prediction

Corollary II.2. Machine learning requires human intervention to complete tasks, while deep

learning requires no human intervention to complete tasks.
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Chapter II An introduction to Deep Learning

II.3 Universal Approximation Theorem of Neural Networks

-Discriminatory Functions

Definition II.3.1. [10] We say that a function σ is discriminatory if given a measure µ ∈M(In)

such that ∫
In

σ(yTX + b)µ(x) = 0, y ∈ Rn, b ∈ R

implies thatµ = 0

Remark II.3.1. • functions are NOT discriminatory Let σ = 1
2
, and µ be a measure with

densityg = −X(0, 1
2

] + X[ 1
2
,1)

Clearlyµ 6= 0,but
∫

[0,1]
σ(yTX + b)µ(x) = 0,∀b, y

• Functions are Discriminatory Any bounded, measurable, sigmoidal function is discrim-

inatory. In particular, any continuous sigmoidal function is discriminatory.

Theorem II.1. [10] Let σbe any continuous discriminatory function Then finite sums of the

form

G(x) =
N∑
j=1

αjσ(yTj x+ bj),whereyj ∈ Rn, b, αj ∈ R

are dense in C(In).

In other words,given any ε > 0 and f ∈ C(In),there is a sum G(x) of the above form such that

|G(x)− f(x)| < ε , x ∈ In

-Proof of Universal Approximation Theorem[10]

Most Important Tools for Proof

Theorem II.2 (Hahn-Banach). [10]

Let V be a normed vector space,R ⊂ V a subspace of V Let L ∈ R∗,Then there existsL̂ ∈ V∗

that extends L to V and satisfies‖L̂‖V∗ = ‖L‖R∗
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Corollary II.3. Let V be a normed vector space, R ⊂ V a subspace of V

Let x0 ∈ V such that d(x0, R) = γ > 0.

Then there existsL ∈ V∗ such that

• ‖L‖V∗ = 1

• L(x0) = γ

•• L(R) = 0

Theorem II.3 (Riesz Representation Theorem). [10]

Let L be a bounded linear functional on C(In).

Then there exists a unique µ ∈M(In) such that

L(h) =

∫
In

h(x)dµ(x)

Proof. Goal:Let S ⊂ C(In) be the set of functions of the form

G(x) =
N∑
j=1

αjσ(yTj x+ bj)

We want to to prove that R := S̄ = C(In).

-S is a linear subspace of C(In).

-By contradiction suppose suppose R ( C(In, that is ∃f ∈ C(In)such that d(f,R) > 0.

-By the Corollary to H-B ∃L bounded linear functional onC(In) such that L 6= 0, but L(S) =

L(R) = 0

-By RRT ∃!µ ∈M(In) such that

L(h) =

∫
In

h(x)dµ(x),∀h ∈ C(In)

-SinceL(R) = 0and since σ(yTx+ b) ∈ R, ∀y, b then

0 = L(σ(yTx+ b)) =

∫
In

σ(yTx+ b)dµ(x), ∀y, b (II.11)

Since σ is discriminatory, (1, 1) impliesµ = 0, which in turn implies L = 0, and this is a

contradiction.
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II.4 Approximation of Classification Functions

Theorem II.4. [10] Let σ be a continuous sigmoidal function. Let f be a classification function

for any finite measurable partition of In.

Then for any ε > 0 there exists a finite sum of the form

G(x) =
N∑
j=1

αjσ(yTj x+ bj) (II.12)

and a set D ⊂ Inwith m(D) ≥ 1ε such that

|G(x)− f(x)| < ε ,∀x ∈ D

Most Important Tools for Proof

Theorem II.5 (Lusin). Let f : In → R be measurable.

Then for anyε > 0there exists a setD ⊂ In with m(D) ≥ 1− ε and h ∈ C(In) such that

h(x) = f(x), ,∀x ∈ D

Proof. -By Lusin’s theorem∃D ⊂ In with m(D) ≥ 1 − ε and h ∈ C(In)such thath(x) =

f(x),∀x ∈ D.

-Since h ∈ C(In) by the Universal Approximation Theorem,there exists a networkG of the form

(1, 2) such that

|G(x)− h(x)| ≤ ε x ∈ In

-Then for all x ∈ D we have

|G(x)− f(x)| = |G(x)− h(x)| < ε

II.5 Conclusion

The intersection between deep learning, machine learning and artificial intelligence is a

techno-wealth that has given way to technological development. Although deep learning is

18
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a branch of machine learning, a cycle can go beyond that, and this is evident through the inven-

tions of both
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CHAPTER III

THE DEEP GALERKIN METHOD

III.1 Offering of the Deep Galerkin Method

III.1.1 Mathematical Details

The form of the PDEs of interest are generally described as follows:

-an unknown function of time and space defined on the region [0;T ]× Ω where Ω ⊂ Rd

-assume that u satisfies a parabolic PDE of the following form:[11]



(∂t + `)u(t, x) = 0, (t, x) ∈ [0, T ]× Ω

u(0, x) = u0(x) , x ∈ Ω (initial condition)

u(t, x) = g(t, x) (t, x) ∈ [0, T ]× ∂Ω, (boundary condition)

The goal is to approximate u with an approximating function f(t;x; θ) given by a deep neural

network with parameter set θ.

Remark III.1.1. The loss functional for the associated training problem consists of three parts:
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Chapter III The Deep Galerkin Method

1) A measure of how satisfies the differential operator:

‖(∂t + `)f(t;x; θ)‖2
[0,T ]×Ω,ν1

2) A measure of how satisfies the boundary condition:

‖f(t;x; θ)− g(t, x)‖2
[0,T ]×∂Ω,ν2

3) A measure of how satisfies the initial condition:

‖f(0;x; θ)− u0(x)‖2
Ω,ν3

Remark III.1.2. :

parameterizing f as a neural network means that the differential operator can be conputed eas-

ily using backpropagation.

Remark III.1.3. :[11]

this measure can be modified for problems with a terminal condition or extended for problems

with both initial and terminal conditions.

In all three terms above the error is measured in terms of L2-norm, i.e. using ‖h(y)‖Y,ν =∫
Y |h(y)|2ν(Y )dy with υ(y) being a density defined on the region Y . Combining the three terms

above gives us the cost functional associated with training the neural network:

L(θ) = ‖(∂t + `)f(t;x; θ)‖2
[0,T ]×Ω,ν1

+‖f(t;x; θ)− g(t, x)‖2
[0,T ]×∂Ω,ν2

+‖f(0;x; θ)−u0(x)‖2
Ων3

so that

‖(∂t + `)f(t;x; θ)‖2
[0,T ]×Ω,ν1

is a (differential operator)

‖f(t;x; θ)− g(t, x)‖2
[0,T ]×∂Ω,ν2

is a (boundary condition)

‖f(0;x; θ)− u0(x)‖2
Ω,ν3

is a (initial condition)

The next step is to minimize the loss functional using stochastic gradient descent. More specif-

ically, we apply the algorithm defined in Algorithm of the Deep Galerkin Method The descrip-

tion given in Algorithm of the Deep Galerkin Method should be thought of as a general outline
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Chapter III The Deep Galerkin Method

and the algorithm should be modified according to the particular nature of the PDE being

considered.

III.2 Deep Galerkin Method (DGM) algorithm.

[12] 1. Initialize the parameter set θ0 and the learning rate αn.

2. Generate random samples from the domain’s interior and time/spatial boundaries, i.e.

- Generate (tn;xn) from [0;T ]× Ω according to ν1

- Generate (Tn; zn) from [0;T ]× ∂Ωaccording to ν2

- Generate wn from Ω , according to ν3

3. Calculate the loss functional for the current mini-batch, i.e. the randomly sampled pointssn =

{(tn;xn), Tn; zn), wn} :

- Compute L1(θn; tn;xn) = ((∂t + `)f(tn, xn, θn))2

- Compute L2(θn; Tn; zn) = (f(Tn, zn, θn)− g(Tn, zn))2

- Compute L3(θn;wn) = (f(0, wn, θn)− u0(wn))2

-Compute L(θn; sn) = L1(θn; tn;xn) + L2(θn; Tn; zn) + L3(θn;wn)

4. Take a descent step at the random point sn with Adam-based learning rates:

θn+1 = θn − αn∇θL(θn; sn)

5. Repeat steps (2)− (4) until ‖θn+1 − θn‖ is small.

Corollary III.1. It is important to notice that the problem described here is strictly an optimi-

sation problem This is unlike typical machine learning applications where we are concerned

with issues of underfitting, overfitting and generalization. The only case where generalization

becomes relevant is when we are unable to sample points everywhere within the region where

the function is defined, e.

22



Chapter III The Deep Galerkin Method

III.3 Implementation Details for DGM algorithm

The architecture adopted by Sirignano and Spiliopoulos is similar to that of LSTMs and

Highway Networks described in the previous chapter. It consists of three layers, which we

refer to as DGM layers: an input layer, a hidden layer and an output layer, though this can be

easily extended to allow for additional hidden layers .Figure (3, 1) for a visualization of the

overall architecture

Corollary III.2. The DGM consists of three layers, one input layer,one exit layer and one

hidden layer.

Figure III.1 – Bird’s-eye perspective of overall DGM architecture.[12]

The PDE solution requires a model f(t, x, θ) which can make sharp turns" due to the final

condition,which is of the form u(T, x) = max(p(x), 0) (the first derivative is discontinuous

when p(x) = 0. The shapeof the solution u(t, x) for t < T , although smoothed" by the diffusion

term in the PDE, will still have a nonlinear profile which is rapidly changing in certain spatial
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regions. In particular, we found the following network architecture to be effective:

S1 = σ(W 1.~x+ b1)

Z` = σ(uz,`.~x+ wz,`.S` + bz,`) ` = 1 . . . L

G` = σ(ug,`.~x+ wg,`.S` + bg,`) ` = 1 . . . L

R` = σ(ur,`.~x+ wr,`.S` + br,`) ` = 1 . . . L

H` = σ(uh,`.~x+ wh,`.(S` �R`) + bh,`) ` = 1 . . . L

S`+1 = (1−G`)�H` + Z` � S` ` = 1 . . . L

f(t;x; θ) = w.SL+1 + b

where~x = (t, x), the number of hidden layers isL+1, and denotes element-wise multiplication(i.e., z�

v = z0v0, ..., zNvN). The parameters are

θ =
{
W 1, b1,

(
uz,`, wz,`, bz,`

)L
`=1

,
(
ug,`, wg,`, bg,`

)L
`=1

,
(
ur,`, wr,`, br,`

)L
`=1

,
(
uh,`, wh,`, bh,`

)L
`=1

,W, b
}

(III.1)

The number of units in each layer is M and σ : RM → RM is an element-wise nonlinearity:

σ(z) = (φ(z1), φ(z2), ..., φ(zM)} (III.2)

where σ : R → R is a nonlinear activation function such as the tanh function, sigmoidal

function
ey

1 + ey
, or rectified linear unit (ReLU) max(y, 0).

The architecture (H) is relatively complicated. Within each layer, there are actually many "-

layers" of computations.

The key hyperparameters in the neural network (H) are the number of layers L, the number of

units M in each sub-layer, and the choice of activation unit φ(y).

III.4 A Neural Network Approximation Theorem

Theoretical motivation for using neural networks to approximate solutions to PDEs[11] is given

as an elegant result in Sirignano and Spiliopoulos (2018) which is similar in spirit to the Uni-
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versal Approximation Theorem. More specifically, it is shown that deep neural network ap-

proximators converge to the solution of a class of quasilinear parabolic PDEs as the number of

hidden layers tends to infinity. To state the result in more precise mathematical terms, define

the following:

1)L(θ), the loss functional measuring the neural network’s fit to the differential operator and

boundary/initial/terminal conditions;

2)cn, the class of neural networks with n hidden units;

3) fn = argmin
f∈cn

, the best n-layer neural network approximation to the PDE solution.

The main result is the convergence of the neural network approximators to the true PDE solu-

tion:

fn → u as n→∞

Remark III.4.1. Further details, conditions, statement of the theorem and proofs are found

in Section 7 of Sirignano and Spiliopoulos (2018)[15]. It is should be noted that, similar to

the Universal Approximation Theorem, this result does not prescribe a way of designing or

estimating the neural network successfully.

III.5 Convergence of the neural network to the PDE solution

We now prove, under stronger conditions, the convergence of the neural networks fn to the

solution u of the PDE[11]

∂tu(t, x)− div (α(t, x, u(t, x),∇u(t, x))) + γ (t, x, u(t, x),∇u(t, x)) = 0for(t, x) ∈ ΩT

u(0, x) = u0(x)forx ∈ Ω

u(t, x) = 0for(t, x) ∈ ∂ΩT

(B)

as n → ∞. Notice that we have restricted the discussion to homogeneous boundary data. We

do this for both presentation and mathematical reasons
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The objective function is

J(f) = ‖G[f ]‖2
2,ΩT

+ ‖f‖2
2,ΩT

+ ‖f(0, .)− u0‖2
2,ΩT

Recall that the norms above areL2(X) norms in the respective space X = ΩT , ∂ΩT and Ω

respectively.From Neural Network Approximation Theorem , we have that

J(fn)→ 0asn→∞

Each neural network fn satisfies the PDE

G[fn](T,X) = hn(t, x)for(t, x) ∈ ΩT

fn(o, x) = un0 (x)forx ∈ Ω

fn(t, x) = gn(t, x)for(t, x) ∈ ∂ΩT

for some fn, un0 , and gn such that

‖fn‖2
2,ΩT

+ ‖gn‖2
2,ΩT

+ ‖un0 − u0‖2
2,ΩT

(III.3)

For the purposes of this section, we make the following set of assumptions.

Condition

1. There is a constant µ > 0 and positive functions k(t, x);λ(t.x) such that for all (t, x) ∈ ΩT

we have

‖α(t, x, u, p)‖ ≤ µ(k(t, x) + ‖p‖), end|γ(t, x, u, p)| ≤ λ(t, x)‖p‖)

with k ∈ L2(ΩT ),λ ∈ Ld+2+η(ΩT ) for some η > 0

2.α(t, x, u, p) and γ(t, x, u, p)are Lipschitz continuous in (t, x, u, p) ∈ ΩT ×R×RD uniformly

on compacts of the form {(t, x) ∈ Ω̄T |u| ≤ C, |p| ≤ C}

3.defferentiable with respect to (x, u, p) with continuous derivatives.

4.There is a positive constant ν > 0 such that

α(t, x, u, p) ≥ ν|p|2
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and

〈α(t, x, u, p1)− α(t, x, u, p2), p1 − p2〉 > 0for everyp1, p2 ∈ Rd, p1 6= p2

5.u0(x) ∈ C0,2,ξ(Ω̄) for some ξ > 0 with itself and its first derivative bounded in Ω̄.

6.Ω is a bounded, open subset of Rd with boundary ∂Ω ∈ C2.

For every n ∈ N, fn ∈ C1,2(Ω̄T ). In addition, (fn)n∈N ∈ L2(ΩT ).

Theorem III.1. [14] Assume that ConditionB and (3.3) hold. Then, problem (B) has a unique

bounded solution in C0,δ, δ
2 (Ω̄T )∩L2

(
0, T,W 1,2

0 (Ω)
)
∩W (1,2),2

0 (Ω
′
T ) for some δ > 0 and any in-

terior sub domain Ω
′
T ofΩT . In addition, fn converges to u, the unique solution to(B), strongly

in [13]Lρ(ΩT )for every ρ < 2. If,in addition, the sequence {fn(t, x)}n∈N is uniformly bounded

in n and equicontinuous then the convergence to u is uniform in ΩT .

Proof. see[14]

III.6 Conclusion

In short, the different stages of the deep Galerkin method can be summarized according to the

following scheme.
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Start

Initialize the parameter and the learning rate

Generate random points according to v1 and v2

G(θn; τn) =
(
G[U ](xn; θn)

)2

+
(
U(zn; θn)− g(zn)

)2

θn+1 = θn − ηn∇nG(θn; τn)

Whether
limx→∞∇nG(θn; τn) =

0

Output parameters and Saving network

Yes

No

Figure III.2 – Flowchart of the DGM.
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Finally, the various partial diferential equations, PDEs, and their methods of solving and an-

alyzing them, have been an important part of the interest of many mathematical researchers

and even physicists until they have given them their right to research. One of the most im-

portant methods of Methods for solving partial differential equations that has been very well

received by researchers is DGM, around which this study is centered, so that we elaborate on

them in chapter III.We extend the Deep Galerkin Method (DGM) introduced in Sirignano and

Spiliopoulos (2018) to solve a number of partial diferential equations (PDEs) that arise in the

context of optimal stochastic control and mean field games.

In contrast, the main idea behind solving PDEs using the Deep Galerkin Method (DGM) de-

scribed in the work of Sirignano and Spiliopoulos (2018) is to represent the unknown function

of interest using a deep neural network. Noting that the function must satisfy a known PDE, the

network Through this research, we have come up with some of the most important findings and

points.

• The deep Galerkin method is a way to solve the different partial equations.

• Deep Galerkin Method (DGM) introduced in Sirignano and Spiliopoulos (2018) to solve
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Conclusion general

a number of partial differential equations (PDEs) that arise in the context of optimal

stochastic control and mean field games.

• could Convergence of the neural network to the PDE solution of the Deep Galerkin

Method This is to be L(θ) = 0

• extend the DGM algorithm to solve for the value function and the optimal control simul-

taneously by characterizing both as deep neural networks. Training the

• And we didn’t get to Galerkin Methods for Variational Inequalities
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