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Rating

� X , Y : real Banach Spaces.

� X∗ : dual Space of X.

� ‖.‖ : the norm of X.

� 〈., .〉 : duality product of X and X∗.

� ⇀ : the weak convergence .

� −→ : strong convergence .

� R(A) : the range of A .

� G(T) : the graph of T .

� 2X∗
: the collection of subsets of X∗.

� D(.,.) : the distance .

� ∂K : the boundary of a space K .

� M : the closure of a set M .

� |.| : the euclidean norm of Rn .

� C∞c : test functions space .

� W 1,p(Ω),W 1,p
0 (Ω) : sobolev spaces .
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Introduction

Variational inequalities, introduced by Hartman, Stampacchia and Browder, have been

developed rapidly for nearly thirty years. Variational inequality theory has become a rich source

of inspiration in pure and applied mathematics, which has not only stimulated new and deep

results in dealing with nonlinear partial differential equations, but has also provided us a unified

and general framework for studying many problems arising in mechanics, physics, optimization

and control, nonlinear programming, engineering sciences, etc.;see [4]. In 1988, Shih and Tan

got some existence results of variational inequalities for multivalued monotone mapping and

obtained the surjectivity result for multivalued monotone mapping via the variational inequal-

ities .

We are concerned in this thesis with a range and existence theorem for multivalued pseu-

domonotone perturbations of maximal monotone operators and its theorem we assume a co-

ercivity condition on the sum of a maximal monotone and a pseudomonotone operator rather

than on the pseudomonotone operator solely. As consequences, we obtain improvements and

unifications over a number of theorems in which various types of conditions were assumed. We

also obtain as corollaries existence theorems for variational inequalities containing multivalued

pseudomonotone operators.

This thesis is made up of thoree chapters. We begin our work with a chapter which generally

contains the definitions and the fundamental results which will be essential to understand the

following chapters.The second chapter aimes to stydy theories,with a presentation of fixed point

theory for multivalued operator. In the third chapter, we study the variational inequality and

its use with the results mentioned in the previous chapter to study the existence of the solution

to it and its generalization to the quasi-variational inequality.

6



Chapter 1

Mathematical Preliminaries

In this chapter, we discuss some mathematical concepts that we should know for use in our

theme

1.1 Remind

Definition 1.1 ([5] ,page 507)

• The function f : I → R is said to be convex when :

∀(x, y) ∈ I ∀λ ∈ [0, 1], f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

• A set C is said to be convex if :

∀(x, y) ∈ C ∀λ ∈ [0, 1], (1− λ)y + λx

Definition 1.2 ([11], the page 6) A normed linear space X is said to be

• Strictly convex if the unit sphere does not contain a line segment, i.e.‖(1− t)x+ ty‖ < 1

for all x and y with ‖x‖ = ‖y‖ = 1, x 6= y and all t ∈ (0, 1). In other words, X is strictly

convex if there are x,y with ‖x‖ = ‖y‖ = 1 and ‖(1− t)x+ ty‖ = 1 for some t ∈ (0, 1) holds if

and only if x = y.
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CHAPTER 1. MATHEMATICAL PRELIMINARIES

• Locally uniformly convex if for any ε > 0 and x ∈ X with ‖x‖ = 1 there exists

δ = δ(x, ε) > 0 such that ‖x− y‖ ≥ ε imply that

∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ

for all y with ‖y‖ = 1.

• Uniformly convex if for each ε > 0,there exists δ = δ(ε) > 0 such that ‖x‖ = ‖y‖ = 1 and

‖x− y‖ ≥ ε imply that ∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ.

Definition 1.3 ([15], p 15 ) Consider the operator A : X −→ X∗

* The operator A is said to be monotone if :

〈Au− Av, u− v〉X ≥ 0 ∀u, v ∈ X

.

* The operator A is said to be strictly monotone if :

〈Au− Av, u− v〉X > 0 ∀u, v ∈ X and u 6= v.

* A is said to be uniformly monotone if for some increasing continuous function

γ : R+ −→ R+ it follows that

〈A(u)− A(v), u− v〉 ≥ γ(‖u− v‖)‖u− v‖.

If γ(r) = δr for some δ > 0,then we say that A is strongly monotone.

8



CHAPTER 1. MATHEMATICAL PRELIMINARIES

Remark 1.1 ([15], p 15)

A strongly monotone =⇒ A strictly monotone =⇒ A is monotone .

Definition 1.4 E is Banach Space

* Weak convergence : let (un)n∈N ⊂ E and u ∈ E .We say that un −→ n weakly in E when

n −→∞ if T (un) −→ T (u) ∀T ∈ E ′.

* Weak* convergence : Let (Tn)n∈N ⊂ E ′ and u ∈ E ′ .we say that Tn −→ T weak* inE ′ if

Tn(x) −→ T (x) ∀x ∈ E.

Definition 1.5 [7] Let M ⊆ X.

- The set M is said to be compact if and only if from any open overlap of M ,we can extract

a finite undercoverage .

-The set M is said to be relatively compact if and only if the closure M̄ is compact .

1.2 Continuity

Definition 1.6

φ : X → (−∞,∞] is called proper if φ is not identically +∞.

φ is called Lower semicontinuous if :

φ(x) ≤ lim
y−→x

inf φ(y), x ∈ X,

or,equivalenty , for each λ > 0 the level set {x ∈ X;φ(x) ≤ λ} is closed .

Definition 1.7 ([15], p 18)

• A : V −→ V ∗ is said to be hemicontinuous if A is directionally weakly continuous

(i.e. ∀u, v, w ∈ V : t 7−→ 〈A(u + tv), w〉 is continuous).If this holds only when v = w (i.e

.∀u, v ∈ V : t 7−→ 〈A(u+ tv), v〉 is continuous ), then A is said to be radially continuous.

• A : V −→ V ∗ is said to be demicontinuous if A is continuous as the operator

A : (V, norm) −→ (V ∗, weak) (i.e ∀v ∈ V the functional u 7−→ 〈A(u), v〉 is continuous).
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CHAPTER 1. MATHEMATICAL PRELIMINARIES

• A : V −→ V ∗ is said to be weakly continuous if ∀w ∈ V the functional u 7−→ 〈A(u), w〉 is

weakly continuous (i.e. A is continuous as an operator A : (V,weak) −→ (V ∗, weak)).

• A : V −→ V ∗ is said to be strongly continuous if it is continuous as an operator

A : (V,weak) −→ (V ∗, norm).

Remark 1.2 ([15], p19)

A strongly continuous =⇒ A demicontinuous =⇒ A hemicontinuous.

1.3 Sobolev Spaces

Let Ω ⊂ Rn be open and 1 ≤ p <∞.

Definition 1.8 ([6],page 149) The Sobolev Space W 1,p(Ω) is defined by

W 1,p(Ω) = {u ∈ Lp(Ω)/
∂u

∂xi
∈ Lp(Ω), ∀i ∈ 1, ..., n}

The Space W 1,p(Ω) is equipped with the standard :

‖u‖W 1,,p(Ω) = ‖u‖Lp(Ω) +
n∑

i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥
Lp(Ω)

Proposition 1.1 [6]

- The space W 1,p
0 (Ω) is the closure of C∞c (Ω) in W 1,p(Ω).

- The space W 1,p
0 (Ω) is a reflexive Banach space and it is separable with 1 < p <∞.

- We denote by W−1,q(Ω) as the dual space of W 1,p(Ω) such that
1

p
+

1

q
= 1.

- The function space C∞c (Ω) is dense in W 1,p
0 (Ω).

Theorem 1.1 [6] we assume Ω class bound C1 , we have

If p < N so W 1,p(Ω) ⊂ Lq(Ω), ∀q ∈ [1, p∗[
1

p∗
=

1

p
− 1

N
If p = N so W 1,p(Ω) ⊂ Lq(Ω), ∀q ∈ [1,+∞[

If p > N so W 1,p(Ω) ⊂ C(Ω̄) With compact injections.

In particular W 1,p(Ω) ⊂ Lp(Ω) with compact injection for any p.

10



CHAPTER 1. MATHEMATICAL PRELIMINARIES

1.4 Multivalued operators

We consider some basic notion for multivalued operators

Definition 1.9 [5] Let T : X → 2Y be a multivalued operators i,e,T assigns to each point

u ∈ X a subset Tu of Y .

* The set D(T ) = {u ∈ X : Tu 6= φ} is called the effective domain of T .

* The set R(T ) = ∪u∈XTu is called the rang of T.

* The set G(T ) = {(u, v) ∈ X × Y : u ∈ D(T ), v ∈ Tu} is called the graph of T .

Definition 1.10 [5] inverse of the multivalued operator T−1 : Y → 2X is defined by:

T−1(v) = {u ∈ X : v ∈ Tu}

Such as D(T−1) = R(T ) and

(u, v) ∈ G(T ) if and only if (v, u) ∈ G(T−1).

Definition 1.11 [5] Let M ⊆ X for the given multivalued operator

A,B : M −→ 2Y

and for α, β ∈ R,we define the linear combination

αA+ βB : M −→ 2Y

to :

(αA+ βB)(u) =


αAu+ βBu if u ∈ D(A) ∩D(B)

φ if not.

and on a D(αA+ βB) = D(A) ∩D(B).
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CHAPTER 1. MATHEMATICAL PRELIMINARIES

Remark 1.3 [5] in terms of sets , the multivalued operator A : M −→ 2Y is a subset of

M × Y .Therefore ,the graph G(A) is identical to the subset A of M × Y .

Remark 1.4 [5] each unambiguous operator A : D(A) ⊆ M −→ Y can be identified with a

operator Ā : M −→ 2Y by defining :

Āu =


{Au} if u ∈ D(A)

φ if not .

then D(Ā) = D(A) and R(Ā) = R(A).

Definition 1.12 ([5], p 851)

The operator B : M −→ 2Y is called an extension of the operator A : M −→ 2Y if and only if

G(A) ⊆ G(B).

Definition 1.13 [14]

We say that a multivalued operator A : M ⊆ X −→ 2Y is closed if its graph G(A) is closed in

X × Y ,i,e,

Let (xn, yn) ∈ M × Y such that yn ∈ Axn for all n ∈ N, and xn −→ x inX and yn −→ y

implies y ∈ Ax.

Definition 1.14 [8]

Let X be a real reflexive Banach Space .The multivalued operator T : X −→ 2X∗
is pseudo-

monotone generalized if for any sequence {un} ⊂ X and {u∗n} ⊂ X∗ such that un ⇀ u in

X, u∗n ∈ Tun for n ≥ 1, u∗n ⇀ u∗ and lim sup
n−→∞

〈u∗n, un − u〉X ≤ 0, we have u∗ ∈ Tu and

lim
n−→∞

〈u∗n, un〉X = 〈u∗, u〉X .

1.5 The duality operator

Definition 1.15 [5]

Let ϕ(u) = 2−1‖u‖2 for all u ∈ X, where X is a real Banach Space .The duality operator

J : X −→ 2X∗

12



CHAPTER 1. MATHEMATICAL PRELIMINARIES

of X is defined to be J = ∂ϕ.

Proposition 1.2 [5]

in each reflexive Banach Space X ,an equivalent norm can be introduced so that X and X∗ are

locally uniformly convex and there fore strictly convex with respect to the news norms on X and

X∗.

Corollary 1.1 [5]

Let X be a real reflexive Banach Space .Then one can introduce an equivalent norm in X,therefore

compared to the new norm in X and X∗.

J : X −→ X∗is an odd homeomorphism. Moreover, J is strictly monotone ,maximal monotone

,bounded ,coercive .

The inverse operator J−1 : X −→ X is the dual space duality operator X∗.

13



Chapter 2

Some Main Theorems

In this chapter ,we present theories that we will discuss their use.

2.1 Maximal monotone and pseudomonotone operators

Let X and Y be real Banach space ,we have x ∈ X and x∗ ∈ X∗.

We define domain D(T) of T by D(T ) = {x ∈ X : Tx 6= 0} ,range R(T) of T by

R(T ) =
⋃

x∈D(T ) Tx and G(T) for the graph of T : G(T ) = {(x, x∗) : x ∈ D(T ), x∗ ∈ Tx}.

2.1.1 Maximal monotone operators

Definition 2.1 [11] An operator T : X ⊃ D(T ) −→ 2X∗
is said to be

(i) ”monotone” if for every x ∈ D(T ), y ∈ D(T ), u∗ ∈ Tx and v∗ ∈ Ty

one has 〈u∗ − v∗, x− y〉 ≥ 0.

(ii) ”maximal monotone” if T is monotone and the graph of T is not contained in the graph

of any other monotone operator .Equivalently ,T is ”maximal monotone” if and only if T is

monotone and 〈u∗−u∗0, x−x0〉 ≥ 0 for every (x, u∗) ∈ G(T ) implying x0 ∈ D(T ) and u∗0 ∈ Tx0.

14



CHAPTER 2. SOME MAIN THEOREMS

Let J : X −→ 2X∗
be the normalized duality mapping defined by

Jx := {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x∗‖‖x‖, ‖x∗‖2 = ‖x‖2}.

Theorem 2.1 [5] Let X be a reflexive Banach space with X and X∗ are strictly convex . Then

a monotone operator T : X ⊇ D(T ) −→ 2X∗
is maximal if and only if R(T + λJ) = X∗ for all

h > 0.

Lemma 2.1 ([9], p. 136)

Let B be a maximal monotone set in X ×X∗. If (un, u
∗
n) ∈ B for all n such that un ⇀ u in X

and u∗n ⇀ u∗ in X∗ and either

lim sup
n,m−→∞

〈u∗n − u∗m, un − um〉 ≤ 0 (2.1)

or

lim sup
n−→∞

〈u∗n − u∗, un − u〉 ≤ 0, (2.2)

then (u, u∗) ∈ B and 〈u∗n, un〉 −→ 〈u∗, u〉 as n −→∞.

Lemma 2.2 ([5], p. 915 ) Let operator T : X ⊃ D(T ) −→ 2X∗
be maximal monotone.

Then the following are true.

(i) {xn} ⊂ D(T ), xn −→ x0 and Txn 3 yn ⇀ y0 imply x0 ∈ D(T ) and y0 ∈ Tx0.

(ii) {xn} ⊂ D(T ), xn ⇀ x0 and Txn 3 yn −→ y0 imply x0 ∈ D(T ) and y0 ∈ Tx0.

2.1.2 Pseudomonotone operators

Definition 2.2 [10]

An operator T : X ⊃ D(T ) −→ 2X∗
is said to be “Pseudomonotone” if the following conditions

are satisfide:

(i) For every x ∈ D(T ), Tx is nonempty, closed, convex and bounded subset of X∗.

15



CHAPTER 2. SOME MAIN THEOREMS

(ii) T is finitely continuous ,i.e.,T is “weakly upper semicontinuous”on each finitedimensional

subspace F of X, i.e., for every x0 ∈ D(T ) ∩ F and every weak neighborhood V of Tx0 in X
∗ ,

there exists neighborhood U of x0 in F such that TU ⊂ V .

(iii) For every sequence {xn} ⊂ D(T ) and every sequence {y∗n} with y∗n ∈ Txn such that

xn ⇀ x0 ∈ D(T ) and

lim sup
n−→∞

〈y∗n, xn − x0〉 ≤ 0 , (2.3)

we have that for every x ∈ D(T ), there exists y∗(x) ∈ Tx0 such that

〈y∗(x), x0 − x〉 ≤ lim inf
n−→∞

〈y∗n, xn − x〉. (2.4)

Definition 2.3 [10]

An operator T : X ⊃ D(T ) −→ 2X∗
is said to be “generalized pseudomonotone”if

(i) For each x ∈ D(T ), Tx is nonempty, closed, convex and bounded subset of X∗;

(ii) For every sequence {xn} ⊂ D(T ) and every sequence {y∗n} with y∗n ∈ Txn such that

xn ⇀ x0 ∈ D(T ), y∗n ⇀ y∗0 ∈ X∗ and

lim sup
n−→∞

〈y∗n, xn − x0〉 ≤ 0,

we have y∗0 ∈ Tx0 and 〈y∗n, xn〉 −→ 〈y∗0, x0〉 as n→∞.

2.2 Fixed-Point Theorems

Definition 2.4 [7] Let (X,d) be metric space. If A,B ⊆ X two sets, then we define the

distance D(A,B) between them by :

D(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}

16



CHAPTER 2. SOME MAIN THEOREMS

where d(a,B) = inf
b∈B

d(a, b) is the distance between point a and the set B. Obviously, if X is

bounded, then the set of all closed nonempty subsets of X with D(.,.) becomes a matric space.

Theorem 2.2 [16] Let (X,d) be a compact metric space with T : X −→ X satisfying

d(T (x), T (y)) < d(x, y)

∀x, y ∈ X with x 6= y than T has a unique fixed point in X. Moreover,for any x ∈ X,the

sequence {T n(x)} converges to the unique fixed point of T .

Theorem 2.3 (Banach’s generalized fixed point theorem)[7] we suppose that :

• T : M ⊆ X −→ 2M is a multivalued operator in a complete metric space (X,d).

• M is nonempty and closed, T(x) is closed for all x ∈ M , is the generalized k-contraction

condition :

D(T (x), T (y)) ≤ kd(x, y)

is satisfied for all x, y ∈M and k ∈ [0, 1[ fixed.

Then T admits a fixed point .

Proof: (See [7], the page 450)

Definition 2.5 [7]

Let T : M ⊆ X −→ 2Y a multivalued operator. we say that x is a fixed point of T if and only

if x ∈ T (x).

Theorem 2.4 (Browder’s fixed point theorem (1968) for multivalueds operators

with boundary conditions)[7] we suppose that :

(i) Operator T : K −→ 2X is superiorly semicontinuous, and K a nonempty, compact and

convex set in a locally convex space X.

(ii) The set T(x) nonempty,closed and convex for all x ∈ K.

(iii) One of the following boundary conditions is satisfied :

17



CHAPTER 2. SOME MAIN THEOREMS

for each x ∈ ∂K there are points y ∈ T (x) and u ∈ K,

and a number λ > 0 such that y = x+ λ(u− x);

for each x ∈ ∂K there are points y ∈ T (x) and u ∈ K,

and a number λ < 0 such that y = x+ λ(u− x).

Then T admits a fixed point .

Corollary 2.1 (Tihonov’s fixed point theorem (1935))[7]

Let T : K ⊆ X −→ K continue, where K is a nonempty, compact and convex set in a locally

convex space X. Then T admits a fixed point .

Corollary 2.2 (Bohnenlust and Karlin (1950))[7] we suppose that

(i) The operator T : M −→ 2M is superiorly semicontinuous, where M is a nonempty, closed,

convex set in a Banach space X .

(ii) The set T(M) is relatively compact .

(iii) The set T(x) is nonempty, closed and convex for all x ∈M .

Then T admits a fixed point .

2.3 Rockafellar Theorem

Theorem 2.5 [5]

IF f is a proper lower semicontinuous convex function on a Banach space E, then its subdiffer-

ential ∂f is a maximal monotone operator.

Theorem 2.6 [17]

Suppose that E is reflexive, that S and T are maximal monotone operators on E and that

D(T ) ∩ intD(S) 6= 0. Then S + T is maximal .

Proof: (See, [9])

18



CHAPTER 2. SOME MAIN THEOREMS

Corollary 2.3 [5] For a multivalued operator A : X −→ 2X∗
in a Banach space X, the follow-

ing assertions are equivalent :

(i) A = ∂f and f : X −→]−∞,+∞] convex and semicontinuous inferiorly in a Banach space

X and let f 6= +∞ .

(ii) A is monotonic cyclic maximal .

Proof: (See[18] ) .

The following theorem says that, ∂f(x) is the intersection of ∂εf(x) for ε > 0, so f ′(x; .) is

the minimum of the support functions (lower semicontinuous) of ∂εf(x) for ε > 0.

Theorem 2.7 [18]

Let X be a locally convex space, and let f be a inferior,proper and convex semicontinuous function

in X. Let x ∈ X such that f(x) <∞ then, for all y ∈ X

σ(∂εf(x); y) −→ f ′(x; y) when ε −→ 0

19



Chapter 3

Existence of the solution of elliptic

variational inequalities

In this chapter presents existence of the solutions of variational inequality and quasi-variational

inequality.

3.1 Variational inequality

Let K denote a nonempty ,closed and convex subset of a reflexive Banach space X and let IK

be the indicator function of K given by

IK(x) =


0 if x ∈ K,

∞ if x ∈ X \K.

It is known that IK is proper,convex and Lower semicontinuous on X .The subdifferential of IK

at x ∈ X is defined by

∂IK(x) = {x∗ ∈ X∗; 〈x∗, x− y〉 ≥ 0 ∀y ∈ K}.

Here,D(∂IK) = D(IK) = K and ∂IK(x) = {0} for every x ∈ K̊.

Let φ : X ⊇ D(φ) −→ (−∞,∞] be a proper,lower semicontinuous and convex function on X

20



CHAPTER 3. EXISTENCE OF THE SOLUTION OF ELLIPTIC
VARIATIONAL INEQUALITIES

with D(φ) = {x ∈ X;φ(x) < +∞}.For each x ∈ X,we denote by ∂φ(x) the set

∂φ(x) = {x∗ ∈ X∗; 〈x∗, x− y〉 ≥ φ(x)− φ(y) ∀y ∈ X}.

It is Knowon that D(∂φ) is a dense subset of D(φ) and we have φ(x) = min{φ(y); y ∈ X} if

and only if 0 ∈ ∂φ(x).

Definition 1.1 [11]

Let X a reflexive Banach Space ,let K be a nonempty subset of X , A : D(A) ⊆ X → 2X∗
is

maximal monotone and fix f ∗ ∈ X∗.

We denote by V I(A,K, φ, f ∗) the variational inequality

〈w∗ − f ∗, y − x〉 ≥ φ(x)− φ(y), y ∈ K (3.1)

with the unknown vector x ∈ D(A) ∩D(φ) ∩K and w∗ ∈ Ax .

Since D(∂φ) ⊂ D(φ),it is not hard to see that the solvability of the inclusion

∂φ(x) + Ax 3 f ∗

in D(A) ∩ D(∂φ) ∩ K implies the solvability of the problem V IP (A,K, φ, f ∗) in D(A) ∩

D(φ) ∩ K,and equivalence holds if D(φ) = D(∂φ) = K.In particular, if φ = IK ,we denote

the V I(A,K, IK , f
∗) just by V I(A,K, f ∗),and we see that its solvability is equivalent to the

solvability of the inclusion

∂IK(x) + Ax 3 f ∗

in D(A) ∩K.

Definition 3.1 [11] Let B be a subset of X. Let K be a nonempty subset of X and A : X ⊇

D(A) −→ 2X∗
. Let φ : X −→ (−∞,∞] be a proper,convex and lower semicontinuous,and fix

f ∗ ∈ X∗. We say that the variational inequality V I(A,K, φ, f ∗) is solvable in D(A)∩D(φ)∩B
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if there exist x0 ∈ D(A) ∩D(φ) ∩B and w∗0 ∈ Ax0 such that

〈w∗0 − f ∗, x− x0〉 ≥ φ(x0)− φ(x)

for all x ∈ K.

Using this definition, it follows that the problem V I(A,K, φ, f ∗) has no solution in D(A) ∩

D(φ) ∩ ∂K if and only if there exists u0 ∈ K such that

〈w∗ − f ∗, u0 − x〉 < φ(x)− φ(u0)

∀x ∈ D(A) ∩D(φ) ∩ ∂K,w∗ ∈ Ax.

Lemma 3.1 [1]

Let K be a nonempty,closed and convex subset of X and A : D(A) ⊆ X → 2X∗
.Let G be an

open convex subset of X . Then the problem VI(A,K, φ, f ∗) is solvable in D(A)∩D(φ)∩K ∩G

provided that the problem VI(A,K ∩G, φ, f ∗) is solvable in D(A) ∩D(φ) ∩K ∩G.

Proof:

Suppose that x0 ∈ D(A)∩D(φ)∩K ∩G is a solution of the VI(A,K ∩G, φ, f ∗),i.e,there exists

u∗0 ∈ Ax0 such that

〈u∗0 − f ∗, x− x0〉 ≥ φ(x0)− φ(x)

for all x ∈ K ∩G, It suffices to show that x0 solves the inequality VI(A,K, φ, f ∗).We observe

that by the convexity of K,

for any t ∈ (0, 1) and x ∈ K we have tx+(1− t)x0 ∈ K t0 = t0(x) ∈ (0, 1) t0x+(1− t0)x0 ∈ G.

y ∈ K such that ty + (1− t)x0 /∈ G for all t ∈ (0.1),i.e, ty + (1− t)x0 ∈ X \G

for all t ∈ (0, 1)

Since G is open, letting t −→ 0+,we obtain that x0 /∈ G. But this is a contradiction as

x0 ∈ G.Thus our claim follows,i.e, for every x ∈ K, there exists t0 = t0(x) ∈ (0, 1) such that

y = t0x+ (1− t0)x0 ∈ K ∩G.
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Replacing x by y in Variatioal inequality and using the convexity of φ ,we see that

t0〈u∗0 − f ∗, x− x0〉 = 〈u∗0 − f ∗, y − x0〉

≥ φ(x0)− φ(y)

≥ φ(x0)− [t0φ(x) + (1− t0)φ(x0)]

= t0(φ(x0)− φ(x))

Since t0 ∈ (0, 1),We conclude that

〈u∗0 − f ∗, x− x0〉 ≥ φ(x0)− φ(x) ∀x ∈ K

the VI(A,K, φ, f ∗) is solvable by x0 ∈ D(A) ∩D(φ) ∩K ∩G.

Theorem 3.1 [2]

Let K be a nonempty,closed and convex subset of X with 0 ∈ K̊.Let T : D(T ) ⊆ X −→ 2X∗
be

maximal monotone with 0 ∈ T (0)S : K −→ 2X∗
Pseudomonotone.Fix f ∗ ∈ X∗.Assume,further,that

either S is bounded or T is strongly quasibounded and there exists K > 0 such that〈w∗, x〉 ≥ −K

∀x ∈ Kand w∗ ∈ Sx.

• If K is bounded ,then the Variational inequality (T + S,K, f ∗)is solvable in D(T ) ∩K.

• If K is unbounded and there exists an open,convex and bounded subset G of X with 0 ∈ G

such that the Variational inequality has no solution in D(T ) ∩K ∩ ∂G,

then the VI(T + S,K, f ∗) is solvable in D(T ) ∩K ∩G.

Proof: (See [11], page 113)

Corollary 3.1 [3]

Let K be a nonempty,closed and convex subset of X with 0 ∈ K̊.Let T : D(T ) ⊆ X −→ 2X∗
be

maximal monotone with 0 ∈ T (0) and S : K −→ 2X∗
pseudomonotone.Assume,further,that

either S is bounded or T is strongly quasibounded and there exists K > 0 such that
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〈w∗, x〉 ≥ −K ∀x ∈ Kand w∗ ∈ Sx. Fix f ∗ ∈ X∗.Let G be an open,convex , bounded subset of

X with 0 ∈ G and G = BR(0) such that, for some u0 ∈ K ∩ Ḡ,we have

〈v∗ + w∗ − f ∗, x− u0〉 > 0 (3.2)

∀x ∈ D(T ) ∩ ∂(K ∩ Ḡ), v∗ ∈ Tx,w∗ ∈ Sx.Then the inclusion f ∗ ∈ Tx + Sx is solvable in

D(T ) ∩K ∩G.

Proof:

We first observe that 0 ∈
˚︷ ︸︸ ︷

K ∩G. By Theorem (3.1),the variational inequality (T+S,K∩G, f ∗)

is solvable in D(T ) ∩ K ∩ G. By (3,2),the VI has no solution in D(T ) ∩ ∂(K ∩ G).Since the

solvability of the inclusion

∂IK∩G(x) + Tx+ Sx 3 f ∗

is equivalent to the solvability of the variational inequality (T + S,K ∩ G, f ∗), it follows that

the inclusion f ∗ ∈ (Tx+ Sx) is solvable in D(T ) ∩
˚︷ ︸︸ ︷

K ∩G.

Theorem 3.2

Let K be a nonempty ,closed and convex subset of X with 0 ∈ K̊. Let T : X ⊇ D(T ) −→ 2X∗

be strongly quasibounded maximal monotone with 0 ∈ T (0) and S : K −→ 2X∗
bounded pseu-

domonotone. Let φ : X −→ (−∞,∞] be proper ,convex and lower semicontinuous and such

that 0 ∈ D(φ) and there exists k > 0 such that φ(x) ≥ −k ∀x ∈ X. Fix f ∗ ∈ X∗.

Then

(i) If K is bounded, then the problem V I(T + S,K, φ, f ∗) is solvable in D(T ) ∩K ∩D(φ).

(ii) If K is unbounded and there exists a bounded open convex subset G of X with 0 ∈ G such

that the problem V I(T + S,K ∩G, φ, f ∗) has no solution in D(T ) ∩D(φ) ∩K ∩ ∂G, then the

problem V I(T + S,K, φ, f ∗) is solvable in D(T ) ∩K ∩D(φ) ∩G.

We remark that Theorem 3.2 extends the result of Kenmochi [13 ,Theorem 4.1,p 254].

Proof: (See [11], the page 118)
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Theorem 3.3 [11]

Let K be nonempty, closed and convex subset of X with 0 ∈ K̊. Let T : X ⊇ D(T ) −→ 2X∗

be maximal monotone and such that there exists k1 > 0 with 〈u∗, x〉 ≥ −k1 for all x ∈ D(T )

and u∗ ∈ Tx. Let S : X ⊇ D(S) −→ 2X∗
be strongly quasibounded maximal monotone with

0 ∈ S(0). Suppose that P : K −→ 2X∗
is bounded pseudomonotone. Assume, further, that

there exist R > 0, u0 ∈ D(T ) ∩D(S) ∩K ∩BR(0) and k2 > 2R |Tu0| such that

〈w∗ + z∗ − f ∗, x− u0〉 ≥ k2

for all x ∈ D(T ) ∩D(S) ∩K ∩ ∂BR(0), w∗ ∈ Sx and z∗ ∈ Px. Then the following are true.

(i) The probleme V I(T + S + P,K, f ∗) is solvable in D(T ) ∩D(S) ∩K ∩BR(0).

(ii) If K = X, then the inclusion Tx+ Sx+ Px 3 f ∗ is solvable in D(T ) ∩D(S) ∩BR(0).

Proof: (See [11], the page 123) .

Corollary 3.2 [11]

Let T : X ⊇ D(T ) −→ 2X∗
be maximal monotone and such that there exists k1 > 0 satisfying

〈u∗, x〉 ≥ −k1 for all x ∈ D(T ) and u∗ ∈ Tx. Let S : X ⊇ D(S) −→ 2X∗
be strongly

quasibounded maximal monotone with 0 ∈ S(0) such that D(T ) ∩ D(S) 6= 0.Then T + S is

maximal monotone .

Proof: (See [11], the page 126) .

3.2 Quasi-Variational inequality

Definition 3.2 [12]

Let X a reflexive Banach Space and X∗ be its Dual space . A : X −→ X∗a nonlinear operator,an

element g∗ ∈ X∗ and a family {K(v); v ∈ X} of closed convex subsets of X,
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The quasi-variational inequality is a problem to find u in X such that

u ∈ K(u), 〈Au− g∗, u− w〉 ≤ 0, ∀w ∈ K(u) (3.3)

Definition 3.3 [4] An operator Ã(., .) : X × X −→ X∗ is called semimonotone,if D(Ã) =

X ×X and the following conditions are satisfied :

• For any fixed v ∈ X the mapping u −→ Ã(v, u) is maximal monotone form D(Ã(v, .)) = X

into X∗ .

• Let u be any element of X and {vn} be any sequence in X such that vn −→ v weakly in X.

Then, for every u∗ ∈ Ã(v, u) there exists a sequence {u∗n} in X such that u∗n ∈ Ã(vn, u) and

u∗n −→ u∗ in X∗ as n −→ +∞ .

Theorem 3.4 [4]

Let Ã : D(Ã) = X × X −→ X∗ be a bounded semimonotone operator and A be the operator

generated by Ã. Let K0 be a bounded, closed and convex set in X. Suppose that to each v ∈ K0

a non-empty,bounded,closed and convex subsed K(v) of K0 is assigned, and the mapping

v −→ K(v) satisfies the properties :

a. If vn ∈ K0, vn −→ v weakly in X (as n −→ ∞) ,then for each w ∈ K(v) there is a

sequence wn ∈ X such that wn ∈ K(vn) and wn −→ w (strongly) in X .

b. If vn −→ v weakly inX, wn ∈ K(vn) and wn −→ w weakly inX, then w ∈ K(v).

Then, for any g∗ ∈ X∗,the quasi-variational inequality P (g∗) has at least one solution u .

Proposition 3.1 [4]

Let Ã : D(Ã) = X ×X −→ X∗ be a semimonotone operator and let A : X −→ X∗. Then ,the

following two properties are satisfied :

• For any v, u ∈ X,A(v, u) is a non-empty,closed,bounded and convex subset of X∗.

• Let {un} and {vn} be sequences in X such that un −→ u weakly in X and vn −→ v weakly

in X (as n −→∞).
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If u∗n ∈ Ã(vn, un), u∗n −→ g weakly in X∗ and lim sup
n−→∞

〈u∗n, un〉 ≤ 〈g, u〉,

then g ∈ Ã(v, u) and lim
n−→∞

〈u∗n, un〉 = 〈g, u〉 .

Proposition 3.2 [4]

Let A1 : D(A1) ⊂ X −→ X∗ be a maximal monotone operator and A2 : D(A2) = X −→ X∗ be

a maximal monotone operator.Suppose that

inf
v∗1∈A1v, v∗2∈A2v

〈v∗1 + v∗2, v − v0〉
|v|X

−→∞ as |v|X −→∞, v1 ∈ D(A1).

Then R(A1 + A2) = X∗.

Proof of Theorem 3.4

The theorem is proved in the following two steps : (A)The case when Ã(v, .) is strictly monotone

from X into X∗ for every v ∈ X ; (B) The general case as in the statement of Theorem 3.4.

(In the case of (A) )

Let v ∈ K0 .We consider the inequality with state constraint K(v),namely,to find u ∈ X, u∗ ∈

X∗ such that

u ∈ K(v), u∗(v) ∈ Ã(v, u), 〈u∗(v)− g∗, u− v〉 ≤ 0, ∀w ∈ K(v). (3.4)

This problem is written in the following form equivalent to (3.4):

g∗ ∈ Ã(v, u) + ∂IK(v)(u), (3.5)

where ∂IK(v)(.) : D(∂IK(v)) −→ X∗ is the subdifferential of the indicator function of K(v),

IK(v)(z) :=


0 if z ∈ K(v),

∞ if z ∈ X −K(v)

27



CHAPTER 3. EXISTENCE OF THE SOLUTION OF ELLIPTIC
VARIATIONAL INEQUALITIES

note that ∂IK(v) is maximal monotone.

It follows form Proposition 3.2 that R(Ã(v, .) + ∂IK(v)) = X∗ , A1 := ∂IK(v) and A2 := A(v, .)

is automatically satisfied,since D(A1) = K(v) is bounded in X.

Moreover,the solution u is unique by the strict monotonicity of Ã(v, .) and u ∈ K0. using this

fact ,we define a mapping S from K0 into itself which assigns to each v ∈ K0 the solution

u ∈ K0 of (3.4) ,i.e u = Sv.

Next S is weakly continuous in K0. Let {vn} be any sequence in K0 such that vn −→ v weakly

in X, and put un = Svn(∈ K0) for n = 1, 2, .... Now, let {unk} be any weakly convergent

subsequence of {un} and denote by u the weak limit ;note by condition (b) that u ∈ K(v).

We are going to check that u is a unique solution of (3.4).To do so, first observe that there is

u∗n ∈ Ã(vn, un) such that

〈u∗n − g∗, un − w〉 ≤ 0, ∀w ∈ K(vn) (3.6)

Using condition(a),we find a sequence {ũk} such that ũk ∈ K(vnk) and ũk −→ u in X (as K −→

∞).By the boundedness of Ã(., .), we may assume that u∗nk −→ u∗ inX∗ for some u∗ ∈ X∗.

Now,taking n = nk and w = ũk in (3.6),we see that

lim sup
k−→∞

〈u∗nk, unk〉 = lim sup
k−→∞

{〈u∗nk, unk − ũk〉+ 〈u∗nk, ũk〉}

≤ lim sup
k−→∞

{〈g∗, unk − ũk〉+ 〈u∗nk, ũk〉}

= 〈u∗, u〉

From Proposition 3.1 that

u∗ ∈ Ã(v, u), lim
k−→∞

〈u∗nk, unk〉 = 〈u∗, u〉 (3.7)

We go back to (3.6) with n = nk.For any w ∈ K(v),we use (a)to choose a sequence wk ∈ K(vnk)

such that wk −→ w inX. Taking n = nk and w = wk in (3.6) and passing to the limit as

k −→∞ in (3.6),by (3.7) we obtain the inequality (3.4).thus u = Sv,

and S is continuonus in K0.
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Since K0 is a weakly compact and convex set in X, we infer from the well-Known fixed-point

theorem for compact mappings that S has at least one fixed point in K0.This fixed point u is

clearly a solution of our quasi-variational inequality P (g∗).

(In the case of (B))

We approximate Ã(v, u) by Ãε := Ã(v, u)+εJ(u) for any u, v ∈ X and with parameter ε ∈ (0, 1];

note that the duality mapping J from X intoX∗ is strictly monotone and hence Ãε(v, .) is strictly

monotone for every v ∈ X. By the result of the case(A), for each g∗ ∈ X there exists a solution

uε ∈ K0 of the quasi-variational inequality

uε ∈ K(uε), u
∗
ε ∈ Auε, 〈u∗ε + εJuε − g∗, uε − w〉 ≤ 0, ∀w ∈ K(uε) (3.8)

Where A is the operator generated by Ã. Now ,choose a sequence{εn} ,with εn −→ 0, such

that un := uεn −→ u in X for some u ∈ K0.Using conditions (a) and (b).Moreover, by the

boundedness of {u∗n := u∗εn} inX∗, we may assume that u∗n −→ u∗ weakly in X∗ for some

u∗ ∈ X∗. Substitute un and ũn for uε and w in (3.8) with ε = εn,

respectively , and pass to the limit as n −→∞ to get

lim sup
n−→∞

〈u∗n, un − u〉

= lim sup
n−→∞

{〈u∗n + εnJun, un − ũn〉+ 〈u∗n + εnJun, ũn − u〉}

= lim sup
n−→∞

{〈g∗, un − ũn〉+ 〈u∗n, ũn − u〉}

≤ 0.

Since A is pseudo-monotone from X into X∗, it follows from the above inequality that

u∗ ∈ Au, lim
n−→∞

〈u∗n, un〉 = 〈u∗, u〉 (3.9)
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Now,for each w ∈ K(u),by (a) we choose {w̃n} such that w̃n ∈ K(un) and w̃n −→ w in X,and

then substitute them for w in (3.8) with ε = εn to have

〈u∗n + εnJun − g∗, un − w̃n〉 ≤ 0 (3.10)

By (3.9), letting n −→ +∞ in (3.10) yields that 〈u∗ − g∗, u − w〉 ≤ 0 Thus u is a solution of

our quasi-variational inequality P (g∗) .
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Conclusion

In this work, we studied on some variational inclusions, we conclude that the elliptic

variational inequalities using the theorem for pseudomonotone perturbations of maximal

monotone operators the inequalities accept a solution . Where we explained how to study the

existence of a solution to the variational inequality . As generalization to the case, we studied

the existence of a solution to the quasi-variational inequality .
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Abstract

In this work, we explained the existence of a solution for elliptic variational inequalities

using theorem for pseudomonotone perturbations of maximal monotone operators , where we

studied the existence of the solution to variational inequality and to generalize the study, we

explained the existence of the solution to quasi-Variational inequality.

Key words : variational inequality, theorem for pseudomonotone perturbations, quasi-

Variational inequality, the existence of the solution .

Résumé

Dans ce travail, nous avons expliqué l'existence d'une solution pour elliptique inégalités va-

riationnelles en utilisant théorème des perturbations pseudomonotones des opérateurs mono-

tones maximaux , où nous avons étudié l'existence de la solution à l'inégalité variationnelle

et pour généraliser l'étude, nous avons expliqué l'existence de la solution aux inégalités quasi-

variationnelles.

Mots clés : théorème des perturbations pseudomonotones ,l'inégalité variationnelle , in-

égalités quasi-variationnelles, l'existence de la solution .
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