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Abstract.- In order to assess phenotypic variability of native rhizobia nodulating peanut (Arachis hypogaea 

L.), a collection of fourteen isolates obtained from effective root nodules of peanut, cultivated in 

two potential regions of Algeria (Sebseb and EL Mansoura), was subjected to phenotypic 

characterization using morphological, biochemical and physiological tests. Some Plant Gowth 

Promoting Rhizobacteria (PGPR) properties had also been investigated in this study for each 

strain. Furthermore, a representative strain (M044713), forming a separate cluster in the UPGMA 

dendrogram of API 20NE tests was chosen for phylogenetic analysis using 16S rRNA gene. The 

results showed that most of bacterial isolates are Gram-negative bacilli. They can be divided into 

slow-growing and fast-growing rhizobia. Their responses to the various tests as well as their 

PGPR characteristics were interesting, but variable. The phylogenetic distribution of the isolate 

M044713, based on 16S rRNA sequence analysis, revealed low similarity percentages with all 

strains previously isolated from peanut and the most important percentage of similarity was 

94.5%, noted with Pseudoxanthomonas koreensis species. 
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DIVERSITÉ PHÉNOTYPIQUE ET PROPRIÉTÉS PGPR DES RHIZOBIA 

NODULANT L'ARACHIDE (Arachis hypogaea L.) CULTIVÉE  

DANS LES SOLS SABLEUX ALGÉRIENS 

 
Résumé.- Afin d'évaluer la variabilité phénotypique des rhizobia natifs nodulant l'arachide (Arachis 

hypogaea L.), une collection de quatorze isolats obtenus à partir de nodules racinaires d'arachide, 

cultivés dans deux régions potentielles d'Algérie (Sebseb et EL Mansoura), a été soumise à une 

caractérisation phénotypique, en utilisant des tests morphologiques, biochimiques et 

physiologiques. Certaines propriétés PGPR (Plant Gowth Promoting Rhizobacteria) ont été 

également examinées dans cette étude pour chaque souche. De plus, une souche représentative 

(M044713), formant un groupe distinct dans le dendrogramme UPGMA des tests API 20NE, a été 

choisie pour l'analyse phylogénétique basée sur le gène ARNr 16S. Les résultats ont montré que la 

majorité des isolats bactériens sont des bacilles à Gram négatif. Ils peuvent être divisés en 

rhizobia à croissance lente et à croissance rapide. Leurs réponses aux différents tests ainsi que 

leurs caractéristiques PGPR étaient intéressantes, mais variables. Néanmoins, la distribution 

phylogénétique de l'isolat M044713, basée sur l’analyse de séquence d'ARNr 16S, a révélé de 

faibles pourcentages de similitude avec toutes les souches précédemment isolées de l'arachide et 

le pourcentage de similitude le plus important était de 94,5%, noté avec les espèces de 

Pseudoxanthomonas koreensis. 

 

Mots-clés: Rhizobia natifs, arachide, nodules racinaires, analyse phylogénétique 
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Introduction 

 

Peanut (Arachis hypogaea L.) is an important food crop which is cultivated in 

tropical, subtropical and temperate zone [1]. It is one of the few crops that adapts well to 

the conditions of drought and variable soil fertility [2]. Originally from South America, 

peanut has been cultivated in Algeria for about a century, especially in sandy soils, of 

which several genotypes have been identified. Although the areas devoted are around 2000 

ha, its yield hardly exceeded 20 quintals per hectare in 2018 (with a production of 3409.7 

tons). The high instability of these yields is linked to the low fertility on limestone and 

alkaline soils. Indeed, on these soils nitrogen and phosphorus are the two factors limiting 

the productivity of crops [3]. Reasoned fertilization remains the most effective way to 

obtain optimal productivity. However, the effectiveness of fertilizers is closely dependent 

on the pH and the amount of limestone in these soils [4, 5]. In addition, the excessive use 

of inorganic fertilizers is currently responsible for serious threats to environment and 

human health [6]. 

 

Even in arid environments, peanut have a high symbiotic N2-fixing capacity and its 

contribution of biological N2-fixing (BNF) was 40.9 kg N ha
-1 

[7, 8]. The supply of 

nitrogen can occur by means of biological nitrogen fixing through symbiosis with efficient 

rhizobia dispensing or reducing the application of nitrogen fertilizers and enhancing ability 

of legumes, such as peanut, to withstand stress [9]. 

 

Several types of native rhizobia are widely distributed in various geographical and 

ecological areas of the world [10-13]. Peanut has been reported to form effective root 

nodules with slow-growing rhizobia [14-17]. These strains are classified into the genus of 

Bradyrhizobium [18]. Until now, new species of Bradyrhizobium have been isolated from 

Arachis hypogaea, including Bradyrhizobium lablabi [19], B. arachidis [20], B. 

subterraneum [21], B. guangxiense, B. guangdongense [22], B. vignae [23] and B. 

yuanmingense [24]. Though, Santos et al [25] reported the predominance of fast-growing 

bacteria that acidify the medium forming symbiosis with peanut grown in the soils of 

Northeastern Brazil. Previously, Taurian et al [26] also found that peanut forms symbiosis 

with fast-growing bacteria closely related to Rhizobium giardini and R. tropici.  

 

Nodulation of peanut by indigenous bacteria is usually assumed to be adequate, and 

inoculation is seldom practiced. While, typical environmental stresses faced by the legume 

nodules and effective functioning of rhizobia populations may include high soil 

temperatures, salt and osmotic stress, soil acidity and alkalinity, pesticide and fungicide 

applications and nutrient deficiency stress [27, 28].  

 

In order to assess the diversity of peanut rhizobial strains in the peanut producing 

area of the province of Ghardaia (Algeria), fourteen isolates from effective root nodules 

were collected from two geographical regions in southern Algeria. Isolates were subjected 

to phenotypic characterization, plant growth promoting rhizobacteria features and 

genotypic variability using PCR-amplified 16S rRNA gene. 
 

2.- Materials and methods 
 

2.1.- Bacterial isolates and nodulation test 
 

Isolates collected from two geographical regions representing the potential peanut 

culture zone of Algeria (Sebseb and EL Mansoura) (fig. 1). In which, soils are sandy with 



P-ISSN 2170-1318/ E-ISSN 2588-1949                KRAIMAT M.*, DJANI H., MEHAYA El A., HADJ MAHAMMED I., BOUKHLIFA 

L. K., BENBITOUR I., OULED HADJ AISSA M., HADJ AMMAR S., BENSAHA S., OULED HEDDAR M. and BISSATI S. 

Algerian journal of arid environment  100  vol. 11, n°1, Juin 2021: 98-113 

an alluvial supply, characterized by a sandy-silty texture (tab. I). Fourteen isolates obtained 

from effective root nodules were kept on desiccated CaCl2 using standard method [29]. 

Strains were isolated from sterilized nodules and maintained on yeast mannitol agar 

(YMA) medium. Bacterial cultures were incubated at 28°C for 7days. Rhizobial colonies 

were selected and streaked on YMA medium, several times to obtain pure cultures. To test 

isolates nodulation, 140 seeds of a local peanut genotype (Sebseb) were sterilized in 

sodium hypochlorite (13%) and germinated on sterile sand at 28°C. After germination, 

seedlings were inoculated with a bacterial culture of each isolate and then transferred to 

Gibson tubes containing the nutrient solution (60 ml) [30]. Plants were placed in a culture 

chamber at 28 °C, under 400 W m
-1

 for 16 hours in the light and 50% humidity. After 35 

days of inoculation, plants were harvested for root nodule observation.  

 

 
Figure 1. - Geographical location of the fourteen isolates collected from two agricultural 

areas in the province of Ghardaia, based on WGS 84 projection system  

(Original figure designed on ArcGIS software) 

 

Table I.- Granulometric and chemical soils properties [2] 

 

Geographic region 
Coarse sand  

(g kg
-1

) 

Fine sand  

(g kg
-1

) 

Silt+Clay 

(g kg
-1

) 
pH 

CE 

(ds cm
-1

) 

Sebseb 451±1.1 483±1.0 66±0.3 8.64±0.22 0.138±0.03 

EL Mansoura 527±1.4 392±0.8 81±0.5 7.86±0.13 0.146±0.04 

Geographic region 
Active- CaCO3 

(g kg
-1

) 

OM 

(g kg
-1

) 

Total-N 

(g kg
-1

) 

P2O5 

(mg kg
-1

) 

K2O 

(mg kg
-1

) 

Sebseb 36.9±0.01 6.8±0.54 5.9±0.01 6.43±1.35 67±1.84 

EL Mansoura 34.8±0.02 9.3±0.46 3.7±0.04 9.22±0.87 79±2.56 
Data are means and SD of 3 replicates for soils from two geographic regions 

 

 



Phenotypic diversity and PGPR traits of rhizobia nodulating peanut (Arachis hypogaea l.) grown in Algerian sandy soils        

                                                                                                                                                           P-ISSN 2170-1318/ E-ISSN 2588-1949 

Algerian journal of arid environment  101  vol. 11, n°1, Juin 2021: 98-113 

2.2.- Phenotypic tests  

 

Phenotypic features of isolates were determined according to the procedure 

described by Wdowiak and Malek [31]. The tested features included: (i) utilization as sole 

carbon sources of D-galactose (0.1%), glucose (0.1%), lactose (0.1%), fructose (0.1%) and 

mannitol (0.1%); (ii) utilization as sole nitrogen sources of L-glutathione (0.1%), casein 

hydrolysate (0.1%), L-tryptophan (0.1%), L-cysteine (0.1%) and L-leucine (0.1%); (iii) 

tolerance to sodium chloride (0.01, 1, 5%); (iv): capacity to grow at different pHs (4.5, 7, 

9, 11) and (v): intrinsic antibiotic resistance to ampicillin (10 µg ml
-1

), amoxicillin (25 µg 

ml
-1

), gentamicin (10 µg ml
-1

) and nalidixic acid (30 µg ml
-1

). Biochemical tests, including 

activities of catalase, oxidase, amylase, gelatinase, reduction of litmus milk and Gram 

reaction, were also performed according to SMIBERT and KRIEG (1994) [32]. Similarly, 

assimilation of substrates was determined using API 20E and API 20NE kit for all isolates. 

 

2.3.- Phosphate-potassium solubilizing ability 

 

The ability of the isolates to solubilize inorganic phosphate was checked on two 

media: Pikovskaya (PVK) medium [33] and NBRIP medium [34], both containing 10 g l
-1

 

of tricalcium phosphate (Ca3(PO4)2). To test potassium solubilization, bacteria were 

regrown using Aleksandrov solid medium [35]. An aliquot of 10 µl of fresh bacterial 

culture was spotted onto these plates and incubated at 28°C for 7days. Formation of halo 

around the colonies indicated solubilizing ability [36,37]. 

 

2.4.- Siderophores production 

 

Siderophores production has been assessed using the method described by Schwyn 

and Neilands [38], based on chrome azurol S (CAS) and hexadecyltrimethylammonium 

bromide (HDTMA) as indicators. The CAS/HDTMA complexes tightly with ferric iron to 

produce a blue color. When a strong iron chelator such as a siderophore removes iron from 

the dye complex, the color changes from blue to orange. Chrome azurol S agar plates were 

inoculated with bacterial cultures and incubated at 28°C for 2-7 days. Development of 

yellow-orange halo around the colonies indicated siderophores production [39]. 

 

2.5.- Indole acetic acid production 

 

Indole acetic acid (IAA) production was detected by the method of Bric et al [40]. 

Isolates were inoculated on Luria Bertani (LB) medium supplemented with glucose (5 g l
-

1
) and tryptophan (0.01 g l

-1
) at 28°C for 72 h with shaking (180 rpm). Cultures were 

centrifuged at 1000 rpm for 15 min and 1 ml of the supernatant was recovered and added 

to 2 ml of the Salkowsky reagent. The mixture was then incubated in the dark for 20 min 

and AIA production has been evaluated by appearance of pink color. 

 

2.6.- Hydrogen cyanide acid production 

 

Hydrogen cyanide acid (HCN) production was determined according to the 

procedure described by Lorck [41]. Bacterial isolates were streaked on nutrient agar 

supplemented with glycine (4.4 g l
-1

). A Whatman paper (N°42), saturated with alkaline 

picrate was placed in the lids of plates, sealed with para-film and inversely incubated at 

30°C for 96 h. HCN production was indicated by changing of paper color to yellow or 

orange. 
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2.7.- DNA extraction and PCR amplification 

 

Total genomic DNA for isolate M044713 was extracted in macrogen laboratory 

using InstaGene
TM

 Matrix protocol according to BIO-RAD catalog (732-6030). The 

supernatant containing total DNA was recovered and placed at -20 °C until required. DNA 

was isolated using MG Tissue SV kit (Doctor protein INC, Korea, Cat. no. DR00302). 16S 

rRNA gene has been amplified by DNA Engine Tetrad 2 Peltier Thermal Cycler using Dr. 

MAX DNA Polymerase (Doctor protein INC, South Korea, Cat. no. DR00302). The PCR 

conditions were as follows: initial denaturation (5 min at 95°C), 35 cycles each consisting 

of denaturation (30 s at 95°C), annealing (30 s at 55°C), extension (1 min 30 s at 72°C) and 

final extension for 7 min at 72 °C. PCR product was purified by multiscreen filter plate and 

sequenced by ABI PRISM 3730XL Analyzer (96 capillary type) using BigDye (R) 

Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems). Sequences were finally 

analyzed with Variant Reporter Software Version 1.1 (Applied Biosystems).  

 

2.8.- Phylogenetic and data analysis 

 

16S rRNA gene sequence was aligned using MEGA 5.05. Comparisons of the 

obtained sequence and reference sequences in the public databases were performed using 

EzBioCloud databases (https://www.ezbiocloud.net/identify). Phylogenetic trees were 

carried by the neighbor-joining and maximum likelihood models using MEGA 5.05 

software. Bootstrap confidence levels were based on 1000 permutations of the data sets. 

  

Data obtained for the various tests were subjected to heatmap analysis using 

heatmap2 function under R.3.5.2. An analysis of similarity (ANOSIM), according to the 

Bray-Curtis method was carried using Past 3. 

 

3.- Results  

 

3.1.- Phenotypic diversity 

 

Although, all colonies were white and had a smooth, shiny appearance. 

Macroscopic analysis of bacterial isolates revealed variation in shape, opacity, consistency 

and texture. However, microscopic observation showed that isolates were mainly Gram 

negative, except M064713 and M074713 which were Gram positive. Peanut isolates could 

utilize most of the carbon sources including lactose, glucose, fructose, D-galactose and 

mannitol. Casein and L-tryptophan are the two most assimilated sources of nitrogen, 

whereas isolates D044709 and S034709 did not assimilate any source used. Most of them 

could grow on the YMA medium at pH 9 and up to 5% (W/v) of NaCl. Their spectrum of 

intrinsic antibiotics resistance was relatively narrow ampicillin (10 µg ml
-1

) for all isolated 

strains and amoxicillin (25 µg ml
-1

) for those isolated from EL Mansoura. Bacterial 

isolates could be divided into strict aerobic and positive catalase reaction for most isolates, 

except for M064713 and M074713 which were aero-anaerobic and possessing a catalase 

negative reaction. Reduction of litmus milk gave, however, a negative reaction for all 

isolates tested (tab. II). 

 

Similarity analysis based on API 20E, using the Bray-Curtis method according to 

the UPGMA algorithm, grouped bacterial isolates into two main clusters. The first cluster 

formed by D054709 showing only positive reactions with ONPG, TDA and IND tests, 

having the lowest similarity index (0.25 to 0.70). The second grouped other isolates, 

https://www.ezbiocloud.net/identify
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having variable responses and with a similarity index varying between 0.64 and 1 (Fig. 2). 

Identity analysis using Apiweb 20E V5.0 (https://www.apiweb.biomerieux.com), showed 

up to 96.4% of identity with Ochrobactrum anthropi for this group. For API 20NE, 

isolates could be divided into S014709, S034709, D044709 and D054709 that revealed 

positive reactions for NO3, ESC and Ox tests. More of these tests, M044713 strain reacted 

positively with ARA, MNE NAG, GNT and MLT tests. Both had low similarity indices 

(0.19-0.55). Other isolates showed variable responses for all tests (Fig. 3). However, the 

identity profile from Apiweb 20NE V8.0 showed 98.9% of identity with Rhizobium 

radiobacter. 

 

3.2.- Plant growth promotion properties 

 

The study of PGPR properties based on heatmap analysis of five characters divided 

bacterial isolates into: M024713 could further solubilize phosphorus, potassium and 

produce considerably AIA and HCN, but not for sidérophores; M034713, D024709, 

D064709 and M064713 group which did not solubilize potassium, having a low AIA and 

sidérophores production; D044709 had a high of siderophores and AIA production but 

with a low capacity of the phosphate-potassium solubilizing. Other isolates revealed, 

however, variable results for all properties examined (fig. 4). 
 

 3.3.- Phylogenetic analysis 

 

A representative strain, M044713, forming a separate cluster in the UPGMA 

dendrogram of API 20NE tests was chosen for phylogenetic trees. Analysis of 16S rRNA 

sequence using the BLAST function in EzBioCloud databases, according to the neighbor-

joining and maximum likelihood models for nearly complete 16S rRNA gene sequences of 

several species of Bradyrhizobium, Rhizobium, Sinorhizobium and Mesorhizobium, that 

have been isolated from peanut and other legumes, had shown low similarity distances. 

However, the most important percentage of similarity was 94.5%, noted with 

Pseudoxanthomonas koreensis (fig. 5, 6). 

 

4.- Discussion  
  

In this study, physiological and biochemical characterization of fourteen isolates 

from effective peanut nodules were carried. The results showed both morphologically and 

physiologically variations. The majority of bacterial isolates were Gram-negative bacilli. 

They could be divided into slow-growing and fast-growing rhizobia. Several reports 

describe that peanut has been found to form effective nodule with both fast and slow-

growing rhizobia [24]. Most rhizobial isolates belong to Bradyrhizobium [22,23,42]. 

Although some other fast-growing effective rhizobia have been also reported, classified as 

Rhizobium [43,44]. Many isolates studied could utilize the various carbon sources, but a 

few of them that could grow on nitrogen sources. They could also grow up to 5% of NaCl 

and from 4.5 to 11 of pH. Variability of native rhizobia in terms of their tolerance to salt, 

pH or other factor is conditioned by the specific environmental conditions of their natural 

habitats, which suggests that soil and climatic properties affect the diversity and 

distribution of indigenous rhizobia [45, 46]. 

 

https://www.apiweb.biomerieux.com/
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Table II.- Phenotypic features for peanut isolates collected from effective root nodules (+: positive; ±: weakly positive; -: negative) 

 
Characteristics M014713 M024713 M034713 M044713 M064713 M074713 D024709 D034709 D044709 D054709 D064709 D084709 S014709 S034709 

Sole carbon sources: 

              D-galactose ± ± + ± ± + ± ± ± ± + + ± ± 

Glucose + + + + + + + ± ± + + + + ± 

Lactose + + + + ± ± ± + + + + + + + 

Fructose - + + ± - + + + - ± ± ± + ± 

Mannitol + + + + + + + + + + + + + + 

Sole nitrogen sources: 
              

L-Glutathione - - - - - - - + - - ± ± + - 

Casein - ± - - - - - - - + + + - - 

L-Tryptophan - - ± - ± - + - - - - - + - 

L-Cysteine - + - - ± - - - - - - + - - 

L-Leucine ± - - + ± + - - - - ± - - - 

Grown at/in: 
              

pH 11 ± ± - ± - ± - + - ± ± ± ± - 

pH 9 + + + + + + + + ± + + + ± ± 

pH 7 + + + + + + + + + + + + + + 

pH 4,5 + + + + + + + + ± + + + + + 

0,01% (W/v) NaCl + ± + ± + + + + ± - + ± + - 

1% (W/v) NaCl ± + ± + ± ± + + - ± ± + + + 

5% (W/v) NaCl - ± + + + ± - - - + + + ± - 

Resistance to (µg ml-1) 
              

Ampicillin (10) + + + + + + - + + + - + + + 

Amoxicillin (25) + + + + + + - - + - - - - - 

Gentamicin (10) + + - - - - - - - - - - - - 

Nalidixic Acid (30) - - - - - - - - - - - + - - 

Oxidase - - - - - - - - - + - - - + 

Catalase + + + + - - + + + + + + + + 

Amylase + + - + + - + - - + - + - - 

Gelatinase + + - - - + - - - - + + - - 

Nodulation ± + ± ± ± + ± + + + ± + ± ± 

PVK-solubilization + + + + + + + + + + + + + + 

NBRIP-solubilization + + + + + + + + + + + + + + 
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Figure 2.- Similarity analysis of isolates based on API 20E using the Bray-Curtis method 

according to the UPGMA algorithm, applied on Past 3. 

 
Figure 3.- Similarity analysis of isolates based on API 20NE using the Bray-Curtis method 

according to the UPGMA algorithm, applied on Past 3. 



P-ISSN 2170-1318/ E-ISSN 2588-1949                KRAIMAT M.*, DJANI H., MEHAYA El A., HADJ MAHAMMED I., BOUKHLIFA 

L. K., BENBITOUR I., OULED HADJ AISSA M., HADJ AMMAR S., BENSAHA S., OULED HEDDAR M. and BISSATI S. 

Algerian journal of arid environment  106  vol. 11, n°1, Juin 2021: 98-113 

 
Figure 4.- Heatmap grouping the fourteen isolates based on their plant growth promotion 

properties, using the heatmap2 function on R 5.3.2. 

 
Figure 5.- Neighbor-joining phylogenetic tree based on 16S rRNA gene sequence of M04471 and 

most representative strains isolated from root nodules of A. hypogaea. Bootstrap confidence levels 

were derived from 1000 replications and those greater than 60% are indicated at the internodes. 

The bar represents two estimated substitutions per 100 nucleotide positions. 
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Figure 6.- Maximum Likelihood phylogenetic tree based on 16S rRNA gene sequence of M04471 

and most representative strains isolated from root nodules of A. hypogaea. Bootstrap confidence 

levels were derived from 1000 replications and those greater than 60% are indicated at the 

internodes. The bar represents two estimated substitutions per 100 nucleotide positions 

 

The PGPR properties tested in this work revealed that almost all rhizobial isolates 

could dissolve tricalcium phosphate, produced siderophores and AIA molecules. The 

results were, on the other hand, variable for hydrogen cyanide acid production and 

potassium solubilization. The use of beneficial microorganisms to increase crop yields has 

been reported as an ecological alternative. Plant growth-promoting bacteria (PGPR) may 

facilitate plant growth either indirectly or directly by several ways [47]. Phosphate 

Solubilizing Bacteria (PSB) are capable to convert insoluble phosphate in to soluble forms 

through the production of organic acids, chelates formation, exchange reaction and protons 

H
+
 release [48,49]. Potassium Solubilizing Bacteria (KSB) can dissolve K-minerals such as 

mica, illite and orthoclase in the soil through the excretion of organic acids and production 

of capsular polysaccharide [50,51]. This minerals solubilizing making them more readily 

available for plant growth [52]. The PSB and KSB can be potentially useful, as an 

alternative solution for the problem of P and K availability in various soils and can be 

developed as biological fertilizers [37]. Siderophores which can sequester iron from the 

soil and provide it to plant cells as a siderophore–iron complex, have been also implicated 

in the ability of certain strains to trigger induced resistance in plants [53,54]. While 

phytohormones synthesis, such as AIA, can enhance or regulate various stages of plant 

growth [55]. Studies carried out by MARTÍNEZ-VIVEROS et al. (2006) had shown that 

AIA-producing bacteria stimulate seed germination, division, cell and tissue enlargement, 

leaf expansion and root elongation [56]. In this work, rhizobial bacteria showed the 

significant capacity of phosphate-potassium solubilizing, siderophores and phytohormone 

production, what makes them beneficial to promoting plant growth such as Pseudomonas, 

Bacillus, Enterobacter, Azotobacter, Agrobacterium, Achromobacter, Rhizobium, 

Burkholderia, Flavobacterium, Micrococcus and other species defined as PGPR [57]. 

  

The Identification of isolates based on API 20E and API 20NE tests developed the 

significant percentage of similarity with Ochrobactrum anthropi (96.4%) and Rhizobium 
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radiobacter (98.9%), respectively. Although they are the pathogenic strains, the two 

genera contain several species considered as PGPR [58,59]. Nevertheless, the molecular 

level of the isolate M044713, assessed through 16S rRNA sequence analysis, showed low 

similarity distances with Bradyrhizobium, Rhizobium, Sinorhizobium and Mesorhizobium 

species. Indeed, the most important distance (94.5%) was that noted with 

Pseudoxanthomonas koreensis, which is long away for considering them as related species, 

even though several species of Pseudoxanthomonas had been reported as rhizobacteria [1, 

60].  

 

Conclusion 
 

 This work is the first to report the rhizobia diversity nodulating peanut grown in 

Algerian sandy soils, through phenotypic and genotypic approaches. The results obtained 

for the fourteen isolates showed morphological and biochemical variability. All isolates 

presented significant capacities of PGPR, which can be utilized as bio-inoculant for 

improving plant growth and nodulation of legumes. The phylogenetic distribution of the 

isolate M044713, based on 16S rRNA sequence analysis, revealed low similarity 

percentages for all strains previously isolated from peanut. Although, other molecular 

analysis, especially, symbiotic genes nodC, 16S-23S ITS rRNA region, atpD, glnII and 

recA fragments need to be sequenced in order to approve the genetic affiliation of this 

strains collection. 
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