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ABSTRACT: In this work, we focus our study on some systems in statistical mechanics based on the fractional 
classical and quantum mechanics in any positive spatial dimension D. At the first stage we present the thermodynamical 
properties of the classical ideal gas and the system of N classical oscillators. In each case, the Hamiltonian exhibits 
fractional exponents of the phase space (position and momentum). At the second stage, in the context of the fractional 
quantum mechanics, we have studied the Bose-Einstein statistics with the related problem of the condensation and the 
Fermi-Dirac. 
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RÉSUMÉ : Dans ce travail, nous nous intéressons à l'étude de certains systèmes en mécanique statistique basée sur la 
mécanique classique et quantique fractionnaire dans toute dimension D. Au premier lieu, nous présentons les propriétés 
thermodynamiques du gaz idéal classique et le système de N oscillateurs classiques. Dans chaque cas, l'hamiltonien 
présente des puissances fractionnaires de l'espace des phases (de position et l'impulsion). En deuxième étape, dans le 
contexte de la mécanique quantique fractionnaire, nous avons étudié les statistiques de Bose-Einstein et de Fermi-Dirac 
avec le problème associé de la condensation.  

 
MOTS-CLÉS : calcul fractionnaire, la mécanique quantique fractionnaire, statistiques quantiques, fonction de 
partition. 
 
 
 
1. Introduction  
Since some years, research has intensified and diversified in the calculation of the fractional 
derivatives. These are applied quickly thereafter, to physics and to engineering. This kind of 
calculation is due to Riemann and Liouville pioneers. This consists to make derivatives with non-
integer order of functions. More precisely, instead to make a derivative of the first order (order 1) or 
a derivative of second order (order 2), we make a derivative of an intermediate order between 1 and 
2. We then speak, for example, of the fractional derivative of order 1/2 or 3/4. This concept was 
developed recently by I. Podlubny (1999) [1]. In physics, we often deal with differential equations 
or with partial differential equations. What happens if these equations present the fractional 
derivative? In quantum mechanics, the results arising from this new concept are discussed by 
several authors [2-5]. The focus of this paper is to see how the fundamental problems of statistical 
physics, both classical and quantum, will be affected by using the fractional derivatives. Section 2 
start with defining fractional classical Hamiltonian for two classical systems: N particles ideal gas 
and N independent fractional oscillators in D-dimensional space. Using the canonical ensemble, we 
have developed the thermodynamical properties of the system (N particles ideal gas and N 
independent fractional oscillators in D-dimensional space). By performing the limit 2 , 2  
and D=3, we have recovered the well-known results for the 3-dimensional ideal gas and N 
independent oscillators. In section 3, we have studied the ideal gases (Bose and Fermi gases) in 
grand canonical ensemble. We emphasize a subsection to discuss how the critical temperature of the 
ideal Bose gas is affected by the fraction parameter  . By putting 2  and D=3, we have 
recovered the standard results relative to the quantum Bose gas. We close this work by a conclusion 
in section 4. 
 

mailto:zinebkorichid02@gmail.com


D-Dimensional Statistical Mechanics in Fractional Classical and Quantum Mechanics 
 

KORICHI Z. and MEFTAH M. T. 

125 
 

2. Classical statistical mechanics 
 
2. 1. Ideal gas 
The canonical partition function of a classical ideal gas composed of N particles occupying a 
volume V at a temperature T is given by:  
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where Z1 is the individual partition function of a free particle in the canonical ensemble:  
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where: 

   

 pDxpH ,   (3)  

  1
 TKB ( BK is Boltzmann constant and T is the temperature) and D  is a constant to choose 

preserving the dimension of the energy for  xpH , .   is a parameter greater than one and less 

than or equal to two ( 21  ). For 2  the equation (3) must represent the free particle 

Hamiltonian, then   1
2 2 
 mD . In quantum mechanics 



p becomes a fractional derivative. As 

 xpH ,  given by (3) doesn't depend on the position x , the integral over x  in (2) gives the system 

volume V. The integral over p  in (2) is performed by using the spherical coordinates, we find that: 
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where  x  is Euler Gamma function. Note here that N. Laskin [6] has calculated Z1 only in one 

dimension. The last result (4) can be transformed into 
31
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  where we have defined a novel 

generalized thermal wave length [7]: 
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Finally, we get the classical partition function for the ideal gas whose fractional Hamiltonian 
presents a non integer power of the momentum p (see formula (3)): 
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It is easy to see that when putting 2  and D=3 in formula (5-6), we retrieve the usual thermal 

wave-length TmKh Bth  2/  and the usual partition function 
N
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formula we deduce the free energy or Helmholtz energy of the ideal gas  
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When the partition function ZN and the Helmholtz's energy F are known it is easy to compute all the 
remaining thermodynamical quantities of the system. 
 
2. 1. 1. Internal Energy and specific heat 
The internal energy for the ideal gas is the mean value of its kinetic energy Ec:  
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and the specific heat at constant volume: 
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2. 1. 2. Entropy 
The entropy of the system in the canonical ensemble is given by: 
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2. 1. 3. State equation 
The canonical pressure of the system is given by:   
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We remark here that the state equation is independent of the parameter   whereas all other 
thermodynamical quantities depend. This remark holds also when we use the micro-canonical 
ensemble. 
 
2. 2. Fractional oscillators system 
Consider now a system composed of N classical independent three-dimensional fractional 
oscillators. The hamiltonian of this system is given by [8,9]: 
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where q is a constant with dimension [q] = erg1/2cm-ν/2,   and   are parameters such as  21  , 
21  . 

The canonical partition function for the classical system is given by:  
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A simple calculation gives:  
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If we express the Helmholtz energy (using the Stirling formula), 
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2. 2. 1. Energy and specific heat 
The internal energy in the canonical ensemble is given by:  
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and the specific heat at constant volume: 

 B
V

V NK
v

DD

T

U
C 
























  (18) 

 
3. Quantum statistical mechanics 
 
3. 1. Ideal Bose gas 
We will now consider N particles with zero spin (bosons) without interaction, enclosed in a volume 
V. We assume that the system is in thermodynamical equilibrium with a thermostat at temperature 
T. We will study some properties of the ideal gas of bosons in the fractional case. To address the 
problem of an ideal gas of bosons, we use the grand canonical partition function D(z, V, T) [10]: 
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where i  is the energy of the single-particle. we assume that i  is given by: 
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and z is the fugacity of the gas which is related to the chemical potential   through the formula:  
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or equivalently, the grand partition function is: 
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Using this expression we can derive some thermodynamical properties of the Bose gas system in 
the case of fractional quantum mechanics. 
 
3. 1. 1. State Equation 
In the grand canonical ensemble of equilibrium statistical mechanics, the state equation is given by: 
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where P and N are respectively the pressure and the total number average of particles of the system. 
The last sums can be extended to an integral:  
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Performing the integrals we find: 
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where: 
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    is Bose function. 
    The state equation can be obtained by eliminating z from the two following coupled equations: 
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Where g  is the generalized thermal wave length. Now look at the equations (27) when we perform 

the thermodynamical limit (N and V going to infinity keeping the ratio N/V equal to a constant):  
a) when z < 1 then (27) becomes: 
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These coupled equations correspond to the state equation for the case z < 1.  
b) When z goes to 1  1z , the term 
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becomes a significative fraction of the total particles density, whereas the term 
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is negligible. In this case the coupled state equations become:  
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where N0 is the mean number of bosons occupying the state of zero energy (k=0) and TC is the Bose 
temperature that will be defined in the next subsection. We remark here that in the case of z=1, the 
pressure (31) is independent of the volume V. This case obviously corresponds to situation where 
the temperature T is less than TB. 
When T > TB, we immediately find, the internal energy of the system: 
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and the specific heat at constant volume and mean number N: 
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Using the properties:  
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we find: 
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and the Helmoltz energy: 
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and the entropy of the system of bosons: 
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We mention here, that all above results lead to the well known standard results when we put 2  
and D=3. 
 
3. 1. 2. Bose-Einstein Condensation 
Following the same procedure to demonstrate the Bose-Einstein condensation (for the case of spin 
zero), we find for T < TB, that the density of the excited particles (that occupying the energy level 

0 ): 
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and the density of particles occupying the fundamental energy level (  = 0): 
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
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/

0 10
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where: 
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
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






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  (41) 

    is the Bose temperature. 
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For D=3, the ground-state fraction can be written as:  

 
/3

0 1 











CT

T

N

N
  (42) 

And: 

 
/3













C

e

T

T

N

N
  (43) 

A plot of  
N

N0  and 
N

Ne  are shown in curves 1 and 2 in figure 1 for 2 and 1.5, ,1    
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Figure 1: Fractions of the normal phase and the condensed of an ideal Bose gas as a function of 

the temperature parameter CTT /  

 
When T < TB (in the presence of condensation), it is interesting to give some thermodynamical 
quantities. For example, the internal energy is given by: 

 

 

D
g

D

B

g

TVK
D

U




1
1









   (44) 

and the specific heat at constant volume by: 

 
    

D
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D

B

V
g

N

DDV

NK

C



  11/

2

2


   (45) 

For D=3 :  

 
    

D
gB

V
zg

N

V

NK

C



  1/3

2

93 
   (46) 

 
Figure 2 shows the variation of the specific heat of an ideal Bose gas in term of the temperature 
parameter CTT /  for 1 ,  5.1  and 2  
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Figure 2: The specific heat of an ideal Bose gas as a function of the temperature parameter 

CTT /  

It is obvious that for real values of  between 1 and 2 , 
NK

CV  is decreasing function of  .  

and the Helmoltz energy: 
   11/  DBTgVKF   (47) 

and the entropy of the system of bosons: 

   
D
g

D
B

g
VK

D
S



  11/ 
   (48) 

We recover all well known quantities when we put 2  and D=3. 
 
3. 2. Ideal Fermi gas 
For the case of Fermi gas, the same procedure is to be followed except that the energy level cannot 
be occupied by more than one particle (fermion). Then the Grandpartition function is given by      
K. Huang [10]: 

    



p

pDzeTVzD


1,,   (49) 

This leads us to write:  
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  (50) 

Using the same demarche as the bosons, we find at first the tow coupled state equations: 
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  (51) 

where  zfn is the Fermi function defined by:  

    





1

1
l

r

l
l

r l

z
zf   (52) 

    All the thermodynamical properties can be found easily, and we list them here: 
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    internal energy 
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  (53) 

    the specific heat at constant volume  
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    the Helmholtz energy and the entropy 

   

  
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


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
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
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B log

/
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













  (56) 

 
4. Conclusion  
    In this work we have studied some problems of statistical mechanics based on the fractional 
classical and quantum mechanics. All calculation are made in D dimensional space. We have 
presented at first the thermodynamical properties relative to the classical ideal gas and to the system 
of N classical oscillators. In both cases, the Hamiltonian presents fractional exponents of the phase 
space (position r and momentum p). At the second stage, we have reviewed, in the context of the 
fractional quantum mechanics, the thermodynamical properties for the cases: the Bose-Einstein 
condensation and the Fermi-Dirac statistics. When we put D=3 in all the formula, we retrieve all the 
results obtained earlier by Z. Korichi and M. T. Meftah (2014) [11]. 
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