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Abstract

Let G be a graph without isolated vertices: A set S � V (G)
is a double dominating set if every vertex in V (G) is adjacent to
at least two vertices in S. G is said edge removal critical graph
with respect to double domination, if the removal of any edge
increases the double domination number. In this paper, we �rst
give a necessary and su¢ cient conditions for �2-critical graphs.
Then we provide a constructive characterization of �2�critical
trees.

1 Introduction

In a graph G = (V (G); E(G)), the open neighborhood of a vertex v 2 V (G) is
NG(v) = N(v) = fu 2 V j uv 2 E(G)g; the closed neighborhood is NG[v] =
N [v] = N(v) [ fvg and the degree of v; denoted by degG(v); is the size of its
open neighborhood. A vertex with degree one in a graph G is called a pendent
vertex or a leaf, and its neighbor is called its support. An edge incident to
a leaf in a graph G is called a pendent edge. We let S(G); L(G) be the set of
support vertices and leaves of G, respectively. If A � V (G), then G[A] is the
graph induced by the vertex set A. The diameter diam(G) of a graph G is the
maximum distance over all pairs of vertices of G. We denote by Kn the complete
graph of order n, and by Km;n the complete bipartite graph with partite sets
X and Y such that jXj = m and jY j = n. A star of order n + 1 is K1;n: A
subdivided star K�

1;n is the graph obtained by subdividing each edge of a star
K1;n once. A graph is k-regular if all its vertices have degree k: The path and
the cycle on n vertices are denoted by Pn and Cn; respectively.

A subset S of vertices of V (G) is a dominating set of G if every vertex in
V (G)� S is adjacent to a vertex in S, and S � V is a double dominating set of
G, abbreviated DDS, if every vertex in V �S has at least two neighbors in S and
every vertex of S has a neighbor in S. The double domination number �2(G) is
the minimum cardinality of a double dominating set of G. A double dominating
set of G with minimum cardinality is called a �2(G)-set. Double domination
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was introduced by Harary and Haynes [4] and is studied for example in [1, 3, 4].
For a comprehensive survey of domination in graphs and its variations, see [5, 6].
Given a graph, a new graph can be obtained by removing or adding an

edge. The study of the e¤ects of such modi�ctions have been considered for
several domination parameters. Note that Sumner and Blitch [7] were the �rst
introducing edge removal critical graphs for the domination number. For a
survey we cite [5] (Chapter 5). In this paper we study the e¤ects on increasing
double domination number when an edge is deleted.

2 Preliminary results

We begin by giving a straightforward property of double dominating sets.

Remark 1 Every DDS of a graph contains all its leaves and support vertices.

Next we show that the removal of a non-pendent edge of a graph G can
increase the double domination number of G by at most two.

Theorem 1 Let G be a graph without isolated vertices. Then �2(G) �
�2(G� e) � �2(G) + 2 for every non-pendent edge e 2 E(G):

Proof. Let e = xy be a non-pendent edge. Clearly every �2(G � e)-set
is a DDS of G and so �2(G) � �2(G � e): Now let S be a �2(G)-set. If
S\fx; yg = ;, then S is a DDS of G�e and hence �2(G�e) � �2(G): Assume
now, without loss of generality, that S \ fx; yg = fyg: Then since x has two
neighbors in S; S[fxg is a DDS of G�e implying that �2(G�e) � �2(G)+1:
Finally assume that fx; yg � S: We examine three cases.
If each x and y has degree at least two in G[S]; then since e is a non pendent

edge, S remains a DDS of G�e and so �2(G�e) � �2(G): Assume that both
x and y are pendent vertices in G[S]: Since e = xy is a non-pendent edge each of
x and y has a neighbor in V �S: Let x0; y0 2 V �S be a the neighbors of x and y,
respectively. Then S[fx0; y0g is a DDS of G�e and so �2(G�e) � �2(G)+2:
Finally, assume without loss of generality, that x is a vertex of degree one in
G[S] and y has degree at least two in G[S]: Since xy is a non-pendent edge,
let x0 2 V � S be any neighbor of x: Then S [ fx0g is a DDS of G � e and so
�2(G� e) � �2(G) + 1:

A graph G is said to be edge removal critical (ER-critical) with respect to
double domination or just �2-critical, if for every edge e 2 E(G); �2(G�e) >
�2(G): If G� e contains isolated vertices, then we set that �2(G� e) = +1:
Thus nontrivial stars are �2-critical. LetXG � E(G) be the set of non-pendent
edges in G: Clearly if XG = ;; then �2(G�e) = +1 and so G is a �2-critical
graph.
The following Properties are straightforward.
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Remark 2 If G is a �2-critical graph, then no two support vertices are ad-
jacent.

Proposition 1 Let G be a graph obtained from a subdivided star K�
1;r (r � 2)

of center y by adding an edge from y to any vertex x of a nontrivial graph G0:
Then G is not a �2-critical graph.

Proof. Assume that G is �2-critical. Let ui for 1 � i � r be the support
vertices of the subdivided star K�

1;r with center y and let S be any �2(G)-set:
By Remark 1 each ui belongs to S. If y 2 S; then removing any edge yui does
not increase the double domination number. Thus y =2 S and hence S is a DDS
of G� xy implying that �2(G� e) � �2(G); a contradiction. It follows that
G is not a �2-critical graph.
Next we give a necessary and a su¢ cient condition for a graph to be �2-

critical.

Theorem 2 G is a �2-critical graph if and only if for every �2(G)-set S
the following conditions hold.

i) Each component in G [S] is a star.
ii) V � S is an independent set.
iii) Every vertex of V � S has degree two.

Proof. Assume that G is a �2-critical graph and let S be any �2(G)-set.
Observe that G [S] contains no cycle for otherwise removing any edge on the
cycle does not increase the double domination number, a contradiction. Thus
G [S] is a forest. If G [S] contains a component with diamter at least three, then
there exists an edge on the diametrical path of such a component whose removal
does not increase the double domination number, a contradiction too. Since
G [S] does not contains isolated vertices, every component of G [S] has diameter
at most two, that is a star. Now assume that V � S contains two adjacent
vertices x; y: Then S remains a DDS for G� xy and so �2(G� xy) � �2(G);
a contradiction. It follows that V � S is an independent set. Finally assume
that a vertex x 2 V � S has degree at least three. By item (ii) N(x) � S; and
hence removing any edge incident to x does not increase the double domination
number, a contradiction.
Conversely, suppose that for every �2(G)-set conditions (i), (ii) and (iii)

are satis�ed. Assume that G is not �2-critical and let uv be an edge of XG
for which �2(G � uv) = �2(G): Let D be a �2(G � uv)-set. Clearly D is
a DDS of G and since �2(G � uv) = �2(G); D is also �2(G)-set. If fu; vg
\D = ;; then D is a �2(G)-set and V � D is not an independent set in G:
Thus D contains at least one of u or v: Assume that fu; vg � D: Then u has
a neighbor, say x 6= v; in D and likewise, v has a neighbor, say y 6= u, in D,
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with possibly x = y: Then D is a �2(G)-set such that fu; v; x; yg induces in
G [D] either a cycle C3; C4 or a path P4; a contradiction. Thus, without loss of
generality, assume that u 2 D and v =2 D: Then v is dominated at least twice by
D in G�uv but then condition (iii) does not hold for D in G since v would have
at least three neighbors. In any case D is a �2(G)-set for which conditions (i),
(ii) and (iii) are not all satis�ed. It follows that G is �2-critical.
As immediate consequence to Theorem 2 we have the following two corollar-

ies.

Corollary 1 If G is a �2-critical graph, then every �2(G)-set contains all
vertices of degree at least three.

Corollary 2 If G is a graph with minimum degree at least three, then G is
not �2-critical.

The following observation will be useful for the proof of the next result.

Remark 3 1)If n � 3; then �2(Cn) =
�
2n
3

�
:

2)If n � 2; then �2(Pn) =
�
2n=3 + 1 if n � 0(mod 3)
2 dn=3e otherwise

Proposition 2 The only �2-critical k-regular graphs with k � 2 are the cy-
cles Cn with n � 0; 1 (mod 3) :

Proof. Assume that G is a k-regular �2-critical graph. By Corollary 2 k � 2
and it follows that k = 2; that G is a cycle. Using Remark 3 it is a simple
exercice to see that the order of G must satisfy n � 0; 1 (mod 3) :

3 �2-critical trees

For ease of presentation, we next consider rooted trees. For a vertex v in a
(rooted) tree T , we let C(v) andD(v) denote the set of children and descendants,
respectively, of v, and we de�ne D[v] = D(v) [ fvg. The maximal subtree at
v is the subtree of T induced by D[v], and is denoted by Tv. Also, a vertex of
degree at least three in T is called a branch vertex, and we denote by B(T ) the
set of such vertices.

Remark 4 If T is the tree obtained from a tree T 0 by attaching a vertex to a
support vertex, then �2(T ) = �2(T

0) + 1:
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Lemma 1 Let T be a tree obtained from a nontrivial tree T 0 by adding k
(k � 1) paths P3 = aibici attached by edges cix for every i; at a vertex x of T 0
which belongs to some �2(T

0)-set; then �2(T ) = �2(T
0) + 2k:

Proof. Let S0 be a �2(T
0)-set that contains x: S0 can be extended to a DDS

of T by adding the vertices ai; bi for every i; and so �2(T ) 6 �2(T
0) + 2k:

Now let D be a �2(T )-set. By Remark 1, D contains ai; bi for every i: If
D contains three vertices from fc1; c2; :::; ckg; say c1; c2; c3; then x =2 D and
so fxg [ D � fc1; c2g is a DDS smaller than D; a contradiction. Thus every
�2(T )-set contains at most two vertices from fc1; c2; :::; ckg: Now, without loss
of generality, we can assume thatD\fc1; c2; :::; ckg = ; (else we replace such ver-
tices by x or/and a neighbor of x in T 0). Hence x 2 D to double dominate every
ci; implying that �2(T

0) 6 �2(T )�2k: It follows that �2(T ) = �2(T 0)+2k:

Remark 5 If T is a tree obtained from a tree T 0 by attaching a new vertex x
to a pendent vertex u whose support vertex v is adjacent to at least one pendent
path of order three, then �2(T ) = �2(T

0) + 1:

Proof. Let xiyizi with 1 � i � k be k pendent paths P3 attached to v by
the vertices xi and S any �2(T )-set. Since every �2(T

0)-set can be extended
to a DDS of T by adding the set fxg ; �2(T ) � �2(T

0) + 1: On the other
hand, without loss of generality, we may assume that v 2 S (if v =2 S; then by
minimality, k = 1 and x1 2 S; and so we can replace x1 by v in S); hence the
set S0 = S \ T 0 is a DDS of T 0 and so �2(T 0) � �2(T ) � 1: It follows that
�2(T ) = �2(T

0) + 1:

In order to characterize �2-critical trees, we de�ne the family of all trees F
that can be obtained from a sequence T1; T2; :::; Tj (j > 1) of trees such that T1
is a star K1;r with r � 1, T = Tj , and if j > 2, Ti+1 can be obtained recursively
from Ti by one of the operations listed below.
� Operation O1: Add a new vertex and join it by an edge to any support
vertex of Ti:

� Operation O2: Add a path P3 and join by an edge a leaf of P3 to a
support vertex of Ti:

� Operation O3: Add k (k � 1) paths P3 and join by edges a leaf of each
path P3 to the same leaf of Ti:

� Operation O4: Add a new vertex u and join it by an edge to a leaf v of
Ti whose support neighbor x has degree k + 2 and is adjacent to k � 1
pendent paths P3 such that every vertex in N(x) � fvg has degree two
and does not belong to any �2(Ti)-set.

Note that we can determine in polynomial time the vertices that are in no
minimum double dominating set of a tree [2].
Now we are ready to characterize �2-critical trees.
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Theorem 3 A nontrivial tree T is �2-critical if and only if T 2 F .

Proof. We proceed by induction on the order of T . Since stars are �2-
critical, and by Remark 2, double stars are not �2-critical since they have two
adjacent support vertices. Hence, assume that T has diameter at least four: The
smallest tree of diameter four is the path P5 and it can be obtained from a star
K1;1 by Operation O3; and so T belongs to F : Assume now that diam(T ) = 4
and T 6= P5: Let x1-x2-x3-x4-x5 be the longest path of T: Clearly x1 and x5 are
leaves and so x2 and x4 are their support vertices, respectively. If degT (x3) = 2;
then at least one of x2 and x4 is a strong support. Then T 2 F and is obtained
from P5 by using Operation O1: Now we assume that degT (x3) � 3: By Remark
2, x3 cannot be a support vertex. Thus every neighbor of x3 is a support vertex
but then �2(T �x2x3) � �2(T ); contradicting the fact that T is �2-critical.
Thus assume that diam(T ) � 5: The smallest tree of diameter �ve is the path
P6; which can be obtained from a star K1;2 by operation O3; and so it belongs
to F :
Let n � 7 and assume that every �2-critical tree T

0 of order n0 < n is
in F . Let T be a �2-critical tree of order n and let S be any �2(T )-set.
If any support vertex, say y, of T is adjacent to two or more leaves, then let
T 0 be the tree obtained from T by removing a leaf adjacent to y. By Remark
4, �2(T ) = �2(T

0) + 1. Clearly XT 0 = XT and T 0 is �2-critical. By the
inductive hypothesis on T 0, we have T 0 2 F . It follows that T 2 F because it
is obtained from T 0 by using Operation O1: Thus we may assume for the next
that every support vertex is adjacent to exactly one leaf.
We now root T at leaf x of a longest path. Let u be a vertex at distance

diam(T ) � 1 from x on a longest path starting at x, and let r be the child of
u on this path. Let w1; v be the parents of u and w1, respectively. Since u is
a support vertex, degT (u) = 2 and so by Remark 2, w1 cannot be a support
vertex. On the other hand if degT (w1) � 3; then Tw1 is a subdivided star.
Thus T is a tree obtained from a tree T 0 and the subdivided star Tw1 of center
w1 by adding the edge w1v; where v 2 V (T 0): But by Proposition 1 T is not
�2-critical, a contradiction. Thus degT (w1) = 2: We consider the following
two cases.
Case 1. v is a support vertex. Let T 0 = T � fr; u; w1g: Then XT 0 =

XT � fvw1; w1ug and by Lemma 1, �2(T 0) = �2(T ) � 2: Now let e be any
edge ofXT 0 : Since T is �2-critical, the removal of e produces two trees T1 and T2
such that �2(T�e) = �2(T1)+�2(T2) > �2(T ). Without loss of generality,
we can assume that fr; u; w1g 2 T1: Thus by Lemma 1, �2(T 01) = �2(T1)� 2
(since e 2 E(T 0); the deletion of the edge e in T 0 provides on one hand T 01 and on
the other hand the tree T2): It follows that �2(T

0 � e) = �2(T 01) + �2(T2) =
�2(T1)� 2+ �2(T2) = �2(T � e)� 2 > �2(T )� 2 = �2(T 0): Consequently
the deletion of every edge of XT 0 increases the double domination number of
T 0 and so T 0 is �2-critical: By the inductive induction, T

0 2 F and so T 2 F
since it is obtained from T 0 by Operation O2.
Case 2: v is not a support vertex. Let C(v) = fw1; w2; :::; wkg with k � 1
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. We �rst assume that C(v) contains no support vertex. If deg(v) = 2; then,
without loss of generality, we may assume that v 2 S (else replace w1 by v) and
if deg(v) � 3; then, by Corollary 1, v 2 S: Also since every wi for i 6= 1 plays
the same role as w1, every wi has degree two. Now if w1 2 S; then fr; u; w1; vg
induces a path P4 in S; a contradiction with Theorem 2. Thus S contains no wi:
Now let T 0 = T � [

1�i�k
Twi : Thus XT 0 = XT �fvwi; wic(wi); yv for 1 � i � kg ;

where y is the parent of v and c(wi) is the unique child of wi: Proceeding like
in Case 1, it can be seen that T 0 is �2-critical. By our inductive hypothesis,
T 0 2 F and so T 2 F because it is obtained from T 0 by Operation O3.
Now assume that v has a child, say w which is a support vertex. Then such a

vertex w is unique for otherwise if w00 2 C(v) is a second support vertex, then S
is a DDS of T�vw00; implying that �2(T�vw00) � �2(T ); a contradiction with
the fact that T is a �2-critical tree. Since degT (v) � 3; then by Corollary
1, v 2 S: Let w0 be the leaf neighbor of w: By item (i) of Theorem 2, every
component of G[S] is a star and so y =2 S and no vertex of C(v) di¤erent to w
is in S: It follows that degT (y) = 2 for otherwise by Corollary 1, y belongs to S:
Let C(v) = fw;w1; w2; :::; wkg with k � 1: As mentioned above degT (wi) = 2
for every i: Now let T 0 be the tree obtained from T by removing the leaf w0: By
Remark 5, �2(T ) = �2(T

0
) + 1: We shall show now that y does not belong

to any �2(T
0)-set. Suppose to the contrary that there is a �2(T

0)-set S0 that
contains y; and since v; w 2 S0; the set S = S0[fw0g is a �2(T )-set containing
y; v; w and w0 and so G[S] contains an induced P4; a contradiction. Further, it
is clear that there is no �2(T

0)-set that contains any vertex wi for every i:
Clearly, XT 0 = XT �fvwg and to prove that T 0 is �2-critical, consider any

edge e of XT 0 : Since T is �2-critical, the removal of e produces two trees T1
and T2 such that �2(T � e) = �2(T1) + �2(T2) > �2(T ):
Subcase 1. e = vwi; for 1 � i � k: Then T2 = Twi and T1 contains

v: Since e 2 E(T 0); the deletion of the edge e in T 0 provides on one hand
T 01 and on the other hand a tree T2: We need �rst to show that �2(T

0
1) =

�2(T1) � 1 and we begin by the case k = 1: Since every �2(T
0
1)-set can

be extended to a DDS of T1 by adding w0; �2(T1) � �2(T
0
1) + 1 implying

that �2(T
0
1) � �2(T1) � 1: Suppose now that �2(T 01) > �2(T1) � 1: This

implies that v does not belong to any �2(T1)-set. Assume to the contrary that
there exists a �2(T1)-set S that contains v: Then S1 = S \ T 01 is a DDS of
T 01 and so �2(T

0
1) � �2(T1) � 1; a contradiction. Further we show that in

this case, �2(T ) = �2(T1) + 3: Since every �2(T1)-set can be extended to a
DDS of T by adding the set fw1; u; rg ; it follows that �2(T ) � �2(T1) + 3:
Suppose now that �2(T ) < �2(T ) + 3 and let D be any �2(T )-set. By
corollary 1 and Remark 1, v; w;w0 2 D; and so D1 = D \ T1 is a DDS of
T1 implying that �2(T1) � �2(T ) � 2 since w1 =2 D and u; r 2 D and so
�2(T ) � �2(T1) + 2: It follows that �2(T ) = �2(T1) + 2; and so D1 is a
�2(T1)-set that contains v; a contradiction. Thus �2(T ) = �2(T1) + 3: Now
let X1 be any �2(T1)-set. Since v =2 X1 and degT1(y) = 2; y 2 X1 and so the
set X2 = X1[fw1; u; rg is a �2(T )-set and the set (X2�w1)[fvg is a �2(T )-
set that contains a path P4 = w0; w; v; y; a contradiction with the fact that T
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is �2-critical: Consequently �2(T
0
1) = �2(T1) � 1: For the case k � 2; by

Remark 5, �2(T
0
1) = �2(T1)� 1: It follows that for any edge e = vwi we have

�2(T
0 � e) = �2(T 01) + �2(T2) = �2(T1)� 1 + �2(T2) = �2(T � e)� 1 >

�2(T )� 1 = �2(T 0):
Subcase 2. e = wic(wi); for 1 � i � k: Then T2 = Tc(wi) and T1 contains v:

Since e 2 E(T 0); the deletion of the edge e in T 0 provides on one hand T 01 and on
the other hand the tree T2: Clearly, �2(T

0
1) = �2(T1)� 1 and it follows that

�2(T
0 � e) = �2(T 01) + �2(T2) = �2(T1)� 1 + �2(T2) = �2(T � e)� 1 >

�2(T )� 1 = �2(T 0):
Subcase 3. e 6= vwi and e 6= wic(wi): Without loss of generality, suppose

that T1 contains v: Since e 2 E(T 0); the deletion of the edge e in T 0 provides
on one hand T 01 and on the other hand a tree T2: By Remark 5 �2(T

0
1) =

�2(T1)�1: Hence �2(T 0�e) = �2(T 01)+�2(T2) = �2(T1)�1+�2(T2) =
�2(T � e)� 1 > �2(T )� 1 = �2(T 0):
Consequently the deletion of every edge of XT 0 increases the double domina-

tion number of T 0 and so T 0 is �2-critical: By the inductive hypothesis, T
0 2 F

and so T 2 F since it is obtained from T 0 by Operation O4.
Conversely, let T 2 F . Then T can be obtained from a sequence T1; T2; :::; Tj

(j > 1) of trees such that T1 is a star K1;r with r � 1 and T = Tj ; and if
j � 2, then Ti+1 is obtained from Ti by one of the four operations de�ned
above. Proceed by induction on the length j of the sequence of trees needed
to construct T: Suppose j = 1: Then T is a star K1;r with k � 1: So T is
�2-critical.
Assume that the result holds for all trees in T of length less than j in F ,

where j � 2: Let T be a tree of length j in F . Thus, T 2 F can be obtained from
a sequence T1; T2; :::; Tj of T trees. We denote Tj�1 simply by T 0: Applying the
inductive hypothesis, T 02 F is �2-critical. We now consider four possibilities
depending on whether T is obtained from T 0 by operation O1, O2, O3 or O4.
Case 1: T is obtained from T 0 by operation O1.
Let v be a support vertex in T 0 and let u be the vertex attached to v to obtain

the tree T: Clearly, XT = XT 0 and by Remark 4, �2(T ) = �2(T
0)+1. We shall

show that T is �2-critical. Since T
0 is �2-critical, then the removal of any edge

e 2 XT 0 produces two trees T 01 and T 02 with �2(T 0� e) = �2(T 01) + �2(T 02) >
�2(T

0): On the other hand, T � e = T1 [ T 02 where T1 = T 01 [ fug ; and by
Remark 4, �2(T1) = �2(T

0
1) + 1: Thus, �2(T � e) = �2(T1) + �2(T

0
2) =

�2(T
0
1) + 1 + �2(T

0
2) > �2(T

0) + 1 = �2(T ). Hence, T is �2-critical.
Case 2: T is obtained from T 0 by operation O2.
Let v be a support vertex in T 0 and let xyz be the path attached to v by x

to obtain the tree T: Then by Lemma 1, �2(T ) = �2(T
0) + 2: To show that

T is �2-critical, we consider any edge e of the set XT = XT 0 [ fvx; xyg :
� If e is any edge of XT 0 ; then removing e from T 0 provides the trees T 01 and
T 02 such that v 2 T 01 with �2(T 0 � e) = �2(T

0
1) + �2(T

0
2) > �2(T

0);
and from T the trees T1 and T 02 where T1 = T

0
1 [fx; y; zg ; and by Lemma

1, �2(T1) = �2(T
0
1) + 2: Hence, �2(T � e) = �2(T1) + �2(T

0
2) =

�2(T
0
1) + 2 + �2(T

0
2) > �2(T

0) + 2 = �2(T ).
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� If e = vx; then deleting e from T produces the trees T1 and T2 = xyz
with �2(T2) = 3 and �2(T1) = �2(T ) � 2: Hence, �2(T � vx) =
�2(T1) + �2(T2) = �2(T ) + 1 > �2(T ):

� Finally, if e = xy; then T�e = T1[T2 where T2 = yz: Clearly �2(T2) = 2
and �2(T1) = �2(T ) � 2 + 1 = �2(T ) � 1: Hence, �2(T � xy) =
�2(T1) + �2(T2) = �2(T ) + 1 > �2(T ):

Consequently, for any edge e of XT ; �2(T � e) > �2(T ): So T is �2-
critical.
Case 3: T is obtained from T 0 by operation O3.
Let v be a leaf of T 0 and let xiyizi with 1 � i � k be the paths attached to

v by the vertices xi to obtain the tree T: By Lemma 1, �2(T ) = �2(T
0) + 2k:

First we prove that the support vertex u of v is in every �2(T )-set. If u
remains a support vertex in T; then u belongs to every �2(T )-set. Hence we
may assume that u is not a support vertex in T and Let D be a �2(T )-set
not containing u: Then there is a neighbor of u say w in D with its neighbor
w0, and v is in D with one vertex xi for 1 � i � k: Without loss of generality,
assume that x1 2 D: Then the set D1 = (D � fx1g) [ fug is a �2(T )-set and
so D0 = D1 \ T 0 is a �2(T 0)-set containing an induced path P4 = w0wuv; a
contradiction. Thus, u belongs to every �2(T )-set.
We now consider any edge of the set XT = XT 0 [ fuv; vxi; xiyig with 1 �

i � k: Note that considering the edges vxi or xiyi is similar to consider vx1 or
x1y1:
� If e is an edge of XT 0 ; then the removal of e in T 0 provides the trees T 01 and
T 02 such that �2(T

0� e) = �2(T 01)+�2(T 02) > �2(T 0): Deleting e from
T gives the trees T1 and T 02 where T1 = T

0
1 [ fxi; yi; zig for 1 � i � k; and

by Lemma 1, �2(T1) = �2(T
0
1) + 2k: Hence, �2(T � e) = �2(T1) +

�2(T
0
2) = �2(T

0
1) + 2k + �2(T

0
2) > �2(T

0) + 2k = �2(T ).
� If e = uv; then T�e gives the trees T1 and T2 such that T2 is a tree obtained
from a star K1;k where each edge is subdivided twice. Clearly, the set
D2 = fv; x1; yi; zig for 1 � i � k is a �2(T2)-set and so �2(T2) = 2k+2:
Since any �2(T1)-set can be extended to a �2(T )-set by adding the set
D2; then �2(T1) � �2(T )� 2k� 2: Suppose that D1 is a �2(T1)-set of
cardinality �2(T1) = �2(T )�2k�2. But then D = D1[D2 is a �2(T )-
set such that fv; x1; y1; z1g � D. If u 2 D1; then the set D � fx1g would
be a DDS of cardinality less than �2(T ); a contradiction, and if u =2 S1;
then D is a �2(T ) that does not contain u; a contradiction too. Hence
�2(T1) � �2(T ) � 2k � 1, and so �2(T � e) = �2(T1) + �2(T2) �
�2(T )� 2k � 1 + 2k + 2 = �2(T ) + 1 > �2(T ):

� If e = vx1; then T � e is formed by the trees T1 and T2 = x1y1z1 with
�2(T2) = 3: If v is pendent in T1 (k = 1); then by Lemma 1, �2(T1) =
�2(T )� 2: Now if k � 2; then we can simply see that there exists some
�2(T1)-sets that contain v and so by Lemma 1, �2(T1) = �2(T ) � 2:
Hence, �2(T � e) = �2(T1) + �2(T2) = �2(T ) + 1 > �2(T ):

� If e = x1y1; then T � e is formed by the trees T1 and T2 = y1z1 such that
�2(T2) = 2; and since any �2(T1)-set can be extended to a �2(T )-
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set by adding the set fy1; z1g then �2(T1) � �2(T ) � 2: Suppose that
�2(T1) = �2(T ) � 2; and let S1 be a �2(T1)-set. By Remark 1,
fv; x1g � S1, and so S = S1 [ fy1; z1g is a �2(T )-set. Now if u 2 S1;
then the set S � fx1g would be a DDS of cardinality less than �2(T );
a contradiction, and if u =2 S1; then S is a �2(T ) that does not con-
tain u; a contradiction too. Thus �2(T � e) = �2(T1) + �2(T2) �
�2(T )� 1 + 2 = �2(T ) + 1 > �2(T ):

Hence, for any edge e of XT ; �2(T � e) > �2(T ) and T is �2-critical.

Case 4: T is obtained from T 0 by operation O4.

Let x be a support vertex of T 0 and v its leaf-neighbor such that degT 0(x) =
k + 2 and let viuizi with 1 � i � k be the paths attached to x by the vertices
xi; and y a neighbor of x of degree two such that every vertex in NT 0(x)� fvg
does not belong to any �2(T

0): We attach to v a new vertex u to obtain the
tree T: By Remark 5, �2(T ) = �2(T

0) + 1:

Consider now any edge of the set XT = XT 0 [ fxvg :
� If e 2 XT 0 �fxvig with 1 � i � k then deleting e in T 0 produces two trees
T 01 and T

0
2 such that x 2 T 01; and so �2(T 0 � e) = �2(T 01) + �2(T 02) >

�2(T
0): Deleting e in T gives the trees T1 and T 02 where T1 = T

0
1 [ fug.

By Remark 5, �2(T1) = �2(T
0
1)+ 1; and hence �2(T � e) = �2(T1)+

�2(T
0
2) = �2(T

0
1) + 1 + �2(T

0
2) > �2(T

0) + 1 = �2(T ).

� If e = xvi with 1 � i � k; then let T 0 � e = T 01 [ T 02 such that T 01
contains x: For the case k � 2; by Remark 5, �2(T1) = �2(T

0
1) + 1

with T1 = T 01 [ fug : Now if k = 1; then clearly �2(T1) � �2(T
0
1) + 1:

Suppose that �2(T1) < �2(T
0
1) + 1: With the same approach like in

subcase 1, it results that x does not belong to any �2(T1)-set and that
�2(T ) = �2(T1)+3: Let S1 be any �2(T1)-set. By Remark 1, u; v 2 S1
and since x =2 S1; its neighbor y belongs to S1 with its neighbor say z;
and so the set S = S1 [ fx; u1; z1g is a �2(T )-set. Now by Remark 5,
�2(T ) = �2(T

0)+1 and since u; v 2 S, the set S0 = S�fug is a �2(T 0)-
set that contains the vertices v; x; y and z; and so G [S0] induces a path
P4; a contradiction with the fact that T 0 is �2-critical. Consequently, for
k � 1; �2(T1) = �2(T 01) + 1; and so �2(T � e) = �2(T1) + �2(T 02) =
�2(T

0
1) + 1 + �2(T

0
2) > �2(T

0) + 1 = �2(T ).

� If e = xv; then let T � e = T1 [ T2 such that T2 = uv: Suppose that
�2(T � e) = �2(T1) + �2(T2) = �2(T1) + 2 = �2(T ) and let S1
be any �2(T1)-set. Without loss of generality, we may assume that x
belongs to S1 with a vertex from NT1(x): Then the set S = S1 [ fv; ug is
a �2(T )-set, and so the set S

0 = S � fug is a �2(T 0)-set that contains
a neighbor of x; a contradiction. Hence �2(T � e) > �2(T ):

Consequently, for any edge e of XT ; �2(T � e) > �2(T ): So T is �2-
critical.

This completes the proof of Theorem 3.
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