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Abstract. The problem studied in this paper consists in finding the
minimum makespan in a problem of scheduling jobs on identical parallel
processors subject to compatibility constraints that some jobs cannot
be scheduled simultaneously in any time interval. These constraints are
modeled by a graph in which compatible jobs are represented by adjacent
vertices. We study the complexity of this problem for bipartite graphs
and their complements. We propose polynomial heuristics which are ex-
perimentally evaluated and compared.

Keywords. scheduling, compatibility graph, complexity, heuristics.

1 Introduction

In this work we study the problem of scheduling n independent jobs J1, J2 , ..., Jn

non-preemptively on m identical parallel processors. Each job Ji has a processing
time pi and a release time ri. Two jobs are compatible if they can be scheduled
simultaneously. We suppose that there exist compatibility constraints between
the jobs such that non-compatible jobs cannot be scheduled simultaneously in
any time interval. These constraints are represented by a graph G = (V, E)
where V is the jobs set and {Ji, Jj} ∈ E if and only if Ji and Jj are compati-
ble. The graph G is called the compatibility graph. The aim is to minimize the
makespan.subject to the compatibility constraints. Following the three parame-
ters notation introduced in [1] our problem is denoted by P/G = (V, E), ri/Cmax

and is sometimes referred to as the general problem. When m is fixed the prob-
lem is denoted by Pm/G = (V, E), ri/Cmax.
This problem arises in the resource-constrained scheduling when the resources
are non-sharable. Applications of this problem include the one of Baker and
Coffman [2] presented for balancing the load in a parallel computation, others
are mentioned in traffic intersection control, frequency assignment in cellular
networks and session management in local area networks (see Halldorsson et
al.[3]). Bodlaender and Jansen [4] have described an application derived from a
problem of assigning operations to processors, where the operations are given
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in a flow graph. Our interest to this problem initially comes from the following
problem. The Workshop Resource-Constrained problem (W.R.C in short):
there are n tasks J1, J2 , .., Jn to be executed by m workers in a workshop. Each
task Ji requires a time pi for its treatment and a subset of resources Ri ⊆ R
where R is the set of the available resources. The objective is to execute these
tasks in a minimum time. If we regard the workers as processors and associate
the graph G = (V,E) in which the tasks correspond to the jobs set and that two
jobs are compatible if they use no resources in common, one can verify that the
W.R.C problem can be modeled as the problem P/G = (V, E)/Cmax.

Example 1. n = 5,m = 2, R = {res1, res2}. The resource requirements and the
processing times are given in Table 1, the compatibility graph is represented on
Fig. 1 (a). Fig. 1 (b) is the Gantt diagram representing a feasible schedule for
this example, which is also optimal.

Table 1. Processing times and the resources requirements

Ji J1 J2 J3 J4 J5

pi 1 2 1 3 1

Ri {res1, res2} {res1} {res2} {res1} ∅

Fig. 1. (a)The compatibility graph of Example1 (b) The Gantt diagram of Example1

2 Related work and previous results

Among the related problems are:
1-The Mutual Exclusion Scheduling problem, M.E.S in short [2]: n unit-processing
times jobs have to be scheduled on m processors in a minimum time subject to
constraints represented by a conflict graph G such that adjacent jobs in G must
be scheduled in disjoint time intervals.
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2-Scheduling With Conflicts problem, S.W.C in short: Recently in [5] Guy Even,
Magnus M. Halldorsson, Lotem Kaplan and Dana Ron have considered the prob-
lem of Scheduling With Conflicts (S.W.C) which consists in finding a minimum
makespan on identical machines where conflicting jobs cannot be scheduled con-
currently. The relationship between these problems and ours is as follows: The
S.W.C problem with an arbitrary conflict graph G = (V, E) is equivalent to
the problem Pm/G = (V, E)/Cmax for which the compatibility graph is G, the
complement of G.
The M.E.S problem with fixed m is a special case of the S.W.C problem in which
the processing times of the jobs are equal to 1. The M.E.S problem with conflict
graph G = (V,E) is equivalent to the problem P/G = (V, E), pi = 1/Cmax where
the compatibility graph is G, the complement of G. As far as the previous re-
sults are concerned, the problem P2/G = (V,E), pi = 1/Cmax can be reduced the
maximum matching problem in G. The authors of [5] have established that the
S.W.C problem can polynomially be solved when m = 2 and pi ∈ {1, 2}, we de-
duce that the problem P2/G = (V, E), pi ∈ {1, 2}/Cmax is polynomial. By a re-
duction from Partition ([6]) the problem P2/G = (V, E)/Cmax is NP-hard even if
the compatibility graph is complete. The problem Pm/G = (V, E), pi = 1/Cmax

is NP-hard for any m ≥ 3 due to a result of B.S. Baker and E.G. Coffman [2].
The problem Pm/G = (V,E), pi ∈ {1, 2, 3, 4}/Cmax is APX-hard [5].

3 Bipartite graphs

In this section, we suppose that m = 2 and that the compatibility graph G is
bipartite which is denoted by G = (S1 ∪ S2, E).

3.1 Case when pi ∈ {1, 2}, ri ∈ {0, r}

Theorem 1. The problem P2/G = (S1 ∪S2, E), pi ∈ {1, 2}, ri ∈ {0, r}/Cmax is
NP-hard.

Proof. Let Dbipartite be the decision problem associated with the above prob-
lem. We make a reduction from the 3- Dimentional Matching problem(3-DM).
Let an arbitrary instance of 3-DM be given. We construct an instance of Dbipar-
tite as follows: the jobs set is V = VM ∪VY ∪VZ∪VD such that the jobs of VM are
in correspondence with the elements of M . Thus to any triplet (x, y, z) ∈M cor-
responds a job J(x, y, z) in VM . The elements of VY and VZ are in correspondence
with the elements of the sets Y and Z respectively. Thus each element y ∈ Y
corresponds to a job Jy of VY and each element z ∈ Z corresponds to a job Jz of
VZ . Note that |VM | = |M |, |VY | = |VY | = q. Suppose that X = {x1, x2, ..., xq}.
For each i (i = 1, 2, ..., q ) let Mi = {(x, y, z) ∈M : x = xi} so that

q⋃
i=1

Mi = M

and let VMi be the subset of VM corresponding to Mi. Note that |VMi | = |Mi|. To
each job set VMi corresponds a set VDi of dummy jobs such that |VDi | = |Mi|−1
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(i = 1, 2, ..., q). Let VD =
q⋃

i=1

VDi . One can see that |VD| = |M | − q. The com-

patibility graph G is defined in such a way that each of the sets VM , VY , VZ , VD

form an independent set of vertices in G.

Every job J(x, y, z) of VM is compatible with both of the jobs Jy and Jz

belonging to VY and VZ respectively. For each i = 1, 2, ..., q, the jobs of VMi are
joined to all of the jobs of VDi . Let GM , GY , GZ and GD denote the subgraphs
of G induced by VM , VY , VZ and VD respectively. The processing times of the
jobs of GM and GD are equal to 2 and those of GY and GZ are equal to 1. The
release times of the jobs of G are zero except those of GD which are equal to 2q,
see Fig. 2.

Fig. 2. The compatibility graph G = (V, E)

The graph G is bipartite since it can be written G = (S1 ∪ S2, E) where
S1 = VM and S2 = VY ∪ VZ ∪ VD and that §1 and S2 are independent sets
of vertices in G. Suppose that 3-DM has a solution. Consider the schedule σ
defined as follows: let {J1, J2, .., Jq} be the set of jobs of VM corresponding to
M ′ such that Ji ∈ VMi (i = 1, 2, ..., q). We schedule these jobs as well as their
corresponding jobs of the graphs GY and GZ in the time interval [0, 2q] as
indicated in Fig. 3.

Fig. 3. Passage from a feasible solution of 3-DM to the one of Dbipartite
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We schedule the remaining |M | − q jobs of GM in the interval [2q, 2 |M |]
on the processor P1 as follows: we schedule these jobs into groups: the jobs of
VM1\{J1} first then the ones of VM2\{J2} and so on till the jobs of VMq

−{Jq}.
We then schedule the jobs of GD on P2, within the same interval in such a
way that the jobs of VMi −{Ji} are opposite to their corresponding jobs of
VDi (i = 1, 2, ..., q), see Fig. 3. The schedule that has just been obtained, say
σ is therefore a feasible schedule for the problem Dbipartite with a makespan
Cmax(σ) ≤ 2 |M |. Conversely, assume that there is a feasible schedule σ for the
problem Dbipartite with a makespan Cmax(σ) ≤ 2 |M |. The jobs of GD form an
independent set of vertices of order |M |−q in the compatibility graph G. Having
each a processing time equal to 2 and a release time equal to 2q, they must have
been executed in the time interval [2q, 2 |M |]. Without loss of generality we may
suppose that they have been executed on P2. The remaining jobs include the
ones of the graph GM and those of the graphs GY and GZ and their number is
equal to |M |+ 2q.

The remaining space equals 4 |M | − (2 |M | − 2q) = 2 |M | + 2q. Thus this
space must entirely have been occupied by the |M | + 2q remaining jobs of the
graphs GM , GY and GZ . By construction of the graph G, q jobs of GM must
have been processed in the time interval [0, 2q] along with their corresponding
jobs of GY and GZ respectively as indicated in Fig. 3. This corresponds to a set
M ′ ⊆ M with q elements, producing a solution of 3-DM. It is straightforward
to see that the transformation used is polynomial and that DBipartite ∈ NP,
which completes the proof of Theorem 1. ut

3.2 Unit processing times for S1 and arbitrary for S2

Next we consider the case when the processing times of the jobs of S1 are equal
to unity and the ones of S2 are arbitrary. This problem is denoted by P2/G =
(S1 ∪ S2, E) , pS1 = 1/Cmax. Suppose that S1 = {T1, T2, ..., T|S1|} and S2 =
{J1, J2, ..., J|S2|} .
Algorithm 1
Begin
1: Construct the network R=(V,U,c) as follows :

V = {s, p}∪S1 ∪S2 , U = U1 ∪U2 ∪U3 ∪{ur} where ur = (p, s) is a return
arc, U1 = {(s, Ti), Ti ∈ S1}, U2 = {(Ti, Jj) ∈ S1 × S2 : {Ti, Jj} ∈ E}, U3 =
{(Jj , p), Jj ∈ S2}

2: Construct the arc capacity function c as follows:
if (s, Ti) ∈ U1 =⇒ c(s, Ti) = 1, if (Ti, Jj) ∈ U2 =⇒ c(Ti, Jj) = 1,
c(ur ) = +∞, if (Jj , p) ∈ U3 =⇒ c(Jj , p) = pj .

3: Determine a maximum feasible flow f∗ in the network R.

4: Schedule the jobs of S2 successively in the time interval [0,
|S2|∑
i=1

pi] on P1.

5: Schedule the jobs Ti of S1 such that f∗(Ti, J1) = 1 opposite to the job J1

in the time interval [0, p1], and the jobs Ti of S1 such that f∗(Ti, J2) = 1
opposite to the job J2 in the time interval [p1, p1 + p2] and so on.
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6: Schedule the remaining jobs of S1 successively in the time interval

[
|S2|∑
i=1

pi,
|S2|∑
i=1

pi + |S1| − f∗(ur) ].

end

Remark 1. 1- If u is an arc of R, and f is a flow in R then f(u) represents the
value of the flow f on the arc u in R.
2- In step 3 of the above Algorithm we use J. Cherian and S.N. Maheshwari
’Algorithm [7] for obtaining a maximum flow.

Theorem 2. Algorithm 1 solves the problem P2/G = (S1∪S2, E), pS1 = 1/Cmax

polynomially in O(n3).

Proof. One can easily see that Algorithm 1 returns a feasible schedule σ∗ for
the problem P2/G = (S1 ∪ S2, E), pS1 = 1/Cmax with a makespan Cmax(σ∗) =
|S2|∑
i=1

pi + |S1| − f∗(ur). Let us now show that for every feasible schedule σ we

have: Cmax(σ) ≥ Cmax(σ∗). For let σ be an arbitrary feasible schedule. We
shift the jobs of S2 to the leftmost side of the Gantt diagram representing σ,
as well as the jobs of S1 that are scheduled opposite to the jobs of S2 so that

all these jobs would be scheduled in the time interval [0,
|S2|∑
i=1

pi]. By shifting and

removing all the idle times in the Gantt diagram and by scheduling successively

the remaining jobs of S1 after the instant
|S2|∑
i=1

pi, we get a feasible schedule σ1

and a feasible flow f1 corresponding to σ1 such that Cmax(σ) ≥ Cmax(σ1) =
|S2|∑
i=1

pi + |S1|−f1(ur). But since f∗ is a maximum flow in R then f1(ur) ≤ f∗(ur)

and thus for every feasible schedule σ we have: Cmax(σ) ≥
|S2|∑
i=1

pi + |S1|− f∗(ur).

Since
|S2|∑
i=1

pi + |S1| − f∗(ur) = Cmax(σ∗) (proved previously) we deduce that the

schedule σ∗ obtained by Algorithm 1 is optimal . The construction of the network
R can be achieved in at most O(|S1| |S2|) = O(n2) time. By using J. Cherian
and S.N. Maheshwari’ Algorithm, step2 can be performed in O(n2

√|U |). As
|U | = O(|S1| |S2|) = O(n2), step 2 can be achieved in O(n3). We deduce that
the time complexity of Algorithm 1 equals O(n3). ut

4 Complement of bipartite graphs

Now we consider the case when the compatibility graph G is the complement
of a bipartite graph noted G = (K1,K2; E) where K1,K2 are the cliques of G
forming a partition of V .

H.L. Bodlaender, K. Jansen [4] have established that the problem P/G =
(K1,K2, E), pi = 1/Cmax is NP-hard. We prove that the problem becomes poly-
nomial if we restrict to odd ri s. Consider the following greedy algorithm in which
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for any job Ji, ti represents its starting time and suppose K1 = {J1, J2 , .., Js }
and K2 = {Js+1, Js+2 , .., Jn}.
Algorithm 2
Begin
1: for i := 1 to s do
2: ti := ri

3: end for
4: for k := s + 1 to n do
5: if (all the jobs of K1 scheduled at time t = rk are compatible with Jk)

then
6: tk := rk

7: end if
8: tk := rk + 1
9: end for

end

Theorem 3. The problem P/G = (K1,K2; E), pi = 1, ri odd /Cmax with m ≥ n
can polynomially be solved in O(n2) time.

Proof. Let τ be the schedule obtained by Algorithm 2. First we prove that τ is
an optimal feasible schedule. It is clear that τ is feasible. Let L = max1≤i≤n{ti},
thus Cmax(τ) = L+1. Two possibilities may happen: case1: L is even. Let Jk be a
job satisfying L = tk. Since tk is even, by construction of the algorithm Jk ∈ K2.
On the other hand Jk must have been scheduled at step 8 of the algorithm and
we have tk = rk + 1. Also, there must exist a job Ji ∈ K1 scheduled at time
ti = rk which is is not compatible with Jk. Since Ji ∈ K1 then ti = ri and hence
ri = rk. Since the jobs Ji and Jk are not compatible, with the condition ri = rk

it follows that C∗max ≥ rk + 2 = tk + 1 = L + 1 = Cmax(τ).
case2: L is odd . Let Jp be a job satisfying L = tp. tp is odd , so Jp has not
been scheduled at step 8 of the algorithm and hence tp = rp. This implies that
C∗max ≥ rp + 1 = L + 1 = Cmax(τ). We deduce that the schedule τ is optimal.
Time complexity : the for-loop through steps 1-3 can be implemented in O(n)
time at worse, the for-loop through steps 4-9 requires at most O(n2) iterations.
Then the time complexity equals O(n2). ut

5 Heuristics for the problem P/G = (V, E)/Cmax

In this section, we propose some heuristics for the problem P/G = (V, E)/Cmax.
The approach used is based on the list scheduling one used by R.L. Graham [8]
for the problem P//Cmax with some modifications.

5.1 Lower bounds on the optimal makespan

Let Opt(G) denote the optimal makespan of the problem P /G = (V, E)/ Cmax.

A trivial lower bound on Opt(G) is LB0 = Max{d(
n∑

j=1

pj)/me,Max1≤j≤n{pj}}.
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On the other hand in [9] S. Sakai, M. Togasaki, K. Yamazaki have studied the
Maximum Weighted Independent Set problem and have elaborated three greedy
algorithms for this problem namely GWMIN, GWMAX and GWMIN2. Since
non-adjacent jobs must be scheduled in disjoint time intervals for any feasible
schedule, we deduce three lower bounds on Opt(G) based on the three algorithms
previously cited, say LB1, LB2 and LB3 respectively. From the implementation
we have observed that the second lower bound is weaker and therefore the overall
lower bound on Opt(G) is given by: LB = Max{LB0, LB1, LB3}.

5.2 Definition of nine job lists

First we define the compatibility number (C.N for short) of a job to be the
number of jobs which are compatible with it. Next we define nine job lists. If the
jobs are sorted in order of increasing compatibility numbers, the list obtained is
called List1. If the jobs are arranged in a decreasing order of their compatibility
numbers, the list obtained is called List2. The following algorithm constructs
List3.
Algorithm 3
Begin
1: Find a job J1 from V with maximum C.N in G
2: for j := 2 to n do
3: G′ := the subgraph of G induced by V \{J1, J2, ..., Jj−1}.
4: Find a job Jj from V \{J1, ..., Jj−1} with maximum C.N in G′.
5: end for
6: List3 := (J1, ..., Jn)

end
If in the for-loop of Algorithm 3 we choose a job Jj with a minimum com-

patibility number in G′ we obtain List4. List5 is a random permutation of
(1, 2, 3, ..., n). The next algorithm produces List6.
Algorithm 4
Begin
1: determine a job J1 from V with maximum C.N
2: j := 1
3: for j = 2 to n do
4: for all Jk ∈ V \{J1, J2, ..., Jj−1} do
5: nJk

:=the number of jobs in V \{J1, J2, ..., Jj−1} that are compatible
with Ji

6: end for
7: determine among these jobs Jk a job Jj such that nJj

= max(nJk
)

8: end for
9: List6 := (J1, ..., Jn)

end

List7 is obtained by a similar algorithm to Algorithm 4 except that at step
7 we choose Jj satisfying nJj =min(nJk

). In List8 the jobs are sorted according
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to the Shortest Processing Time rule called the SPT list. Finally List9 is based
on the Longest Processing Time rule and is called the LPT list.

5.3 The proposed heuristics

Suppose (H) is a heuristic and that some jobs have already been scheduled by
(H). Let sch(H) denote the subset of jobs already scheduled by (H). If Jj is
a job to be scheduled by (H) at some instant t let Ψ(t, Jj) denote the set of
jobs of sch(H) having a part of processing in the time interval [t, t+ pj ]. We say
that the job Jj is ready for processing at time t if all the jobs of Ψ(t, Jj) are
compatible with Jj , otherwise Jj is not ready for processing at time t.
Next we present the Heuristic scheme that generates all the proposed heuristics.
For any job Jj let pj and cj will represent the processing and the completion
time of the job Jj respectively. For any processor Pi, si will denote the earliest
time at which Pi becomes free.
Algorithm HeuristicScheme
Begin
1: choose a list L, say L = (J1, J2, ..., Jn); t := 0
2: for all i = 1,m do
3: si := 0
4: end for
5: schedule job J1 on processor P1 at time t
6: for j = 2 to n do
7: while (Jj is not scheduled) do
8: schedule := false
9: find the first free processor Pk and its sk; t := sk

10: for r = j to n do
11: if (Jr is unscheduled and ready at time t) then
12: schedule Jr on Pk at t
13: schedule schedule := true
14: break
15: end if
16: end for
17: if (schedule := false) then
18: determine the set Ψ(t, Jj)
19: t := max{ci : Ji ∈ Ψ(t, Jj) and Ji is not compatible with Jj}
20: end if
21: end while
22: end for

end

Each choice of L at step1 in this scheme induces a heuristic for the problem
P/G = (V,E)/Cmax. Thus we derive nine heuristics that are called H1, H2, ..., H9
respectively.
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Remark 2. 1- The break instruction in the above scheme makes the program
exit from the for-loop in which it is contained.
2- The heuristic H9 corresponds to the LPT-list and is also referred to as the
LPT-heuristic

6 Experimental results

All the heuristics have been coded with Matlab 7.0 and tested on a pentium
IV PC computer with a 3.4 GHZ and 2 GB Ram. We have used two classes of
randomly generated instances: instances with variable processing times and in-
stances with unit processing times. Besides the parameters m and n we have used
the parameter d which is the density (in percentage) of the compatibility graph.
For both classes the different combinations of the parameters m, n and d are as
follows: m ∈ {2, 5, 10, 20}, the values m = 2 and m = 5 are each associated with
seven values of n such that n ∈ {10, 20, 50, 100, 250, 500, 1000}, the value m = 10
corresponds to seven values of n where n ∈ {10, 20, 50, 100, 250, 500, 1000} and
the last value m = 20 is associated with seven values of n such that n ∈
{30, 50, 100, 250, 350 , 500, 1000}. The different values used for d are 10, 20, ..., 90.
For both classes the instances are generated as follows: for each triplet (m, n, d)
for which n is different from 1000 we have generated 100 randomly generated in-
stances according to the uniform distribution in which 25 instances are generated
with pi ∈ {1, 2, ..., 10}, 25 instances with pi ∈ {1, 2, ..., 20}, 25 instances with pi ∈
{50, 51, ..., 100} and 25 instances with pi ∈ {1, 2, ..., 100}. For n = 1000, we have
done the same except that we have used 40 instances (rather than 100 instances)
involving 4 sets of 10 instances each rather than of 25 instances as previously
done. The generated instances have been grouped into three groups : low den-
sity, medium density and high density and these correspond to instances whose
compatibility graph densities belong to {10, 20, 30}, {40, 50, 60}and {70, 80, 90}
respectively. In total we have used 22940 instances for each class.

After extensive experiments the first observation is that the three heuristics
H1,H4 and H9 (that is the LPT-heuristic) are considerably better than the
others in the case of variable processing times and that the heuristics H1 and H4
are the best in the unit processing times case. Therefore we only have compared
these three heuristics in the case of variable processing times and the heuristics
H1 and H4 in the unit processing times case. We have obtained four tables
corresponding to m ∈ {2, 5, 10, 20} . The results for the case m = 5, variable
processing times are represented in table 3. In each table the first row represents
the number of times (in percentage) for which the corresponding heuristic is best.
The MD and the AD rows represent the maximum and the average deviations
from the lower bound respectively. The last row AT represents the average CPU
time in seconds for each heuristic. The main observations are: in the case of
variable processing times the LPT-heuristic is in general considerably better
than both heuristics H1 and H4. In the unit processing times case is concerned
we have observed that H4 is best relatively to H1. The deviations of the LPT-
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heuristic (v.p.t case) and those of the heuristic H4 (u.p.t case) are summarized
in table 2 lines 1-3, lines 4-8 respectively .
Analysis of the results obtained: In the case of variable processing times the LPT-
heuristic is expected to lead to better solutions compared to the others since
it takes into account the processing times of the jobs and in the same checks
the compatibility, in contrast to the others which use only the compatibility.
This heuristic is somewhat a compromise between the processing times and the
compatibility. However, in the unit processing times case the compatibility has
an effect since the processing times are equal. The superiority of the heuristics
H1 and H4 can be explained by the fact that both of them give the priority to
the jobs with less compatibility numbers to pass first since it is more likely that
the schedule of the jobs with higher compatibility numbers keeps the maximum
completion time reduced.

Table 2. Deviations of the LPT-heuristic(v.p.t) and heuristic H4 (u.p.t)

Low den. n ≤ 100, m ≤ 20 Av-dev ≤ 0.664, Max-dev = 1.387

Med. den. n ≤ 1000, m ≤ 10 Av-dev ≤ 0.972, Max-dev = 1.634

High den. n ≤ 1000, m ≤ 20 Av-dev ≤ 0.987, Max-dev = 1.980

Low den. n ≤ 1000, m ≤ 10 Av-dev ≤ 1.368, Max-dev = 1.964

Med. and High.den. n ≤ 1000, m ≤ 10 Av-dev ≤ 0.789, Max-dev = 1.4

Low.den. m = 20, n ≤ 100 Av-dev ≤ 0.684, Max-dev = 1.308

Med.den. m = 20, n ≤ 100 Av-dev ≤ 1.029, Max-dev = 1.5

High.den. m = 20, n ≤ 1000 Av-dev ≤ 0.702, Max-dev = 1.6

7 Conclusion

In this paper we have studied the problem of scheduling jobs non-preemptively
on identical parallel processors and the aim is to minimize the makespan subject
to the compatibility constraints. We have studied the complexity of the problem
for bipartite graphs and their complements. In addition we have devised several
polynomial time heuristics with acceptable performances for the problem with-
out release times. The effectiveness of such heuristics have been evaluated by
extensive experiments on randomly instances, showing that the LPT-heuristic
outperforms all the proposed ones when the processing times are variable and
that H4 is the best in the case of unit processing times.
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Table 3. Experimental results m=5, v.p.t case
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n=50 Best 4.333 28.000 68.000 29.667 38.667 37.333 37.000 35.000 39.000
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