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                                                           Abstract 

 

Route prediction is the missing piece in several proposed ideas for intelligent vehicles and smart 

cities. This field has taken great importance recently. Because of the different problems that occur 

on roads, the specificity of transportation and the nature of the mobility data, various models have 

been proposed for effective route prediction. For instance, Markov model, sequential patterns-

based models, etc. As roads problems evolve, the application of these classical methods is no longer 

sufficient.  

In this thesis, we propose two novel models for route prediction, namely, PreNext and PreGraph. 

The first model PreNext depends on CPT (compact prediction tree) model, thus it offers all its 

advantages including its lossless property that allow conserving all the data in to perform 

prediction, its lower storage space requirement, predicting rare cases with high accuracy, etc. Our 

second model PreGraph is a dependency graph-based model. PreGraph represents roads as a graph 

which is then used to predict the next traversing road. Unlike many prediction models, the designed 

models are compact and easy to be constructed, and can thus provide efficient solutions for 

prediction. Our proposals were compared with well-known prediction models and exhibiting quite 

promising results on two real- world datasets. 

 

Keywords: Route prediction, dependency graph, compact prediction tree, lossless model, noise 

tolerance, time factor. 
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Résumé 

 

La prédiction de route est la pièce manquante dans plusieurs idées proposées pour les véhicules 

intelligents et les villes intelligentes. Ce domaine a pris une grande importance récemment. En 

raison des différents problèmes rencontrés sur les routes, la spécificité du transport et de la nature 

des données de mobilité, divers modèles ont été proposés pour une prédiction efficace des routes. 

Par exemple, le modèle de Markov, les modèles séquentiels basés sur des règles… etc. À mesure 

que les problèmes de routes évoluent, l'application de ces méthodes classiques n'est plus suffisante. 

Dans cette thèse, nous proposons deux nouveaux modèles de prédiction de route, à savoir, PreNext 

et PreGraph. Le premier modèle PreNext dépend du modèle CPT, il offre donc tous ses avantages, 

y compris sa propriété lossless ou sens perte qui permet de conserver toutes les données pour 

effectuer la prédiction, son faible besoin d'espace de stockage, la prédiction de cas rares avec une 

grande précision, etc. Notre deuxième modèle PreGraph est modèle basé sur un graphe de 

dépendance. PreGraph représente les routes sous forme d’un graphe qui est ensuite utilisé pour 

prédire la prochaine route à traverser. Contrairement à de nombreux modèles de prédiction, les 

modèles conçus sont compacts et faciles à construire, et peuvent ainsi fournir des solutions 

efficaces pour la prédiction. Nos propositions ont été comparées à des modèles de prédiction bien 

connus et ont présenté des résultats assez prometteurs sur deux jeux de données réels. 

Mots clés : Prédiction de route, graphe de dépendance, arbre de prédiction compact, modèle sans 

perte, tolérance au bruit, facteur de temps.   
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 الملخص

 

التنبؤ بالطريق هو القطعة المفقودة في العديد من الأفكار المقترحة للمركبات الذكية والمدن الذكية. اكتسب هذا المجال أهمية كبيرة  

تم اقتراح نماذج    التنقل،بسبب المشاكل المختلفة التي تحدث على الطرقات وخصوصية النقل وطبيعة بيانات    .الأخيرةفي الآونة  

النماذج المتسلسلة القائمة على القواعد ... إلخ. ولكن مع    ماركوف،عال بالمسار. على سبيل المثال نجد نموذج  مختلفة للتنبؤ الف 

 لم يعد تطبيق هذه الأساليب الكلاسيكية كافياً.  الطرق،تزايد مشاكل 

(  PreNextموذج الأول )(. يعتمد النPreGraph( و )PreNextوهما ) بالمسارنقترح نموذجين جديدين للتنبؤ  الرسالة،في هذه 

وبالتالي فهو يقدم جميع مزاياه بما في ذلك خاصية عدم فقدان البيانات التي تسمح بالحفاظ على جميع البيانات  ، CPTعلى نموذج 

التخزين    التنبؤ،لأداء   مساحة  بدقة    المنخفضة،ومتطلبات  النادرة  بالحالات  الثاني   عالية،والتنبؤ  نموذجنا  ذلك.  إلى  وما 

(PreGraph( هو نموذج قائم على الرسم البياني التبعية. يمثل الرسم البياني)PreGraph الطرق كرسم بياني يسُتخدم بعد ذلك )

وبالتالي    البناء، فإن النماذج المصممة مضغوطة وسهلة    التنبؤ، ايضا على عكس العديد من نماذج    للتنبؤ بالطريق التالي لسائق.

يمكن أن توفر حلولًا فعالة للتنبؤ. تمت مقارنة مقترحاتنا مع نماذج التنبؤ المعروفة جيداً وأظهرت نتائج واعدة جداً على مجموعتي 

 بيانات من العالم الحقيقي.

 . عامل الوقت ،الضوضاءتحمل    خسارة،نموذج بدون    المدمجة،شجرة التنبؤ    للتبعية،الرسم البياني    المسار،تنبؤ    الكلمات الأساسية:
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1. General Introduction 

Understanding driver intent during his trip is an essential step for determining and predicting his 

next pathways and reduce the risks that may affect the driver and his car. Due to the increase in 

traffic accidents and the technical problems of cars, road prediction systems have evolved. This 

development is evident through Intelligent Transportation Systems (ITS) and Location-based 

Services (LBS). These systems and services mainly depend on many types of prediction systems 

that are being used like Dynamic routing which takes in real-time mobility data and analyses the 

routes and Eco-routing which mainly focuses on conserving the fuel by providing the best feasible 

route. The basis for all these systems is the data which are collected for days and months and then 

used to train the machines to understand the user's behaviors of travelling in a specific path. 

In recent years, route prediction has become the focus of the researchers and challenge between 

them to cover all vehicle routing problem. This branch of science depends on the hypothesis that 

forecasting the next route of a driver or car is done by considering the spatial regularities in its 

movements. Each person has driving habits or preferences (e.g. The driver may prefer a long route 

with less congestion over a short route with more congestion) that influence his/her choice of a 

path to reach a destination. In addition, many people choose the same set of roads to go from the 

same source location to a specific destination (e.g. from work to shopping mall) or to destinations 

in the same area (e.g. from work to local restaurant). Thus, predicting the next location or road 

segment(s) that a driver can take is obtained by matching his current path with his previous paths. 

Therefore, the route prediction problem is considered as a sequence prediction that aims at using 

historical sequence information from set of users to predict the next value or values in the sequence. 

2. Motivations 

Nowadays, route prediction problem has been extensively studied. Each existing work differed 

from a scholar to other according to the techniques used, the type and size ,the final goal of 

prediction (routing, fuel consuming optimization ,etc.), the range of prediction (short and long-

term).Considering the technique used, these works can be categorized into systems that are suing 

artificial neural networks, probabilistic models, trip matching, clustering, etc. For instance, 

Epperlein et al. [18] suggested using Markov chain model and Tiwari et al. [22] have built a route 
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prediction using partial match PPM (Prediction by Partial Matching) algorithm. Besides, Qiang et 

al. [24] have proposed a data mining-based prediction system whereas Terroso-Saenz et al. [27] 

Park et al. [33] and Tiwari et al. [34] have adopted trip matching approaches.  

Although the above models have achieved satisfactory results in some applications, an important 

drawback is their noise sensitivity toward the mobility patterns that they can learn. The smallest 

deviation in mobility data affects the prediction process result, and thus the prediction accuracy. 

This problem is exacerbated for noisy mobility datasets such as GPS trajectory data which are 

prone to several disturbances and inaccuracies. In addition, most of the proposed model are unable 

the continuous geographical distances between locations and time interval in modelling sequential 

data. For instance, for a given person who is accustomed to go the gym on the evening and rarely 

go to the cinema, the probability that he /she will go to the gym at this time is higher than going to 

the cinema relying on  his/her interests and demands in this  specific time .Moreover, these local 

temporal contexts have fundamental effects in revealing the characteristics of the driver and are 

helpful for behavior modeling. The behavior of person who go repeatedly to a gym or a stadium   

indicates that both the gym and the stadium have higher importance than other contexts. 

Furthermore, as some behaviors are periodical such as going to the mosque every Friday, or going 

to the market every weekend the effect of time interval becomes important for temporal prediction 

in such situations. 

3. Contributions 

In this thesis, we tackle the above challenges by proposing two novel models PreNext and 

PreGraph. While PreNext is based by an accurate and lossless prediction model called Compact 

Prediction Tree (CPT). PreGraph is built upon the Dependency Graph (DG) predictor to build a 

mobility prediction framework.   
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The underlying idea of the two proposals is that vehicle mobility is order dependent. A vehicle 

passes through a sequence of road segments to reach some desired destinations, by following a 

specific order and traversing a set of road segments in specific directions. Besides, the repeated 

behaviors and habits of a driver helps to predict her upcoming direction over time. Hence, to predict 

the next route that the driver may be visited in the future, PreGraph and PreNext utilize the current 

road of a driver and his historical data. 

 PreGraph builds a prediction graph, where nodes are roads and arcs are used to represent the 

visiting order of roads by drivers. Then, the prediction graph is used to suggest the next location of 

a driver by attempting to match its current mobility pattern with graph paths. 

 Furthermore, PreNext provides the CPT features such as the benefits of preserving all the 

information contained in training sequences to perform predictions. Yet, and regardless of CPT’s 

lossless nature that allows it to preserve all relevant data, a significant data reduction is attained 

through its prediction structures and its FSC (Frequent Subsequence Compression) and SBC 

(Simple Branches Compression) advanced compression strategies [6]. 

In addition to its fast prediction process unlike several other prediction models that are noise 

sensitivity, CPT is noise tolerant. It copes with noise found in data by adopting a similarity 

measures mechanism that tolerates variations in mobility data while performing predictions. 

Moreover, PreGraph and PreNext predictors have been further extended to regard the temporal 

influence on prediction process. Rather than considering only the location in each sequence, the 

two proposals takes the spatial and temporal contexts into consideration, Thus, the temporal context 

associated to each sequence is considered to form time-extended sequences so-called: temporal 

sequences. Each element of sequence refers to each visited road and the visited time associated 

with this road. As a result, we are dealing in this thesis with temporal graph and temporal CPT. 

The main contributions of this thesis are summarized as follow: 

• We introduce two models for route prediction based on the compact prediction tree (CPT) 

and dependency graph (DG) models. 

• Our proposals have been further extended to considerate the temporal context associated 

with location data. 
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• We evaluate our proposals and compare them with two state-of-the-art models using two 

large-scale and realistic mobility datasets.  

4. Thesis’s organization 

This thesis is organized as follows:  

• In the first chapter, we investigate the subject of probabilistic models on which most of the 

existing studies are depending on. To ensure better understanding of these model, a       

practical example is associated to the description of each presented model. At the end of 

the chapter, fast overview that highlights a set of probabilistic based approaches from 

different fields (networks, medical, social, etc.), is given. 

• In the second chapter, we first give a brief review of some related work in the field of route 

prediction, and then we present a taxonomy that classifies these works according to the 

technique employed. In this same chapter, we summarize the key existing works and 

emphasize their positive and negative aspects.  

• In the third chapter, we describe our basic route prediction models and present the extension 

of the models to handle the temporal context of mobility.  

• In the fourth chapter, we evaluate the performance of our proposal with other models and 

present a comparison study of the two models by varying their parameters. 

• Finally, we conclude the thesis with a conclusion. 
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Probabilistic Models 
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1. Introduction 

Probabilistic models have taken great value because they are intimately related to the prediction 

studies. These models are applied in all situations where there is uncertainty about the outcome and 

we would like to precise a description of what could happen is needed. More specifically, 

probabilistic models have been widely used in several fields such as medical treatment outcomes 

prediction, weather forecasting, economic studies, elections...etc.  

Relying on the theory of the fact that randomness plays a role in predicting future events, a 

probabilistic prediction mainly aims at assigning a probability degree of value to each possible 

outcome on an experiment.  

This chapter begins with a general overview on some probabilistic models namely (Markov-Chain 

model, Hidden-Markov-model (HMM), Prediction by Partial- Match (PPM), Lempel-Ziv, 

Compact Prediction -Tree (CPT) and Dependency Graph (DG)). Next, a brief description with an 

illustrative example of each of these models is given. Finally, a sample of probabilistic based 

approaches in different fields are classified relying on the type of probabilistic models used is 

presented. 

2. Probabilistic models 

2.1. Markov chain model 

Markov model is a stochastic model used to model randomly changing systems where it is assumed 

that future states depend only on the current state not on the events that occurred before it [1].We 

describe a Markov chain as follows: We have a set of states 𝑆 = {  𝑆1, 𝑆2, … , 𝑆𝑛}. The process starts 

in one of these states and moves successively from one state to another. Each move is called a step. 

If the chain is currently in state 𝑆𝑖, then it moves to state 𝑆𝑗 at the next step with a probability 

denoted by 𝑃𝑖𝑗 and this probability does not depend upon which states the chain was in before the 

current state. The probabilities 𝑃𝑖𝑗 are called transition probabilities. The process can remain in the 

state it is in and this occurs with probability 𝑃𝑖𝑖  (loop). An initial probability distribution defined 

on S specifies the starting state. Usually, this is done by specifying a particular state as the starting 

state [2]. For the sake of illustration, let consider the example depicted in Fig.1.The latter represents 

three stores in small-town (A, B and C). On any given week, there are 180 people go to store B and 
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120 go to store C and 200 of them go to store A to do their shopping for the week. However, people 

don’t typically go to the same store all the time because of their requirement. In other words, some 

customers go back to the same store also others are changing their destination. let’s consider 𝑋0 [

𝐴0

𝐵0

𝐶0

] 

is the current state or matrix which contains the current probability of visiting the three stores and 

𝑋1 [
𝐴1

𝐵1

𝐶1

] is the next state which we aim to achieve,𝑋1 = 𝑃𝑋0where P is the transmission matrix 

which contains the probability of moving from the store i to store j. In each row are the probabilities 

of moving from the state are represented by that row as follow: P =   [
𝐴 𝑡𝑜 𝐴 𝐵 𝑡𝑜𝐴 𝐶𝑡𝑜 𝐴
𝐴 𝑡𝑜 𝐵 𝐵 𝑡𝑜 𝐵 𝐶 𝑡𝑜 𝐵
𝐴 𝑡𝑜 𝐶 𝐵 𝑡𝑜 𝐶 𝐶 𝑡𝑜 𝐶

] 

Thus 𝑋1is calculated by multiplying P with 𝑋0 (matrix multiplication). [
0.404
0.316
0.280

]=  [
0.80 0.2 0.1
0.1 0.7 0.3
0.1 0.1 0.6

] 

 [
0.40

0.24

0.36

]  and 𝑋1[1,1]= 0.404 represents the probability of visiting the store A that we aim to find it 

and the number of customers that will visit the store A next week calculated as 0.404 x*500 =202. 

Fig.1 Markov chain model example. 
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2.2. Hidden Markov model 

 Hidden- Markov model (HMM) is a statistical model that can be used to describe the evolution of 

observable events that depend on internal factors, which are not directly observable. The observed 

event is called a symbol whereas the invisible factor underlying the observation is called a state. 

The HMM consists of two stochastic processes, namely, an invisible process of hidden states and 

a visible process of observable symbols. The hidden states form a Markov chain, and the 

probability distribution of the observed symbol depends on the underlying state. For this reason, 

an HMM is also called a doubly-embedded stochastic process [3] and is named hidden as the events 

are not observed directly. For instance, in the speech recognition process, part-of-speech tags in a 

text are not observed. Yet, words are seen and the text must infrared from the word sequence. In 

this case, the tags are hidden because they are not observed. The HMM includes five components 

1) a set of n state  𝑄 = 𝑞1𝑞2 ⋯ 𝑞𝑛 ,2) a transition probability matrix A each 𝑎𝑖𝑗representing the 

probability of moving from state i to state j  ∑ 𝑎𝑖𝑗
𝑛

𝑗=1
= 1∀𝑖 , A  = 𝑎11 … … 𝑎𝑖𝑗  … 𝑎𝑛𝑛, 3) a sequence 

of T observation  𝑂 = 𝑂1𝑂2 ⋯ 𝑂𝑇, 4) a sequence of observation likelihoods also called emission 

probability B = bi (Ot), 5) π = 𝜋1, 𝜋2, 𝜋3,……, 𝜋𝑛  an initial probability distribution   over states 𝜋 

is the probability that Markov chain starts with. For instance, let us consider two states of weather 

A and B while A denotes rain and B represents dry weather. For the given sequence, 𝑆𝑘 <B, B,A,A>  

of weather the probability P ({B,B,A,A})of 𝑆𝑘 with the transition probabilities of weather states are 

given as  P(A|A) =0.3, P(B|A) =0.7,P(A|B) =0.2, P(B|B) =0.8.Besides, the probability of rainy day 

is 0.4 and dry day is 0.6. The probability of 𝑆𝑘 is calculated by applying the following formula:  

P (S1, SI2……SIK) = P (SIK| SI1, SI2……SIK-1) P (SI1, SI2……SIK-1) =P (SIK| SIK-1) P (SI , SI2……SIK-1) 

=P (SIK| SIK-1) P (SIK-1| SIK-2) ……. P (SI2| SI1) P (SI1). Thus, P {(B, B, A, A)} = P(A|A) P(A|B) P(B|B) 

P(B) = 0.3*0.2*0.8*0.6=0.0288. 
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Fig.2 The weather states with probabilities.  

2.3. Prediction by partial Matching (PPM) 

Prediction by Partial Matching (PPM) is a sequence prediction model proposed by (Cleary &Witten 

(1984)) [4]. It is mainly used for data compression and sequence predictions. PPM is a variable-

order Markov model that uses various lengths of previous contexts to build the prediction model. 

The basic algorithm initially attempts to use the largest context. The size of the largest context is 

predetermined if the symbol to be encoded has not previously been encountered in this context. An 

escape symbol is encoded and the algorithm attempts to use the next small context and if the symbol 

has not occurred in this context either. The size of the context is further reduced. This process 

continues until either a context that has previously been encountered with this symbol or no much 

of the context has been encountered. For instance, the Fig.3 represent the PPM prediction for the 

sequence S=ABCDCECF-AECFCDCBA-AFCECDCBA-ABCECDC.The context step(1) is ECDC. 

The symbols which had been appeared after this context along the sequence are just B so B is to be 

excluded and the escape symbols have encoded with probability1/2.The context reduced to CDC 

in step(2)and the process continues with the symbol after the new context CDC that is E,E excluded 

and the escape symbols encoded with probability2/3.The context in step (3) became DC . Here, no 

new symbols after DC would be found. The process continues in the last step (4). The new context 
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is D and the symbols after D is just F and F encoded with probability 2/4+2+4=1/5. The process 

will be finished in this step as F has not been encountered in any context before.  

 

Fig.3 PPM example. 

2.4. Lempel Ziv (LZ) 

Around 1977, Lempel and Ziv [5] have developed the Lempel-Ziv popular class of adaptive 

dictionary data compression techniques. The prediction components of this algorithm were first 

discussed by Langdon and Rissanen (1983) [5] and then it was simplified and became known as 

LZ78.LZ78 is considered as a dictionary-based text compression algorithm that performs 

incremental parsing of an input sequence. This algorithm parses the given input string into 

substrings, and as it is a compression algorithm it also consists of [encoder\decoder] processes. In 

our case, and as we do not need to reconstruct the parsed sequence no need to consider 

encoder/decoder system. Yet, LZ is simply used as a system that split up a given sequence of states 

into phrases. From this standpoint let's consider the following sequence: 

S = < AABABBBABAABABBBABBABB> as an input. LZ breaks up this sequence into the following 

set phrases: A|AB|ABB|B|ABA|ABAB|BB|ABBA|BB. The algorithm maintains statistic for all 

contexts seen within the phrases that are stored in the LZ parsing tree. For example, the context A 
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appears six times at the beginning of the phrases (A|AB|ABB|ABA|ABAB| ABBA), BB appears two 

times (|BB|BB) and so on. These context statistics are stored in a tree depicted in Fig.4. 

 

 

Fig.4 A sample of a tree constructed by the LZ78 parsing.  

2.5. Compact prediction tree (CPT) 

Compact prediction tree (CPT) is a prediction algorithm that proposes a new approach called 

“lossless” that means predicting without any loss of information. Similarly, to other prediction 

models, CPT is performing the training and prediction or testing phase. In the training phase, CPT 

construct three data structures namely:1) Prediction Tree (PT), it’s a type of prefix tree. It includes 

all training sequences. Each node in PT represents an item and each training sequence is 

represented by a path starting from the tree root and ending by an inner node or a leaf.2) Lookup 

Table (LT), is an associative array which allows locating any training sequence in the prediction 

tree with a constant access time and 3) Inverted Index (II),  is a set of bit-vectors that indicate for 

each element the set of sequences that it contains [6].Fig.5 illustrates the construction of 

these  structures by the successive insertion of the five sequences:  𝑆1 =< 𝐴, 𝐵, 𝐶 >, 𝑆2 =< 𝐴, 𝐵> 

 𝑆3 =< 𝐴, 𝐵, 𝐷, 𝐶 >  ,𝑆4 =< 𝐵, 𝐶> ,𝑆5 =< 𝐸, 𝐴, 𝐵, 𝐴 > .  
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Once the three structures are built, the prediction could take place. For instance, the prediction of 

the next symbols after the sequence S = <A, B> is done by finding all sequences that contain the 

items of S in any order and any position. These sequences are so-called the sequences similar to S 

or the matching sequences. To find these similar sequences the Inverted index structure in Fig.6 is 

used. II performs AND operation to find the sequences 𝑆1, 𝑆2 and 𝑆3 that contain the items A and 

B. The lookup table is then used to allow traversing the matching sequences from the end to the 

start. From these sequences 𝑆1 =< 𝐶, 𝐵, 𝐴 >, 𝑆2 =< 𝐵, 𝐴>, 𝑆3 =< 𝐶, 𝐷, 𝐵, 𝐴 > , the subsequences 

<C> and <CD> called consequents are retrieved. Each item of those consequents is then stored in a 

data structure named Count Table (CT). This structure comprises a list of possible candidate items 

and their respective score (i.e. number of times an item appears after the target sequence S). The 

item with the highest score within the CT is the predicted item. In our example, item C is retained 

because its score is 2 while D has a score of 1.     

 

 

 

 

 

 

 

                                                                      

 

 

 

 

      Insertion of < B, C > Insertion of <B, C> 

Fig.5 CPT structures. 
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       Fig.6 CPT prediction. 

2.6. Dependency Graph (DG) 

2.6.1. Directed graph and Undirected graph 

A directed graph is a pair G = (V, A) where V is a set of v nodes, and A ⊆ V × V denotes a set of 

directed arcs. Each arc is an ordered pair e = (u, v) that represents an asymmetric relationship 

between two nodes. Note that a direct graph can have self-loop (u, u) to the same node. Besides, 

an undirected graph is a pair G = (V, E) where V is a set of nodes, and E ⊆ V is a set of arcs. In 

contrast to directed graph, each arc in an undirected graph is an unordered pair e= {u, v} (or 

equivalently {v, u}). By this definition, an undirected graph cannot have self-loops since {v, v} = 

{v}. Therefore, undirected graphs represent symmetric relationships.  
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Fig.7 An example of a directed and undirected graph of 4 nodes. 

2.6.2. Dependency Graph  

A dependency graph is a directed graph representing dependencies of several objects towards each 

other [6]. Events in any system can be represented as random variables whereas the dependencies 

between them are modelled as probabilistic relations amongst the variables. The probability of a 

random variable is conditioned and learnt from the observed values of the random variables in the 

system.  

In the dependency graph, random variables are represented as graph nodes with directed arcs being 

the conditional dependence of one variable on another. The model represents the inter-dependency 

of different random variables so it is a valuable framework to understand complex systems built 

from these variables. The other advantage of the dependency graph is that when the values of 

certain variables are observed, the conditional dependencies can be used to infer the values of the 
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dependent variables. Hence, the framework of this graphical model can be used for diagnostics and 

a tool for prediction of unobserved variables [7]. One of the most important parameters that the 

dependency graph based on is the Lookup-Window. This latter determines the size of the window 

to retrieve the next symbols of a sequence. 

For the sake of illustration, let us consider the DG depicted in Fig.8 constructed from two sequence 

 𝑆1 = <A, B, C, A, C, B, D> and 𝑆2 = <C, C, A, B, C, A>. We aim to build a model to do some prediction, 

to find the probability of A followed by B and A followed by C with Lookahead-Window size 2 

that mean look two symbols by two when constructing the graph. 

As illustrated in Fig.8 four nodes are created as the number of symbols and every two successive 

nodes (retrieve by the size of lookup-window) are connected by an arc with a value which 

represents how many time A is followed by B in all sequences. Thus,  P(B|A) = 3|sup(A) = 3|4 and 

P(C|A) = 3|sup(A) = 3|4.where sup(A) is how many time A appears in all sequences.  

 

Fig.8 A sample of DG model with lookahead =2. 
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3. Taxonomy of some prediction works  

To review some probabilistic based prediction approaches, we provide in this section a taxonomical 

classification that categorizes the prediction models according to the probabilistic model employed 

to perform prediction. 

 

Table1: Taxonomy of some prediction models. 

 

    Work Probabilistic model 

used 

                      Task 

Katsaros et al. (2009) [9] 

 

Markov Chain model Prediction of what in Wireless Networks by Markov 

Chains. 

 

Zakaria et al. (2019) [10] Markov Chain model Forecasting Air Pollution Index of Miri, Sarawak 

 

Qiao et al. (2017) [11]  

 

 

 

 

Hidden-Markov model 

(HMM) 
Predicting Social Unrest Events with Hidden Markov 

Models Using GDELT 

 

Liu et al. (2017) [12]  

 

Hidden-Markov model 

(HMM) 

Big Data-Driven Hidden Markov Model-Based 

Individual Mobility Prediction at Points of Interest 

Sael  et al.(2010) [13]  Prediction by Partial    

Matching (PPM) 

Binding Ligand Prediction for Proteins Using Partial 

Matching of Local Surface Patches 

 

Tan et al. (2015) [14]  

 

 

 

 

 

Lempel-Ziv (LZ) 

 

FPGA-based hardware accelerator for the prediction 

of protein secondary class via fuzzy K-nearest 

neighbors with Lempel–Ziv complexity-based 

distance measure 

 

Cui et al. (2016) [15]  Lempel-Ziv (LZ) Double-dictionary matching pursuit for fault extent 

evaluation of rolling bearing based on the Lempel-Ziv 

complexity 

Mallick et al. (2016) [16]  Compact Prediction Tree 

(CPT) 

Weather prediction using CPT+ algorithm 

Zimmermann et al.(2006)[8]  

 

 

Dependency Graph (DG) Predicting Subsystem Failures using Dependency 

Graph Complexities 

 

 Edakunni et al. (2015) [7]  Dependency Graph (DG) probabilistic dependency Networks for prediction and 

diagnostic                                                   

https://www.researchgate.net/scientific-contributions/40019599_Lee_Sael
https://www.researchgate.net/scientific-contributions/40019599_Lee_Sael
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4. Conclusion 

 Through this chapter, we have reviewed a small set of probabilistic models. For each of these 

models, brief descriptions with their key (properties and main concepts are given). We have also 

supported our explanation with illustrative examples for each model. To highlight the most 

important works that have been proposed relying on probabilistic models, a small set of approaches 

are presented at the end of this chapter.
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1. Introduction 

Due to the rapid development of technology, movement prediction studies became the interest of 

researchers. The main challenge between them is to find solutions for all mobility problems such 

as social networking applications, reminder, aged people movement optimization, recommender 

systems, mobility of object (vehicles, human being, etc.).Predicting the future locations of vehicles 

is regarded as the most interesting topic where researchers  seek to obtain more accurate and 

effective predictors to mainly improve the quality of ITS (Intelligent Transportation Systems). 

Hence, decrease congestion in traffic.  

A route prediction system provides routes based on driving history and the driver requirements and 

desires to take a specific route. The driver may prefer a long route with less congestion over a short 

route with more congestion. Route prediction has many challenges constraints on which the routes 

are predicted, so many algorithms and methods can be used to give priority to a specific constraint. 

In literature, several models have been proposed. In this chapter, we aim to review related work on 

route and destination prediction problem.  

2. Route prediction 

Currently, many drivers use different kinds of route prediction systems to acquire better driving 

routes. Route prediction systems have been widely used and it offers extensive services for both 

the driver and his car such as intelligent transportation systems. It can be used to display traffic 

warnings, location-based services(e.g. systems that determine vehicles paths, recommendation 

route systems that play an important role in many applications like the display of targeted 

advertisements about points of interest and shops that a user is approaching).In addition, it was also 

contributed to reducing fuel consumption, therefore, it provides a major economic and 

environmental benefits. Route prediction consists of predicting the next road of a driver according 

to its current path and his previous so, it can be viewed as an instance of the problem of sequence 

prediction.  

Definition1 (Road segment)  

A road segment is a part of a vehicle or a driver location history. It is a directed edge between two 

junctions. As depicts in Fig.10 road segment Rx and Ry connecting two junctions [28]. 
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Fig.10 Road segments Rx and Ry connecting two junctions. 

Definition 2 (Trajectory)  

A path made by vehicle or driver through the road where it moves (GPS dots) Trj=d1→d2→…→dn, 

where di (Longitude, Latitude, Timestamp) ∈ d, and d is GPS points set. 

Definition 3 (Stay point)  

A stay point is a geographic area constituting where the person stayed for a period greater than a 

time threshold Tthr and distance between GPS trajectory points doesn’t exceed a spatial threshold 

Dthr. 

Definition 4 (Trip) 

A trip is a GPS trajectory must be between stay points in the location history, so stay points are trip 

delimiters. Note that, the driver's starting point is also considered as stay point. 

Fig.11 Example of trajectory, stay point and trip.
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Definition 5 (Road network) 

A road network is a directed graph (N, RS), where N is a set of nodes representing the road junctions 

in a given area, and RS is a set of arcs, representing all the road segments joining those junctions. 

Definition 6 (Location sequence)  

A location sequence S=Li,Li+1,..,Lm is an ordered list of locations visited by a driver Vi during a 

time period TP. 

Definition 7 (Road history)  

The road history (RH) of a vehicle Vi is the set of all location sequences of Vi.  

3. Related work 

Several studies have addressed the problem of route predictions [18],[24],[26]. These works could 

be categorized according to 1) the range of prediction whether it is a short prediction (predicting 

the next location) [21], or a long one (future locations and destination) [23], or 2) the technique 

adopted. In this chapter, we will classify related work according to this last criterion. Considering 

the technique used, existing works can be classified into three main categories: 1) Probabilistic 

models approach 2) Artificial Neural networks approach 3) Clustering-based approach [17].  

3.1 Probabilistic models 

 Probabilistic models have been widely used to mine frequent patterns for route prediction 

problems. Epperlein et al. [18] proposed Markov chains as models for the journey patterns, they 

explained how trips can be modelled as outputs of stochastic processes to obtain an estimate of the 

posterior probabilities of each known journey pattern. Simmons et al. [19] presented a Hidden 

Markov model (HMM) to predict a driver’s intended route and destination through observations of 

the driver’s habits. Gambs et al [20] improved a previously existed mobility model named v-

Mobility Markov Chain (v-MMC), to incorporate the v previous visited locations. They showed 

that prediction accuracy increases with v. They only considered the sequence of the significant 

locations instead of all locations to build higher order MM. Rathore et al. [21] proposed approach 

with a mixed Markov model (MMM)-based scheme and a trajectory clustering, called NETSCAN 
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based TP method for both short- and long-term trajectory predictions. Because of the existing 

methods for frequent sequential pattern mining tend to be limited to predicting short-term partial 

trajectories, Tiwari et al. [22] designed a scalable route prediction application based on a prediction 

by partial match (PPM) modelling of user travel data. Even, Qiao et al. [23] suggested a prefix- 

projection-based trajectory prediction algorithm called Prefix-TP for predicting long-term 

trajectories of connected vehicles. 

 3.2. Artificial neural networks approach 

Neural Networks have been also applied for prediction. Liu et al. [24] compared between 

Personalized Markov-Chain (FPMC) and Tensor Factorization (TF) against Recurrent Neural 

Networks (RNN). They found that (RNN) model shows promising performance comparing with 

PFMC and TF, but all these methods have a problem in modelling continuous time interval and 

geographical distance. So, they extended RNN and proposed a novel method called Spatial 

Temporal Recurrent Neural Networks (ST-RNN). ST-RNN can model local temporal and spatial 

contexts in each layer with time-specific transition matrices for different time intervals and 

distance-specific transition matrices for different geographical distances Moreover, Mikuscak et al. 

[25] discussed several algorithms and methods which have been used in intelligent transport 

systems (ITS). They proposed a route prediction method based on artificial neural networks using 

the past routes of a vehicle. 

3.3. Clustering-based approach 

Several researchers have relied on trajectory clustering in route prediction methods, which divide 

the trajectories into many clusters representing different motion patterns based on the trajectory 

similarity. Cao et al. [26] proposed a model called trajectory-clustered Markov model (tra-MM) 

that exploits the similarity between trajectories. In tra-MM first, they clustered similar trajectories 

according to a given similarity metric and then for each cluster, they trained a variable-order 

Markov model using the trajectories contained. Also, Terroso-Saenz et al. [27] presented online 

route prediction based on clustering of meaningful velocity-change areas called Prop-Turn. The 

framework integrates route learning and the prediction algorithm in an on-line manner. By means   
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of a thin-client and server architecture, it also puts forward a new concept for route abstraction 

based on the detection of spatial regions where certain velocity features of routes frequently change 

4. Taxonomy of route prediction 

To review the existing route prediction models, we provide, in this section, a taxonomical 

classification that categorizes the prediction models according to the technique used followed by a 

brief comparison between a set of works by highlighting their weakness and strength aspects. 

Xue et al. (2009) [36] 

Zabihi et al. (2017) [29]  

Gambs et al. (2012) [20]  

Qui et al. (2018) [23]     

Simmons et al. (2006) [19] 

Epperlein et al. (2018) [18] 

Tiwari et al. (2018) [22] 

Torkkola et al. (2007) [38] 

Terroso et al. (2016) [27] 

Cao et al. (2015) [26]  

  

  

Mikuscak et al. (2012) [25] 

Dai et al. (2016) [31] 

Qiang et al. (2016) [24] 

  

Park et al. (2014) [33]  

Tiwari et al. (2013) [34] 

Froahlich et al.(2008) [37] 

Fig.12 Taxonomy of route prediction 
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5. Literature review for route prediction studies 

In this section, we present a table that clarifies the different route prediction algorithms used by 

researchers and its weakness and strength sides. 

Author Technique(s) 

Used 

Strength Weakness 

 

Amirat et al. 

(2019) [28] 
CPT model for accurate route 

prediction 

 

 

Successful prediction ratio 

between 70% and 98% 

 

Failure prediction less than 30% 

and a high coverage of 80 to 93% 

 
The size of CPT is verry huge 

Zabihi et al. 

(2017) [29] 

Autoregressive Input-Output HMM Accuracy is 80% in real-time  

 

 

 Gross et al. 

(2016) [30] 

 
Random Decision Forests (RDF) 

Support Vector Machine (SVM) 

 

RDF achieves a TP@5FP of 59 

% at a TTI of 2.88 s which 

performs better than support 

vector machine where (TP@5FP) 

is a major performance measure 

and TTI is worst-case times to the 

reference node 

 

Not applicable for real-world 

conditions and live testing 

 

Dai et al. 

(2016) [31]  

 

 

 

 

 

 

Machine learning for building   

personal driving route knowledge 

system First order Markov Re-direct 

 

 

Redirect the driver’s intended 

route when the driver deviates 

from the predicted route. 

 

Information such as traffic 

flow, weather conditions and 

other conditions 

 

Mingjun et al. 

(2014) [32] 

 

Improved Dijkstra's Algorithm 

 

Provides reasonable shortest 

route for drivers 

 

 

Park et al. 

(2014) [33] 

 

Intelligent Trip Modelling System 

(ITMS) through Machine Learning 

 

Performance of ITMS is robust 

when Cross-region variance is 

considered 

 

It cannot be used where traffic 

sensors are unavailable 

 

Tiwari et al. 

(2013) [34] 

 

Road networks Map Matching 

 

The algorithm runs faster, by 

two folds without affecting the 

accuracy of the output 
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Goh et al. 

(2012) [35] 

 

Hidden-Markov model  

(VSW-method) 

 

Higher accuracy when compared 

to Fixed Sliding Window (FSW) 

 

Interpolating trajectory points 

should be considered rather 

than the shortest path 

 

 

Xue et al. 

(2009) [36] 

 

Variable-order Markov models 

(VMMs)  

Probabilistic Suffix Tree (PST) 

 

The enormous impact of 

different traffic conditions is 

taken into consideration 

  

 

Poor scalability as the 

approach is centralized 

 

Simmons et al. 

(2006) [19] 

 

Hidden-Markov model (HMM) 

 

Accuracy is above 98% for all 

transition that are Forced 

transitions 

 

Accuracy drops to 70% when 

Unforced transition is 

considered 

 

Table.2 Different route prediction algorithms. 

 

 

6. Conclusion 

In this chapter, we have presented an overall description of route prediction and its main 

applications in real-life. Then, we have given a review on related work on this topic and we have 

provided a taxonomy that classifies some works according to the technique used. To conclude, we 

have given a brief comparison between a set of existing works by highlighting their strong and 

weak aspects. In the next chapter, we will discuss how to add the temporal context in route 

prediction models. 



 

 

 

 

Chapter III 

PreNext and PreGraph 

models 
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1. Introduction 

Spatial and temporal contextual information play key roles in route prediction studies and helps 

predicting where he or she will go next. These factors are fundamental to model human behaviors 

in practical applications. It is challenging and essential to predict where the driver will be at a given 

time with complex temporal and spatial information. Besides, most of prior proposals have only 

focused on spatial and social influences. For this reason, we propose in this chapter two novel route 

prediction models called PreNext and PreGraph respectively that are based on the temporal and 

spatial properties of driver movement. 

This chapter consisted of two main parts. In the first part, the PreNext model that depends on CPT 

model is presented.  PreNext thus offers all the advantages of CPT including: conserving all the 

data to perform prediction (i.e. lossless model), requiring less storage space, predicting rare cases 

with a high accuracy, and dealing with noisy mobility data (e.g. GPS) [6]. 

In the second part, the description of our second model PreGraph that is inspired by the dependency 

graph (DG) predictor, is given. PreGraph represents roads as a graph node that are used then to 

predict the next visiting road.  

Both of the proposed models are expanded to consider the temporal context associated with each 

mobility sequence. 

This chapter is organized as follow. First, a set of preliminaries that describe some interesting 

definitions related to the problem of route prediction is given then a presentation of PreNext and 

PreGraph models is provided. 

2. Preliminaries  

Definition 1 (Temporal mobility sequence) 

The mobility sequence Ms = ⟨𝑡1⟩𝑟1, ⟨𝑡2⟩𝑟2, … . , ⟨𝑡𝑛⟩𝑟𝑚 is a set of road segments traversed by a driver 

where each item in Ms represents the road traversed by the vehicle at a specified time. For example, 

Table.3 shows a sample of three mobility sequences performed by three vehicles V: {V1, V2, V3}, 

in three days, representing for each vehicle its own route represented as a list of a road segments. 

For instance, vehicle V1 has visited the road 𝑟1at time 𝑡1followed passed by 𝑟4 at time 𝑡4. 
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Table.3. A sample of mobility sequences and histories. 

Definition 2 (Time binning) 

Time binning is the process that discretizes the time using time-slots (bins). It consists of dividing 

a day into multiple bins of equal length e.g. [8:00-10:00], ]10:00-12:00] for 2-hour bins. For 

instance, Table.3 shows temporal mobility sequence generated using bins of two hours where 

 𝑡1= [6:00-8:00], 𝑡2= ]8:00-10:00], 𝑡3= ]10:00-12:00], 𝑡4= ]12:00-14:00], 𝑡5= ]14:00-16:00]. 

Definition 3 (Road pattern)  

A road pattern Rpi is a subsequence of some temporal mobility sequences in a road history RH that 

contains the set of all mobility sequences. For example, from road history depicted in Table 3, the 

sequence <𝑡1>𝑟1, <𝑡2> 𝑟2 is a road pattern. 

Definition 4 (Temporal graph) 

A temporal graph G = {N, A} is a directed graph where N is the set of nodes in G and A represents 

the set of arcs attaching the nodes. In the graph G, each node represents the road visited by each 

driver associated with its traversing time.  

Definition 5 (Route prediction problem) 

Let TMs= {Ms1, Ms2, Ms3..., Mst} be a set of training mobility sequences used to train a prediction 

model M. The problem of route prediction consists in predicting the next road segment with its 

 

Vehicle 

ID 

 

Day 

 

Mobility sequence 

      

V1 

𝐷1 <⟨𝑡1⟩>𝑟1, <⟨𝑡2⟩> 𝑟2, <⟨𝑡3⟩> 𝑟3, <⟨𝑡4⟩> 𝑟4.  

<⟨𝑡1⟩>𝑟2, <⟨𝑡2⟩> 𝑟3, <⟨𝑡4⟩> 𝑟4, <⟨𝑡5⟩> 𝑟5. 

<⟨𝑡1⟩> 𝑟1, <⟨𝑡3⟩> 𝑟4, <⟨𝑡4⟩> 𝑟5, <⟨𝑡5⟩> 𝑟3. 

𝐷2 

𝐷3 

   

V2 

𝐷1 <⟨𝑡2⟩> 𝑟2, <⟨𝑡4⟩> 𝑟4, <⟨𝑡4⟩> 𝑟3, <⟨𝑡5⟩>𝑟5. 

<⟨𝑡1⟩> 𝑟1, <⟨𝑡2⟩> 𝑟2, <⟨𝑡3⟩> 𝑟3, <⟨𝑡4⟩> 𝑟4. 

<⟨𝑡1⟩> 𝑟4, <⟨𝑡3⟩> 𝑟2, <⟨𝑡3⟩> 𝑟3, <⟨𝑡4⟩> 𝑟4. 

𝐷2 

𝐷3 

V3 𝐷1 <⟨𝑡1⟩> 𝑟1, <⟨𝑡2⟩> 𝑟2, <⟨𝑡3⟩>𝑟3, <⟨𝑡4⟩> 𝑟5. 

<⟨𝑡1⟩> 𝑟2, <⟨𝑡2⟩> 𝑟5, <⟨𝑡3⟩> 𝑟3, <⟨𝑡4⟩> 𝑟4. 𝐷2 
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traversing time ⟨𝑡𝑛+1⟩𝑟𝑛+1  segment with its traversing time of a given mobility sequence          

Msk=< ⟨𝑡1⟩𝑟1, ⟨𝑡2⟩𝑟2, … . , ⟨𝑡𝑛⟩𝑟𝑛> by using M. 

3. Compact prediction tree model (PreNext) 

Our first model PreNext is inspired by the compact prediction tree CPT predictor but it is extended 

so it considers the temporal context. As previously mentioned, (in chapter 1), CPT is a lossless 

model that relies on two main processes: A) training phase, and B) prediction phase and that 

implements three main data structures: Prediction tree (PT), Inverted Index (II) and Lookup Table 

(LT). 

3. 1. Training phase 

In this step, the three data structures are constructed by inserting the mobility sequences. Each node 

of the prediction tree (PT) represents a road segment whereas each path starting from the root to 

the last road visited by vehicle represents a mobility sequence. The Lookup Table cells are created 

whenever a new sequence is inserted in the (PT) where each leaf of (PT) related to cell of (LT) and 

the cells are formed by the order in which the sequences appear. Finally, the Inverted Index (II) is 

employed to indicate for each sequence if the road ⟨𝑡𝑖⟩𝑟𝑗 included in that sequence. Thus, the bit 

that corresponds to this road segment in the vector of the sequence in the II is set to 1 if the sequence 

contains the road segment and 0 otherwise. Hence, II is designed to quickly find in which sequences 

the given segment appears [1]. For sake of illustaion, Fig.13 depicts the training process of the 

following mobility sequences: 

<⟨𝑡1⟩𝑟1, ⟨𝑡5⟩𝑟2, ⟨𝑡6⟩𝑟1 > ,< ⟨𝑡2⟩𝑟2, ⟨𝑡3⟩𝑟4, ⟨𝑡4⟩𝑟5, ⟨𝑡7⟩𝑟2 > and <⟨𝑡2⟩𝑟2, ⟨𝑡3⟩𝑟4, ⟨𝑡4⟩𝑟5, ⟨𝑡6⟩𝑟1, ⟨𝑡5⟩𝑟2>. 

 where step(1) represents the initial state with the three main structures (PT),(II) and (LT) which 

were empty .Then, the steps 2,3, and 4 represent the model after the insertion of the mobility 

sequences one by one .Depending on the dataset used, CPT takes more or less space, however, the 

training process is really fast (O(n)),because of the following strategies are applied[6]. To further 

reduce the time and space complexity, CPT adopts two strategies namely (Frequent Subsequence 

Compression) and SBC (Simple Branches Compression). 

In many situations, sequences may share common sub-sequences. To deal with these cases, the 

FSC is applied to compress frequent sub-sequences which are the sequential patterns that are found 

in training sequences. Each sub-sequence found is replaced in (PT) by a single new segment 
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identifier Ri stored in a new structure named Subsequence Dictionary (DCF) and associated with 

the subsequence that it replaces. Besides, the SBC strategy requires the replacement of each simple 

branch (defined as a branch leading to a single leaf) by a single node representing the whole branch. 

Fig.14 illustrates the application of these strategies on the PT of Fig.13. By applying FSC, the 

frequent subsequence < ⟨𝑡5⟩𝑟2, ⟨𝑡6⟩𝑟1 >is replaced with one node R1. Then the (PT) is further 

compressed by replacing the whole branch (R1,⟨𝑡1⟩𝑟1) with a single node using SBC strategy. 

Fig. 13 An example of the CPT training process 
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3. 2. Prediction phase 

As previously mentioned in chapter 1, the prediction process of CPT predictor deals with the three 

data structures in addition to a new structure called Count Table (CT), which holds the candidate 

roads and their corresponding scores. For instance, let us consider the mobility sequences          

Ms=< ⟨𝑡1⟩𝑟1, ⟨𝑡2⟩𝑟2, … , ⟨𝑡𝑚⟩𝑟𝑛 >  containing n road segments with their traversing time. We define 

LTRSL(Ms)= <⟨𝑡𝑛−𝐿+1⟩rn-L+1, ⟨𝑡𝑛−𝐿+2⟩ rn-L+2,.., ⟨𝑡𝑛⟩.rn> as the Last Traversed Road Segments of 

Ms of size L with 1≤L≤n. The L parameter determines the number of road segments in a path to be 

considered for predicting the next road segment. The prediction of the next segment of a sequence 

Ms is performed as follows. First, the similar sequences to Ms among all the mobility sequences 

that contain all the road segment of LTRSL (Ms) are retrieved by using the intersection of the bitset 

of II which contain the road segments of LTRSL (Ms). The results obtained from the intersection 

indicates the set all similar mobility sequence to Ms. Second, the matching sequences are extracted 

by using the LT structure that helps getting access to these sequences.  

Finding the similar sequence can consider as a sensitive task. However, and in contrast to many 

prediction models, CPT can deal with noise occurred in movement data by applying two 

Fig.14 Application of (FSC) and (SBC). 
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2) application of FSC 
3) application of FSC and SBC 
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strategies called respectively: Recursive Divider (RD) and PNR (Prediction with improved Noise 

Reduction)[6].  

a) Recursive divider (RD) 

 For a given travelled mobility sequence TMs, the RD strategy tries to find similar sequences of 

each subset SB∈TMs where |SB|=k with k = {1, 2,..,max-Level} and max-level indicates the 

maximum subset splitting size allowed for TMs. If a prediction cannot be made at level k, RD 

explores the k+1 level if and only if k+1< max-level. 

 b) Prediction with improved Noise Reduction (PNR) 

To gain more flexibility with noisy data, this strategy could be also employed relying on the 

hypothesis that noisy routes appeared in training sequences are the ones with low frequency 

(support). Therefore, PNR aims to remove the road segments having a low support.  

The next step in the prediction process is finding the consequent of each similar sequence. The 

consequent is defined as the longest sub-sequence after the last occurrence of LTRSL(MS) in a 

similar sequence. For instance, given a mobility sequence Ms, and its LTRSL(Ms), a mobility 

sequence similar to Ms can be divided into three sub-sequences: the context subsequence comes in 

the first position followed by the LTRSL(Ms) and in the third position the consequent subsequence 

(as illustrated in Fig.15). 

⟨𝑡1⟩𝑟2 …. ൻ𝑡𝑝ൿ𝑟𝑣 ൻ𝑡𝑝+1ൿ𝑟𝑣+1 …. ⟨𝑡𝑘⟩𝑟𝑔 ⟨𝑡𝑘+1⟩𝑟𝑔+1 …. ⟨𝑡𝑚⟩𝑟𝑛 

                         Mobility sequence  

Context 

(Older trajectory) 

Part similair to 

LTRS 

 

Consequent 

 

Fig.15 Mobility sequence consequent. 
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Each consequent of a sequence similar to Ms is stored in Count Table (CT) where road segments 

are keys and a score is associated as the value corresponding to each key. The score represents the 

support (frequency) of a given road segment< ⟨𝑡𝑖⟩𝑟𝑗 >which is defined as the number of times it 

appears in the consequent of a mobility sequence similar to Ms. In the case where the supports of 

two road segments are equal, the confidence is used. It is defined as the support of< ⟨𝑡𝑖⟩𝑟𝑗 >divided 

by the total number of sequences that contain < ⟨𝑡𝑖⟩𝑟𝑗 > (the cardinality of the bitset of < ൻ𝑡𝑖 , 𝑟𝑗ൿ >in 

the II). 

4. System architecture 

 As shown in Fig.16, PreNext is composed of two main modules: pre-processing and route 

prediction. 

4.1. Pre-processing 

In this module, the GPS data (GPS trajectories) are transformed into mobility sequences by 

applying the three following steps. First, the set of stay points relaying on two predetermined space 

and time thresholds Tthre and Dthre is extracted.  Stay points divide the trajectories into trips. The 

resulting trips are then converted into mobility sequences by map-matching GPS trajectories using 

a cloud map-matching based API [42]. 

4.2. Route prediction   

To predict the next route of drivers, three processes are performed: training, predicting (or testing). 

Basically, the pre-processed data is divided into two subsets: one is used for training and the other 

for testing. The user of PreNext needs to set the size of the LTRS to be considered (L). The 

prediction process will consider the last (L+1) road segments of each testing mobility sequence. 

The first L road segments are used to perform prediction based on CPT structures. The set of 

possible consequents are stored in the (CT) with their corresponding scores. The road segment 

having the highest score is then selected as the prediction result. Finally, the predicted segment is 

compared with the last road segment from the testing mobility sequence to determine if the 

prediction was a success or not [28].  

The prediction model is adapted to consider both global (collective) and personal (individual) 

movement behaviors of drivers. Two models are proposed: 
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Fig.16 PreNext architecture. 
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1) Global model (GM)  

As people always show a degree of similarities in their movement while travelling from locations, 

this model is adapted to represent the global mobility behavior of persons. Therefore, the GM model 

is employed to perform predictions for a driver when no prior knowledge about his mobility 

patterns is found such as newly seen drivers in a geographic area by considering and using                

the mobility patterns of all drivers. 

2) Personalized model (PM) 

Sometimes, a single driver may also exhibit a specific personal movement relaying on her/his 

habits or desires. PM model consists of creating a mobility model for each driver comprising his 

previous trajectories. Accordingly, the prediction model is only trained with his mobility sequences 

rather than the data of all drivers. 
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5. Dependency graph model (PreGraph) 

Our second proposed model is PreGraph. This latter adopts the Dependency graph (DG) predictor. 

PreGraph builds a graph structure named PG. Formally, the PG graph represents a pair of sets      

(R, A) where R is a set of road segments (nodes) and A∈ R×R is a set of directional arcs (edges) 

representing movements on the road network. For a given arc (road segment) a = Rx Ry, the location 

from which the movement starts is called a source of a and is denoted as the source (a) = Rx, while 

the other node Ry is called destination of a, and is denoted as Dest(a) = R𝑦. In PG, an arc a =Rx Ry 

arc is created if and only if Ry appears within w movement after Rx in a mobility sequence, where 

w is the lookahead, that determines the size of the window. Moreover, the weight value (w(a)) is 

associated with each arc a, indicating the number of times that Dest (a) traversed by drivers after 

Source(a). In the context of mobility prediction, PG allows representing order dependencies among 

traversed roads in mobility sequences by drivers where the source of a given arc 𝑎𝑖 ∈ 𝐴 must 

appears before its destination. The mobility prediction graph is built by gradually inserting mobility 

sequences in the graph. In the case where sequences share common roads, the weights of the shared 

arcs are incremented rather than creating new arcs. Thus, significant space reduction can be 

achieved using the PG representation. 

 It is worth noticing that the PG graph is built using temporal mobility sequences that consider the 

traversing time of each road segment. This process is done by applying the time binning process 

that consists of dividing a day into multiple time-slots or bins of equal length. For instance, Fig.17 

depicts the PG graph created using the set of mobility sequences of Table.4 with a lookahead 

window specified by w = 2 and using the time_slot_size=4. 

6. System architecture 

 Depending on   client-server architecture, PreGraph has been designed to perform route prediction 

where the client is the vehicle (driver) and the server is an authority infrastructure such as an RSU 

(road side unit). As depicted in Fig. 18, PreGraph comprises three main modules.  

6.1. Data preparation  

This module periodically collects driver location data (GPS records) and sends it to a server site. 

To transform this data into mobility sequences, three steps are required. These steps are the same  
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presented in section (4.1. Pre-processing data for PreNext model). A sample of the output of this 

module is presented in Table.4 

 

 

 

 

 

Table .4 A set of time extended location sequences. 

6.2. Graph construction 

When the mobility sequences are extracted, the server gradually updates its mobility graph PG. At 

first the mobility graph is built and then extended by inserting new road segments as graph nodes, 

whereas vehicle movements between pair of road segment within the lookahead window size are 

represented by arcs. The weight of each new arc is set to 1. where a road segment appears on newly 

collected mobility sequences, the weight of the corresponding arc is incremented accordingly. Note 

that, in some situations where movement sequences are highly heterogonous and do not overlap 

(have any common road segments), the mobility graph is a disconnected graph. In this thesis, we 

assume that the mobility graph is connected, comprises a least two nodes, and has no isolated 

nodes. These assumptions hold in real-life for representing the mobility of vehicles in active urban 

areas.

Vehicle Mobility sequences 
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Fig.17 PG graph illustration. 
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6.3. Route prediction  

Once the mobility graph is constructed, predictions can be performed using it. To predict the next       

route segment that will be visited by a driver D, its current trajectory called CT (Current Trajectory) 

is used. is used. CT comprises the current road segment where D is located in addition to its 

previous locations with their traversing time for the same trip. In this case, CT is written as            

CT= {⟨𝑡𝑖⟩𝑟𝑖, ⟨𝑡𝑖+1⟩𝑟𝑖+1, … , ⟨𝑡𝑐⟩𝑟𝑐}. 

Formally, let RS= {⟨𝑡1⟩𝑟1, ⟨𝑡2⟩𝑟2, … , ⟨𝑡𝑚⟩𝑟𝑛} be the set of all road segments in a road network RN. 

CT= {𝑃𝑖, 𝑃𝑖+1, … . , 𝑃𝑐} is a sequence of road segments traversed by D where Pc is the current road 

segment of D with its traversing time. Having the trajectory CT, the prediction of the next route 

segment is performed in two steps. 

6.3.1 Graph matching 

Initially, the first step is to find a path SP= {𝑆𝑖, 𝑆𝑖+1, … , 𝑆𝑚} in the mobility graph that matches with 

CT where 𝑆𝑖 ∈ RS. We say that SP matches CT if and only if each road segment in SP appears in 

the same order in CT, that is ∀ 𝑖,𝑆𝑖 = 𝑃𝑖 and 𝑚 = c. Note that graph matching is noise sensitive. 

This step can be challenging since erroneous positions may appear in location data. Using PG, built 

according to the lookahead window, more flexibility to handle noisy data could be obtained and 

this is one of the most important traits that this graph offers.  

PG allows creating arcs not only between consecutive road segments (which may be noise) but 

also to the following road segments within the lookahead window. In the other hand, if the first 

road segment Ne that comes after a given node Nx in a mobility sequence Ms is considered as noise, 

another arc will be created that skips Ne and go directly to next road segment, given that w≥2. 

Unlike other Markov-based predictors such as PPM, the noise tolerance strategy achieved by using 

PG permits PreGraph to forecast the future route of CT that have not been previously seen in 

mobility sequences. 

6.3.2 Next road extraction 

The second step is to find the next road segment that a driver will visit according to SP, denoted as 

Nr. The latter is the road segment predicted as the destination of the arc having the highest weight 

emanating from the last road segment in SP. 
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 For example, consider that the current trajectory of a driver is CT= {⟨𝑡2⟩𝑟2, ⟨𝑡3⟩𝑟4}. Based on the 

mobility graph of Fig. 17, three candidate arcs are considered, which are 𝑎1 (⟨𝑡3⟩𝑟4, ⟨𝑡7⟩𝑟2) and 

 𝑎2 (⟨𝑡3⟩𝑟4, ⟨𝑡4⟩𝑟5), 𝑎3 (⟨𝑡3⟩𝑟4, ⟨𝑡5⟩𝑟2). These arcs have weights of 2 and 1, respectively. Therefore, 

the next route segment is predicted to be Nr= 𝑎2 (the destination of 𝑎1). In case where the 

candidates’ segments have equal weights, many selection criterions could be employed such as 

retaining the road with highest frequency in mobility. 
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7.Conclusion  

In this chapter, we have proposed two models called PreNext and PreGraph. While PreNext is 

basically depends on the CPT predictor; the PreGraph model is inspired of the dependency-graph 

predictor. These two models perform route prediction, and present the core components of our 

proposals. Note that in this thesis, we have only dealt with time information as a context. However, 

our proposals can be easily extended to consider other contextual data associated with navigation 

data.  
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1 Introduction  

This chapter describes the evaluation of the proposed PreGraph framework, an extensive 

experimental evaluation was carried out. First, a small description of the datasets and experimental 

settings, followed by the evaluation metrics to measure the model’s performance. Also, for better 

study, PreGraph performance is compared with first-order Markov PPM and the LZ predictor. 

Besides, the proposed model is compared also with the based model without time factor (DG).  

The source code of the compared prediction models, as well as our models, can be downloaded as 

part of the SPMF library Fournier-Viger et al [41]. Finally, this chapter presents the conducted 

experiments and the corresponding results. 

 2. Datasets 

Experiments were performed on two public large-scale real datasets from Brightkite [39] and 

Gowalla [40], respectively. These two datasets have been widely used for prediction and location 

recommendation. Each dataset was split between a training set and a testing set based on K-fold 

cross validation with k=10.From the set of the location of drivers, the location histories were 

generated each composed of several daily sequences. In each sequence, the repeated consecutive 

locations were removed. The cause is that such repetition is not a transition between two locations. 

3. Experimental Settings 

Experiments were performed on a computer equipped with a Dual-Core Intel CPU 1.60 GHz, 4GB 

of RAM and 250GB of Hard Disk. The proposed model was implemented in Java by using the DG 

implementation available in the SPMF open-source data mining library [41]. 

4. Evaluation Metrics  

To evaluate the performance of the proposed prediction models, two popular and widely used 

measures were employed: accuracy and coverage. 

▪ Overall Accuracy 

It is defined as the number of successfully predicted routes, divided by the total number of testing 

mobility sequences.  
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𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
   𝑛𝑢𝑚𝑏𝑒𝑟 of successful predictions              

number of testing mobility sequence
. 

▪ Coverage 

 It is the number of test mobility sequences where a matching path was found for each current 

trajectory of a driver divided by the total number of test sequences. 

Coverage = 
  number of matching path              

number of testing mobility sequence
. 

5. Experiments 

In this section, we present the evaluated models and conduct an analytical comparison between the 

PreGraph performance and these models. Also, the impact of varying some important parameters 

on the performance was shown.   

5 .1 Evaluated models  

PreGraph was compared with the following prediction models (see their detailed description in 

chapter 1):  

➢ DG-Pre (Dependency graph predictor). DG-pre is a standard graph-dependency model 

without temporal context consideration. This predictor was initially designed for web 

prefetching. It is used to predict the next webpage that a user will visit based on previously 

visited webpages by the user and other users [7]. 

➢ Mark-Pre (First Order Markov Predictor). This predictor utilizes first-order Markov chain 

which only uses the last road visited by drivers to predict the next road. 

➢ LZ-Pre (Lempel-Ziv Predictor). This model is similar to k-order Markov predictor except 

that the k is a parameter that can grow to infinity. 

Experiment 1. Time factor consideration and comparison with other models 

In this experiment, we assess the performance of our predictor with and without time consideration. 

In other words, our predictor PreGraph is compared with DG-pre model. In this experiment, we 
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also aim to compare the performance of PreGraph with others models using Britgherkite and 

Gowalla datasets.    

The result depicted in Fig.19 have shown that PreGraph accuracy is the lowest compared with DG-

Pre and the other models in both cases with Britgherkite and Gowalla datasets. This may due to the 

fact that although human mobility is characterized by its temporal regularity, each person still has 

his own habits. A given person may visit the same set of locations already visited by other persons 

but not necessary at the same time or in the same order. For example, a person may visit a popular 

shopping mall just like some other people but he may not visit it at exactly the same time. In 

addition, the lower performance of PreGraph is also due to the frequencies of temporal patterns 

that are less than for standard location patterns. By extending location sequences to consider 

temporal data, the frequencies of location patterns decrease and thus, the prediction quality is 

influenced. As for the coverage, reults have demonstrated that PreGraph and other models have 

achieved good coverage values that increses by increasing the number of mobility data considred. 

 

(a) Accuracy (Britgherkite dataset).                                                                                          (b) Accuracy (Gowalla dataset). 
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(c) Coverage (Britgherkite dataset). 

 

(d) Coverage (Gowalla dataset). 

 

       Fig.19 Comparing PreGraph with DG-pre, Mark-pre and LZ-pre. 

5.2 Parameters Effect  

This set of experiments assesses to evaluate the influence of varying the parameters: time slot length 

and lookahead size. 

Experiment 2. Impact of varying the time-slot length 

In this experiment, the size of time slots (bins) that used to construct temporal sequences were 

varied. Each day is divided into several periods of a predefined length. From the results depicted 

in Fig.20, it can be observed that overall, the prediction quality (accuracy and coverage) is 

improved when the size of time slots is increased. The reason behind these results is that by 

increasing the time slot length, more temporal flexibility is provided. Thus, the driver has more 

time to visit the predicted roads but not necessary in the same exact time. This finding helps the 

system to make more accurate prediction by providing tolerance to the time of taking a specific 

road segment. Consequently, the time bin that provides the best accuracy is one of the largest ones 

(time slot size=10 for Britgherkite and size=12 for Gowalla). As far as, the coverage is over than 

30% for both cases. The coverage is an important metric as it measures how often a prediction 

model can make a prediction. It is best if a predictor can make a prediction even if it is a failure. 

This is because additional work could then be done to increase the accuracy of the model to fit the 

desired output or parameters to turn a failed prediction into a successful one.  
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(a) PreGraph Accuracy (Britgherkite dataset). 
                       

(b) PreGraph Accuracy (Gowalla dataset).                                        

(c)  PreGraph Coverage (Britgherkite dataset). (d)   PreGraph Coverage (Gowalla dataset). 

Fig.20 The impact of varying the time-slot. 

Experiment 3. Impact of varying the lookahead size 

In Fig.21, we evaluate the impact of varying the lookahead size on prediction performance. In this 

experiment, the window size was varied from 1 to 10. Increasing the lookahead size by 1 means 

that additional arcs are created not only to the next road segment but to a number of lookahead 

upcoming roads. 

Overall, results indicate that setting the lookahead size to 2 gives the best results specially with 

Brightkite dataset and that by increasing the lookahead size a small improvement are obtained. 

This observation confirms the assumption that the system provides more accurate results in short-

term predictions, comparing to the long-term, meaning that our system predicting the next route of 
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the driver is more beneficial than   may visit rather than later.  Besides, results also show that 

lookahead transitions allow creating additional links between road segments, which often permits 

performing predictions by skipping segments otherwise no prediction could be done which boot 

the prediction coverage. 

(a)PreGraph Accuracy (Britherkite dataset). 

                              

(b)PreGraph Accuracy (Gowalla dataset). 

 

(c)PreGraph Coverage (Britherkite dataset). 

                                                  

(d) PreGraph Coverage (Gowalla dataset). 

 

Fig.21 The impact of varying the lookahead-size. 
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6.Conclusion  

Our experimental evaluation has demonstrated that PreGraph has shown acceptable and exhibits 

promising results that outperform a set of state-of-the-art models in all proposed experiments for 

both types of datasets (Britgherkite and Gowalla). Experiments also demonstrate the improvements 

in accuracy obtained by focusing on short term prediction. Therefore, for the future works, we are 

willing to predict not only the next location (short term prediction) but also other upcoming location 

(long-term prediction) in addition to the person's final destination. And several improvements will 

be considered such as extending the proposed mobility graph to regard day-of-week and other 

contextual factors (i.e. weather, traffic congestion level, etc.). So, it will become possible to 

distinguish between trips relying not only on spatial data, and time of day but also time and other 

contextual information. 
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General Conclusion 

In this thesis, we have proposed two route prediction systems called PreNext and PreGraph. These 

two proposals are designed to consider both the spatial and temporal factors of human mobility.   

The first proposed model PreNext is mainly depend on the CPT (compact prediction tree) model, 

thus it offers all its advantages including 1) its lossless property that allows conserving all the data 

to perform prediction, 2) its lower storage space requirement, and 3) its ability to predict rare cases 

with high accuracy.  

Our second proposal (PreGraph) utilizes a graph representation of sequences where nodes are 

locations and each arc represent the visiting order between two locations. A distinctive 

characteristic of the proposed prediction graph structure is the creation of additional links to 

upcoming road segments using a lookahead parameter that allows increasing the prediction 

coverage. 

In this thesis, an extensive experimental study was carried out using two real-world datasets. 

Results have shown that the proposed model has exhibits promising results compared to state-of-

the-art models. 

Despite the promising results, several improvements, additions, and prospects are possible. 

Therefore, as a future work, we plan to extend the PreGraph and PreNext models so they consider 

1) more temporal information such as day-of-week, and 2) other contextual factors (i.e. weather, 

traffic volume for upcoming routes, etc.). In addition, we aim to extend the models so they perform 

long term prediction (to predict the later upcoming roads for a driver not only the next). 
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