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Abstract. Motivated by applications in manufacturing systems. This
paper deals with a scheduling problem of independent tasks with addi-
tional constraints (transportation times), where the objective is to min-
imize the total completion time. This problem arises in automated cells
and is a complex flow shop problem with a transportation robot or con-
veyor. Since the problem is NP-hard, heuristics are developed to give near
optimal solutions. Two new programming algorithms are also proposed
for solving some special cases of this problem. Finally, we evaluate the
proposed heuristics, giving experimental results on randomly generated
test problems.
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1 Introduction

In most manufacturing systems, semi-finished jobs are transferred from one fa-
cility to another for further processing through material handling systems such
as automated guided vehicles (AGVs) and conveyors. In the last four decades,
many books and numerous papers have been published in the area of machine
scheduling. However, most of the published literature explicitly or implicitly as-
sumes that either there is an infinite number of transporters or that jobs are
transported instantaneously from one location to another without transporta-
tion time involved.

These displacements were not therefore taken in account at the time of the
construction of the scheduling. However this assumption is often not justified
in practice, there are many situations in which it must not be abandoned as
being unrealistic. For example, in computer systems the output of a job on one
processor may require a communication time so as to become the input to a
succeeding job on another processor and in manufacturing systems , there may
be a transportation time from one production facility to another. This model can
be illustrated in the case of robotic cells that are found in manufacturing systems
of semiconductors or textiles, in which an automated guided vehicle is charged
to displace jobs. It can also be illustrated by the example of a workshop for
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electroplating whose process consists of coating a part by a thin layer of metal
on pieces. The displacement of pieces is done mainly by a transporter(hoist)
moving horizontally on a rail as it is shown in Figure 1.

Fig. 1. Industrial application

In this paper, our problem can be defined as follows. We are given a set J of
n independent jobs J = {J1, ..., Jn} to be processed on 2 machines M1 and M2

in a flow shop with unlimited buffer spaces on both machines. Each job must
first be processed on machine M1, then machine M2.

The processing time of a job Ji on machine Mk is pik. We assume that all
of the jobs start at machine M1. Once a job is processed on machine M1, it is
transported to machine M2 by a transporter. The transporter is initially located
at machine M1. It has a capacity of c, i.e. it can carry up to c jobs in one
shipment.

The transportation time from machine M1 to machine M2 is denoted by t
(the round-trip requires 2t). We assume that the loading and the unloading times
are included in the processing times of jobs and are not considered separately.
Our goal is to schedule the jobs so as to minimize the makespan .

We follow the commonly used three-field notation α/β/γ for machine schedul-
ing problems. In the α field, we use notation ”TF” to denote a flow-shop problem
with transportation between machines. Hence, TF2/υ = x, c = y/Cmax, repre-
sents the 2-machine flow shop problem with x transporters, each with capacity
y. So our problem thus defined is denoted TF2/υ = 1, c ≥ 1/Cmax

Chen and Lee [1] studied a two-machine flow-shop problem with several con-
veyors of any capacity noted TF2/υ ≥ 1, c ≥ 1/Cmax. They gave a dynamic
algorithm that solves in polynomial time the problem TF2/pi1 = p, υ ≥ 1, c ≥
1/Cmax. In our work, we limit to only one conveyor and we give two polyno-
mial algorithms for the solution of two particular cases of the general problem
TF2/υ = 1, c ≥ 1/Cmax. We also propose heuristics to solve the general problem
which is NP-hard[1].
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This article is organized as follows: the second section is devoted to the math-
ematical formulation, a mixed integer linear programming model is proposed to
determine the schedule with minimum makespan. This model has been tested
using CPLEX solver. Section 3 is dedicated to the calculation of lower bounds
and the presentation of some subproblems that can be solved polynomially. As
for the fourth section some heuristics are presented for the solution of the general
problem and some numerical tests are carried out to show the performance and
the efficiency of the different heuristics in the last section. Finally, we provide a
conclusion at the end of this article.

2 Problem transformation

The following notation is used for the mathematical representation of the general
problem.
di1: is the starting time of the execution of the first operation of the job i on
the machine M1. dis: is the starting time of the transport of the job i and di2:
is the starting time of the execution of the second operation of the job i on the
machine M2

For every couple (i, j) of jobs, we introduce the following binary variable: aij

equal to 1 if di1 < dj1, and 0 otherwise. bij equal to 1 if di2 < dj2, and 0 other-
wise. αij equal to 1 if dis < djs, and 0 otherwise.
The objective function is to minimize Cmax;
subject to:

aij + aji = 1 ∀ i, j = 1, n ; i < j and i 6= j (1)
di1 + pi1 − dj1 ≤ (1− aij).M ∀ i, j = 1, n and i 6= j (2)
dis ≥ di1 + pi1 ∀ i = 1, n (3)
αij + αji ≤ 1 ∀ i, j = 1, n ; i < j and i 6= j (4)
djs − dis ≥ 2t ∗ αij − αji ∗M ∀ i, j = 1, n and i 6= j (5)
dis − djs ≥ 2t ∗ αji − αij ∗M ∀ i, j = 1, n and i 6= j (6)∑n

j=1,i 6=j(1− αij − αji) ≤ c− 1 ∀ i = 1, n (7)
di2 ≥ dis + t ∀ i = 1, n (8)
bij + bji = 1 ∀ i, j = 1, n ; i < j and i 6= j (9)
di2 + pi2 − dj2 ≤ (1− bij).M ∀ i, j = 1, n and i 6= j (10)
di2 + pi2 ≤ Cmax ∀ i = 1, n (11)
aij , bij , αij ∈ {0, 1} ∀ i, j = 1, n (12)
di1, dis, di2 ∈ N ∀ i = 1, n (13)
Where M is a very large value

Constraints (1), (2) and (3) concern the first machine: Constraints (1) mean
that for any two jobs Ji and Jj , either Ji precedes Jj on the first machine, or
Jj precedes Ji. Constraints (2) require that the first machine executes only one
job at a time and (3) assure that a job can not be transported from the first
machine to the second machine, once the first operation of this job is finished.

Constraints (4), (5), (6) and (7) are constraints on the conveyor (vehicle)
and on the jobs to transport: Constraints (4) express that all jobs must be
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transported between the two machines. Constraints (5) and (6) indicate that
any job Ji is transported from the first machine to the second machine either
before or after another job Jj , or at the same time and show that the transport
time of a round-trip of the vehicle requires 2t. The constraints (7) express that
the number of transported jobs at any time must be smaller than the vehicle
capacity.

Constraints (8), (9) and (10) concern the second machine. Constraints (8)
induce that the execution of the second operation of a job can only begin once
the job has arrived to the second machine. Constraints (9) express that all jobs
must be executed by the second machine. Constraints (10) assure that the second
machine executes only one job at a time. The constraints (11) imply that the
end of execution of any job is lower or equal to the makespan. Constraints (12)
and (13) indicate the type of variables.

The number of variables and the number of constraints of a mathematical
model are indications that measure its dimension and the efficiency of the mod-
eling. The number of variables of our model is 3n2 and the number of constraints
is n(17n− 1)/2.

From this formulation, we can derive a lower bound by relaxing the con-
straints (12) and (13). The relaxed problem can be solved using a linear pro-
gramming solver (CPLEX for example). The inconvenience of this technique
consists in a large number of constraints ( n(23n− 1)/2 constraints).

3 Testing of the model with CPLEX

Table 1. Results obtained by the Cplex solver.

n c t Pbms avr-time

5 2 1 20 0.183

5 2 5 20 0.4725

5 3 1 20 0.715

5 3 5 20 0.6665

6 2 1 20 0.185

6 2 5 20 103.02

6 3 1 20 0.1815

6 3 5 20 0.1807

7 2 1 20 1.03

7 2 5 20 106.755

7 3 1 20 2.064

7 3 5 20 5.459

8 2 1 20 18.489

8 2 5 20 105.65

n c t Pbms avr-time

8 3 1 20 15.363

8 3 5 20 170.12

9 2 1 13 189.32

9 2 5 8 200.56

9 3 1 10 1030.245

9 3 5 6 186.342

10 2 1 5 1045.32

10 2 5 4 1230.458

10 3 1 4 7456.23

10 3 5 3 5131.47

50 20 1 1 6597,8

50 20 5 1 12588,78

70 30 1 1 14265.236

70 30 5 1 24698.24

The linear models with integer and binary variables can be solved by efficient
solvers such as LINGO, CPLEX, etc. Our mathematical model has been tested
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on a Pentium IV 3.06 GHz Personal Computer with 512 Mo RAM using Cplex
Solver. The processing times pi1 and pi2 are generated by a uniform law in
[1, 100]. We fixed the number of jobs and let the vehicle capacity and the trans-
portation time vary. For every case, 20 problems are solved and the average
execution time (for which the optimal solution is obtained) is computed in sec-
onds. The results are given in the Table 1.

Computational experiments show that the largest problem that can be solved
within at least 18 minutes is a two-machine and nine-jobs problem and the largest
problem that can be solved within at least 7 hours is a two-machine and seventy-
jobs problem.

4 Study of bounds and some subproblems

We proposed two lower bounds LB1 and LB2 for the objective function :

– LB1 = max{(dn
c e−1)∗2t+t+ min

1≤i≤n
{pi1}+ min

1≤i≤n
{pi2}, max

1≤i≤n
{pi1+pi2}+t}.

– LB2 = max{ ∑
1≤i≤n

pi,1 + min
1≤i≤n

{pi2}+ t,
∑

1≤i≤n

pi2 + min
1≤i≤n

{pi1}+ t}.

We studied some subproblems of the general problem TF2/υ = 1, c ≥ 1/Cmax.
We mention especially the following cases:
Case 1: pi1 ≥ 2t, pi2 ≥ max

1≤i≤n
{pi1}

Algorithm 1
Begin

1: Arrange and process jobs in the increasing order (SPT rule) in relation to
pi1

2: (In every batch, we have only one job).
End

Theorem 1. The algorithm 1 resolve the two problems TF2/pi1 ≥ 2t, pi2 ≥
max

1≤i≤n
{pi1}, υ = 1, c ≥ 1/Cmax and TF2/t ≤ pi1 ≤ 3

2 t, pi2 ≥ 2t, υ = 1, c ≥
1/Cmax in O(n log n).

Case 2: pi1 ≤ 2t
c , pi2 ≥ 2t

Algorithm 2
Begin

1: Find a job Jj of J having the minimum execution time on the first machine
M1.

2: Process the job Jj in first position and transport it alone in a first batch.
3: J := J \ {Jj}.
4: Arrange the jobs of J in the decreasing order (LPT rule) in relation to pi2

and process them in this order after the first job .
End

Theorem 2. The algorithm 2 gives an optimal solution for the two problems
TF2/pi1 ≤ 2t

c , pi2 ≥ 2t, υ = 1, c ≥ 1/Cmax and TF2/pi1 ≤ 2t
c , pi2 ≥ 2t

c , pmin2 ≥
2t, υ = 1, c ≥ 1/Cmax in O(n log n).
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Case 3: The problem TF2/pi1 = p, υ = 1, c ≥ 1/Cmax:
When execution times on the first machine are identical and execution times on
the second machine are any, the problem TF2/pi1 = p, υ = 1, c ≥ 1/Cmax is
polynomial and can be solved by the dynamic algorithm of Chen and Lee [1].
The problem TF2/pi2 = p, υ = 1, c ≥ 1/Cmax is also polynomially solvable by
the dynamic algorithm of Chen and Lee

5 Heuristics

Recall that in general the problem TF2/υ = 1, c ≥ 1/Cmax is NP-hard, so we
propose some heuristics for its solution. We have used several rules of priority,
based on the notion of priority between jobs to process. Their main advantages
are, in general, their simplicity and especially their speed. Five rules have been
applied therefore for the scheduling of jobs on the two machines. The two rules
R1 and R2 are based on the coupling of jobs. The third rule of investment, is
based on the algorithm of Jonhson [?]. We improved it in order to take into
account the transportation times. Finally, we use the two rules SPT (Shortest
Processing Time) and LPT (Longest Processing Time) that are based on the
arranging of jobs.

These heuristics are also based on the following procedure that allows the
construction of different batches. The principle of this procedure is to choose a
maximal set of jobs that follows the job Ji (according to the initial order) so as
the sum of the these execution times in this set, on the first machine is lower or
equal to the time of the round-trip of the vehicle 2t plus a small amount of time
(τ). Once this set of jobs is found, these jobs will be transported with the job Ji

in one batch. On the other hand, if such a set doesn’t exist, the job Ji will be
transported alone in a batch.
Procedure of contruction of batches
Begin

1: i := 1, ` := 1;
2: while i < n do
3: if pi+1,1 ≥ 2t then
4: B` := {Ji}, ` := ` + 1, i := i + 1.
5: (Bl represents the batch Number l);
6: if i=n then
7: B` := {Jn}, ` := ` + 1, i := i + 1;
8: end if
9: else

10: Find Ji+1, ..., Jk in J as:
11:

∑k
j=i+1 pj,1 ≤ 2t + τ and k − i + 1 ≤ c

12: B` := {Ji, Ji+1, ..., Jk}, `← ` + 1, i := k + 1;
13: if i=n then
14: B` := {Jn}, ` := ` + 1, i := i + 1;
15: end if
16: end if
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17: end while
18: L := `− 1, d1 :=

∑
j∈Bch1

pj,1, r1 :=
∑

j∈Bch1
pj,1

19: s :=
∑

j∈Bch1
pj,1, c1 :=

∑
jinBch1

pj,1 +
∑

j∈Bch1
pj,2 + t

20: for k = 2to L do
21: rk := s +

∑
j∈Bchk

pj,1

22: dk := max{rk, dk−1 + 2t}
23: s := rk

24: ck := max{dk + t, ck−1}+
∑

j∈Bchk
pj,2,

25: end for
26: Cmax := cL.

End
The first heuristic named H1 is based on a new rule R1. This rule forms

pairs (Jk, Jj) such that the job Jk have the shortest execution times on M1 and
the job Jj have the longest execution times on M2. We build a sequence of jobs
reassembling all the couples. Finally, we construct the set of batches.
Algorithm H1

Begin

1: while The list of jobs J is not empty do
2: Find a job Jk having the shortest execution time on the first machine.
3: J := J \ {Jk}.
4: Find a job Jj having the longest execution time on the second machine
5: J := J \ {Jj}
6: end while
7: Apply the previous procedure of batch construction according to the order

of jobs determined by the previous loop.
End

Another version of the heuristic H1 is denoted H2. It has the same principle
as H1 except that it is based on another new rule named R2 which forms couples
(Jk, Jj) in which the jobs Jk have the longest time of execution on the second
machine M2 and the jobs Jj have the shortest execution times on first machine
M1. Once the pairs are created, we arrange them in the same order and we form
a sequence of jobs. Finally, we apply the procedure of the construction of batches
on the sequence of jobs obtained.
Algorithm H2

Begin

1: while The list of jobs J is no empty do
2: Find a job Jk having the longest execution time on the second machine;
3: J := J \ {Jk};
4: Find a job Jj having the shortest execution time on the first machine;
5: J := J \ {Jj};
6: end while
7: Apply the procedure of construction of batches according to the order of

jobs determined by the previous loop.
End
We propose another heuristic H3 based on the LPT rule.
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Algorithm H3

Begin

1: Find a job Jk having the shortest execution time on the first machine;
2: Process the job Jk in first position and transport it alone in a first batch.
3: J := J \ {Jk};
4: Arrange the remaining jobs of T in the decreasing order relative to the

execution times on the second machine and process them after the first job.
5: Apply the procedure of construction of batches on the jobs in the order as

in J.
End

The fourth heuristic that we propose named H4 is based on the LPT rule,
that consists to arrange jobs in the decreasing order relative to the execution
times. In our case, we apply this rule for the job execution times on the machine
M2.
Algorithm H4

Begin

1: Arrange jobs according to the decreasing order relative to the execution
times on the second machine.

2: Apply the procedure of construction of batches.
End
Algorithm H5

Begin

1: Build a two machines pseudo problem with execution times on the first
machine p′i1 = max(pi1, 2t) and p′i2 = pi2 on the second machine (pi1 and
pi2 are the execution times of the initial flow-shop).

2: Apply the algorithm of Johnson to this pseudo problem to get an ordering
of jobs

3: Apply the procedure of construction of batches according to this order.
End

6 Tests according to the uniform law

Until now, there is no method in the literature which treat precisely the problem
TF2/υ = 1, c ≥ 1/Cmax. So we can not make a comparison with the heuristics
that we propose.

However, we have tested the developed methods by using several instances
generated randomly according to the uniform law. We have coded our algorithms
in Delphi 7 and have run them on a Pentium IV 3.06 GHz Personal Computer
with 512 Mo RAM.

We generated 100 instances for each number of jobs and we applied the
heuristics cited above on these instances. Some results obtained for the uniform
law are summarized in table 2 which follows, where we give the percentage with
the best completion time where the solution found by the heuristic is better as
compared to the other solutions, the percentage where the makespan is equal to
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the lower bound and the average of performance ratio of the heuristics and the
average execution time of each heuristic (in milliseconds).

For the first case (a), we suppose that the job execution times on the two
machines as well as the vehicle capacity follow a uniform distribution in [1, 10]
and the transportation times follow a uniform law in the interval [1, 100].

In the second case (b), we suppose that the job execution times on the two
machines follow a uniform law in the interval [1, 50] and the transportation time
as well as the vehicle capacity have a uniform distribution in [1, 10]. The obtained
results are represented in the Table 2.

Table 2. Summary of the tests.

(a) pi1, pi2, c ∈ 1, 10, t ∈ 1, 100

τ = 0 H1 H2 H3 H4 H5

n=10: pCmax 28% 24% 59% 15% 5%
Opt 7% 1% 18% 3% 2%
av-tim 4,71 3,44 6,37 3,71 5.28
av-Rat 1,27 1,25 1,39 1,35 1,29
Mx-Rat 1,89 1,96 2,32 2,15 2.44

n=50: pCmax 21% 9% 74% 4% 0%
Opt 7% 1% 10% 4% 0%
av-tim 10,02 9,39 12,51 8,43 12.72
av-Rat 1,070 1,077 1,074 1,078 1.099
Mx-Rat 1,208 1,227 1,189 1,309 1.309

n=100: pCmax 37% 13% 44% 2% 1%
Opt 9% 0% 10% 0% 0%
av-tim 19,04 15,79 21,2 15,81 21.09
av-Rat 1,026 1,023 1,035 1,026 1.033
Mx-Rat 1,094 1,107 1,086 1,099 1.158

n=1000: pCmax 54% 30% 32% 9% 0%
Opt 6% 1% 5% 0% 0%
av-tim 152,73138,91174,2 140,17169.03
av-Rat 1,003 1,004 1,004 1,002 1.004
Mx-Rat 1,052 1,076 1,026 1,006 1.033

(b) pi1, pi2 ∈ 1, 50, t, c ∈ 1, 10

H1 H2 H3 H4 H5

36% 19% 76% 39% 15%
30% 16% 62% 36% 7%
6,46 4,35 6,12 3,74 8.01
1,021 1,064 1,016 1,041 1,058
1,133 1,215 1,155 1,206 1,188

35% 17% 74% 39% 7%
30% 10% 66% 37% 4%
11,24 8,6 14,01 8,6 13,45
1,006 1,009 1,004 1,012 1,014
1,037 1,047 1,032 1,037 1,034

31% 19% 72% 37% 1%
20% 12% 59% 33% 1%
18.09 15.8 21.55 15.58 21.78
1.002 1.006 1.002 1.006 1.007
1,017 1,019 1,014 1,021 1.024

36% 31% 62% 40% 5%
32% 27% 55% 39% 1%
158,9 146,2 180,3 146,1 179.9
1,000 1,000 1,000 1,000 1.001
1,001 1,001 1,001 1,001 1.001

We define the calculated parameters:

pCmax: is the percentage for which the heuristic H provides a better solution
than the other heuristics.

opt: is the percentage for which the solution obtained by the heuristic H coin-
cides with the lower bound LB.

Ratio(H): is the performance ratio of the heuristic H, Ratio(H) = Sol(H)
LB .

av-Rat: is the average performance ratio, average−Ratio(H) =

100∑
k=1

Ratiok(H)

100 ,
k is the number of the instance.
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mx-Rat: the maximum of the performance ratio.
av-tim: the average of the execution time.
Dev(H): is the deviation of the heuristic H, Dev(H)=Sol(H)−LB

LB .
avr-Dev(H): is the average deviation of the heuristic H, avr − Dev(H) =

100∑
k=1

Devk(H)

100 .

For the different heuristics, we established the average of the performance ra-
tio by applying the heuristic on instances randomly built according to a uniform
law. The results are illustrated in Figures 2 and 3.

(a) pi1, pi2, c ∈ 1, 10, t ∈ 1, 100 (b) pi1, pi2 ∈ 1, 50, t, c ∈ 1, 10

Fig. 2. Average performance ratio of the heuristics according to ”n”

With regard to the average deviations, the obtained graphs are shown in Figure 9.

(a) pi1, pi2, c ∈ 1, 10, t ∈ 1, 100 (b) pi1, pi2 ∈ 1, 50, t, c ∈ 1, 10

Fig. 3. Average deviations of the heuristics according to ”n”

We generated 100 instances for each number of jobs and we applied the
heuristics on these instances (pi1, pi2 ∈ [1, 50], t, c ∈ [1, 10]) in the cases τ = 0
and τ = 1. The results are given in Table 3.
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Table 3. Comparison between the cases τ = 0 and τ = 0.

(a) τ = 0

τ = 0 H1 H2 H3 H4 H5

n=10: av-Rat 1,021 1,056 1,016 1,041 1,055
av-tim 1,09 0,47 1.26 0.92 1.72

n=1000: av-Rat 1,000 1,000 1,000 1,000 1,001
av-tim 61,04 60,89 87,47 43,33 86,23

(b) τ = 1

τ = 1 H1 H2 H3 H4 H5

n=10 1.030 1,059 1,019 1,055 1,059
1.25 1,1 1,53 0,16 1.39

n=1000 1,000 1,001 1,000 1,000 1,001
64,71 59,91 85,16 42,85 83,94

We note that when τ = 0, the results are better than in the case τ > 0.

Table 4. Comparison with optimal solutions

n c t Opt time(s) H3Cmax time(m.s) bCmax R(H3)

5 3 5 29 2,14 33 16 32 0.137
38 0,59 44 0 39 0.157
31 0,41 39 0 31 0.258
31 0,03 32 16 32 0.032
42 0,05 44 16 44 0.047
38 0,53 39 15 39 0.026
30 2,19 34 16 30 0.133
32 0,11 42 16 33 0.312
34 0,05 40 0 35 0.176
39 1,94 46 15 41 .0179

10 3 1 55 0,05 57 0 55 0.036
58 0,03 58 0 58 0
53 0,02 55 0 53 0.037
64 0,03 64 0 64 0
52 0,03 57 16 53 0.09
59 0,05 59 0 59 0
49 0,03 49 0 49 0
59 0,05 59 15 59 0
65 0,05 65 31 65 0
54 0,03 54 62 54 0
64 0,06 64 16 64 0

For the different methods developed, there are not any precise conditions so
that a method is better than another one. It depends on the number of jobs
and the transportation time. However, we have compared the best solutions
generated by all the heuristics denoted bCmax and the solutions generated by
the heuristic H3 denoted H3Cmax, which we claim to be better than the others
according to the results of the preceding tests, with the exact solutions found
by the Cplex software. For this, we have randomly generated some instances of
reduced sizes n ∈ {5, 10}. Indeed, the processing times pi1 and pi2 are generated
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by a uniform law in [1, 10]. To measure the efficiency of the heuristic H3, we
calculate the relative distance between the solution given by the heuristic H3

and the optimal solution as follows: R(H) = Cmax(H)−Opt
opt . Some results of this

experimentation are given in the Table 4 with the CPU time in seconds (Time)
of the optimal solution. The average CPU time for the heuristic H3 is smaller
than 0.002 seconds. Table 4 clearly shows the efficiency of the heuristic H3.

In general, results obtained for the different tests reveal that the heuristics
based on the LPT rule generally give very good solutions that are optimal in
most cases.

7 Conclusion

We studied the flow-shop problem with two machines connected by a conveyor.
The performance criteria chosen is the total execution time (makespan). We in-
troduced a transport system of jobs: robot or vehicle. We presented and modeled
our problem as a linear program in integer and binary variables. We also pro-
posed lower bounds that are going to serve like reference to appraise the quality
of solutions obtained by the developed methods. Some subproblems of the gen-
eral problem are analyzed and solved in polynomial time. Having shown that the
general problem is NP-Hard, we developed the heuristics. Tests have been car-
ried on several instances randomly generated in order to study the performance
of the different proposed heuristics.

Research in this field remains open. The introduction of conveyors to the
flow-shop problem brings us to conceive other models that are related to the
characteristic of storage spaces and the number of conveyors. We may also con-
sider to develop the meta-heuristic or exact methods.
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