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Abstract

In order to solve the optimization problem of municipal waste collection and transporta-

tion in Ouargla city, this thesis constructs a capacitated vehicle routing problem(CVRP)

model and applies a meta-heuristic to solve the model under the scenario of the appli-

cation of smart bins. we chose two multiobjective evolutionary algorithms (MOEAs) the

Fast Elitist Non-dominated Sorting Genetic Algorithm 2, and strength Pareto evolution-

ary algorithm 2, due to their global optimization capability. The effectiveness of the two

algorithms is verified by applying the case of waste collection and transportation in a

proposed model for acquiring reliable conclusions, and the application of the model is

tested by setting different waste fill levels. The results show that total costs reduce when

applying smart waste bins, especially if the prior knowledge of the quantity of waste is

well exploited in the optimization process.

Keywords : Multiobjective optimization,VRP, evolutionary algorithm,MOEA,NSGA-

II, SPEA2



Résumé:

Afin de résoudre le problème d’optimisation de la collecte et du transport des déchets

municipaux dans la ville de Ouargla, cette thèse construit un modèle de problème de

routage de véhicule capacitif (CVRP) et applique une méta-heuristique pour résoudre

le modèle sous le scénario de l’application de smart bins. nous avons choisi deux algo-

rithmes évolutionnaires multi-objectifs, l’algorithme génétique élitiste de tri non- dominé 2

et l’algorithme évolutionnaire de force Pareto 2 , en raison de leur capacité d’optimisation

globale. L’efficacité des deux algorithmes est vérifiée en appliquant le cas de la collecte et

du transport des déchets dans un modèle proposé pour acquérir des conclusions fiables,

et l’application du modèle est testée en définissant différents niveaux de remplissage des

déchets. Les résultats montrent que les coûts totaux diminuent lors de l’application de

poubelles intelligentes, surtout si la connaissance préalable de la quantité de déchets est

bien exploitée dans le processus d’optimisation.

Mots-clé : Optimisation multiobjectif, problème de tournées de véhicules, algorithme

évolutionnaire, AEOM, NSGA-II, SPEA2
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General introduction

Solid waste collection is one of the most complex logistical problems facing any munic-

ipality. In recent years, increased fuel prices, operational costs, environmental and health

concerns, and a growing regulatory burden have led to waste collection companies, munic-

ipal and private alike, to improve their collection methods. According to various studies,

in some cases, transportation costs may be reach more than 70% of the total cost of waste

collection. Besides, the trucks picking up and carrying the collected waste are considered

to be very notorious in CO 2 emissions to the atmosphere. Moreover, several municipali-

ties do not take into consideration that some particular kinds of waste must they collected

and transported with the least delay possible such as medical or hazardous waste. There-

fore, any small improvements in the collection routes will play a significant role in saving

municipal expenditure and the companies’ bottom lines. Waste management problem is

a multi-faceted problem composed of many stages including generation, collection and

transportation, transformation, treatment, and final disposal. From the viewpoints of cit-

izens or decision-makers in municipalities, the collection stage of waste receives relatively

greater attention to be seriously taken into consideration as the ignorance of such stage

results in disastrous impacts.

Waste collection has been addressed by many researchers around the world and is well-

known in optimization literature as a vehicle routing problem (VRP). All studies focus on

identifying the efficient and optimal with minimum distance possible, and reduce emis-

sion, with the fewest possible vehicles (homogeneous or not homogeneous), maximizing

1
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productivity. Many studies used different variants of VRP according to the case studied or

corporate needs such as VRPTW(VRP with time windows), GVRP (green VRP), EVRP

(Emissions Vehicle Routing Problem), PDVRP (Pick-Up and Delivery Vehicle Routing

Problem), WCVRP (Waste Collection Vehicle Routing Problem), etc. On the other hand,

many approaches and algorithms used for solving VRP for MSW collection, but as a

problem classed under NP-Hard, meta-heuristics approaches the most popular in this field

such as ant colony optimization (ACO), genetic algorithms (GAs), and particle swarm op-

timization(PSO), Tabu search (TS), etc. In addition, a number of software packages used

in MSW optimization. The very commonly used is ArcGIS software which uses geospatial

information to improve real-time collection routes. Recently, smart waste bins are grad-

ually being introduced. Akhtar et al[4], established a waste collection model considering

the application of smart bins. The research results show that the improved model and

algorithm perform better in path optimization. Some researches apply smart waste bins

in real cases, including glass bins in Geneva, Switzerland [5], and residential waste bins

in the UAE[6]. Maurizio et al[7], regarded the amount of waste generated as a random

variable. Real-time data were acquired through modern traceable devices such as RFID,

GPRS, and GPS, and corresponding rules are set to determine whether waste bins should

be collected.

This thesis focuses on operational decisions at the stage of collection, and transportation.

The main purpose is to obtain an optimal collection plan by combining optimization

methods and background of smart bins to know the level of bins in real-time. As known,

VRP subject to several types of constraints. The most studied are capacity constraints

and time constraints, so a capacitated vehicle routing problem (CVRP) model is developed

for MSW collection in Ouargla city by taking into consideration the bin level. The model

has developed using a multi-objective evolutionary algorithm (MOEA) called NSGA-II,

this meta-heuristic method gave good results in reducing the distance traveled and the

number of vehicles used.

2
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The study project will be structured as follows: The first chapter presents the basic

concepts of algorithm complexity, combinatorial optimization, and multi-objective opti-

mization, in particular VRP, next, we present a state of the art of waste collection VRPs.

The second chapter is an overview of the literature review on methods of solving the vehicle

routing problem. The third chapter is devoted to multi-objective evolutionary algorithm

(MOEAs). In the fourth chapter, we describe the implementation environment and review

the obtained results, Finally, the general conclusion.
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Chapter 1

Waste collection and vehicle routing

problems

Introduction

In this chapter, we will address the vehicle routing problem (VRP), The Vehicle Rout-

ing Problem (VRP) aims the optimization of routes in order to deliver or pick up certain

products from defined stations or costumers. Dantzig and Ramser introduce the prob-

lem in 1959 by optimizing the routes of a petrol delivery company. Later on, the two

mathematicians Clarke and Wright developed the algorithm and introduced an improved

model in 1964. During the following years, multiple variants of VRP was developed in

order to meet the demanding needs of the costumers includes the waste collection problem

wich is the main object of this thesis, but before talking about VRP and waste collection

problem in this chapter we will define some fundamental such as algorithm complexity,

combinatorial optimization (CO), and Multi-objective optimization problems (MOPs).

4



WASTE COLLECTION AND VEHICLE ROUTING PROBLEMS

1.1 Preliminaries

1.1.1 The complexity of an algorithm

In the context of operational research to be able to compare the effectiveness of the

different algorithms that can be used in the resolution process. Two main criteria are

generally considered when the operational researcher studies the efficiency of an algo-

rithm: the computation time, and the memory space necessary for algorithm execution.

In the majority of problems, computation time is the main reference for measuring the

performance of an algorithm. In the following, we will explain the algorithm complexity

theory:

Definition 1.1. An algorithm is called polynomial If the number of elementary operations

necessary to solve the size of the problem is a polynomial function, then the algorithm is

considered to be efficient if, and only if, it is polynomial.

In the previous definition, the term ”elementary operations” it looks vague. It should

be understood as additions, multiplications, comparisons, etc. generally, everything that

the processor can do in a fixed time.

Definition 1.2. A decision problem is in class P (Polynomial) if its resolution on a

machine is deterministic in polynomial time compared to the size of the data, it is a

problem of complexity O(nk).

–A decision problem is in class NP (Non-deterministic Polynomial) if its resolution on a

machine is Non-deterministic in polynomial time.

–A problem is in class NP-complete if its resolution in polynomial time requires the

resolution in polynomial time of any problem NP.

So NP-complete problems are more complicated than NP problems.

5



WASTE COLLECTION AND VEHICLE ROUTING PROBLEMS

Any problem that can be solved with an algorithm of polynomial complexity is con-

sidered “easy”. Any problem that can be solved with an algorithm of exponential (Non-

polynomial) complexity, or worse than exponential is considered “hard”, This kind of

problem known as NP-Hard problems.Figure 1.1 illustrate the relations between complex-

ity classes.

Figure 1.1: Relations between complexity classes.

1.1.2 Combinatorial Optimization

Solving the VRP and especially its base form the TSP is a typical combinatorial opti-

mization task. In practice, combinatorial optimization is one of the more difficult forms of

mathematical optimization. It is characterized by a finite but often huge set of elements,

with the goal being to find an optimal element regarding a cost function. Formally a

combinatorial optimization problem.

Definition 1.3. Combinatorial Optimization is defined from a finite set S and an ap-

plication f : S → R. that assigns to every solution point ŝ ∈ S such that: f(ŝ) =

Mins∈S [f(s)].

6
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Combinatorial optimization problems can be written mathematically as:

(P )


optimize f(x)

Subject to x ∈ S
(1.1)

where f : Rn → R is the objective function,The subset S ⊆ Rn (it can be also S ⊆

{0, 1}n)represents feasible set or all allowable choices for x, such that x = (x1, x2, ..., xn)T

is the vector of variables of dimension n.

1.1.2.1 Basic concepts of optimization

Objective function : objective function is a mathematical formula that describes

the goal of optimization to be achieved based on a set of constraints, those constraints

can be capacity, resources, availability, etc. The objective function takes the form of

F(x),generally F(x) is a vector: F(x) =[f 1 (x), f 2 (x), ..., f k (x)]. It called also cost

function (minimization), and fitness function.

Decision vector : Is the vector which belongs to a feasible set S⊆ Rn, it is noted x =

[x1, x2, ..., xn]T with n is the number of variables or dimension of the problem and xk the

variable on dimension K

Constraints : The constraints of a problem determine limits on how to maximize or to

minimize some variables, those constraints can be equality or inequality relations often

noted gi(x),with i = 1, ..., q, number of constraints.

Research space : represents all possible values of the variables that satisfy the problem’s

constraints.

Objective space : is the images set of the search space, determined by all possible values

of objective functions.

Global minimum (point) : A point x̄ ∈ S is a global minimum if and only if: f(x̄) ≤ f

(x) for all x ∈ S

Local minimum (point) : A point x̄ ∈ S is a local minimum if and only if, there exists

7
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a neighborhood N of x̄ such that: f(x̄) ≤ f(x) for all x ∈ N ∩ S [8].

1.1.3 Multi-Objective Optimization Problem (MOP)

1.1.3.1 Defintion of multi-objective optimization problem

The multi-objective nature of the problem is given by the existence of contradictory

objectives signifying that the improvement of one objective leads to the deterioration of

another. This conflict between objectives is often encountered when seeking to obtain the

best possible performance for a low cost. The more complex and efficient a structure,

the higher the cost. Multi-objective optimization then consists of finding all the solu-

tions which correspond to the best compromises between different objectives, for example,

maximize profit and minimize cost.

1.1.3.2 General formulation of a multi-objective optimization

A multi-objective optimization problem characterized by a set of objective functions

to maximize or minimize a set of numeric values by a certain number of constraints to

be satisfied. Unlike the single-objective case for which a single objective function to be

optimized, multi-objective optimization consists of finding the best compromises different

conflicting goals.Multi-objective optimization problems can be formulated Mathematically

as follows:

(P )


min/max f1(x), f2(x), . . . , fn(x)

subject to x ∈ Ω
(1.2)

Where x is solution, n is the number of objective functions, Ω is the set of feasible

solutions,fn(x) is the nth objective function, and min/max is combined object operations.

The MOP’s evaluation function, f : Ω→ Λ, maps decision variables (x = x1, . . . , xn) to

vectors (y = a1, . . . , ak). This situation is represented in Figure 1.2 for the case n = 2,m =

8
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0, and k = 3. This mapping may or may not be onto some region of objective function

space, dependent upon the functions and constraints composing the particular MOP[1].

Figure 1.2: Representation of the decision variable space and the corresponding objective
space.[1]

1.1.3.3 Pareto optimization

Pareto optimum:

The Italian mathematician, Vilfredo Pareto, formulated the concept of the theory of the

elites, This concept applies to the case of MOP, such that it cannot improve a criterion

without deteriorating at least one of the other criteria. This equilibrium called Pareto

optimum. a point x is said to be Pareto-optimal if it is not dominated by any other point

belonging to S. These points are also called non-inferior or non-dominated solutions[9].

The concept of Dominance:

A solution x(i) dominates another solution x(j) if the following conditions are satisfied:

1) zk(x(i)) ≤ zk(x(j)) ∀k ∈ {1, . . . , K} ;

2) ∃k ∈ {1, . . . , K} such that zk(x(i)) < zk(x(j)).

3) If x(i) dominates x(j), x(i) ≺ x(j)

Figure 1.3 shows a particular case of the Pareto front in the presence of two objective

functions.

9
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Figure 1.3: The Pareto front of a set of solutions in a two objective space.

Strict and weak dominance :

Definition 1.4. A solution x(i) dominates a solution x(j) strictly if and only if:

zk(x(i)) < zk(x(j)) ∀ k ∈ {1, . . . , K}, This relation is noted x(i) ≺ x(j)

Definition 1.5. A solution x(i) dominates a solution weakly x(j) if and only if:

zk(x(i)) < zk(x(j)) ∀ k ∈ {1, . . . , K}, This relation is noted x(i) � x(j)

Pareto frontier :

For a finite set of solutions, all solutions can be compared two by two according to the

principle of dominance, and we can deduce which solution dominates the other. at the

end, we obtain a set where none of the solutions dominates other, this set is called the set

of non-dominated solutions or else the set of Pareto-optimal solutions[9].

If the set P represents the whole of the search space S, the set of non-dominated solutions

P ′ is called pareto-optimal set in the decision space or pareto front in the objective space.

Definition 1.6. Pareto-optimal set is the set of non-dominated solutions of the feasible

search space S.

10
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We say that a solution x ∈ S is efficient, if there is no other solution y ∈ S such that

the vector f(y) dominates the vector f(x).

1.2 The vehicle routing problem (VRP)

1.2.1 The traveling salesman problem (TSP)

The traveling salesman problem is the most famous and studied problem in combina-

torial optimization field,in this problem, a traveling salesman must visit several cities or

customers (nodes) passing once and only once each of them, and minimizing the total dis-

tance traveled. More formally, a TSP is modeled in the form of a graph where the vertices

represent the cities to visit, [Dhaenensand al., 2002]. The weight associated with each edge

represents the cost of the connection between the two cities and generally corresponds to

the distance which separates them. The objective is to find a Hamiltonian cycle, e.g. a

passing cycle once and only once by all the vertices of the graph, and of minimum length.

As an optimization problem, the TSP is an NP-Hard problem. Indeed, in its symmetrical

version, e.g. in the case where the associated graph is not oriented, the total number of

possible solutions is (n−1)!
2 where n is the number of cities. With factorial complexity, the

efficient resolution of the TSP, therefore, requires the use of specialized heuristics or even

meta-heuristics. Indeed, the exact methods remain limited to the problems of small size.

1.2.2 Definition of Vehicle Routing Problem

The vehicle routing problem (VRP) naturally appears as a central problem in the

fields of transportation, is very widespread in distribution and logistics, As we saw above

it is a generalization of the TSP, which means that it is a problem classified as an NP-

Hard problem, it is obtained when K vehicles of capacity Q are available at the node-

depot to satisfy the demands of the nodes-client, Each vehicle must, therefore, carry

out a feasible tour, e.g. leave the depot, visit once customers whose sum of requests

11
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does not exceed the capacity Q, before returning to the depot. Each customer must be

served by a single vehicle that fully satisfies their request. The objective of VRP is to

serve the customers by minimizing one or more criteria related to the cost of delivery of

goods, for example, minimize the total distance of tour or total traveling times to visit all

customers, while respecting the constraint of vehicle capacity, In other words, the capacity

of goods delivered in one tour should not exceed The capacity of the vehicle which ensures

it.Practical applications, illustrated among others in Golden et al (2008), are often large

and currently need to be heuristically resolved[10]. Figure 1.4 illustrates a solution of

classical VRP with 5 vehicles and 25 costumer.

The Application of vehicle routing problem is suitable and useful in many sectors such

as:Product Delivery and Pickup, Transportation, Trip planning, Waste Collection, Goods

distribution, Food distribution, Mail and Package delivery, etc.

Figure 1.4: An instance of a VRP (left) and its solution (right).

1.2.3 Vehicle Routing Problem’s Formulation

The VRP is defined on a graph G = (V,A), where V = {u0, u1, u2, . . . , un} represents

the set of vertices, that is to say, depot and customers to visit, and A = {ui, uj} such that

i 6= j and vi, vj ∈ V represents the possible set of arcs. The point v0 represents the depot

which is the point of starting and arrival of all routes, a distance dij is associated with
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each arc (i, j) ∈ A, these distances are symmetrical, that is to say, that dij = dji∀i, j ∈ A.

The other constants of the problem :

• n number of customer (or summits).

• m number of vehicles.

• Q vehicle capacity.

• qi customer request i.

• cij the cost of the edge between the vertices i and j (distance or travel time).

The decision variables of the problem xijk defined as follow:

xijk


1 if (i, j) is visited by the vehicle k.

0 otherwise

Minimize
n∑
i=1

n∑
j=1

cij
m∑
k=1

xijk (1.3)

subject to the following constraints:

n∑
i=1

m∑
k=1

xijk ∀1 ≤ j ≤ n (1.4)

n∑
j=1

m∑
k=1

xijk ∀1 ≤ i ≤ n (1.5)

n∑
i=1

n∑
l=1

xijk =
n∑
l=1

n∑
j=1

xijk (1.6)

n∑
j=1

x0jk ∀1 ≤ k ≤ m (1.7)

n∑
i=1

xi0k ∀1 ≤ k ≤ m (1.8)

13



WASTE COLLECTION AND VEHICLE ROUTING PROBLEMS

n∑
i=1

n∑
j=1

xijk ≤ Q ∀1 ≤ k ≤ m (1.9)

xijk ∈ 0, 1 ∀0 ≤ i, j ≤ n; 1 ≤ k ≤ m (1.10)

The equation (1.2):the objective of the optimization problem must minimize the sum of

the costs of all the routes.Constraint (1.3) and (1.4) require each customer to be served only

once. Constraint (1.5) ensure that flow conservation. Constraint (1.6) ensure that each

tour begins and ends at the depot. Constraint (1.7) the capacity constraints.Constraint

(3.8) binary constraints on decision variables xijk.

1.2.4 Real-life Routing Problems

Routing problems are of concern in real life whenever things need to be transported

from one place to another. For example, garbage collection companies need to plan the

routes for collecting garbage in the urban. Bus companies need to plan the time and routes

for buses and drivers. These real-life rout-ing problems usually include complications that

are not considered by the basic CVRP :

- Planning horizon : In real life, routes are planed for a given planning horizon. This

planning horizon can consist of multiple periods.

- Customer :In the basic VRP, each customer has a demand, In more complicated

problems, the customers may have requirements on the service time and/or the vehicle

type. There could also be different types of services, for example, pickup service, delivery

service, or pickup-and-delivery service.

- Depot: There can be multiple depots in a large distribution network.These depots may

serve different purposes, such as warehousing or cross-docking, to reduce the total cost in

the supply chain.

- Vehicle : The vehicles used for delivery can be different in capacities and sizes. There

are usually a limited number of vehicles available in real-life planning. A vehicle may be

used in multiple tours instead of a single trip in a routing plan. In the problem with
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multiple depots, each vehicle maybe associated to a base depot. The vehicle must start

from and end at its base depot

- Uncertainty : There can be uncertainties in the route planning. For example, the

locations and/or the demands of customers are unknown at the beginning but revealed

over time when the vehicles have already been sent out to carry out tasks[11].

1.2.5 VRP Variants

The most studied and common VRP variants are the capacitated VRP (CVRP), where

capacity constraints exist. The objective is to minimize the total cost (reducing the number

of routes, their length or travel time), serving all customers. Capacity is, in fact, an issue

that all real routing problems have to deal; therefore, the following variations are also

CVRP variants:

1.2.5.1 VRP with Time Windows (VRPTW)

the VRP with Time Windows (VRPTW), assumes that deliveries to a given customer

(node) v ∈ V must occur in a certain time interval [wai , wbi ], which varies from customer

to customer[12].

1.2.5.2 Multiple Depot VRP (MDVRP)

A company may have several depots from which it can serve its customers. If the

customers are clustered around depots, then the distribution problem should be modeled

as a set of independent VRPs. However, if the customers and the depots are intermingled

then a Multi-Depot Vehicle Routing Problem should be solved. An MDVRP requires the

assignment of customers to depots. A fleet of vehicles is based at each depot. Each vehicle

originates from one depot, service the customers assigned to that depot, and return to the

same depot[13].
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1.2.5.3 VRP with Pick-Up and Delivering

The Vehicle Routing Problem with Pick-up and Delivering (VRPPD) is a VRP in

which the possibility that customers return some commodities is contemplated. So in

VRPPD it’s needed to take into account that the goods that customers return to the

deliver vehicle must fit into it. This restriction make the planning problem more difficult

and can lead to bad utilization of the vehicles capacities, increased travel distances or a

need for more vehicles[13].

1.2.5.4 Periodic Vehicle Routing Problem (PVRP)

This problem takes into account several planning days, unlike the CVRP, with cus-

tomers that require service on multiple days during the planning period. In order to find

the set of minimum routes for each day.

There are many other variants of VRP, but until now, all variants considered a ho-

mogeneous fleet, however, in real life, a company may have a fleet with different vehicle

types, with distinct capacities and costs. So far, it has also been considered that in one

route products would either be collected or delivered, yet some customer can be associated

with two quantities, representing the demand of goods to be delivered and other the ones

to be picked up at its location, adding more challenges to the problem and to capacity

management.

1.3 Waste collection as a vehicle routing problem

1.3.1 VRP for collection

Essentially, the VRP for collection is dealing with the same type of constraints as in

a delivery problem when constructing vehicle routes. Thus, this problem also attempts

to determine the number of vehicles needed to serve the customers as well as the routes
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that will minimize the total distance traveled by the vehicles. However, the vehicle for

the collection problem is empty when it starts from the depot, whereas the vehicle for the

delivery problem begins its route loaded with customers’ goods that need to be delivered.

In the collection, problem vehicles will collect goods from a set of customers and return

to the depot at the end of the working day[14].

1.3.2 VRP for waste collection

Dealing with a waste collection problem is different from the collection problem. There

is an additional constraint that needs to be considered in solving this problem. Instead

of returning to the depot to unload the collected goods(or waste), in a waste collection

problem vehicles need to be emptied at a disposal facility before continuing collecting

waste from other customers. Thus, multiple tours to the disposal facility occur in this

problem before the vehicles return to the depot empty, with zero waste. A complication

in the problem arises when more than one disposal facility is involved. Here we need to

determine the right time to empty the vehicles as well as to choose the best disposal facility

that respects distance constraints. For example, When the vehicle reaches its maximum

size, it must visit a disposal facility..Figure 3.1 illustrates a VRP for waste collection with

two routes, one depot, and three disposals facility[14]

Figure 1.5: Examples of two vehicle routes for a waste collection problem[2].
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1.3.3 Waste collection vehicle routing problem state of the art

Various models designed for solving the waste collection vehicle routing problem are

based on the classic VRP, with some special considerations: Green Vehicle Routing Prob-

lem (GVRP), Pollution Routing Problem (PRP), Emissions Vehicle Routing Problem

(EVRP), and Routing and Scheduling in Time-Dependent Environment (RS-TDE), where

they look for reduction of polluting emissions to the environment, especially carbon diox-

ide, as a consequence of the minimization of the total distance, fuel consumption, operative

costs, or the selection of uncongested routes. Another model is the Routing of Hazardous

Materials (RHM) that minimizes the risk to the population and environment caused by

hazardous material transportation. Other models that have been created are the Waste

Collection Vehicle Routing Problem (WCVRP), the Multi-Modal Vehicle Routing Problem

(MMVRP), the Pick-Up and Delivery Vehicle Routing Problem (PDVRP), and the En-

ergy Routing Problems (ERP). In many of these models, the objectives presented are not

in conflict, because by minimizing the total distance or routing time the fuel consumption

is also reduced and with this the amount of polluting emissions[15].

Conclusion

The vehicle routing problem several cases is a multi-objective optimization problem

also classed under NP-Hard combinatorial problems. Waste collection can be dealing as

VRP for collect or pick up, there are various models of VRP designed for solving waste

collection problem according to the case studied and need of corporate, in the last chapter

we will explain in detail our case studied. Chapter 2 will be custom to literature review

on methods of solving the vehicle routing problem.
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Chapter 2

A literature review on methods of

solving the vehicles routing problem

Introduction

In this chapter, we provide an overview of the methods of solving the vehicle rout-

ing problem. Our goal is not to detail how these methods work, but rather to gain an

overview of their basic principle and their classifications.Like other combinatorial optimiza-

tion problems, the vehicle routing problem has been studied and solved by exact methods,

specific heuristics, and meta-heuristics. These three families make up the rational general

classification of the methods of resolution of VRP.

2.1 Exacts Methods

The main principle of the exact methods consists generally of enumerates all candi-

date solutions in the search space, and eliminate the impossible solutions. Among the

exact methods. A wide variety of exact methods have been devised for solving MOPs

in general and, in particular, the VRP problems, which continue to attract the attention

of researchers. Among the most recurrent achievements we cite: Linear Programming,
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Dynamic Programming, Branch and Bound Approaches.

2.1.1 Dynamic Programming

It’s a bottom-up method, We usually start with the smallest sub-problems and work

our way up to the increasingly difficult sub-problems. It is used for problems that satisfy

Bellman’s principle of optimality: “In an optimal sequence (of decisions or choices), each

subsequence must also be optimal”. An example of this type of problem is the shortest

path between two vertices of a graph. The basic idea is to avoid calculating the same

thing twice, usually using an already calculated results table, filled up while solving the

sub-problems, Christofides (1971) applied this principle for the resolution of VRPS.

The strong point of this method is the fact that it avoids evaluating the same function

twice, generally by using a table of results obtained, filled in as we solve the subproblems

and this is how we save a considerable amount of time

2.1.2 Branch and bound

It is a technique that performs an in-depth search of the research tree in order to

provide one or more optimal solutions from a set of potential solutions. At each step of

the search corresponding to a node in the search tree, the algorithm uses a Bound function

to calculate bound for the solutions set of the sub-tree taking its root at this node. In the

first part of the resolution, this bound is initialized to a maximum value (minimization

case). If this assessment is worse than the best solution found up to this level of research,

the entire sub-tree can be sterilized. It is important to emphasize that the efficiency of

the Branch and Bound algorithm depends closely on the calculation of the bound used.

Christofides, Mingozzi, and Toth applied the separation and evaluation method to the

VRVPTW-large at varying vehicle capacity constraints. The best-resolved instant is 53

customers and 08 vehicles. After solving the problem, the maximum number of vehicles
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on a route is 15.

2.1.3 Advantages and disadvantages of exact methods

The exact methods guarantee the optimality of the solutions they provide. Indeed, the

determination of the optimal solution is done by an exhaustive journey of the domain of

feasible solutions to the problem. On the other hand, for CO problems, the size of the

domain of feasible solutions to a problem increases exponentially. with its size, therefore

the exhaustive path to this domain of feasible solutions is impossible from a certain size

of the problem.

2.2 Heuristic and Meta-heuristic methods

The majority of Multi-objective optimization problems are part of the NP-Hard class,

including the VRP discussed in the previous chapter. The complexity of the problems

makes exact resolution methods inefficient, and given the frequency and recurrence of

these problems in practice, researchers have been led to develop approximate methods to

solve these problems. complex ones. Indeed, the approximate methods give appreciable

solutions to problems of important complexity at a reasonable time.

2.2.1 Heuristic Methods

The heuristic term comes from the Greek verb heuristic that means ”to find”. A

heuristic is an algorithm which aims to find a feasible solution, without guarantee of

optimality, unlike exact methods, but those methods have exponential complexity, it may

be better to use heuristics to calculate an approximate solution to a problem or also to

speed up the exact resolution process, such as Branch and Bound. Generally, a heuristic

is designed for a particular problem.We mainly distinguish three types of heuristics:
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2.2.1.1 Route construction heuristics

Route construction heuristics were among the first experimental techniques of CVRP

and still form the core of many software applications for various routing applications.

These algorithms typically start from an empty solution and iteratively build route by

inserting one or more customers into each iteration, until all customers are routed. The

construction algorithms are also divided into sequential and parallel, depending on the

number of routers eligible for customer input. Sequential methods extend only one path at

a time, while parallel methods take into account more than one route simultaneously. The

route construction algorithms are fully defined by their three main components, namely the

configuration standard, the selection criterion that defines which customers are selected

for inclusion in the current iteration, and the insertion criterion for determining where to

locate the chosen clients in the current routes[16].

2.2.1.2 Route improvement heuristics

Unlike the constructive heuristics, the improvement heuristics deal with complete solu-

tions and attempt to improve them iteratively by applying a sequence of modifications to

the solutions. These modifications are also called operators or moves and they are usually

very simple. Since the improvement heuristics only accepts the modifications that improve

the solution.

2.2.1.3 Two phases Heuristics

The two-phase methods are based on the separating of the VRP solution process into

two separate sub problems: 1) clustering: determining a partition of customers into sub-

sets, each corresponding to a route, and 2) routing: determining the sequence customers

on each route. In a cluster-first-route-second method, customers are first grouped into

clusters, and routes are then determined by appropriately sequencing customers in each
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cluster. Different techniques have been proposed for the clustering phase, while the routing

phase amounts to solving a TSP[16].

2.2.2 Meta-heuristics Methods

Meta-heuristic algorithms optimization methods designed according to the strategies

laid out in a meta-heuristic framework, are always heuristic in nature. This fact distin-

guishes them from exact methods, that do come with a proof that the optimal solution will

be found in a finite (although often prohibitively large) amount of time. Meta-heuristics

are therefore developed specifically to find a solution that is “good enough” in a computing

time that is “small enough”. As a result, they are not subject to combinatorial explosion

– the phenomenon where the computing time required to find the optimal solution of

NP-Hard problems increases as an exponential function of the problem size[17].

During the last three decades, many meta-heuristics have been proposed for the VRP.

These meta-heuristics include Tabu Search (TS), Simulated Annealing (SA),Iterated Local

Search (ILS), Large Neighborhood Search (LNS),Ant colony optimization (ACO), Genetic

algorithms (GA), Scatter Search (SS), and so on. These methods are categorized into two

main groups:Single solution based meta-heuristics, and population based meta-heuristics.

2.2.2.1 Single solution based meta-heuristics

Among the most popular single solution based meta-heuristics, we cite the following

algorithms :

- Tabu Search

Tabu search (TS) is a local search method introduced by Glover[18]. The principle of this

method is to avoid being trapped in minimum local by performing movements from initial

solution s (even infeasible solutions) in a set of local solutions S to subsets solution N(s)
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belonging to the neighborhood S is generated by means of the evaluation function we retain

the solution which improves the value of f, chosen from the set of neighboring solutions

N(s), If this neighborhood is too large, only a part V (s) ⊂ N(s) will be examined. At each

iteration, the tabu algorithm chooses the best non-tabu neighbor, even if it degrades the

cost function. For this reason, it is said that the tabu search is an aggressive method[9].

- Simulated Annealing

Simulated Annealing (SA) is a global optimization algorithm inspired by the metallurgy,

in this physical process, the material is heated and slowly cooled repeatedly until getting

homogeneous shape, this increases the size of the molecules of the material. The heat

excites the energy of the atoms, which allows them to move freely, and the slow cooling

allows Reshaping the material and reduces their defects at low energy. The simulated an-

nealing makes it possible to leave a local minimum by accepting with a certain probability

a degradation of the function. Thus, the probability that a physical system goes from an

energy level E1 to a level E2 is given by:

P = e
−∆E
kbT (2.1)

kb is the Boltzmann constant, T is the temperature of the system.

As this formula shows, increasing the temperature leads to the possibility of observing

an increase in energy, Therefore at the level of the simulated annealing: A decrease in the

function will always be accepted, and An increase in the function will be accepted with a

probability defined according to a formula of the previous [9].

2.2.2.2 Population based meta-heuristics

Two population based meta-heuristics approaches,have been widely used in literature

for solving VRP and its variants:
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- Ant Colony Optimization (ACO)

The phenomenon of pheromone communication has been the drive behind ant colony

optimization (ACO) meta-heuristics algorithms. Artificial ants simulate the real-life ants

which communicate their experience while optimizing their search for food in nature

through trails of pheromone.

Candidate solutions to the optimization problem are constructed by individual ants

by interactively adding solution components to initialized empty solution. A complete

solution is generated by the ants using the two components: pheromone information which

is the accumulated experience and heuristic information which is problem specific data.

Which ants are allowed to modify the pheromone information and how they modify is

governed by the update strategy. Usually, better solution components will receive higher

amount of pheromone and will have a higher probability of being used by other ants in

the subsequent iterations of algorithm[19].

- Genetic Algorithm (GA):

Genetic algorithm is part of Evolutionary Algorithms that we will mention with more

detail in chapter 3, developed by John Holland and his collaborators in the 1960s and

1970s, are a model or abstraction of biological evolution based on Charles Darwin’s theory

of natural selection. Holland was the first to use crossover, recombination, mutation and

selection in the study of adaptive and artificial systems. These genetic operators are the

essential components of genetic algorithms as a problem-solving strategy. Since then,

many variants of genetic algorithms have been developed and applied to a wide range of

optimization problems, from graph coloring to pattern recognition, from discrete systems

(such as the traveling salesman problem) to continuous systems (e.g., the efficient design of

airfoil in aerospace engineering), and from financial markets to multi-objective engineering

optimization.[20]
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The process begins with creating a set of possible solutions randomly, this set is called

the population, each population consists of individuals, and each individual represents a

solution, An individual consists of a set of characteristics (or variables to be determined)

are then used in gene sequences which will be combined with other genes to form chromo-

somes and afterwards individuals, To evaluate the individuals of a population we use an

evaluation function (fitness function) this function is often a transformation of the objec-

tive function, The result provided by this function will make it possible to select or refuse

an individual in order to keep only the individuals having the best cost according to the

current population, The selection is followed by crossover then procreation. such that,

every two individuals (parents) transmit part of their genetic heritage to their offspring.

The child’s genotype makes it more or less fit for the environment. If it has better fitness

(or best cost), it will have a greater chance of procreating the future generation. This

process keeps on iterating until to achieve the stop criterion, and at the end, a generation

that has fittest individuals according to objective function f(x), where x is the solution

that the individual represents.

Finally, there is another classification Includes the learning mechanisms, which include

artificial neural networks (ANN). ANN is inspired by the neurons in the brain and grad-

ually adjusts a set of link weights until an acceptable solution is reached, the elastic net

and the self-organizing map are examples of models used in VRP to generate a feasible

solution[16]. ACO also can be classed under these types of methods.
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Conclusion

We have seen, in this chapter, The different methods for solving the vehicle routing

problem. We have exposed several exact and approximate resolution methods. The exact

methods are only intended for small problems, and heuristic methods type, the drawback

is that one cannot theoretically guarantee the good quality of the results (minimization

of costs, time) for a well-defined study case. This proves to be slow and numerically

painful. The genetic algorithm method has proven its robustness and high efficiency to

solve large complicated problems such as VRP and its variants, as we noted the strength

of GA in finding the best approximate solution in a reasonable time. Because GA is a part

of the evolutionary algorithm, so in the next chapter, we will present the Multi-objective

evolutionary algorithms (MOEAs) in more detail, and explain its mechanism.
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Chapter 3

Evolutionary Algorithms for

Multi-Objective Optimization

Introduction

Evolutionary algorithms prove to be general, powerful, and robust search mechanisms.

In addition, AEs seem to be especially useful in multi-objective optimization because

they are able to determine several optimal Pareto solutions in a single execution and

can exploit the similarities of solutions by crossing. Some researchers suggest that multi-

objective research and optimization may be problems where AEs do better than other blind

search methods. These algorithms are called evolutionary multi-objective optimization

algorithms(MOEAs).

3.1 Basic Principles of Evolutionary Algorithms

3.1.1 Definition

The term evolutionary algorithm (EA) stands for a class of stochastic optimization

methods that simulate the process of natural evolution. The origins of EAs can be
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traced back to the late 1950s, and since the 1970s several evolutionary methodologies

have been proposed, mainly genetic algorithms, evolutionary programming, and evolution

strategies[21]. All these approaches work on a set of candidate solutions. The concept of

the evolutionary algorithms is quite simple given that it uses the two basic principles of

Darwinism: selection and variation. The selection represents the competition for resources

among living things. Some are better than others and are better able to survive and trans-

mit their genetic material. In evolutionary algorithms, natural selection is simulated by

a stochastic selection process. Each solution has a chance to recur a number of times,

depending on their quality (fitness). So quality is assessed by evaluating individuals and

assigning them a fitness value. The other principle, variation, imitates the natural ability

to create new offspring and new hereditary traits through crossover and mutation.

3.1.2 Basic Terminology

In the following we present the initial principles of evolutionary algorithms, which are

inspired by the mechanism of natural evolution:

1. A finite set of individuals is called population;

2. The objective function to optimize is called performance function or fitness function;

3. The calculation of an individual’s performance is called evaluation;

4. Generation corresponds to a population in a certain iteration;

5. Evolution is an iterative process of finding optimal individuals;

6. The operators of variations are used to generate new individuals and are most often

categorized into two types of operators: the crossing which consists in exchanging

component parts (genes) between two or more individuals, and the mutation which

consists in the modification of one or more genes d ’an individual ;
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7. Selection is the process of choosing individuals, based on their performance;

8. Replacement is the process of forming a new population from parents and children[22].

3.1.3 Basic Structure

The design of evolutionary algorithm can be divided into follwing components:

3.1.3.1 Representation

One of the most important steps in the evolutionary algorithm is determining the

representation that we will use to represent our solutions. Therefore, choosing a proper

representation, having a proper definition of the mappings between the phenotype and

genotype spaces is essential for the success of an EA[23].

3.1.3.2 Initialization

The evolutionary optimization process begins with creating an initial population P0

that contains a random number of possible solutions to the problem in search space S.

3.1.3.3 Fitness function

The fitness function takes in the characteristics of an individual, and evaluates (cal-

culates) its performance, then gives us a numerical result of how viable of a solution it

is.

3.1.3.4 Parent Selection

The individuals who have the best fit are chosen for reproduction. However, care must

be taken to avoid that one of the suitable solutions takes over the entire population within

a few generations, as this leads to solutions that are close to each other in the solution

space, thus leading to a loss of diversity. Maintaining good diversity in the population

is extremely crucial for the success of an EA. This taking of the entire population by
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an extremely suitable solution is known as premature convergence and is an undesirable

condition in EA.in the following we briefly mention some selection methods :

• Tournament Selection

• Random Selection

• Truncation Selection

• Fitness Proportionate Selection (Roulette Wheel, Stochastic universal sampling).

• Ranking Selection(Linear Ranking,Non-linear Ranking)

3.1.3.5 Crossover

crossover operators resembles the reproductive mechanism in nature. Thus, along with

mutation operators, they are collectively referred to as reproductive operators. In gen-

eral, a crossover operator aims to combine two individuals to form a new individual. It

tries to divide an individual into parts and then put those parts together into a new

individual[23].in addition to the classic crossover operators shown in Figure 2.1. There ex-

ist a lot of other crossovers like Partially Mapped Crossover (PMX), Order based crossover

(OX2), Shuffle Crossover, Ring Crossover, etc.

3.1.3.6 Mutation

mutation operators simulates the mechanism of mutation in which parts of a genome

undergo changes of a random nature. Thus, as a typical modeling practice, a muta-

tion operator changes parts of an individual’s genome. On the other hand, mutations

can be thought of as an exploration mechanism to balance the exploitative power of

crossover operators[23]. Among the most commonly used mutation operators :Bit-flip

Mutation(used for binary encoded), swap mutation, and displacement mutation.
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Figure 3.1: The classic crossover operators.

Figure 3.2: Example of mutation operators.

3.1.3.7 Survival Selection

Survival selection aims to select a subset of good individuals from a population, where

the goodness of the individual is proportional to its fitness in most cases. Thus, the mech-

anism of survival selection is somehow similar to the mechanism of parent selection, most

of the parent selection mechanisms can be reapplied in survival selection. For example, a

proportional selection of fitness can be applied as survival [23].

3.1.3.8 Termination condition

The termination condition refers to the condition at which an evolutionary algorithm

should end. The number of generations is often chosen as the termination measurement: an

evolutionary algorithm terminates when a certain number of generations has been reached

(e.g. 1000 generations). The number of fitness function evaluations is also adopted in
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some cases. CPU time is also adopted. Nonetheless, convergence is not guaranteed.

Thus, the fitness improvement of each generation has adopted as another condition for

termination[23].

Figure 3.1 and Algorithm 1 describe the basic structure of an MOEA.

Figure 3.3: The general scheme of an Evolutionary Algorithm as a flow-chart.

Algorithm 1 Pseudo-code of Evolutionary Algorithm
1: t← 0
2: Initialize P (t);
3: while not termination condition do
4: Evaluate the objective vector F for each individual of P (t);
5: Assign a fitness for each individual of P (t)
6: Select from P (t) a set of parents P ′(t) preferring the best
7: Recombine the individuals of P ′(t) to obtain the offspring P ′′(t)
8: Mutate individuals into P (t)
9: Combine P ′(t) and P ′′(t) and select the best individuals to have P (t+ 1)

10: t← t+ 1
11: end while
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3.2 Key Issues in Multi-Objective Search

As mentioned earlier in this chapter, EA manipulates a population of solutions instead

of a single solution. This property makes it possible to be well suited to solving multi-

objective optimization problems where the optimum is represented by a set of points

(Pareto set) and not by a single solution, but two major problems posed when using an

EA for solving multi-objective optimization problem:

1. How to achieve Fitness value assignment and selection, respectively, to guide process

research towards the Pareto-optimal set.

2. How to keep a diverse population to avoid premature convergence, and achieve a

non-dominated and well-distributed set[24].

In the following, a categorization of general techniques which deal with these issues is

presented :

3.2.1 Fitness Assignment and Selection

In contrast to single-objective optimization, where objective function and fitness func-

tion are often identical, both fitness assignment and selection must allow for several ob-

jectives with MOPs. In general, one can distinguish MOEAs where the objectives are

considered separately, approaches that are based on the classical aggregation techniques,

and methods which make direct use of the concept of Pareto. dominance[24].

3.2.1.1 Selection by Switching Objectives

Instead of combining the objectives into a single fitness value, this class of MOEAs

exchanges the objectives during the selection phase. Each time an individual is selected

for reproduction A different objective allows us to decide which member of the population

will be copied into the mating pool. As a result, steps 2 and 3 of the previous Algorithm

(General EA) are often integrated or performed alternately[24].
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3.2.1.2 Aggregation Selection with Parameter Variation

Other MOEA implementations based on traditional techniques for generating Pareto

surface compromises. With those methods, the objectives are aggregated into a single

parameterized objective function, however, there is no change in the parameters of this

function for different EA but varies during the same run[24].

3.2.1.3 Pareto-based Selection

The concept of calculating an individual’s fitness on the basis of Pareto dominance was

first suggested by Goldberg in 1989. He presented a “revolutionary10-line sketch” of an

iterative ranking procedure: First, all non-dominated individuals are assigned rank one

and temporarily removed from the population. Then, the next nondominated individuals

are assigned rank two and so forth. Finally, the rank of an individual determines its

fitness value. Remarkable here is the fact that fitness is related to the whole population,

while with other aggregation techniques an individual’s raw fitness value is calculated

independently of other individuals[24].

3.2.2 Population Diversity

In order to approximate the Pareto-optimal set in a single optimization run, evolu-

tionary optimizers have to perform a multimodal search where multiple, widely different

solutions are to be found. Therefore, maintaining a diverse population is crucial for the

efficacy of an MOEA. Unfortunately, a simple (elitist) EA tends to converge towards a sin-

gle solution and often loses solutions[24]. To overcome this drawback, several techniques

aimed at maintaining diversity in the population have been proposed, the most frequently

used are briefly summarized here:
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3.2.2.1 Fitness sharing

Fitness sharing(Goldberg and Richardson 1987), aims at promoting the formulation

and maintenance of stable sub-populations (niches).It is based on the idea that individuals

in a particular niche have to share the available resources. The more individuals are located

in the neighborhood of a certain individual, the more its fitness value is degraded[24]. The

adaptation function of each individual (xi) is degraded by a niche counter m(xi) calculated

for this same individual. This niche counter calculates the degree of similarity that an

individual has with the rest of the population:

m(xi) =
∑
i∈pop

sh(d(xi, xj)) (3.1)

- d(xi, xj): distance between i and j

- shd : the decreasing function of d(i, j), such that : sh(0) = 1, and sh(d ≥ σshare). The

most commonly used function sh(d) is the triangular function defined as follows :

sh(d) =


1− d

σshare
if d < σshare

0 otherwise

(3.2)

- σshare: niche radius, fixed in most cases by the user according to the minimum separation

distance desired between the different peaks[9]

3.2.2.2 Crowding distance

The crowding distance factor gives us an idea of how crowded are the closest neighbors

of a given individual, in objective function space. This measure estimates the perimeter

of the cuboid formed by using the nearest neighbors as the vertices.
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3.2.3 Elitism

Elitism is the mechanism designed to prevent the loss of the best solutions found in

research due to stochastic effects. This concept plays a major role in MOEAs. In multi-

objective optimization, the implementation of elitism is more complex than in single-

objective optimization. As a result of limited memory resources, if more non-dominated

solutions arise than can be stored, then which solutions should be discarded? Therefore,

the elitist strategy adopted determines whether fitness is broadly convergent or not. Cur-

rently, we can distinguish mainly two approaches to implement elitism. One of them is

to combine the old and the new population, and then use a selection that preserves the

best solutions in the next generation. The other approach is to maintain an external set

of individuals called archives that store the non-dominated solutions found during the

research process.

3.3 Parallel Evolutionary Algorithms

3.3.1 The Island Model

The most straight forward implementation of island MOEAs runs a number of MOEA

populations independently, each trying to obtain the complete Pareto-front and every rate

generations migration takes place. Beyond this simple strategy, many researchers believe

that a ‘divide and conquer’ approach on multi-objective optimization problems could be

more successful because individual sub-populations could specialize in certain areas of

the Pareto-front and thus be more efficient[25].The first work in this area dates back to

the 1960s with Bossert who was probably the first to propose an evolutionary algorithm

with multiple populations in order to improve the quality of solutions in an optimization

problem. Other works that were subsequently proposed differ according to the choices

made on the many parameters to be managed with this model, for example, the number

and size of islands, the frequency of migration, the number, and destination of migrants,
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and finally the method used to select which individual will migrate. Moreover, this is the

reason why this type of parallelization remains difficult to control[22].

Figure 3.4: Illustration of island EAs[3].

3.3.2 The Master-Slave Model

In the ”master-slave” model, which is the simplest model to implement, the master

process distributes the evaluation of the objective function on the various slave nodes and

performs all the steps of the evolutionary algorithm (selection, kingship, mutation). Com-

munication between individuals only takes place after slave disputes return the evaluation

assigned to them. It is therefore algorithmically identical to a sequential evolutionary

algorithm. The master-slave model has been widely used in the literature. The earli-

est work dates back to the 1970s with Bethke who was the first to describe a parallel

implementation of an AE. Subsequently, Grefenstette proposed several prototypes of the

parallel AEs representing several variants of the master-slave models, knowing that the

overall optimization cost with this model involves two stages, that of the evaluation of the

different children and the communication time between the different slave nodes and the

master process, more recent work in the literature has focused on the problem of the high

communication cost which can affect the efficiency of the algorithm. In this model, the

acceleration in computing time is proven to be linear relative to the number of processors,

up to a certain limit (when communication times become more important than evaluation
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time). Note that in the case of real applications where the evaluation of the objective

function is very expensive, communication times are often neglected[22].

Figure 3.5: Illustration of master-slave EAs[3].

3.3.3 The cellular model

Was developed for massively parallel computers, which provide numerous processors

with a local but fast communication network. It uses both properties, an individual is

evaluated and mutated on a single processor, and selection and crossover is limited to few

neighbors often given by the network topology[25].However, this last model remains little

studied in the literature by comparing it with the first two models.

Figure 3.6: Illustration of cellular EAs[3].
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3.4 Structures of Various MOEAs

3.4.1 Multi-Objective Genetic Algorithm (MOGA)

Carlos M. Fonseca and Peter J[26]. Fleming proposed a variation of Goldberg’s tech-

nique called “Multi-Objective Genetic Algorithm” (MOGA), in which the rank of a certain

individual corresponds to the number of chromosomes in the current population by which

it is dominated. Consider, for example, an individual xi at generation is dominated by

p(t)i individuals in the current generation; thus, an individual is assigned a rank by the

following rule: rank(xi,t)=1+p(t)i[27].

3.4.2 Niched Pareto Genetic Algorithm (NPGA):

Horn and Nafpliotis [28] combined tournament selection and Pareto dominance. In

this method, two individuals are selected at random in order to compare them to a subset

of the population. The non-dominated individual is chosen as the parent. On the other

hand, if the two individuals are dominated or non-dominated, then the winner is chosen

using a fitness sharing feature[27].

3.4.3 Nondominated Sorting Genetic Algorithm (NSGA)

Srinivas and Deb implemented Goldberg’s idea in a simpler way. Non-dominated

Sorting Genetic Algorithm (NSGA) classifies the population in different layers or non-

dominated fronts compared to non-dominance. The first front (the best ranking) is made

up of the non-dominated individuals of the current population. The second front is the

set of non-dominated individuals to the exclusion of the first rank. In general, each front

is calculated only with unclassified individuals in the population. Deb et al.[29] later

proposed a new version of the algorithm called NSGA-II. This algorithm improves the

efficiency of the original NSGA by reducing the number of times the population needs to

be ranked and incorporates an elitist selection system, as well as a Crowding comparison
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operator[27].

3.4.4 Strength Pareto Evolutionary Algorithm (SPEA):

Strength Pareto Evolutionary Algorithm (SPEA) was developed by Zitzler and Thiele[30],

as a means to combine the most successful techniques of different MOEAs. SPEA uses

the individuals stored in the archives to classify individuals in the current population. For

each individual, in the archive, a value s is calculated called strength which is equal to

the number of individuals in the population who are dominated by the individual in the

corresponding archive. The fitness of each individual x is calculated by adding s (strength)

of all members of the archive that dominate x. This scheme attempts to guide research

towards the Pareto front and, at the same time, preserves the diversity of non-dominated

solutions[27].

3.5 Strength Pareto Evolutionary Algorithm (SPEA2)

The improved Strength Pareto Evolutionary Approach (SPEA2) is chosen to perform

the control system optimization resulting in the final analysis and comparison. SPEA is an

extension of the Genetic Algorithm for multiple objective optimization problems. SPEA2

has an external archive consisting of the previously found non-dominated solutions. It is

updated after each generation and for each solution a strength value is computed. An

archive of the non-dominated set is maintained separately from the population of can-

didate solutions used in the evolutionary process, providing a form of elitism. Due to

potential weaknesses of SPEA, the improved version SPEA2 has better fitness assignment

scheme, more precise guidance of the search and a new archive truncation methods. To

avoid situations where population members dominated by the same members of the archive

have the same fitness value, SPEA2 takes into account both the number of dominating

and dominated solutions in computing the raw fitness of a solution. The objective of the
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algorithm is to locate and maintain a front of non-dominated solutions (set of Pareto opti-

mal solutions). This is achieved by using evolutionary process to explore the search space,

and a selection process that uses a combination of the degree to which a candidate solu-

tion is dominated and an estimation of density of the Pareto front as an assigned fitness.

An archive of the non-dominated set iskept separate from the population of candidate

solutions used in the evolutionary process, which represents a kind of elitism[30].

3.6 A fast and elitist multiobjective genetic algorithm

(NSGA-II)

In this section, we will present the different characteristics of NSGA-II, that we will

use in the rest of this thesis. The NSGA-II algorithm was proposed by Deb et al[29]. It

incorporates a selection operator, based on a calculation of the distance from overcrowd-

ing (or crowding) detailed in Chapter II, this calculation estimates the density of each

individual in the population. Compared to NSGA, NSGA-II obtains better results on all

the instances presented in the work of K. Deb. The following points make this algorithm

one of the most used today :

• It uses an elitist principle ,e.g. the elites of a population are given the opportunity

to be carried to the next generation.

• It uses an explicit diversity preserving mechanism (Crowding distance ).

• It emphasizes the non-dominated solutions.[9].

3.6.1 Procedure of NSGA-II

1. perform a non-dominated sorting in the combination (Rt) of parent and offspring

populations, Pt and Qt, respectively. Classify them by fronts, e.g.they are sorted

according to an ascending level of non-domination (F1,F2, F3. . . ).
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2. Fill the new population Pt+1 with fronts according to the front raking in which

solutions belonging to the least dominated fronts are selected first. If there are more

solutions in a front that can fit in the new population, then sort the solution in

the front with respect to the crowding distance (a distance related to the density of

solutions around each solution). The greater crowding distances are preferred.

3. Create an offspring population Qt+1 from Pt+1 using crowded tournament selection

( comparing by front-ranking, if equal then by crowding distance), crossover, and

mutation operators[31].

A schema of the procedure can be seen in Figure 3.5:

Figure 3.7: Schematic representation of NSGA-II working principle.

3.6.2 Crowding distance calculating

The Crowding sort of the last front points that could be fully accommodated is achieved

in descending order of their Crowding distance values, and the points at the top of the

ordered list are chosen. The Crowding distance di from point i is a measure of the objective

space around i which is not occupied by any other solution in the population. Here

we simply calculate this quantity di by estimating the perimeter of the cuboid (Figure
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3.6) formed using the nearest neighbors in objective space (We call this the Crowding.

distance)[27].

Figure 3.8: Crowding distance calculation.

Conclusion

Multi-objective evolutionary algorithms (MOEAs) the most general and efficient tech-

niques for determining the optimal Pareto set with a good diversity of points, but the

performance estimation of any MOEA approach cannot be made before its implemen-

tation and analysis of the results obtained. The following chapter is dedicated to the

implementation of the NSGA-II and SPEA2 algorithm designed for the solution of our

problem which is also will describe in the same chapter.
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Chapter 4

Implementation and experimental

results

Introduction

The aim of this chapter is to apply the NSGA-II and SPEA2 algorithms which defined

in chapter 3 to solve a model of CVRP that we will present in this chapter, we will model

the problem of CVRP of our case studied by specifying the set of parameters, then we will

explain the approach, NSGA-II for the resolution of the CVRP, by detailing the different

stages which constitute it, then a brief description of the programming environment which

is Linux as well as the description of the programming language used which is Python.

4.1 Municipal Waste collection problem in Ouargla

city

4.1.1 Definition

In this study, we consider the optimization VRP of MSWs collection problem in Ouargla

city the capital of Ouargla Province located in the southern est of Algeria. Ouargla one of
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the largest municipalities in Algeria with a total area of 2, 887 km2. In addition to other

services, the municipality provides MSWs collection service to all regions in the city (old

city, new city, and villages ).

According to the information given by the municipal of Ouargla and Public establish-

ment for the management of technical landfill centers: The daily amount of solid wastes

(residential) collected in all regions of Ouargla city is about 150 tons per day.In order to

increase the quality of waste collection service, the municipality divides Ouargla city into

16 regions and provides 41 vehicles with maximum capacity 34 quintals (3400 kg) and

maximum volume 7 m3, each vehicle carrying between 18 to 28 quintals of waste in one

tour, as each truck makes two tours per day, the total tours for the whole fleet equal 110

tours per day. The total number available of garbage containers reaches 240 containers

with 1.1 m3 of volume, distributed more in urban areas, and in the new city.The citizens

can also request a waste collection service on some special events or when the waste is

accumulated in an irregular manner.

In addition to the municipal vehicles, there are private-sector vehicles (no information

available about their number). as well as the number of small garbage bins. Moreover,

no information about some particular kinds of waste, and how they transporting such as

chemical waste, hospital waste, hazardous waste, and waste close to gas stations and fuel

stations, etc.So we will take into consideration household (domestic) waste only.

4.1.2 Problem description

The current collection system relies only on the experience of vehicle drivers who have

a good knowledge of the geography of the area, which has resulted in high operating costs,

and frequent visits to some garbage containers while skipping some others. The problem

involves how to obtain optimum routes for each vehicle in order to reduce the total distance

and total overall costs including the number of vehicles.
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4.1.2.1 Constraints

Waste bins that have a high level loaded characterized as high priority bins which

should be collected as soon as possible.As shown in Figure 4.1, the vehicles are located at

the depot and start their tours toward the allocated waste bins. When the waste collection

vehicle is fully loaded, it must go to the disposal facility to unload the collected waste,

before starting the second tour, when the collection task completed the vehicle must go

back to the depot at the end of the workday.

From the above description, we make the following assumptions :

Figure 4.1: Simplified routing diagram of municipal waste collection.

1. Each waste bin is only collected by one vehicle once.

2. There is one disposal center.

3. There is one depot center.

4. The vehicles must depart from the depot and go to the disposal center twice before

go back to the depot when the task ends.

5. Vehicle fleet is homogenous The location of the disposal center and each waste bin

are known.
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6. The information (including location) sent by the citizens considered as waste bin

that has a high level.

4.1.2.2 Parameters and Variables

The problem formulation considers the following elements:

Table 4.1: The corresponding notation

Notation Units Description
B Set of waste bins (B = b1, b2, . . . , bi, . . . , bn)
V Set of vehicle (V = v1, v2, . . . , vk, . . . , vm)
Qp kg Maximum load capacity of vehicle
L Waste landfill center
TD km Total distance of all vehicles
qi kg Collected waste at waste bin j
dij kg Distance between waste bin i and j
δi The level of bin i sent by sensor
xkij If the vehicle k visits bin j from i, xkij is 1. Otherwise, xkij is 0

4.1.2.3 Model formulation

The objective function can be written as follows:

Minimize
n∑
i=1

n∑
j=1

m∑
k=1

dijx
k
ij (4.1)

subject to the following constraints:

n∑
i=1

m∑
k=1

xkij = 1 ∀1 ≤ j ≤ n (4.2)

n∑
j=1

m∑
k=1

xkij = 1 ∀1 ≤ i ≤ n (4.3)

n+1∑
j=1

x0jk ∀1 ≤ k ≤ m (4.4)
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n+1∑
i=1

m∑
k=1

xki0 ∀1 ≤ k ≤ m (4.5)

n∑
i=1

n∑
j=1

xijk ≤ Q ∀1 ≤ k ≤ m (4.6)

xkij ∈ {0, 1} ∀0 ≤ i, j ≤ n; 1 ≤ k ≤ m (4.7)

Equation (4.1) is the objective function that calculates the total minimum distance trav-

eled by all municipal vehicles. The constraints in equations (4.2) and (4.3), respectively,

ensure that each bin must be visited once by one vehicle only and leave it After get lifted

its load by that vehicle. The constraint (4.4) ensures that all vehicles start from the depot

with an empty load. The constraint (4.5) ensures that all vehicles return to the depot

eventually. The constraint (4.6) ensures that the load of each vehicle must not exceed the

maximum capacity. The constraint (4.7) is the binary constraint on the decision variables.

4.2 Implementation of NSGA-II and SPEA2

4.2.1 Implementation Environment

The implementation was done using Python language. Python is an interpreted, high-

level, and oriented-object programming language designed to be easy to read and simple

to implement. We have chosen version Python 3.7 one of the most stable versions, It

works with most Python libraries without bugs. The script has written in Jupiter note-

book, Jupiter is a browser-based tool for interactive authoring of documents, as well as is

part of the Anaconda environment which include the most popular packages (libraries) of

scientific-computing.

Among packages,we used on our implementation :

• Distributed Evolutionary Algorithms in Python (DEAP): It is the most

important package in our work, It was chosen for the following reasons. It contains
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most of the basic functions required by evolutionary algorithms so that it can easily

construct various of both single and multi-objective evolutionary algorithms and

execute them using multiple processors. It can be used with an abundance of other

Python packages for data processing as well as other machine learning techniques.

• openrouteservice :openrouteservice is a routing API library, it is a free alternative

to Google APIs services

• Geopy : to calculate the geodesic distance between two points, that allow as to

create the distance matrix.

• Folium: to visualize data that’s been manipulated in Python on an interactive map.

• Pandas: for data manipulation and analysis, it offers data structures and array

manipulation operations.

• NumPy: intended to handle multidimensional matrices or arrays as well as math-

ematical functions operating on these arrays.

• Matplotlib : is a Python library for plotting and visualizing data in the form of

graphs.

All computational experiments were carried out on a Lenovo ThinkPad x250 PC with

Intel Core i5-5300U (2.30 GHz x 4) CPU, and 8 GB of memory.

4.2.2 Solution Representation

4.2.2.1 Encoding and Decoding

The solution uses an array in the form of chromosomes. A chromosome is a sequence

of nodes, each chromosome contains a set of Nodes (bins), to be visited by an associated

vehicle. This type of encoding is called permutation list encoding.

For example, there is a depot (0), 10 smart waste bins (1 to 10), and landfill(11):
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Node(i) 0 4 10 3 9 7 2 5 6 1 8 11 0

After decoding obtain an initial solution with three sub-path, each sub-path associated to

a vehicle (v1 to v3):

Sub-path1 v1 0 4 10 3 9 11 0

Sub-path2 v2 0 7 2 5 11 0

Sub-path3 v3 0 6 1 8 11 0

4.2.2.2 Crossover operator

When the initial population generated, we must proceed to the crossover phase which

ensures the recombination of parental genes to obtain a new generation (offspring). To do

this, we choose a two-point crossover.

4.2.2.3 Mutation operator

With mutation probability, the offspring mutated at specific positions in the chromo-

some, which makes them different from its parents (previous generation). This phase also

promotes the idea of population diversity.

4.2.2.4 Fitness evaluation

Since the path has satisfied the vehicle capacity constraint in the course of individual

decoding the fitness function in this implementation has expressed as :

f(x) =
n∑
i=1

n∑
j=1

dij (4.8)

The individual that achieves the lowest distance, is the individual which has the best

fitness.
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4.2.2.5 Terminating Condition

Finally, the stop criterion achieved when the number of generations reaches to maxi-

mum

4.3 Analysis of results

4.3.1 Data presentation

In our work, we have collected previously the coordinates of 97 waste bins, as well as the

public landfill and municipal depot. The waste bins located in six popular neighborhoods,

four urban neighborhoods, and downtown. In addition to geospatial information, we have

added estimated levels of bins. The data represented in an interactive map(Figure 4.2).

Figure 4.2: Location of waste bins in map.

The waste bins colored according to their level (green for level< 35, orange if level in

range [35,75], orange if level > 75).

52



IMPLEMENTATION AND EXPERIMENTAL RESULTS

4.3.2 Parameters setting

We will implement the algorithm in two ways. First, without taking into consideration

the levels of waste bins. Second, we will implement the algorithm with smart waste bins

approach.

4.3.2.1 Parameters of the algorithms

The parameters of NSGA-II and SPEA2 have represented in Table 4.2

Table 4.2: Parameters of NSGA-II and SPEA2

Parameter NSGA-II and SPEA2
Population size 100
Max generation 50/100/200/250
Crossover operator Two-point crossover
Crossover probability (Pc) 0.6/0.7/0.8
Mutation probability (Pm) 0.4/0.3/0.2

The parameters are examined separately, e.g. changing the value for the given param-

eter while keeping the values of the rest of parameters at a constant level. During the

investigation of the effect of each parameter is examined separately. First we have test

the NSGA-II and SPEA2 with ordinary waste bins, then we have fixed the threshold of

collection on 35%, in other words, If the waste bin less than 35%, the vehicle skips the

bin. Here we wish to emphasize that the bins level that was chosen randomly does not

affect the process of the first approach, because trucks weigh waste bins when collecting.

The difference between the two approaches only lies in the prior knowledge of the bins

level and chose some level for taking a decision if the bin visit or note.

4.3.2.2 Capacity constraints

Due to the difference in the density of the materials (plastic, cardboard, glass, organic

materials, etc.), we cannot calculate the weight of waste in a container by volume. Some
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studies show that each container uses only one type of waste. We’ll consider the volume of

waste as its weight, and the maximum volume of the truck is the maximum capacity.We

have calculates the capacity of waste in each bin through following relation:

qi = δi ∗ CB
100 (4.9)

CB is the volume of waste bin(CB = 1.1m3),qi and δi, mentioned in Table 4.1, Qp = 7m3 .

4.3.3 Results and analysis

Table 4.3 and Figure 4.3,represent one of the best solutions we have obtained with

minimum distance 134.16 km.

Table 4.3: Best solution obtained with iteration=100

Vehicle Route
v1 0→ 89→ 43→ 10→ 17→ 83→ 1→ 36→ 18→ 60→ 11→ 13→ 98→ 0
v2 0→ 56→ 28→ 3→ 5→ 62→ 69→ 22→ 88→ 92→ 37→ 98→ 0
v3 0→ 23→ 25→ 4→ 40→ 95→ 80→ 63→ 74→ 98→ 0
v4 0→ 87→ 85→ 84→ 29→ 48→ 66→ 94→ 38→ 76→ 90→ 86→ 98→ 0
v5 0→ 68→ 57→ 39→ 52→ 70→ 64→ 79→ 35→ 98→ 0
v6 0→ 19→ 16→ 96→ 59→ 42→ 41→ 55→ 67→ 98→ 0
v7 0→ 77→ 58→ 61→ 91→ 30→ 20→ 47→ 14→ 6→ 98→ 0
v8 0→ 9→ 49→ 34→ 8→ 53→ 26→ 12→ 33→ 15→ 98→ 0
v9 0→ 46→ 51→ 31→ 54→ 32→ 27→ 7→ 2→ 72→ 98→ 0
v10 0→ 75→ 21→ 73→ 24→ 93→ 98→ 0
Distance(km) 134.16

As shown in Fig. 4.3, the right side represents the obtained sub-routes network plotted

by colors, the left side shows that all vehicles visit the landfill before returning to the

depots.
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Figure 4.3: Plotting the sub-routes in map.

4.3.3.1 Generation number influence

We have fixed the crossover probability (Pc) in 0.7 and mutation probability (Pm) in 0.3

, and we implemented the two algorithms with various iterations.The results represented

in Table 4.5 :

Table 4.4: Result of NSGA-II and SPEA2 with various iterations

NSGA-II SPEA2
Iteration Best Worst Average CPU times Best Worst Average CPU times
50 140.44 151.96 148.82 5min 49s 138.54 151.73 148.63 6min 35s

Ordinary 100 134.16 149.15 146.24 11min 31s 138.36 148.64 145.28 12min 8s
bins 200 134.25 148.04 145.32 18min 57s 137.90 147.33 145.39 24min 37s

250 131.36 146.22 143.82 28min 36s 131.46 145.72 143.32 28min 52s
50 119.76 130.87 127.65 8min 58s 117.68 131.24 128.13 9min 56s

Smart 100 114.78 128.51 125.7 19min 33s 115.78 127.98 125.43 17min 56s
bins 200 114.06 126.81 124.11 36min 40s 112.40 126.38 123.87 35min 53s

250 112.19 121.48 121.22 47min 4s 113.51 124.87 122.92 44min 28s

Table 4.5 shows the evolution of the optimization process while increasing the generation

number. Both studied cases need more than 150 generations to find feasible solutions. We

can see also in the same table that the execution time is increased when we implement the
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NSGA-II and SPEA2 with smart waste bins, for example for iteration 250 the time is 28

min for implementation NSGA-II only, and 47 min for NSGA-II with smart waste bins.

This time increase is due to the fact that we changed the objective function by adding the

waste bin level condition.

Figure 4.4, Figure 4.5 illustrate the evolution of minimize the distance according the

increase of iteration number for NSGA-II and SPEA2 with number of generation=250 :

(a) Minimum distance (km). (b) Average distance (km).

Figure 4.4: Distance evolution versus iteration increment for NSGA-II.

(a) Minimum distance (km). (b) Average distance (km).

Figure 4.5: Distance evolution versus iteration increment for SPEA2.
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4.3.3.2 Crossover probability and mutation probability Influence

we have fixed the number of generations in 200, and we implemented the two algorithms

with different Pc and Pm.The results represented in Table 4.6 :

Table 4.5: Result of NSGA-II and SPEA2 with various Pc and Pm

NSGA-II SPEA2
Pc Pm Best Worst Average CPU times Best Worst Average CPU times

Ordinary 0.8 0.2 132.11 143.80 142.82 25min 18s 135.14 146.08 144.78 30min 17s
bins 0.7 0.3 134.25 148.04 145.32 18min 57s 137.90 147.33 145.39 24min 37s

0.6 0.4 129.60 145.24 143.38 23min 24s 133.48 144.05 142.49 27min 55s
Smart 0.8 0.2 115.15 127.34 124.86 43min 9s 116.11 127.64 124.42 47min 14s
bins 0.7 0.3 114.06 126.81 124.11 36min 40s 112.40 126.38 123.87 35min 53s

0.6 0.4 117.76 125.79 123.14 36min 2s 117.23 125.68 122.94 34min 1s

Table 4.5 shows that best result we have obtained was with Pc=0.6 and Pm=0.4 for

the two algorithms, but with smart bins the best result was with Pc=0.7 and Pm=0.3.

We also note the convergence of NSGA-II and SPEA2 with preference for NSGA-II in

execution time. In the case of smart bins, SPEA2 has little precedence, but in general we

can say NSGA-II faster and efficient than SPEA2.

The lowest average distance is found with the number of generations 250. Therefore,

increasing the number of generations improves the solution quality. Nevertheless, the

execution time will increase. Mostly, NSGA-II and SPEA can obtain an optimal solution

in a reasonable amount of time. For instance, when varying the crossover operators and

fixing the other parameters, several times, for our model, a moderate population size

(100) is enough to converge. Moreover, increasing the amount of crossover probability to

its maximum value is not necessary to converge into optimal solutions. The same assertion

is true for the mutation probability.
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Conclusion

In this chapter, the general problem studied in this note is described and then we pro-

posed a mathematical model for CVRP to solve the problem of municipal waste collection.

In the second section, we have carried out a series of experiments in order to evaluate the

performance of the variants of the MOEAs proposed and to judge the efficiency of the

NSGA-II and SPEA2, and we end with a comparison the results of the NSGA-II and

SPEA2 (with ordinary waste bins and smart waste bins) . We found changes in the num-

ber of generations have an evident impact on the obtained results for the two algorithms,

also that the optimization in the total traveled distance and the number of vehicles is more

efficient with smart waste bins.
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General Conclusion

Planning a series of vehicle routes well is a challenging task in an effort to decrease

collection and transportation costs, the negative effects of waste, and to ensure that all

inhabitants live in a comfortable and healthful environment. Thus, this thesis proposed

a model for waste collection and transportation with the minimized total comprehensive

costs including total traveled distance and number of vehicles used. A CVRP model is

proposed to solve the municipal waste collection in Ouargla city.

A meta-heuristic has chosen by applying the NSGA-II and SPEA2 algorithms, the

efficiency of the NSGA-II is proved by combining it with the smart waste bins idea. The

experimental results proved that smart waste bins can raise the efficiency of waste, as the

distance was reduced obviously when we set certain conditions such as the condition of

skipping the low-level bins.

We used real data such as coordinates, vehicle capacity,bins capacity, etc. except for

waste bins level which created based on information according to the information given by

the municipal of Ouargla based on the truck drivers experience. Although the results were

encouraging we were unable to carry field trials, it would therefore be interesting to an

extension of this work by developing a full smart system for municipal waste management.
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