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Abstract

In this dissertation, we study the well-posedness and the asymptotic behavior of some
hyperbolic-type equations. The first problem focuses on the porous elastic system with
thermoelasticity. To prove the global existence, uniqueness, and smoothness of solution,
we use the semigroup theory. Then, by using the multiplier and energy method, we es-
tablish the stability of the system for the cases of equal and nonequal speeds of wave
propagation. In addition, we illustrate our theoretical findings by presenting some nu-
merical tests.

In the second problem, we use the energy method in the Fourier space, to investigate
the general decay estimates of the solution for the Cauchy problem of a viscoelastic plate
equations.

Finally, we consider the Cauchy problem of a Moore-Gibson-Thompson equation with
viscoelastic term. Also, by using the energy method in the Fourier space, we establish
the general decay rate of the solutions.

Keywords: Porous elastic system, thermoelasticity of type III, exponential stabil-
ity, polynomial stability, plate equation, memory term, general decay, energy method,
Fourier space, Moore-Gibson-Thompson equation, viscoelastic term, decay rate, Fourier

transform.
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Résumé

Dans cette these, nous étudions le comportement asymptotique de certaines équations
de type hyperbolique. Le premier probleme se concentre sur le systéme élastique poreux
avec thermoélasticité de type II1. Pour établir I'existence globale, 'unicité et la régularité
de solution, nous utilisons la théorie des semi-groupe. Ensuite, en utilisant les méthodes
du multiplicateur et de I’énergie, nous établissons la stabilité du systeme pour les cas
d’égalité et non égalité de vitesses de propagation des ondes. De plus, nous illustrons nos
résultats en présentant quelques testes numériques.

Dans le deuxiéeme probleme, nous utilisons la méthode de I’énergie dans 1’espace de
Fourier, pour étudier les estimations de décroissance générale de la solution du probleme
de Cauchy d’équations d’une plaque a terme viscoélastique.

Enfin, nous considérons le probleme de Cauchy d’une équation de Moore-Gibson-
Thompson a terme viscoélastique. Encore, en utilisant la méthode de l'énergie dans
I’espace de Fourier, nous établissons le taux de décroissance générale des solutions.

Mots clés: systeme élastique poreux, thermoélasticité de type 111, stabilité exponen-
tielle, stabilité polynomiale, équation de plaque, terme de mémoire, décroissance générale,
méthode énergétique, espace de Fourier, équation de Moore-Gibson-Thompson, terme

viscoélastique, taux de décroissance, transformation de Fourier.
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Introduction

The elastic with voids:

In the last few decades, the study of problems related to elastic solids with voids has
attracted the attention of many researchers due to the extensive practical applications
of such materials in different fields, such as petroleum industry, foundation engineering,
soil mechanics, power technology, biology, material science and so on. Elastic solids with
voids is one of the simplest extensions of the theory of the classical elasticity. It allows the
treatment of porous solids in which the matrix material is elastic and the interstices are
void of material. In 1972, Godman and Cowin [29] proposed an extension of the classical
elasticity theory to porous media. They introduced the concept of a continuum theory
of granular materials with interstitial voids into the theory of elastic solids with voids.
In addition to their usual elastic effects, these materials have a microstructure with the
property that the mass at each point is obtained as the product of the mass density of the
material matrix by the volume fraction. This latter idea was introduced by Nunziato and

Cowin [66] in 1979 when they developed a nonlinear theory of elastic materials with voids.
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This representation (i.e the mass at each point is obtained as the product of the mass
density of the material matrix by the volume fraction) introduces an additional degree of
kinematic freedom and was employed previously by Goodman and Cowin [29] to develop
a theory for flowing granular materials.

In 1983, Cowin and Nunziato [19] developed a linear theory of elastic materials with
voids to study mathematically the mechanical behavior of porous solids. We refer the

reader to [19, 20, [36] 69] and the references therein for more details.

The theory of heat conduction:

The classical thermoelasticity is concerned with the effect of heat on the deformation of
an elastic solid and with the inverse effect of deformation on the thermal state of the solid.
In the classical linear model for heat propagation, the heat flux is governed by Fourier’s
law of heat conduction, which states that the heat flux is proportional to the gradient of

temperature. i.e

q(z,t) = —0Vo(x,t), (1)
where x stands for the material point, ¢ is the time, 6 is the temperature (difference to a
fixed constant reference temperature), ¢ is the heat flux vector and ¢ is the coefficient of
thermal conductivity. It is obvious that the combination of with the energy equation
for a rigid conductor

V0, = —div q

leads to the parabolic diffusion equation

Qt =C AQ,

where ¢ = /v is the thermal diffusivity. Consequently, because of the parabolic nature

of the equation, the model using the classic Fourier’s law leads to the physical paradox of
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infinite speed of heat propagation. In other words, any thermal disturbance at one point
will be instantaneously transferred to the other parts of the body. This is practically
unrealistic. To overcome this physical paradox but still keeping the essentials of heat
conduction process, many theories have subsequently emerged, such as: Cattaneo’s law,
Gurtin and Pipkin’s theory, Jeffreys law, Green and Naghdi’s theory and others.

By the end of last century, Green and Naghdi [31) [33] 34] used an analogy between
the concepts and equations of the purely thermal and the purely mechanical theories and
arrived at three types of constitutive equations for heat flow in a stationary rigid solid
labeled as type I, II, and III. Consequently, by using these constitutive equations, they
obtained three models, called thermoelasticity of type I, thermoelasticity of type II, and
thermoelasticity of type III. The linear version of the first one coincides with the classical
theory based on Fourier’s law (I]), the second one is known as thermoelasticity without
energy dissipation because the heat equation is not a dissipative process, and the third
one is the most general and it contains the former two as limit cases. For further historical

review on these models, we refer the reader to [14] [15] 32, 3T, 33, [34].

Viscoelastic Materials:

In continuum mechanics, elastic materials and viscous fluids are mostly considered. An
elastic material is a material in which at each material point the stress at the present
time depends completely on the current value of the strain. For an incompressible viscous
fluid, the stress at any given point depends on the value of the velocity gradient at that
point. When a material exhibits both elastic and viscous behaviors it is called viscoelastic
material. Precisely, for viscoelastic materials the stress at any given point depends on

the present values of strain and velocity gradient. Examples of viscoelastic materials
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include, but not limited to, human tissue, disk in the human spine, wood, compressible
gas, metals at very high temperature, concrete, plastic and polymeric materials. Some
viscoelastic materials such as polymers, suspensions and emulsions can not be described
in this way. For such materials, the stress at any given point does not depend only on the
values of strain and velocity gradient at that point, but also on the entire history of the
motion, that is, they posses a memory effect. Therefore, this type of viscoelastic behavior
is modeled by equation with memory. Amongst the early contributors in this field are:
Boltzmann, Maxwell, Kelvin and Voigt.

Consider a bar of uniform cross-section which occupies the unit interval (0,1) C R in
unstressed state. A typical particle in (0, 1) is denoted by z, to describe the evolution of
particles in (0, 1), we let u(x,t) represents the displacement of the particle at time ¢ and

reference position x. The strain € is given by
e(x,t) := ug(x,t), (2)
and the balance of linear momentum takes the form
ug(x,t) = o,(x,t) + f(z,t), € (0,1), t >0, (3)

where o is the stress and f is an external force per unit mass. In 1874, Boltzmann [7]
proposed that for material with memory, the constitutive relation for small deformation
is given by
t
oz, 1) :Be(x,t)~|—/ g(t — 8)(e(z,t) — e, 8))ds, (4)
where [ is a non-negative constant and ¢ is a positive non-increasing function defined on

[0,00). In the case where g € L'(0, 00), equation takes the form

o(x,t) = e(x,t) — /too g(t — s)e(x, s)ds, (5)
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where ¢ := B+ [5° g(s)ds measures the instantaneous response of stress to strain. A

substitution of into yields
t
Uy (7, 1) — gy (z,1) +/ g(t — $)ug,(z,s)ds = f(x,t), =€ (0,1), t>0. (6)

The function u is assumed to be known for any ¢t < 0, that is, we have the following initial
data:

u(x,t) = up(x,—t), uy(z,0) =wui(x) Vre (0,1), Vi <0, (7)

we further assume that f = 0. In order to study system (6)-(7), Dafermos [21, 22]

introduced a history function of the form
n'(s) == u(t) —u(t —s), Vt,s>0.

This allowed him to write problem ([6)-(7) in the form of first-order evolution equation
and took advantage of some powerful tools in the theory of dynamical systems. For more

details on the theory of viscoelasticity, see [71] and [47].

The main results of this thesis:

This thesis contains four chapters.
In chapter [1] we recall some notations and we review some mathematical concepts that
will be used throughout this thesis.

In chapter [2] we consider the following porous-elastic system with thermoelasticity III

Pl — gy — b, = 0, in (0,1) x (0, 4+00)
J¢tt - 5¢xz + bu:r + £¢ + Betm = 07 iIl (07 1) X (07 +OO)
by — 00,0 + Bdy — kbipw = 0, in (0,1) x (0,400),

with the following boundary conditions

w(0,8) = u(1,t) = ¢2(0,1) = ¢o(1,8) = 0(0,£) = 0(1,¢) =0, ¥t>0
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and initial conditions

U($,O) = Up, ut(mao) = ug, LS (07 1)
¢($,O) = ¢0, (bt(flf,O) = ¢1, T € (O, 1)
0(x,0) = 0, Ou(x,0) = 0y, z € (0,1).

We use the semigroup theory to establish the well-posedness, then we employ the multi-
plier method to prove an exponential decay for the equal-speed of propagation case and
a polynomial decay in the case of non-equal speed of propagation. We also give some
numerical tests to illustrate our theoretical results.

In chapter [3] we study a linear plate equation, with a viscoelastic term, of the form

t

uy + A%+ u +/ g(t —s)Au(s)ds =0, ze€R" t>0

0
w(z,0) = ug, u(z,0)=uy,

where u = u(x,t) is the unknown function which represents the transversal displacement
of the plate at the point z and the time ¢. The integral term [; g(t— s)Au(s)ds reflects the
memory effect of the viscoelastic materials, ug, u; are given functions, A = A or A = —1Id,
and ¢ is the relaxation function. We investigate the general decay rate of the solution.
To prove our result, we applied the energy method in the Fourier space to construct the
appropriate Lyapunov functional under the following general condition on the relaxation
function

g'(t) < —n(t)g(t), vt >0 (8)
where 7 is a differentiable non-increasing positive function.
Chapter [4]is devoted to the study of a Moore-Gibson-Thompson equation with viscoelas-
tic term

¢

{ U + oy — Ay — yAu +/ g(t —s)Au(s)ds =0, ze€R" t>0

0
U($70) = Uo, Ut($70) = Uy, Utt<I>0) = U2,

where wug, uy, us are given functions and the parameters «, (5, v are strictly positive
constants. Also, by using the energy method in the Fourier space, we established the

general decay rate of the solution in critical and subcritical cases under the condition ({g]).

6
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Preliminaries




CHAPTER 1. PRELIMINARIES

In this chapter, we recall some notations and review some mathematical concepts that

will be used throughout this thesis.

ou 0*u 3u
=—, Uy = -, Ut = oz
ot T gz T o

ou ou
. vu_(%”%)

Throughout this chapter H denotes a Hilbert space.
Definition 1.0.1 An wunbounded linear operator A : D(A) C H — H is said to be
monotone (—A is dissipative) if it satisfies

(Au,u) >0, Yue D(A).

It is called mazimal monotone if, in addition, R(I + A) = H, i.e.,

Vfe H, Jue D(A) such that u + Au = f.

Theorem 1.0.2 [1()] (Hille-Yosida) Let A be a maximal monotone operator. Then,

given any ug € D(A) there exists a unique function

u € CH([0,+00); H) N C([0, +00); D(A))

satisfying
d
{ ﬁ(t) +Au(t) =0, t>0

u(0) = wo,

Moreover,
du
lu@)I < lluoll and ||| = [ Au(®)]| < [l Auol| Yt = 0.




1.1. FUNCTIONAL SPACES

Theorem 1.0.3 (Lax-Milgram) Assume that a(u,v) is a continuous coercive bilinear

form on H. Then, given any ¢ € H', there exists a unique element u € H such that
a(u,v) = {(p,v), Yv € H.

Moreover, if a is symmetric, then u is characterized by the property

veH

) = (6,0) = mig {Satv.0) — (9,0)}.
1.1 Functional spaces

1.1.1 Lebesgue spaces

Definition 1.1.1 Let Q be a domain in R™ (n € N), for 1 < p < oo, the Lebesque space

LP(Q) is defined by:
LP(Q) = {u : Q — R, u is measurable and /Q|u(x)|pdx < oo} ,

with the norm

full = [ juta)par)”

In addition, we define L>(Q2) by:
L>®(Q) = {u:Q — R, u is measurable and 3 ¢ > 0 such that |u(z)| < ¢ a.e on Q},

equipped with the norm

|u]|o = €ss sup|u(z)| =inf{c: |u(z)| < c a.e on Q}.
€

1.1.2 Sobolev spaces

Definition 1.1.2 For k€ N and 1 < p < oo. We define the Sobolev space

WhP(Q) = {u € LP(Q), D*u € LF(Q) Ya € N" with |a| < k}

9
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equipped with the norm
1
[l = (Z ||D°“U||p) , 1<p<oo
|| <K

[ellk,00 = max|| D[ oo,
la|<k

where D% is the a-th weak derivative of u which is defined as

[ u@De@) = (1) [ v(@)ela), ¥ C2(9),

lal = a3+ + ap, and
olely

V= Dau = .
8$?1 .. .amgn

The space W*2(Q) is denoted by H*(SY), which is a Hilbert space with respect to the inner
product

(u, v) g :/ > Du(x)D*v(z)dr, Yu,v e H ().

la| <k

Definition 1.1.3 We denote by Wy*(Q) the closure of C°(Q) in WHP(Q).

1.1.3 Fourier space

Definition 1.1.4 Let u € L'(R"), we define its Fourier transform

a(e) = / Cu(x)eEdr, VEERY,

and its inverse Fourier transform

Proposition 1.1.5 [30] Let u, v € S(R"), b € C, a a multi index, and t > 0, we have

10



1.2. SOME INEQUALITIES

1 |afloe < fJully-

)

2. u+v=u+0
3. bu = bi
4. w*v = 0d, where * denotes the convolution product.

5. 0°u(,t) = (i&)*a (S, b).

6. 4 € S(R™), where S(R™) denotes the Schwartz space.

Theorem 1.1.6 [26] (Plancherel’s theorem) Assume that u € L'(R")NL*(R™). Then
i € L*(R™) and

[all2 = [lullz-

Theorem 1.1.7 [30] (Hausdorff-Young inequality) For every uw € LP(R"™) we have
the estimate

[l < llull, (1.1)

whenever1§p§2and%+]§:1.

1.2 Some inequalities

Theorem 1.2.1 (Hoélder’s inequality) Let 1 < p < co. If u € LP(Q) and v € L (),
then uwv € L'(Q) and

[wolly < l[ullpllvlly

1 1
where -+—-= 1.
p D

By taking p = p' = 2, we have the Cauchy-Schwarz inequality.
Y gp =P

11
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Theorem 1.2.2 (Young’s inequality) Let 1 < p < oo and a,b > 0. Then for any
e > 0, we have

ab < ea®? + Cgb”/,

~. Forp=9p" =2, we have

P
P

b2
ab < ea® + —.
4e

Theorem 1.2.3 (Poincaré’s inequality) Suppose that 1 < p < 0o and ) is a bounded

domain. Then there exists a constant C (depending on Q2 and p) such that
lull, < ClIVull, Yue WyP ().
Remark 1.2.4 Poincaré’s inequality also holds for all u € WYP(Q) with

/Qu(x)dx =0

provided that € is bounded.

Lemma 1.2.5 Let g : [0,+00) — (0,+00) be strictly decreasing C' function. Then for
any v € L} (R, ,C), we have

2

ot =9 ) —ve)ds| < [gods (gonye, vezo.  (12)

and
2

[ 9= w) ~v(s) ds| < —g0)(g"ov)(0), vt =0, (1.3

where
(gou)(t) = [ glt—s)left) — ols)Pds

and || is the FEuclidean norm in C.

12



1.2. SOME INEQUALITIES

Proof. Using Cauchy-Schwarz inequality, we have

< ([ ol a9 o)~ wls)las)
< ([ ot =ss) [ g(t = 9lott) ~ os) s
< [[os)ds (g2 0)).

[ att =) wlt) — vl s

It is also obvious, from the above steps, that

C< ([ g s [t - o(t) - vis) s
< —(9(0) = g(t) (g ov)(t)

< —g(0) (¢ 0 v)(1).

[ ot =9) (0~ o(s)) ds

O

Theorem 1.2.6 Assume that n(t) is a positive non-increasing function. Then there exists

¢ > 0 such that

2 [t t -
Hmze—cﬁl [, n(s)ds <c (1 +/0 n(s)ds) , Vvt >0, (1.4)

L (R™)

and

H‘ [l Jy mis)ds

t
<c (1 +/ n(s)ds) , V> 0. (1.5)
Lr(R") 0
Proof. We use direct calculation as in ([78], Lemma 4.24) to get, for all t > ¢, > 0

H‘ ¢[lecIE? Jy ns)ds

7c2tssp ! fCQtssn_
gp(mg) :/§|§1 (|€]€e €l Jy mC )d) d¢ < C/o |5|fp6 plEl [ n(s)d €] 1d]§|

! ¢ 1 C n t
= C/o jg|ftntemerlel Jy s ge) = ¢ /0 €25 Lmerlel® Jy m()ds g ¢

(1.6)
1
<e [ lg
0
1 tptn

Ip+n

- t ds\ 2z ¢
0

c (Yo [t L 2 fy nts)ds ([ ’

<5, (e [nyds) * e haon ([aas) 2l

13
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_ fptn

TR t
Sc/ ,ue2+ “lemerrdy, (/ n(s)ds) ’
0 0
" _ tptn
_tptn [0 oty 2
clep) = [Tl F e ([Cnsyds)

where 1 = [€]? [ n(s)ds. Observe that [°(cpp) ™" ~Le=Prdy = [(2) < oo, where I is

the gamma function. Then we obtain

HW —clf? [ m(e)ds < c</0tn(s)ds)_ V> . (1.7)

Lr(|¢]<1)

It is clear, for any t > ty, that

/o / ds+2/ s)ds > — /to ds—|—2/ s—c—l—;/otns)ds
<1+/0 ()ds).

(/Otn(s)ds>_ép;n <c

For t € [0,ty], by virtue of boundedness of n(t) and from (?7) we obtain

So

_ Lptn

<1+/0t77(8)d3> TV . (1.8)

H RE —cléf? [, n(s)

< C/lmz(“’;”)1eclp5|2d|£‘ _ C/l‘€|2(@gn1)€clp£|2|§|d‘§,
Lr(|¢|<1) 0 0

1
— c/ V(ep;n’l)e’clp”du <cI (fp;—n) < 00,
0

where v = |£|2. Then, for any t € [0, to]

: fptn ; _tptn
H]§|€ —clel? [y < ¢y <1+/ n(s)ds) i <1—|—/ n(s)ds) ’
Lr(J€]<1) 0 0
Ip+n
t T2
<3 <1 —|—/ n(s)ds)
0
This finishes the proof of ([1.4). Using similar steps, we prove (|1.5)). O
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CHAPTER 2. POROUS-ELASTIC SYSTEM WITH THERMOELASTICITY III

2.1 Introduction

The results presented in this chapter have been published in [40].

The basic evolution equations for one-dimensional theories of porous materials with tem-

perature are given by
pwy — Ty =0, Joy —H, —G =0, aby+ q. + Bpw =0, (2.1)

where T is the stress tensor, H is the equilibrated stress vector, G is the equilibrated body
force, and ¢ is the heat flux vector. The variables w, ¢, and 6 are the displacement of the
solid elastic material, the volume fraction, and the difference temperature, respectively.
The positive parameters p, J, and [ are the mass density, product of the mass density by
the equilibrated inertia, and the coupling constant, respectively [13].

Taking into account Green and Naghdi’s theory, precisely the type III, the constitutive

equations are

T = pw, +bp, H=dp,— 0

G = —bw, —Ep, q=—60, — kO, (2.2)

where © is the so-called thermal displacement whose time derivative is the empirical

temperature 6, that is, ©, = 0, and u, d, k, £ are constitutive constants which satisfy
pw>0, £€>0, pué>0b (2.3)

To keep the coupling, the constant b must be different from zero. We substitute (2.2]) into

(2.1) to obtain the following system

PWtt — HWzz — bng = O, in (07 1) X (07 +OO>
JSOtt - 5901:10 + bCUx + 590 + ﬁecfc = 07 in (07 1) X (07 +OO) (24)
aly — 00, + B — kOupw = 0, in (0,1) x (0, 400).
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2.1. INTRODUCTION

For the asymptotic behavior of the solutions for porous-elastic systems, Quintanilla [70]
considered the one-dimensional porous dissipation elasticity

{ PWtt — gy — b%c = 07 in (Oa L) X (07 +OO) (2 5)

J it — 00pe + by + Ep + Top = 0, in (0, L) x (0, 400),
with initial and boundary conditions. He used Hurtwitz theorem to prove that the damp-
ing through porous-viscosity (7¢;) is not strong enough to obtain an exponential decay
but only a slow (nonexponential) decay. However, Apalara [4, B] considered the same
system and proved the exponential stability provided 'Z = i For various other damping
mechanisms used and more results on porous elasticity, we refer the reader to [73, [74), [75] 0]
and the references therein. Recently, Apalara [3] considered the following porous-elastic

system with microtemperature

PWtt — PUWxx — bgpx = 07 in (07 1) X (07 +OO)
JSDtt - &;Dmac + b(ﬂm + 5@ + 691’ = 07 in (07 1) X (07 +OO) (26)
abl; — KOy, + B + kO =0, in (0,1) x (0, 400),

with Dirichlet-Neumann-Dirichlet boundary conditions. He showed that the unique dis-
sipation given by microtemperatures is strong enough to produce exponential stability if

and only if

5
X—z—J—o (2.7)

and that the system is polynomially stable if x # 0.

In the present work, we consider the system (2.4 which can be written as follows

PWtt — PUWga — b(pw - 07 in (07 1) X (O, +OO)
J‘Ptt - &zomw + wa + 690 + Bex = 07 in (07 1) X (Oa +OO) (28)
agtt - 59:{::{: + 590ttx - kgt:ca: = 07 in (07 1) X (Oa +OO)

with the following boundary conditions
w(0,t) =w(l,t) = p.(0,t) = p.(1,t) = 0(0,t) =0(1,t) =0, YVt>0 (2.9)

and initial conditions

w(z,0) = wy, wi(x,0) =w, z e (0,1)
o(x,0) = po, wi(z,0) = ¢, x € (0,1) (2.10)
0(1),0) = 90, Qt(l‘, ) = 01, T € (O, 1)




CHAPTER 2. POROUS-ELASTIC SYSTEM WITH THERMOELASTICITY III

We study the well-posedness and the asymptotic behavior of (2.8)-(2.10). By using the
semigroup theory, we prove the existence and uniqueness of the solution. We then exploit
the energy method to obtain the exponential decay result for the case of equal wave
speeds. When does not hold, we prove a polynomial decay result.

This chapter is organized as follows: In Section 2, we state the problem. In Section
3, we establish the well-posedness of the system. In Section 4, we show that the system
is exponentially stable under the condition . The polynomial stability, when the
wave-propagation speeds are different, is given in Section 5. In Section 6, we give some

numerical illustrations.

2.2 Statement of the problem

In order to obtain the dissipative nature of System ([2.8]), we introduce the new variables

u=w; and ¢ = ¢;. So, System (2.8) takes the form

Pl — PUgy — b¢:c = 07 in (07 1) X (07 +OO)
aett - 691:1: + 5¢t:p - ketzx - 07 in (07 1) X (07 +OO>,
with the following boundary conditions
uw(0,t) = u(l,t) = ¢.(0,t) = ¢ (1,t) = 0(0,t) =6(1,t) =0, Vt>0 (2.12)
and initial conditions
u(x,0) = ug, w(z,0) = uy, z e (0,1)
Qb(.T,O) = ¢07 ¢t<x70) = gbla YIS (Ou 1) (213)
0(1’,0) :007 Qt(l’,O) :917 LS (Oa]-)

Since the boundary conditions on ¢ are of Newmann type, we make some transforma-
tion that allows the use of Poincaré’s inequality on ¢. From the second equation in (2.11)

and the boundary conditions ({2.12)), it follows that
2

1 1
%/0 o(z,t)dx + 5/0 ¢(x,t)dx = 0. (2.14)
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So, by solving (2.14) and using the initial data of ¢, we obtain

/01 o(x, t)de = (/01 %(:L“)d:z:) cos( it) + \/g </01 ¢1(:E)d:17> sin it). (2.15)

Consequently, if we let

Se.t) = o(a.t) — [ ool cos<\/§t> - ﬁ ([ orya) sm<\/§t>,

we get

1 _
/ o(a, t)dx = 0, Vit >0,
0

which allows the use of Poincaré’s inequality on ¢. Notice that (u,$,6) satisfies (2.11)),

(2.12) and similar initial conditions (2.13]). Therefore, we work with (u, ¢, #) but we write

(u, ¢, 0) for simplicity.

2.3 The well-posedness of the problem

In this section, we prove the existence, uniqueness and regularity of solutions for the

system (2.11)-(2.13)) using the semigroup theory. Introducing the vector function U =

(u,v,0,1,0,q)", where v = uy, ¥ = ¢ and ¢ = ;. System (2.11)-(2.13)) can be written

as

Ut)y=AU(t), t>0
{ U0} = 0, (2.16)
where Uy = (ug, u1, o, ¢1,00,01)" and the operator A is defined by
v
1
’ (0
AU =| 1 (2.17)
j(d(bxm - bua: - £¢ - ﬁqyc)
q
1

(0]
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CHAPTER 2. POROUS-ELASTIC SYSTEM WITH THERMOELASTICITY III

We consider the energy space
H = Hj(0,1) x L*(0,1) x H}(0,1) x L2(0,1) x Hy(0,1) x L*(0,1),
where
1
L2(0,1) = {u e L2(0, 1)// udz = 0}
0
1
HY(0,1) = {u e HY(0, 1)// udz = 0} — HY(0,1) N L2(0, 1),
0
‘H is a Hilbert space with respect to the following inner product
. 1 ST 1 1
(U, )y = p/ m?d:)erf/ dddr + J/ ¢¢dx+a/ gidz
0 0 0 0

ny /01 Uplipd + 6 /01 (60 + 0.0, ) da + b /Ol(umé + bty )da. (2.18)

Remark 2.3.1 Under the hypothesis ué > b2, it is easy to check that (2.18)) defines an
inner product. In fact, from (2.18) we have

2

1 b 1 1 1
U2, = (U, U)y = p/o v2dz + (5— u)/o dr + J/O w2d$+a/0 Fdr

X 2
+u/01 <ux+Z¢> da:+5/01 (62 +62) da.

Hence, since ué > b*, we conclude that (U, U)H defines an inner product on H and the

assoctated norm || - ||y is equivalent to the usual one.
The domain of A is given by
D(A) = {UeH: ue H}0,1)NH(0,1), veH0,1), ¢€H0,1)NH0,1),
v € HY(0,1), g€ Hy(0,1), (30+kg) € H*(0,1)},
where
H?*(0,1) = {u € H*(0,1) : u,(0) = u,(1) = 0}.

We have the following well-posedness result:
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2.3. THE WELL-POSEDNESS OF THE PROBLEM

Theorem 2.3.2 Let Uy € H, then there exists a unique solution U € C(R,,H) of prob-
lem -(2.13). Moreover, if Uy € D(A), then U € C(Ry, D(A)) N CH (R, H).

Proof. We use the semigroup approach (see [67], [48]). So, we prove that A is a maximal
dissipative operator, that is A is dissipative and that (I — A) is surjective.

Thus, for any U € D(A), we have

(AU, U)y = u/olumvdx—kb/ol gbxvdx—f—f/ol ¢¢dx+5/01 gbm@bdx—b/olux@/)dx
¢ [ ovdr— 5 [ autdr 46 [ bueade — 5 [ vegdr +k [ geads
tu /01 uxvzd:c—i—é/ol wm¢xdx+(5/01 qumderb/Ol vxcﬁda:er/ol Duads
= u/olumvdm—i—b/Ol@vdx—i-(S/ol@xwdx—5/01qxwda:+(5/019qux
—5/01 @qudx+k/ol qqudx+u/[)1 uxvxdx+5/01 @/}x%dx%—é/ol 0,q.dx

1
+b / v,
0
Using integration by parts and the boundary conditions, we obtain
1
(AU, Uy = —k:/ ¢2dx < 0.
0

So, A is dissipative. Next, we prove that the operator (I — A) is surjective.

Let F = (fY f2, 2, f4, 15, )T € H, we prove that there exists a unique U € D(A)

satisfying
(I — AU =F. (2.19)

That is,

u—v=f1

pU — ,U/uxacg_ b¢:v = pf2

p—v=f

T~ §ay + btz + €0+ B = T f* (2:20)

0—q=f°

aq — 00,5 + By — k@ue = afS.
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Using equation (2.20))1, (2.20)s, (2.20))5 in (2.20)2, (2.20)4, (2.20))6, respectively, we obtain
{ pu—ﬂu:cx_b¢x:p(f2+f1)

J§ = 8¢uy + buy +Ed+ B0, = J(f*+ f3) + B2 (2:21)
afl — (6 + k)0p + Boy = a(fS+ f2) + Bf2 —

In order to solve (2.21)), we consider the following variational formulation

B ((u,6,0), (4,6,0)) = L((4,6,0)), ¥ (ii,6,0) €W, (2.22)
where W = H}(0,1) x H}(0,1) x H}(0,1), B: W xW — R is the bilinear form defined
by

1 5 1 N 1 N 1 1 - 1 -
p/o uuda:+u/0 U lipdT — b/o buiidz + (J+£)/O ¢¢d:c+5/0 o + b/o Uupddz
1 ~ ~ 1 1 ~
+3 / (0.6 + ¢:0)dz + / 0fdz + (5 + k) / 0,0, dz
0 0 0
and L: W — R is the linear form given by
p/ (f2+1" ud:zc+/ I+ 1)+ Bf2) ¢dm+/ f6+f5)+6f3)6’dx+k:/ 20, de.

It is clear that W is a Hilbert space with the usual norm and we can easily show, by using
Cauchy-Schwarz inequality, that B and L are continuous. On the other hand, by using

Young’s inequality and pué > b%, we have

b2
B ((u, ¢,0), (u,6,0)) = pllull*+ (n— g)llugcll2 + JlIgl1* + dllgall* + allfl* + (k + )1/

> cll(u, ,0)|5,

for some ¢ > 0. Hence, B is coercive. Consequently, Lax-Milgram lemma guarantees the

existence of a unique (u, ¢,0) in W satisfying (2.22)). By using (2.20]), we have
v=u—fleH;, v =9¢—f€H, q=0—f € H.
o If we take (qg, 6) = (0,0) in (2.22)), we get

u/ol Uy Updr = /01 {p(f1 +fP—u)+ b%} adx, Vi € Hy(0,1).
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2.3. THE WELL-POSEDNESS OF THE PROBLEM

Thus, the elliptic regularity theory implies that
u € H*(0,1)
and, moreover, we obtain

PU — Uy _b¢x :p(fl +f2)

Since f! = u — v, then

PV — Hlgy — b, = pf?;

which solves ([2.20))2.
o If (@,0) = (0,0) in (2.22)), then we have

1 1 - -
5 [ Gutude = [ [J(P 4 £+ 8L = (T + )6 — bus — 50.] e, V6 € HL(0,1)
(2.23)
Here, we can’t use the regularity theorem directly, because ¢ € H(0,1). So, we take

U € H)(0,1) and set

Be) = (a) ~ | "5 (2)de.

It is clear that ¢ € H!(0,1). Then, a substitution in (2.23) leads to

1 ~ 1 -
5 / bV, dr — / rbde, VI € HY(0,1),
0 0

where
= IS B (T 40— bu, - B0, € L(0,1).
So
¢ € H*(0,1)
and

000 = J(f*+ [+ B = (J +€)d — bu, — B0,
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We use f2 = ¢ — 1 and f5 = 0 — ¢ to obtain
J — 8¢py + by + ¢ + Bay = J 2.
This gives (2.20)4. Since —0¢,, = r(x), then
1 1
—5/ braOd — / rédr, Yo € HY(0,1).
0 0
Integration leads to
1 1
—5¢x¢>]é+5/ b, D, d :/ rédr, Yo € H'Y(0,1).
0 0
Since H! C H'. Then, we have
} T 1 -
60,0+ 0 [ ududa = [ rdde, VB € HI0.1)
0 0
and the other hand, we have (2.23)). Thus
6x(1)6(1) = 6:(0)6(0) =0, Vo € H}(0,1).
Since ¢ € H! is arbitrary. Then,
¢x(1) - ¢m(0) =0,

and, hence,

¢ € HZ(0,1).
o If (i1, ¢) = (0,0) in we get, for any € H(0,1),
1 1 1 1 1 -
o [ 00dz+(@+k) [ 0.0.dr+5 [ 6.0dr —k [ filude = [ [a(fo+ £°) + 3£ b
0 0 0 0 0
This, in turns, yields

1 ~ 1 - ~
/0 (6 + k)0, — kf) Bpde = /0 Rédz, Ve HY(0,1),
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where
R=a(f*+ [°) + B — af — B4,

Then,

(6 + k)0 — k7] € H*(0,1).

Since f° =60 — q, then (60 + kq) € H*(0,1) and we have

which solves (2.20))s.
Hence, there exists a unique U € D(A) and satisfies (2.19). Consequently, the well

posedness result follows from Theorem O

2.4 Exponential stability

In this section, we use the energy method to prove that system (2.11)-(2.13) is exponen-
tially stable in the case of equal wave-speed propagation (2.7). To achieve this goal, we

first establish some technical lemmas. We also use ¢ to be a positive generic constant.

Lemma 2.4.1 Let (u, ¢,0) be the solution of (2.11)-(2.13). Then the energy functional
E, defined by

1
E(t) = = /O [puf + J¢7 + ab? + put + 6d2dx + 662 + 2bu,d + ggzﬂ dz, (2.24)

satisfies

, 1
E(t) = —k/o 02 dz < 0. (2.25)

Proof. Multiplying (2.11)) by u;, ¢; and 6; respectively, integrating over (0,1) and using

integration by parts and the boundary conditions, we obtain:
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The first equation

1 1 1
P/ Ugg Uy — ,U/ Ugg Ut — b/ Gpur =0
0 0 0

pd [t 1 1
Sdt 0“1&“‘#/() umut:p""b/ duy =0
d 1 d
) U?d:c+%%/ 2 +b—/ du, x—b/ brtadr =0, (2.26)

The second equation

J/Olszwt—6/()1¢m<z>t+b/01um<z>t+5/l¢¢t+ﬁ/1em¢t:o

th/ ¢t+5/ ¢$¢t$+b/ Uacqst"i_i% Qb ‘f‘ﬁ/ Orupr =0

th/ didz 2%/ ¢deer/ “z¢td$+*£/ ¢*dx +B/ Orordz = 0.

The third equation
1 1 1 1
CY/ 00; — 5/ 0220¢ + 5/ Gz0r — k?/ 02zl = 0
0 0 0 0

2dt/92+5/99m 6/ cbtetﬁk/ 692 =0

2dt/02d +§@/ 92da:—ﬁ/ <Z5t9mdx+k‘/ 62 dx = 0.

Adding up the above identities we arrive at

1d g
S [ Loud + J6F + b} + i + 56 + 62 + 2bou, + §¢*|dw = —k / 02 du.
0

This is exactly ([2.25)). O
Lemma 2.4.2 Let (u, ¢,0) be the solution of (2.11)-(2.13)). Then the functional

t):= J/O1 dprdr — ':b/ol ut(/om qb(y)dy)dac (2.27)

satisfies, for any €1 > 0, the estimate

F{(t)g—g/olqbidx—(g—b:)/ol¢2da:+q/ da:+—/ G2z + (J + = /¢tda:
(2.28)
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2.4. EXPONENTIAL STABILITY

Proof. By taking the derivative of F, using (2.11)) and integrating by parts, we get

Fit) = 7 [ e [ ovude =2 [T [ ody)e =20 [l [ udy)ds
_ J/Ol¢fdx+5/ol¢¢mdx—b/01¢uxd:c—5/01¢2dx—ﬁ/01¢0mdx

-wf%xfwmw—fAVAKMWMM—TAM4[@@@Mx

We use integration by parts and fol ¢dxr = 0 to obtain

/01 umm(/gx ¢(y)dy>dx =— /01 Uy pd (2.29)

and

/01 ¢w(/0x ¢(3/)dy)daj =— /01 b*da.

So,

:J/Olgbfdx—&/l(bidx—b/lgbuxdx—{/1¢2dx+6/01¢x9tdx+b/olum¢dx
+ff&d—/u,/@ )dy)d (2.30)

Using Young’s and Cauchy-Schwarz inequalities, we have
1 5 1
8 [ oubide <5 [ o2du+ —/ 02ds
0 2 Jo
and, for any ¢; > 0, we obtain

—— ut / o (y)dy da:<z—:1/ urdr + — / /gbt dy dx

§€1/ Ut+ /qﬁt dy dx

0

<€1/ ut /@ /dx
0 81

§€1/ utda;—l-f/ prdx. (2.31)
0 g1 J0

Then, by substituting the above inequalities into (|2.30]), we get

2
F{(t)g—i/olqbidx—(&—Z)/Olq§2da:+51/ dx+—/ 02da
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ey 1
J+ = / 2.
+( + 51) ; ¢rdx
[
Lemma 2.4.3 Let (u, ¢,0) be the solution of ([2.11))-(2.13). Then the functional
1 T
Fat) = —a [ 0 ([ o)dy) do (2.32)

satisfies, for any €5 > 0, the estimate

/

FQ(t)g—g/Olqﬁfdvaca / (qzﬁ +u)dx+c(1—|—€2 /9 dr + — /92dx (2.33)

Proof. The differentiation of Fy, using(2.11)), integration by parts, and the boundary

conditions (2.12)), gives

le(t) = —« /01 Htt</0$ gf)t(y)dy)dx — 04/01 0, /OCC Ou(y)dydz
= -4 /01 . /Om o(y)dydx + 5/01 qu(/ox qﬁt(y)dy)dx

k[ Ouae( [ o)v)r o [0 [ putu)ay)

= 5 [ e —5 [ Gdr k[ Gz —a [ 6, [ ouly)aydr

Now, we estimate the terms in the right-hand side of the above identity. Using Young’s

and Cauchy-Schwarz inequalities, (2.11]), and calculations as in ([2.31)), we find

1 B 1 52 1
5/ 0,6udz < f/ G + f/ 02da,
0 4 Jo 6 Jo

k:/ 9t$¢tdx<ﬁ/ $dr + /92dx

and, for any €, > 0, we infer

—ozfet(/xastt(y)dy)dx:—a/let</(f(5¢yy—b L5 Bew)dy)daz
— /Ot@&dx—l——/ O, udx + Jf (/ d:p—l——/ 02
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L, c o, L, c o,
< 52/ gzﬁxdx—k—/ Qtdx+52/ udx+—/ 02du
0 E92 J0O 0

1 1
+52/ ¢2dx+3/ 02d +—/ 02da.
0 €9 JO

So, by Poincaré’s inequality and the above estimate, we arrive at

Fy(t)

<

1 1 1 1
ﬁ/ ¢rdx + aﬁ £ / 9?da:+52/ ¢2d:ﬁ~|—62/ (bidzv—irag/ u’dx
0 0 0

k2/9d+ /e%zx

_6/ ¢td:v—|-c 1+ /9 dx+520/(¢2+u)d37+ /92‘135'

O
Lemma 2.4.4 Let (u, $,0) be the solution of (2.11)-(2.13)). Then the functional
ool 5
F5(t) := —/ Oiuzdr + —/ Opudr (2.34)
p Jo J Jo
satisfies, for some positive constant my, the estimate
Fy(t) < mo/uda:+c/gbdx+c/0 der—/gbdx (2.35)

Proof. Direct computations, exploiting (2.7)) and (2.11]) and integrating by parts, yield

1 1 5 5 /1
H/ Pruydr + H/ Pruypdx + */ Orzpurdx + */0 Opudx

/cbm - “/ s =2 [ gusda = 7 [ p,de —x [ Guds

pJoquﬁouw_pJo pJ Jo

By using Young’s inequality, we get, for any €3 > 0,

Fit) < "ud +53/1 24z + C/1¢2d
E— u..ax —_ u..axr — X
3 - pJ Jo * 2 Jo ° g3 Jo
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2/uda:+ 9d+—/¢2daj

_<z/}_53>/0 udx+ ¢2d:1:+ /6 d:c+—/ grdx.

Thus, by taking €3 small enough such that

m0:<%—53) > 0,

we obtain ([2.35)).
Lemma 2.4.5 Let (u, ¢,0) be the solution of (2.11)-(2.13)). Then the functional
1
Fy(t) == —p/ wude,
0

satisfies
1) g—p/ dx+—/ u d:c—i—c/ S da.

Proof. A differentiation of Fy, using (2.11)), (2.12)) and integrating by parts, gives

) 1 1
F,(t) = —,0/0 uttudx—p/o uldz

1 1 1
= —,u/ UgpUdr — b/ o udr — p/ ufdx
0 0 0

1 1 1
= u/ udx + b/ Qudxr — p/ urd.
0 0 0

Then use of Young’s and Poincaré’s inequalities leads to

IN

. 1 1 ool bl
F,(t) —p/ uidz + u/ uZdz + f/ uZdz + 7/ P*dzx
0 0 2 Jo 21 Jo
1 3u 1 1
—p/ uidx + —/ uldr + c/ P2dx.
0 2 Jo 0

IN

Lemma 2.4.6 Let (u, ®,0) be the solution of (2.11)-(2.13)). Then the functional
1 L ol 1
£) = a/ 06,dx + 7/ egdx+/3/ .0
0 2 Jo 0
satisfies, for eo > 0,

) 1 1
Fi(t) < —5/ 02dx —1—52/ P2 dx + oY + — / 07 dz.
0 0

(2.37)

(2.38)

(2.39)

(2.40)
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Proof. A simple differentiation of Fs, using (2.11)),(2.12)) and integrating by parts, leads
to
1 1 1 1 1
Fi() = a / 02z + a / 00, + k / 0,0, dz + 3 / brabds + 3 / bab,d
0 0 0 0 0
1 1 1 1 1
~ o / 02z + 6 / 0,.0dx — 3 / bralds + k / Ol + k / 0,0, dx
0 0 0 0 0
1 1
+8 /0 b0z + 3 /0 Subydz
1 1 1
- a/ efdx—a/ egdx+ﬂ/ b.0,d.
0 0 0
Next, by Young’s inequality, we arrive at
, 1 1 1 B2
Fi(t) < —5/ egda;+a/ efdx+52/ SRz + —/ 62dz
0 0 0 4eq Jo
1 1 52 1
< —5/ 02dm+€2/ Prdr + (a+ —)/ 02da.
0 0 4eq/ Jo
[

Lemma 2.4.7 Let (u, ¢,0) be the solution of -(2.15). Then, for N, Ny, No, N3, N5 >

0, to be chosen properly, the Lyapunov functional, defined by
L(t) := NE(t) + N1Fi(t) + NoFy(t) + N3F3(t) + Fy(t) + N5F5(t), (2.41)

satisfies, for N sufficiently large,
L~FE (2.42)

and the estimate
1
L'(t) < —)\/ (u? + ¢ + 07 + u? + @2 + 6% + ¢*)dx, (2.43)
0

where X is a positive constant.

Proof. By using (2.41)), taking in account (2.27)), (2.32)), (2.34), (2.37) and (2.39), it

follows that

£ = NEWO] < IV [ oo + 28 [ [ ol o
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1 * 1 5 1
+CYN2/ ‘et (/ ¢t(y)dy)|d:c+ EN:;/ |¢tu:r:’ + *N:a/ |¢xut’
0 0 p 0 J 0
1 1 k 1 1
+p [ Juul +aNs [ 100+ N5 [ 024 BNs [ 16,0,

0 0 2 0 0

By using Young’s, Cauchy-Schwarz and Poincaré’s inequalities, we obtain
1
IL(t) — NE(t)] < c/ (W2 + @2 + 62 +u2 + 62 + 02)da. (2.44)
0
On other hand, by using (2.24) and the fact that

2
pul + P + 2buyd = Ju? + ( f¢+ > (- bg)“?ca

we get
2

b—)ui + 892 + 602 | dx.

pu?+J¢?+a9§+(u—§

=4

Since pé > b2, then for ¢; > 0, we have
1
B(l) 2 o1 [ (uf + 67+ 0F 4+l + 02 + 62)do. (2.45)
0
The combination of (2.44) and ([2.45) yields

which implies

We then choose N sufficiently large to get (2.42]).

To prove ([2.43)), we differentiate £(t), and recall (2.25)), (2.28)), (2.33), (2.35)), (2.38) and

(2.40). So, we have

/ ! 2 Nio 1 2 b2 ! 2 ! 2 ! 2
L < —Nk/ Hmdx——/ ¢xdx—N1(5—— /¢d$+N1€1/ utd:L’+Nlc/ 02d
0 0 0

+i (T + = /gbtdx—Nz—/ ¢tdx+Ngggc/ (62 +u?)du
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+N2C 1~|— /9 dx + Ng/ Qd:r—Ngmo/ uda:+Nc/ H*dx

+N3c/ wadx—i—]\fg—/ gbzdx—p/ utd:t—k—/ u?dx
0 pd Jo 0 2 Jo

1 1 1 2 1
ve [ e — 0Ny [ 02dr+ Nezy [ G2t (ot )N, [ g2
0 0 0 4eq 0

20
We apply Poincaré’s inequality for 6; and take N5 = ENQ, to get
W < — [Nk — Nie— Nae(1+ — Ngc} / 62 du

Nio ) 52
[2 — Naceg — ng—J — c] /0 ¢rdr — lNl (g =

— NgC] /1 d*dx

—(p — Ni&1) /01 urdr — [NQE — Nl(J + 0)1 /0 <bt2d3: —Ng/ 02dx

€1

3 1
—(Ngmo — N2662 - #)/ uidm
0

At this point, we choose the constants carefully. First, let us take ¢ = %,
1
N3 large enough such that
3
OflzNgmg—?Iu>O.

We then choose N; large enough so that

b? ) 6b

O{2:N1(£_7>_N3C>07 g3 = le—(Ng )>0
U Jp

Next, we select Ny so large that

Qy = N2§ — Nl(J+

2CN1

) >0,

then pick 5 small enough so that

a5 = ap — Noceg > 0, ag=as— Noceg > 0.

Finally, we choose N large enough so that (2.42)) remains valid and, further,

1
:Nk—NlC—NQC<1+7)—N3C>O.
€9

and choose
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Therefore, we arrive at
1 1 1 p [
L'(t) < —a7/ 07 dr — aﬁ/ P2dx — a2/ ¢*dx — f/ urdz
0 0 0 2 Jo

1 1 1
—a4/ prdr — a5/ uldr — c/ 02dx.
0 0 0
1 1
We finally use Poincaré’s inequality to substitute — / 02.dx by — / 0?dx and, hence,
0 0

2.43|) is established. O

Theorem 2.4.8 Let (u,$,0) be the solution of -(2.13) and assume (2.7). Then
there exist two positive constants ki and ko such that the energy functional satisfies

E(t) < kie7®! vt >0. (2.46)
Proof. First, by using Young’s inequality, becomes
E(t) < c/o1 (U} + &} + 07 + w2 + 62 + 02 + ¢ da (2.47)
The combination of and gives
L'(t) < —cE(t), Vt>0.

Using £ ~ E, we get

L/(t) < —koL(t), VE>0.

A simple integration over (0,t) yields
L(t) < L0)e ™ Vt>0.

Consequently, (2.46|) is established by recalling £ ~ E. O
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2.5 Polynomial stability

In this section, we prove the polynomial decay for the non-equal speed of propagation case,

that is (2.7)) does not holds. To establish our result, we work with the strong solution of

(2.11)-(2.13) and define the second-order energy functional
1 1
E(t) = 5 /O |puly + J&F, + 0}, + pif, + 007, + 007, + 2bugedy + €67 |dw. (2.48)
Similar calculations, as in Lemma [2.4.1] lead to

1
Et) = —k /0 62 du < 0. (2.49)

Lemma 2.5.1 Let (u, $,0) be the strong solution of (2.11)-(2.13). Then the functional

1 1
F3(t) := BF3(t) — X/{:/O Uy O dr — X5/0 U0 dz (2.50)

satisfies, for any €7 > 0 and for some positive constant my, the estimate

nl ! 2 ! 2 ! 2 661) ! 2 ! 2 ! 2
Fi(t) < —ml/ uxdx+c/ o) dx—i—CQ/ Gmdx—i——J/ ¢xda:'—|—c7/ Gtmd:c—i—&/ uydx.
0 0 0 pJ Jo 0 0
(2.51)

Proof. A simple differentiation of ([2.50)) gives
N 1 1 1 1
Fi(t) = BFé(t)—)d{:/ utzé’mdx—xk/ uthmdx—X5/ utﬁxdx—xé/ UzOpdr. (2.52)
0 0 0 0

By using integration by parts for the second term in the right-hand of (2.52)) and exploiting

" 3, We get

1 1 1 1 1
— Xk:/ Uy O dr = Xk:/ Uiy dr = ax/ wBpdr — 5x/ W0 dr + ﬁx/ U Dypdix.
0 0 0 0 0

(2.53)
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Substituting (2.53) and ([2.36) into (2.52), we obtain

1y =08k o uﬁf 52M L 9Bb T !
F() oJ Jo »dx /Cb 2dx /etx Uy pJ/()¢wdx+aX/o uOyedx

1
—Xk/ UpOpppdr — X(S/ UyBipd.
0 0

Using Young’s and Poincaré’s inequalities, we find

~ 1 1 1 1 1
O L / ugd;c+5/ ¢2d:c+£/ 02 d 4 29 ¢§dx+g7/ wldz
pJ 0 gg Jo gg Jo pJ Jo 0
+ (1+1)/1 070
C s . 0 12 AT

Finally, we choose g4 small enough such that

bBp
— —¢g6 > 0,
my = o) €6

to obtain (2.51]). O

Lemma 2.5.2 Let (u,¢,0) be the strong solution of (2.11)-(2.13). Then the Lyapunov
functional defined by

L(t) := N* (BE(t) + Ey(t)) + Ny Fi(t) + Ny Fy(t) + Nj Es(t) + Fy(t) + NI Fs(t)  (2.54)
satisfies, for N*,N{ ,Ny , N3 ,NZ > 0 to be chosen properly, and for a positive constant A,
B 1
L'(t) < —Al/ (u? + ¢ + 07 + uZ + ¢ + 02 + ¢*)du. (2.55)
0
Proof. By exploiting (2.51)) and the fact ué > b* we get
N*§ 1 b2 1
2 < N*k/ 92dx—N*/<;/ 62 dr —1/ qﬁidm—]\fl”‘(é——)/ $dx
w’ Jo
B 52 1
+N*51/ wldz + Nic / 02z + N7 (J + = / S —Ngg/ ¢fdm+N§5/ 02 d
0 0
1 1
+Njess / (62 + u2)de + Nye(1 / 92 dr — Nim / wldz + Nic / A

ob
+N§cz/ 07.dx + N; 6/ ¢2d:1:~l—N§‘03/ Gttxda:+N§57/ utdx—p/ uldx
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3 1 1 1 1
+?’“‘/ uidm+c/ G — Nga/ egdx+Ngsz/ o2dr + Nz a—l— L / 02da.
0 0 0 0
We apply Poincaré’s inequality for 6; to get

A/ * * * 1 * 2
E(t)g—{N k—Nlc—N20(1+€—2)—N302—N5c(1+€2 U 02 dx
N 1
0

— Njce,— N2 _
* c ! 2 * 52 * ! 2
_ N (J+81)]/0 $2dr — (5N —BNZ)/O 62de

* ! 2 * bQ

C_N552]/0 prdr — [N1(f—'u
1

—(p—Nl*el—Ng‘&)/ uidr — [N;g
0

1 1
—(N3my — Njceg — 3’2,u)/0 udr — (N*k — N§c3)/0 02 dx.

20

Similarly to what we did with £, we take e; = 4]@1*, EN > and e7 = 4]?/_3 and then
choose Nj large enough such that

3

= Nim—E >0

2

and select Ny large enough so that
b2

= N (6—2)=Nic>0
L

and
o obB
=N'=- —(N;— .
15 — ( 7 +¢)>0
Next we choose N so large that
4cN
o :Ngg ~NF T+ Ly >,

then pick 5 small enough such that

* * *
o =aj] — Nyceg >0

and

k * *
o = a3 — Nycea > 0.
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Finally, we take N* large enough such that

1
= N"k — Nfc— Njc(l1+—)— Njc>0,
€2

and

= N*k — Njes > 0.

Therefore, and by using Poincaré’s inequality, we arrive at

1 1 1 1 1
’t)g—oz;c/ 92d:1:—042/ ¢2dm—a§/ ¢2dx—g/ deI—OZZ_/ thzdx
0 0
—a5/ uidr — / 02dx—a8/ 02 dx.

So, there exists A\; > 0 such that
. 1
L't) <=\ / (uf + ¢F + 07 +ul + ¢2 + 02 + ¢*)da
0
O

Theorem 2.5.3 Let (u, ¢,0) be the strong solution of (2.11))-(2.13)) and assume that ([2.7))
does not hold. Then there exists a positive constant ks, independent of t and the initial

data, such that

Bt < 2 (B0 + B(0))

< ; , Vt>0. (2.56)

Proof. The combination of (2.47)) and (2.55)) gives
A1
L'(t) < ——E( ), Vt>0.

We integrate the last inequality over (0,t), and recall that L' is non-increasing, we obtain

/OtE(s)ds < —)\Cl /Ot L'(s)ds

/OtE(s)d CE(0), Ve >0,
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By using the fact tE(t) < J3 F(s)ds we find

Consequently, there exists ks positive such that

Bt < P2 (EO)+ E:0)

< , YVt > 0.
t

This finishes the proof. 0

Remark 2.5.4 We note here that these results hold even for u& = b*. In this case, we
have to redefine the energy as in [27] and adjust our calculations accordingly. In particular,
when =& = b, our system reduces to Timoshenko system with thermoelasticity type II1.

This has been discussed and similar stability results have been established in [57, [58)].

2.6 Numerical Tests

In order to illustrate the theoretical results of this work, we present in this section two
numerical tests. We solve the system (2.11)) under the initial and boundary conditions
(2.13). The system is discritized using a second-order finite difference method
in time and space. For more stability, we implement the conservative scheme of Lax-

Wendroff. for more details, we refer to [I, [35, 28]. We examine the following two tests:

« TEST 1: Based on the result (2.46]) of Theorem [2.4.8] we examine the exponential
decay of the energy (2.24) using the equality condition of the parameters y = 0,

given by (2.7). Here, we take all parameters of the system (2.11)) equal to 1.

o TEST 2: In Test 2, we examine the polynomial decay of the energy (2.24]) using the

parameters condition y # 0, where the parameters of the system (2.11)) are taken
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as follows = 5;p = 1;0 = 0.05; J = 1 and the remaining parameters are equal to

1.

In order to ensure the numerical stability of the implemented method and the executed
code, we use At << 0.5dx satisfying the stability condition according to the Courant-
Friedrichs-Lewy (CFL) inequality, where dt represents the time step and dx the spatial
step. The spatial interval [0, 1] is subdivided into 200 subintervals and the temporal
interval [0, 7] = [0, 1] is deduced from the stability condition above. We run our code for

10000 time steps using the following initial conditions:
1
u(z,0) = 2sin (rx); ¢(x,0) = 2zsin (rx); 0(x,0) = Zx(l —z) in [0, 1]. (2.57)

Under the same initial and boundary conditions mentioned above, we show in Figure
the numerical results of the exponential decay case. Whereas we present in Figure
the results obtained for the polynomial case. We show three cross-section cuts for the
numerical solution (u,¢,0) at x = 0.25, = = 0.5 and at x = 0.75. For all components
of the solution, the decay behavior is clearly demonstrated for both experiments, the
exponential and the polynomial decays. Moreover, it should be stressed that the graphical
presentations are normalized to ensure a clear comparisons. Therefore, we can clearly

compare the energy decay obtained in Test 1 and in Test 2. For this, see Figure 2.3
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u(0.25,¢) u(0.5,1)
1
0 NV\/\/\/\/\/\ANW\‘,
-1
0 0.5 1 0 0.5 1
#(0.25, 1) (0.5, 1)
1
-1
0] 0.5 1 0 0.5 1
0(0.25, 1) 0(0.5,1)
1
\ v
-1
0] 0.5 1 0] 0.5 1

1 o

1 (0.75, 1)

(6] 0.5 1
#(0.75, t)

0 0.5 1
0(0.75, t)

(0} 0.5 1

Figure 2.1: TEST 1: Cross section cuts of the solution for the exponential decay

-1

1(0.25, ¢) 1(0.5,¢t)
1
IW\IWW\/\NVWW o N\J\N\M/V\MNW
1
0 0.5 1 0 0.5 1
¢(0.25,1) #(0.5,1)
1
V\N\/\Af\./"\_/\/\f\ﬂ 0 W\/\/\/\W
-1
0 0.5 1 0 0.5 1
6(0.25, t) 0(0.5,t)
\x\\ 0
_q Do
0 0.5 1 0 0.5 1

w(0.75, t)

(0} 0.5 1
$(0.75, 1)

(0} 0.5 1
0(0.75, t)

0 0.5 1

Figure 2.2: TEST 2: Cross section cuts of the solution for the polynomial decay
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091 1 0.9
0.8 1 0.8
0.7 1 071

0.6
= 0.5
0.4
0.3
0.2

0.1

0] 0.2 0.4 0.6 0.8 1 [0] 0.2 0.4 0.6 0.8 1
Time Time

(a) TEST 1: Exponential decay (b) TEST 2: Polynomial decay

Figure 2.3: Energy function for the Exponential and Polynomial decays

Finally, we noticed that the case x = 0 ensures an exponential energy decay and
therefore the decay of all components of the solution (u,¢,6). While the case x # 0
ensures the polynomial decay. But for some special choices of the system parameters
generating the damping speed, we could obtain an exponential-like decay of the energy

and a damped waves similar to the exponential case.
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Chapter 3

A Cauchy problem of a plate

equation with memory

43



CHAPTER 3. A CAUCHY PROBLEM OF A PLATE EQUATION WITH MEMORY

3.1 Introduction

In this chapter, we consider the following linear plate equation with a viscoelastic term:

t
{ wy + A2u+u +/ g(t —s)Au(s)ds =0, ze€R" t>0 (3.1)
O .

u(x,0) = ug, u(z,0) =uy,
where u = u(x,t) is the unknown function which represents the transversal displacement
of the plate at the point = and the time t. The integral term [5 g(t — s)Au(s)ds reflects
the memory effect of the viscoelastic materials, ug, u; are given functions, A = A or
A = —1Id, and g is the relaxation function.

Evolution fourth-order equations arise in various problems of solid mechanics and in
the theory of thin plates and beams, and the fourth-order elliptic equations appear in
problems related to the Navier-Stokes equations (see [77]).

There are many works in the literature treating the well-posedness and the asymptotic
stability for the plate-type equations. For instance, in [23], da-Luz and Charao studied

the semi-linear dissipative plate equation whose linear part is given by
Uy — Auy + Au+u, =0, 2€R”, >0, 1<n<5, (3.2)

and proved the global existence of solutions and the polynomial decay of the energy. This
restriction on the space dimension was later removed by Sugitani and Kawashima in [76]
by making use of some sharp decay estimates for . Also, Liu and Kawashima [52] dis-
cussed the inertial model of a quasi-linear dissipative plate equation whose corresponding
linear equation is . They obtained the global existence and optimal decay estimates
of solutions. We refer the reader to [42, [43] 60, [61] and the references therein for results

related to plate problems.
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For the memory-type plate equations, Liu and Kawashima [51] considered the following

linear plate equation with memory term:
t
Uy + A%u 4 u +/ g(t —s)Au(s)ds =0, z€R" t>0, (3.3)
0

together with initial data and obtained the solution formula (3.12) below and decay
estimates of solutions by employing the energy method in the Fourier space. Furthermore,

they studied the following semi-linear problem:
t
i+ A2+ u +/ gt — 8)Au(s)ds = f(u), z€R", t>0, (3.4)
0

and proved global existence and decay estimates of solutions by using the energy method
in the Fourier space and the contraction mapping theorem, where, for both problems (3.3)

and (3.4), the positive memory kernel g € C?([0, +oc)) N W2! ([0, 4+00)) and satisfies

—aglt) < 9'(0) < —eag(0), 19"(0] < caglt) and 1= [ gls)ds =5, (35)

for any ¢t > 0 and for ¢; > 0 (i = 0,1,2,3). Recently, Liu and Ueda [53] studied the

following linear plate equation with memory
t
Uy + A%u 4 u — / gt —s)u(s)ds =0, zeR", t>0, (3.6)
0

and established the decay estimates of solutions by applying the energy method in the

Fourier space, where g € C?([0, +00)), satisfying

—ag(t) < 40 < —erglt), lg"(0)] < cag(®) and 1= [ g(s)ds 0, (37)

for any ¢ > 0 and for ¢; > 0 (¢ = 0, 1,2). Furthermore, taking advantage of the technique
of spectral representation and spectral analysis, they found the asymptotic profile of
solutions when the memory kernel g is an exponential function and the space is of one

dimension. Similarly to [51], the decay structure in [53] was also of regularity-loss type.
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For other studies on the Cauchy problem for plate equations with memory term, we refer
the reader to [49] 56], (50, [I7] and the references therein.

It is known that the memory kernel ¢ is directly related to wether and how the en-
ergy decays. For a wide class of relaxation functions, Said-Houari and Messaoudi [72]

considered a viscoelastic wave equation in R™ and a relaxation function which satisfies

g'(t) < —n(t)g(t), (3.8)

where 7 is a differentiable non-increasing positive function. They established a general
decay result. Very recently, in [41], we imposed also on the relaxation function and
obtained a general decay result for the Moore-Gibson-Thompson equation with a memory
term in R™. A natural question arises in dealing with the general decay of plate equation
in the presence of a memory term is

e Can we get a general decay result for the viscoelastic plate equations and
similar to [72] and [41]?

The aim of this chapter is to answer the above question for a large range of memory
kernels. To prove our result, we use the idea developed in [72] with some modification
dictated by the nature of our problem. We, first, apply the energy method in the Fourier
space to get the pointwise estimates for the Fourier image (see the estimates and
below), then use these estimates, the Plancherel theorem and some integral esti-
mates to establish our main result. This chapter is organized as follows: In Section [3.2]
we present our assumptions and the solution formulae introduced in [51] and [53]. In
Section we use the energy method in the Fourier space to construct an appropriate
Lyapunov functional and obtain the required estimate for the image of the solution in the
Fourier space. Section is devoted to our main decay estimates for the two problems,

in addition to two examples to illustrate our general decay results.
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3.2 Preliminaries and assumptions

In order to establish our result, we make some assumptions on the relaxation function g.
Precisely, we assume that

(A1) g : [0, +00) — (0,+00) is a strictly decreasing C'! function satisfying
+oo
1—/ g(s)ds =1>0.
0
(A2) There exists a positive non-increasing differentiable function 7(¢) satisfying:
g'(t) < —n(t)g(t), t>0. (3.9)
Let £{f} denote the Laplace transform of f defined by
S} = [ e b,

and £7! denotes its inverse transform.

By taking the Fourier transform of (3.1)), we get the following problem

t —
{ u + (1 + [€|Ha +/0 g(t —s)Au(s)ds =0, £e€R" t>0 (3.10)
ﬁ(fao) = o, ﬁt(f,O) = 1,
where
— | —|¢Pa, for A=A
Au = { —1, for A= —1Id. (3.11)
3.2.1 Solution formula
By the Duhamel principle, the solution of the problem ([3.1)) can be expressed as
| Gh(t) xug+ Hi(t) xwq, for A=A
u(t) = { Go(t) x ug + Ho(t) xuy, for A= —Id, (3.12)
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where * denotes the convolution product and Gy(z,t), Hy(z,t), Ga(x,t), Hy(x,t) are given

by
Gi(e.t) = b(e)e! [ T |»sr22{g}<z>]
(g, 1) = ()™ [ FSENTIE - |5|2£{g}<z>]
Ga(:1) = d(e)e™ [ T |g|i - g{g}@)]
Hy(g,t) = 5() e [ T yai - g{g}@] ’

where d(x) denotes the Dirac delta function. The existence of the fundamental solutions

G1, Hy, G5 and H, is proved in [51] and [53].

3.3 Energy method in the Fourier space

3.3.1 Case A = A:

Using (3.11)), we have Au = —|¢|?4.

Lemma 3.3.1 Let u(&,t) be the solution of (3.10) and assume that (A1) and (A2) hold.
Then the energy functional Ey(t), defined by

Bu(t) = Ba(e0) = 5 [l + (1+ 1l = I [ gl)ds) P +1¢Pg 0 a)(0)], (3.13)
satisfies
Bt =S8 (g o) (t) — g0]aP?) <0 (3.14)

Proof. By multiplying the equation (3.10) by @, and taking the real part, we find

1do (i) d

t _
>l ol - |£[2Re/0 gt — 8)a(s)fieds = 0. (3.15)
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The last term in (3.15)) is estimated as follows:

2
§1>d N oV 2 15‘2/ 2
L0 gte— 9)1ate) — i) Pds — 55 [ g(s)as L
[ A8) — difs) 2
- ), 9= s)lalt) —a(s)[ ds
§Pd, [P € d (/t A2>
=52 £) — oo ) — = d
" gonn) ~ (g o — L ([ g(s)asia
+ Kl gy ap
2
By inserting the last equation in (3.15)), we get (3.14]). O

Remark 3.3.2 Under the hypothesis (A1), it is easy to see that the energy functional
(3.13) is non-negative. In fact, from (A1), we have

L€ = 6P [ gls)ds = 1+ lelt =l [ glo)ds, ez 0
> 1+ [E[f = [€)? = (1 [¢*)* + g > 0. (3.16)
Lemma 3.3.3 Under the assumption (A1), the functional Fy defined by
Fi(t) := Re(i,1) (3.17)
satisfies, along the solution of and for any 61 > 0, the estimate
Fi(t) <l = (1416l = 167 [ o(o)ds e ) aF + 5l go D). (318)
Proof. Taking the derivative of F}, exploiting , and Young’s inequality, we obtain
Fi(t) = Re(tu0) + |a]* = —(1 + [¢[)]al® + |§\2Re(a/0 g(t — s)a(s)ds) + ||*

= (1 €Al + 1€ Re (7 [ gt = s)(a(s) — a)ds) + P1of [ gls)ds +1af

49



CHAPTER 3. A CAUCHY PROBLEM OF A PLATE EQUATION WITH MEMORY

= = (1416~ 162 [ g(s)ds) [aP + IeP Re( /Og<t—s><a<s>—a<t>>ds)

< i = (1161t = 1€ [ oto)ds = 8iel?) ol + 416 [ o = s)(ats) — a(e))dsf
We then use (1.2)) to arrive at ((3.18)). O

Lemma 3.3.4 Let 4(§,t) be the solution of (3.10) and assume that (A1) holds. Then,
the functional Fy, defined by

Fy(t) == —Re (at / gt — $)(i(t) — a<s))ds) (3.19)

satisfies, for any ds, 03 > 0,
/ 4 2 ! ~12 ! ~ 12
Fy(t) < b (1 1€~ I [ g(ods ) 0l = ([ g(s)ds = 00
0 0

ve(ler+ M) gonin - G oo, 320

Proof. By exploiting (3.10]), we have

t
—Jadf? [ gls)ds

_ <1 " \£|4 — 16 [ g()ds ) Re (a [ g(t = )(E(0) — as))ds ) — il [ g(s)ds
gl — $)(at) — a(s))ds

Using Young’s inequality, Lemma and (A1), we obtain

Fy(e) <ba (1 Iel* = 16 [ g0)ds ) 1aF + 5= (14161~ [€F [ g(s)ds) (g )0

+elePloo o) — ([ glhds — )l — L2 0 1)),

which completes the proof. 0J
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Lemma 3.3.5 The functional Ly, defined by

Ly(t) = N(1+ €[ Ea(t) + [EPFi(1) + Nil€PFo(t), (3.21)
satisfies, for a suitable choice of positive constants N, Ny,

Ly~ (1+[€[ME. (3.22)

Proof. First, notice that

4N £ 2 2 ! = =

MND—NO+KHENM§E\de@HJWKwRdWAg@—@@@—ﬂ@D%%

By Young’s inequality and Relation (|1.2]), we get for any e > 0,

L1(t) = N(1+ ¢ Ex (¢)]
1+N1 eléf2]aq? + ;‘52'@'2 (t—S)( (t) — a(s))ds

eléf?af? + gme+;wa@omm.

<

< 1—|—N1

On other hand, from (3.16]), we have

€ <1+ Il = Il [ g(s)ds (323)

So, by recalling (3.13)), we arrive at

L1(t) = N(1+ [¢1)Ex(2)

1 N

SEReP R + o (1160 (6P [ (s)ds) o + e 0 0)(0)
4

glgN%u+m%mP LR (e — it [ o %>M2

+ 1+ g eP(g 0 )0

SCE,Nl(]‘ + ‘5’ )E

CN1

Consequently, by choosing N sufficiently large (N > c. n,), (3.22)) is established. O
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Theorem 3.3.6 Let @ be the solution of (3.10). Then, for any ty > 0, there exist two

positive constants ki,ky such that

Er(t) < ki By (0)e 72 © fyneds gy >y (3.24)

€I
1+ (¢

where p1(§) =

Proof. From (3.21)), we have

L5(t) = N(L+ €[ EL () + [€PF(1) + NilEPE (). (3.25)

Recalling (3.14)), (3.18), (3-23), (3.20), and noting that [£|> < (1 + [£]*), we obtain

B < S o), (3.26)

Fi(t) <1l — (1= 8) (1 Il = €7 [ glo)ds) aF + 51+ €Y g o a)le),  (3:27)

and

Ey(t) <65 (1+ €'~ 16 [ o(s)as) 10 = ([ g(s)ds — lanf
e+ 512><1 e go o - E20+ g0 oW, (329

Substituting (3.26))-(3.28) into (3.25), we get, for any d;, da, d3 > 0,

£1(0) < = (M0( [ g(o)ds = ) = 1) Pl = (1= 61 = 828 (14 [¢]* = IeP [ als)as)

<Pl +e (M1 + £) + 5 ) P+ ) g 0 )0

N g(0)N;

(5 (L + 161) (9" 0 a)(2). (3.29)

Let go = [i° g(s)ds and take 0; = i, 0y = ﬁ, 03 = N%, to find, for any ¢t > tq

L1(t) < - (Nigo — 2)I¢P |ut|2—(1+|s|4 6 [ o(s)as ) ¢?/a?
FemleP( + e o )0 + ( — LU NDIEP(+ g o D). (3.30)
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Now, we choose N; large enough such that
ng() —2>0,

then, select NV so large that (3.22)) remains valid and, furthermore,

N 9(0) 2
— — 22N .
2 TR >0

Consequently, becomes, for a positive constant A
£0) < = Ne [l + (1+ Il = I [ g()ds ) [al? + 1€ 0 2)(0)] + Nel (g 0 )0
+eleP(1+ €M) (g oa)(t), VE > to. (3.31)
So, from and by using [£[* < (1 + [£]*), we arrive at
Ly(t) < =MIEPE() + cl€P(L+ [E[) (g o) (t), Vit > to, (3.32)

for some A; > 0. Multiplying the last inequality by 7(t) and using (A2) and (3.14)), we

get

N(OL () < =Mn()EPE() + el (1 + [€]") /Otﬁ(t —s)g(t — s)la(t) — a(s)|*ds
< —An(B)[EPE () — clgP(1+ €[ (g 0 a)(t)
< —Mn(OEPEL(E) = Ao(1 + €[ EL(), VE > to,
for some Ay > 0. Recalling that /() < 0 and setting Ly () := n(t)L1(¢)+ Ao (1+[E[*) By (1),

we get

Ly(t) < —Mn(b)|EPEr (), VE >t

Since n(t) is bounded, we deduce that

Ly(t) ~ (1+ €] Ev (D). (3.33)
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Consequently, for some ko > 0 we get

€2

L (t) < —k
1()— 21+|£

‘477(75)L1(t), Vt > t. (3.34)
Integration of the last inequality over (t,t) yields
Li(t) < Ly(to)e " © Jiy n(s)ds
< Ly (0)e 2 © Jon)ds vy > g

By exploiting (3.33), estimate (3.24)) is established. O

Remark 3.3.7 The estimate (3.24) remains true for any t € [0,to], by virtue of bound-
edness of n(t) and py(§). Thus, we get

A

Er(t) < ki By (0)e 201 @ o n9)ds gy >, (3.35)

3.3.2 Case A = —1d:

Using (33.11)), we have Au = —1. Repeating the same steps in the previous subsection, we
easily prove the following lemmas:

Lemma 3.3.8 Let u(&,t) be the solution of (3.10) and assume that (A1) and (A2) hold.

Then, the modified energy functional Es(t), defined by

Bo(t) = Bale,0) = 5 [Ja + (1+161' = [ gs)as) lal + goi)n)], (330
satisfies
By(1) = 5 ((9' 0 0)(1) — (1)) <0 (3.37)

Lemma 3.3.9 Under the assumption (A1), the functional (3.17)) satisfies, along the so-
lution of (3.10) and for any d4 > 0, the estimate

C

R0 <laf - (14161t~ [ o)ds = 6) [aP + Sgo D). (339
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Lemma 3.3.10 Let u(&,t) be the solution of (3.10) and assume that (A1) holds. Then,
the functional (3.19)) satisfies, for any 05,06 > 0,

t t
Fyt) < o (1416 = [ g(o)ds) [0l = ([ gls)ds = 8s)auf
1+ ¢ . 0),, .
+c 1+i (gou)(t)—ﬁ(g o @)(t). (3.39)
05 44
Lemma 3.3.11 The functional Ly, defined by
Lo(t) = K (14 [E[)Es(t) + €] Fu(t) + K€ Fa(b), (3.40)
satisfies, for a suitable choice of positive constants K, K,

Loy~ (14 |€]Y)2E,. (3.41)

Proof. The proof is similar to (3.22)). By Young’s inequality, (1.2)) and (3.36)), we have

A K t
£a6) — K1+ 161 Ba(0)] < = elel il + o (116l = [ g(s)ds) la?
K
+ el (g )t
< TR el + B+ g o i)

+ WHEDR (1 g [ goyas)

< Cs,K1(1 + ’£|4>2E2'

Consequently, by choosing K sufficiently large (K > c. k,), (3.41)) is established. O

Theorem 3.3.12 Let 4 be the solution of (3.10). Then, there exist two positive constants

ks,ks4 such that

A

Bo(t) < kgBy(0)e k2O yne)ds  yp > (3.42)

€I

where pa(§) = (1+ |92
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Proof. It’s clear that

00 t t
=1 —/ g(s)ds <1 —/ g(s)ds < 1+ |¢* —/ g(s)ds. (3.43)
0 0 0
[
From (3.37)), (3.38)), and (3.39)), taking 04 = 1 ve infer
U 1 JASRP
(1) < L o)1) (3.44)
t l
A <P - (141 [aas - {)laP+gono. G

and
Fyt) < 8 (14161 = [ gto)ds) 1o = ([ g(s)ds — bl

9(0)

el + )1+ g (g o)1) - A6

05
Combining (3.44))-(3.46)), and using (3.43), we get, for any J5, dg > 0,

(¢' o @) (t). (3.46)

£3(0) < = (Kol [ a(e)ds =) = 1) €0 = G = 850) (1+16l* = [ as)ds) el

1 . K ¢g(0)K A
e (R4 2 +1) 0+ 00 + (5 — LI+ 92 0 ).
(3.47)
Let go = fi° g(s)ds and take 05 = ﬁ, 0g = K%, to find, for any t > tg
/ ~ 1 t ~
£4(t) < = (Kugo = DIEMal® — 5 (1 1€l = [ g(s)ds ) I¢*lal
" K g0 s
Fea (I on 0 + (o — 2K+ onn.  (348)
Now, we choose K large enough such that
Klg() —2> 07

then, select K so large that (3.41)) remains valid and, furthermore,

K 9(0) 2
— =K .
5 1 >0
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Consequently, (3.48]) becomes, for a positive constant A,
t
£y(t) < ~Nel* [l + (1 1€ = [ g(s)ds) [0 + (g 0 a)(1)] + Ael* (g o 1))
Hc(1+ €)M (g o @)(t), Yt > to. (3.49)

Repeating similar steps as in (3.31)-(3.34)), taking in account (3.35)), we get the estimate
B12). 0

3.4 Decay estimates of problem (3.1

In this section, we discuss the decay estimates of solutions for the Cauchy problem (3.1)).

Theorem 3.4.1 Let r be a non-negative integer. Assume that (A1) and (A2) hold and
that
Uy = (Ul, Ug, AUO)T € HT(Rn) N LP(RH)

Then U = (ug,u, Au)T satisfies, for allt > 0 and 1 < p < 2, the following decay estimates

o For the case A=A in (3.1)):

k 4
bl t

Nl

1 1
5(5—3

t ey .
IV U@l <€ (1+ [ n(s)ds) Vol C (14 [ n(s)ds) * IV Vpll,
(3.50)
o For the case A= —1Id in (3.1)):
‘ t —5G-3)-f : =y

IV U@l <€ (1+ [ n(s)ds) [Vl € (1+ [ n(s)ds) " IV*+oll,
(3.51)

where C' is positive constant and 0 < k+ 0 <.

Proof. The energy associated to (3.10) is

By = < (1,2 + Hlal? 3.52
(1) = 5 (& + 1+ lg)af) (3.52)
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Noting that |U(£,1)]> and E are equivalent, and E(t) < cE;(t), i = 1,2, and ¥Vt > 0,

then, by applying the Plancherel theorem and exploiting (3.35)) and (3.42)), we find

IVU@ I = [ 160 0P < e [ (e Eie, g
<c [ Jefre @l (e, 0) g
R

—c [ JePreT @ om0 e, 0) g
|€1<1

* C/|e |€[2keR2ri(® Jo 023\ Er (¢ 0)2d¢ = I + . (3.53)
>1

o For A = A, we, first, estimate [,. It is clear that p;(§) > %|§|2, for |£] < 1, where

p1(€) is given in (3.24). Then, by applying Holder’s inequality and using (1.4]), we

get

M

[1 < C/ |€’2k67k72|§|2 fgﬂ(s)dslfjo‘?dg <c |§|2k67%\£|2 f(fn(s)ds
1€1<1

([,
2 \Jlel<t

t -2k
<e(t+ [nds) " 1002, (3.54)

where % + :z% = 1. Applying Hausdorff-Young inequality u, we obtain

t —2—k
n<e(t+ [ats)as) vl (3.55)
for 1 < p < 2, where %+z% = 1. Next, we estimate I,. So, for [£| > 1, we have
1
2

21

I, < C/ |§|2ke—6\§|’2fgn(S)d5|UO|2d§
[§1>1

— —cle|2 [P n(s)ds Fy
< csup (|§| 20, —clé| o n( )d>/|§>1|§|2(k+£)|U0|2d§.

[€]>1

21€]1 > 1+ |€]4, therefore pi(€) > and, hence,

Using e* > a+ 1, Vo € R, and [£| > 1, we have

— t . B ‘ _y
sup (‘€’2£€—c§| 2 n(s)ds> — sup <\§]2ef|5 2 [ n(s)ds>

|€1>1 l€1>1

—L
< (fprte )
1€1>1
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—/

< sup (16 (1 eale ™ [ nisjas )
= sup (|§|2 +c /Otn(s)ds> -

l§1>1
—0

< (1 + ¢ /Otn(s)dS) < (1 + /Otﬁ(S)CLS) )

where ¢, = max{1,c;‘}. Thus, we can estimate I, as follows:

-/

t —¢ . t —£
L, <c <1 —i—/ n(s)ds) /l ‘§|2(k+‘3)|U0]2d£ <c (1 +/ n(s)ds) |]Vk”U0H§,
0 ¢>1 0

(3.56)
for k + ¢ < r. Substituting (3.55) and (3.56) in (3.53), we obtain ({3.50)).

« For A= —Id, we prove (3.51). It is clear that ps(£) > 1[¢]*, for |£] < 1, where pa(§)

is given in (3.42)). Then, by applying Holder’s inequality and recalling (1.5)), we get

2

([0
¢ \Jlg<t

t ~%%
<c(t+ [ats)ds) 7 0ol (3.57)

[1 < C/ |€’2k€7%|£|4fotn(s)dslffo‘Qdf <c |§|2k67%\5|4 fgn(s)ds
1€1<1

where % + z% = % Applying Hausdorff-Young inequality u, we arrive at

_k
2

: -3
L gc(1+/0 n(s)ds) A (3.58)

forlSpﬁQ,where%—k}%:l.

1
Next, we estimate 5. So, for || > 1, we have 2|¢|* > 1+|¢]4, therefore po (&) > ML

and, hence,

e R AT
[€]=1

— —ele|~* [P n(s)ds y
< e sup (Jg| e o n) [ g0

l€1>1

Using e > a+ 1, Va € R, and |£| > 1, we have

Nl

— t . 3 ‘ .
sup <|§|—2£€C|§ 4f0 n(s)ds> — sup (|€|462Z|£| 4f0 n(s)ds)

|§1>1 /=1
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SIS

< sup (|§|46615|4 Jo ”(5)d5>

[€1>1
£
t —3
<suw (lgl* (1+alg ™ [ n)as))
[§1>1 0
£
t ~3
=swp (¢ + 1 [ n(s)ds)
[§1>1 0
t -5
< (1 —l—cl/o n(s)ds)
¢ -5
<cy (1+/0 n(s)ds) ,
_£¢
where ¢; = max{1l,¢; >}. Thus, we get
£
t ) A
h<e(1r [Tn(ss) © [ (€00
t e
gc(1+ J n(s)ds) NIATH (3.59)
0

for k4 ¢ <r. Substituting (3.58)) and (3.59)) in (3.53), we obtain (3.51]).

Remark 3.4.2 For p =2, we have from Theorem [3.4.1] the following corollary:

Corollary 3.4.3 Under the same assumptions of Theorem [3.4.1], with p =2 and { = k,

the solution U satisfies, for allt > 0, the following decay estimates

e For the case A = A:

[VIE

IV U@l <€ (1+ [ ns)ds)  (Uolle + VTl

[NIE

<o (1+ [ ns)ds) " Vol (3.60)

o For the case A = —1Id:

e

IV U@l < ¢ (1+ [ n)ds) 10, (3.61)
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3.4. DECAY ESTIMATES OF PROBLEM [3.1]

where 0 < 2k <.

Observe that, for ¢ = [n(% — %)} + 1+ k, where [-] denotes the integer part function, and

using [n(% - %)} +1>n 1% — 3), Theorem [3.4.1| can be written as

Corollary 3.4.4 Under the same assumptions of Theorem |3.4.1, with { = [n(}% — %)} +

1+ k, the solution U satisfies, for allt > 0, the following decay estimates

o For the case A = A:

' —5G2)-3
IV U@l < C (14 [ n(s)ds) (10l + I7*+Coll),

¢ —5(G-3)-3
=¢ (1 +/0 77(5)d3) (IUollp + [1Uoll z-), (3.62)
o For the case A = —Id:
k t ~1G-3)-%
IV U< (1 [ nts)is) (Wolly + [Tollr),  (3.63)

where 0 < 2k <r — [n(%—%)} — 1.

Remark 3.4.5 Notice that our results improve and generalize the decay rates of [51]. See
estimates (4.3) and (4.4) of [21] and our estimate (3.60). For the particular case where
n(t) is a constant, the decay estimate is optimal.

Our decay rates and generalize the estimates (2.33) and Theorem 2.7 of [53).
It obvious that, when n(t) is a constant in , we have the optimality of decay estimate

as Theorem 2.7 in [535].

To illustrate our decay results, we give the following examples:

Example 3.4.6 We consider n(t) = 1, for allt > 0, that is g decays exponentially. Then
(3-50) and (3.51)) yield, for 0 <k+{<r,

IVFU ()]s < C(1+8)"2G7275 Uy, + C(1 + 1) 3| VFHU 5.

IVU ()]l < C(1+ 1)~ 16" D78 Uy, + C(1 + 1) 5|V Uy
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Example 3.4.7 Let g(t) = aiger v > 1and a > 0 so small that (A1) and (A2) are

satisfied. Then ¢'(t) < —n(t)g(t) such that n(t) = 1L+t’ 0 < b <w. Therefore (3.50) and
(3.51) yield, for 0 < k+¢<r,

_necl_1y_k _£
IVFU®)]l2 < C (1 +In(1+14)) 257272 |[Ug]l, + C (14 In(1+ )72 [ VT |2

< C(In(1+8) 257272 U], + C (In(1 + 1) "2 [ VETp 2.

K ~G-9-4 TR
IVFU@)l2 < € (In(1+ )" 7275 [[Uol, + C (In(1 + )77 [V 2.
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Chapter 4

A Cauchy problem for a
Moore-(Gibson-Thompson equation

with a viscoelastic term
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CHAPTER 4. A MGT EQUATION WITH VISCOELASTIC TERM

The results of this chapter have been published in [41].

4.1 Introduction

In this work, we consider the Moore-Gibson-Thompson equation with a viscoelastic term:

t
{ Uy + oy — AUy — yAu +/ gt —s)Au(s)ds =0, ze€R" t>0 (41)
0 :

u(z,0) = ug, u(x,0) =wuy, uyu(r,0)=uy,
where ug, w1, us are given functions and the parameters «, (3, v are strictly positive
constants. The convolution term fj g(t — s)Au(s)ds reflects the memory effect of the
viscoelastic materials.

The Moore-Gibson-Thompson equation is one of the acoustic equations describing
acoustic wave propagation in gases and liquids [59] 39, [38].

Problem arises in modelling the dynamics of high frequency ultrasound waves
taking into consideration both thermal flux and molecular relaxation times [24] [44] 145].
This has various applications in medical and industrial use of high intensity ultrasound
such as lithotripsy, thermotherapy or ultrasound cleaning [45].

There are many works in the literature treating the well-posedness and the asymptotic
stability of the MGT equation. In [39], Kaltenbacher et al. investigated the following

abstract version of the linearized MGT equation
T Ut + QU + C2AU + bAUt = 0, (42)

where 7, a, b, ¢? are physical constants and A is a positive self-adjoint operator on a real

2

Hilbert space H, and showed in the subcritical case, that is when a— 5T > 0, the problem
is well-posed and its solution is exponentially stable; while for av — CQTT = 0, the energy is

conserved. Conjero et al. [I8] showed the chaotic behavior of the system when o — CQTT < 0.
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4.1. INTRODUCTION

Memory-type MGT equations in bounded domains have been studied by many reseach-
ers and various rates of asymptotic stability results of the system have been established
depending on the values of parameters in the equation and the decay rate of the relaxation
functions. For instance, Lasiecka and Wang [46] considered the following equation

t

Tut + aug + bAu; + A Au — / g(t — s)Aw(s)ds = 0, (4.3)

0
where o — CQTT > 0, w stands for three different types of memory and ¢ is a relaxation
function of an exponential decay type. Under specific conditions on g, they showed
that for the subcritical case, the damping mechanism generated from each memory term
gives an exponential decay rate of the energy associated to the equation. While in the
critical case (ab — c*r = 0), they proved that the memory effect dissipates the energy
exponentially only if w = u; + %u Also Lasiecka and Wang [45] looked into equation
in the subcritical case with w = u, and proved a general decay rate of solution under

weaker condition on g. Dell’Oro et al. [24] considered the following viscoelastic-type

MGT equation
¢
U + ouyy + SAu + yAu — /0 g(t — s)Au(s)ds =0 (4.4)

in the critical case (af = «) and for ¢’ + dg < 0, for some constant § > 0. They showed
that the decay is exponential if and only if A is a bounded operator. In addition, they
established the polynomial decay if A4 is unbounded and the initial data is sufficiently
regular. Liu et al. [55] considered in the subcritical case and proved an "optimal”,
explicit and general decay result for the energy associated to for a very general class
of relaxation function. For the MGT equation with infinite history, we refer the reader to
[2, 54] and for other results in bounded domains, we refer to [11], [12] 25].

For the Cauchy problem, Pellicer and Said-Houari [68] looked into an MGT equation
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of the form

TUpt + U — BAU — Au=0, inR" ¢t>0 (4.5)

and showed for 0 < 7 < [ and under appropriate conditions on the initial data, that the
L?-norm of the components of V and those of its higher-order derivatives V¥V, where

V = (us + Tug, V(u + Tuy), Vuy), decay with the following rate
_n_k —c
||vkv(t)||L2(R”) S C(l"‘t) 42 ||‘/O||L1(]R”) —|—C€ t||VkV0||L2(Rn), (46)

for constants C, ¢ > 0. They also established the decay rate for ||u(t)||z2 (and the solution
derivatives) by using the eigenvalues expansion method. See also the very recent work of
Bounadja and Said-Houari [9], Nikoli¢ and Said-Houari [64], [65], and Chen and Ikehata
[16].
A natural question arises in dealing with the general decay of MGT equation in the
presence of a viscoelastic term

e Can we get a general decay result for the viscoelastic MGT equation in R" similar
to that of Said-Houari and Messaoudi [72] established for viscoelastic wave equation?

The aim of this chapter is to answer the above question for a wide range of kernels

(0)

«

) and subcritical case (aff — v > @). To prove our

g and in the critical (af — v =
result, we use the idea developed in [72] with some modification dictated by the nature of
our problem. We, first, get the pointwise estimate for the Fourier image (see the estimate
below), then use this estimate, the Plancherel theorem and some integral estimates
to establish our main result. This chapter is organized as follows: In Subsection [4.1.1]
we present our assumptions and state our main decay result. In Subsection [4.1.2] a brief
discussion of the well-posedness is given. In section 2, we use the energy method in the
Fourier space to construct an appropriate Lyapunov functional and obtain the estimate

for the Fourier image. Section 3 is devoted to the proof of our main decay estimates.
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4.1. INTRODUCTION

4.1.1 Preliminaries and assumptions

In order to establish our result, we make some assumptions on the positive parameters «,
B, v and the relaxation function g. Precisely, we assume that

(G.1) g:[0,4+00) — (0, +00) is a strictly decreasing C' function satisfying
+oo
”y—/ g(s)ds =1> 0.
0
(G.2) There exists a positive nonincreasing differentiable function 7(t) satisfying:
g'(t) < —n(t)g(t), t>0. (4.7)

(G-3) 0 < g(0) < afaf —7).

4.1.2 Well posedness

Before we establish our decay result, we discuss the well-posedness of (4.1]). Let’s rewrite

the equation in (4.1)) as:
Uy + oy — BAuy — yAu + /OO g(s)Au(t — s)ds = /OO g(s)Au(t — s)ds.
0 ¢

By taking the zero history; that is u(z,7) = 0, for all 7 < 0, we obtain the following

problem:
Uy + Qg — AUy — yAu + /OO g(s)Au(t — s)ds =0, reR" t>0 (4.8)
0 )
U(ZL‘, _t) :f($7t)7 ut($70) :u1($)7 utt(x70) ZUQ(ZIZ'), xERny t207
where
_ J w(z), t=0
f(l'at) - { 07 t > 0 (49)

Now, we are in the position to state the existence result of [9].
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CHAPTER 4. A MGT EQUATION WITH VISCOELASTIC TERM

Proposition 4.1.1 Assume (G.1)-(G.3) hold. Let (ug,u;,us) € H = H*(R")x H'(R") x
L*(R™). Then ([A.8)) has a unique solution such that (u,us, ugy) € C ([0, +00), H).

We refer the reader to [9] for a detailed proof.

4.2 Energy method in the Fourier space

By taking the Fourier transform of (4.1]), we get the following problem

t
{ s + g + BIE P+ 7 J¢ 0 — 6P [ glt = 9)i(s)ds =0, §€RT, ¢>0 (410
(&, 0) = o, W(E,0) =101, (&, 0)=ay.

Lemma 4.2.1 Let a(&,t) be the solution of (4.10) and assume that (G.1)-(G.3) hold.

Then the energy functional E’(t), defined by

B0 = £16.0) = 1 + o+ 7= e+ o+ 2= Pl
6P [ aft = IVAa(E) — () + s (a.11)
satisfies
B0 < = (a8 =7 = 20 lePlad? - Gela + aaP
+ Qe o m)(e) ~ el <o, (1.12)

where G(t) = [i g(s)ds.

Proof. By multiplying the equation in (#10]) by (@ + ;) and taking the real part, we
find

RC ((ﬂm ‘l— Oéﬁtt)(ﬁtt ‘l— Oﬂ:l,t)) + |§|2R6 ((Bﬁ't ‘l— ’yﬂ) (ﬁtt —|— Oél:l,t))

1€ Re /Otg(t _ 8)i(s) (i + iy )ds = 0. (4.13)
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4.2. ENERGY METHOD IN THE FOURIER SPACE

The terms in (4.13) are estimated as follows:

The first term

N N = 1d
Re ((uttt + Ocutt)(utt -+ aut)> 2 di |utt + Oéut’ (414)

The second term

Re ((ﬁﬁt + ’}/ﬁ) ('L:Ltt + Oé’lit)) = 5R€ (ﬁt(ﬁtt + Oé’lit)) + ’yRe ( (utt + ozut))

d
= gdt\ut]2+aﬁ|u \2+ —Re ((ut+au)(utt+aut))
——Re (et + aﬁt))

d d . X
= gdt|ut|2+a5| | + 27 dt|ut+au|2 %Re(ututt)_ﬂUtF
d .. d .

= 2% + (a8 - wmﬁ+;ﬁm+mm—%$MF
(af—~)d . 2 4 2 2
= -V L= 4.1
s gl + (@B =l + 5~ dt!ut+au\ (4.15)

The third term

¢ _ _
—Re/ g(t — s)u(s)(ty + ady)ds
0

— Re /0 t g(t = s)(a(t) — @(s))({ + aity)ds — G(t)Re (a(t) (i + avity))

= Re [ glt — )% ((a(t) — (s))i) ds — G(t) i

+ S [t —s)lat) — ato)Pds = 5 [ o= 9)la(n) - i) Pas

— G(t)Re (2dy) (;G(t)jt\ ik

= Re s, “g(t— s) ((at) — a(s))iy) ds — Re /Otg (t - 5) ((a(t) — a(s))ie) ds

— G + 2L g o 1) (1) — Lo 0 0)(E) — GOk Re (1) + GO
« d .,

~Yamda
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CHAPTER 4. A MGT EQUATION WITH VISCOELASTIC TERM

= Re— [ g(t =) ((a(t) — a(s))i ) ds — Re /Ot (t—s) ((at) — as))i) ds

+ 28 (go)(t) — 2o o 0)(1) — o [C)Re (86)] + (1) Re (i)
=2 (GwaP) + Sgtlar (4.16)

and

d ad . d (GW) . o\ d[(GCH  ,
- G (t)Re ()| - 37 (G)lal?) = - (2(a>|ut+au\ ) + o <2<a>|ut\ )

estimate (4.16)) becomes

—Re /0 "ot — $)a(s) (i + ady)ds = Rejt Ot g(t —s) ((at) — a(s))i) ds
~Re [ gt —s) ((a(t) — a(s))i) ds
o d o

dt \ 2« dt \ 2«
90 1o i = 90 2
+ o |t + ol 50 |G| (4.17)
Substituting (4.14)), (4.15)) and (4.17)) into (4.13)), we obtain
/ _ __@ QAQ_@QA a2 Y20 s
B0 = - (o817 52) gpla - L0 ler -+ atl + §ePls'o ()
t _
+€[2Re /0 g(t - s) ((a(t) — a(s))) ds. (4.18)
We apply Young’s inequality to the last term in (4.18)) to get
t _
Re / g(t—s) ((@(t) - a@))at) ds (4.19)

< / V=gt = s)/=g'(t = s) ((@(t) — a(s))a) ds




4.2. ENERGY METHOD IN THE FOURIER SPACE

I/\

< onm + 10

By inserting the last inequality into (4.18)), we get (4.12)).

1 / "(t — s)|a(t) —ﬁ(s)|2ds+; </Ot —g'(t—s)ds) |1, |2

Inspired by [68], we introduce a functional and establish the following:

Lemma 4.2.2 Let 4(,t) be the solution of (4.10) and assume that (G.1) and (G.3) hold.

Then, the functional Fy, defined by

Fl(t) = Re ((/&tt + Oéat)(l:bt + Oél:l/)) 5

satisfies, along the solution of (4.10)),

N N ! N N N
Fi(t) < i + vl = [P+ i + elef? + “E g2 (g 0

a)(t), vt > 0.

Proof. Taking the derivative of F; and exploiting (4.10]), we obtain

Fl/(t) = Re ((@ttt + Oéatt)(ﬁt + OCIZL)) + |ﬁtt + Oé@t‘Q

=!£\2Re(< Bit — i+ / (t—s) <>ds)(ﬁt+aa>)+yatt+aat12

= —BIEP Re (0l -+ ad) — 16 Re (0l +ad)

_ _ t
+I¢]Re <(ﬁt+aﬁ) /0 gt — 8)a(s)ds ) + | + aviig|?

= —BI¢PRe (i1 (@ + o)) — g|§|2fze (@ + att) (@ + o)

)

(4.20)

(4.21)

_ _ _ _ t
+ g|§|2Re (ﬂt(ﬂt + aﬂ)) + [€]*Re ((ﬁt + a) /0 gt —s)u(s )ds) + i + oty |?

= —(8 = D) Re (i + o)) — L|¢lin + a?

+[¢[2Re ((mma)/o g(t — )a(s )ds) [+ adig]?.

Use of Young’s inequality, (G.1), (G.3) and (1.2)) leads to

(5= ) tePne (it + i) < & (5 1)l

l . .
@\Wlut +Ozu|2

(4.22)
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CHAPTER 4. A MGT EQUATION WITH VISCOELASTIC TERM

and
€2 Re ((at +af) /Otg(t - s)a(s)ds> (4.23)
_ _ t _
— |¢[2Re ((@t +ad) [ glt - s)a(s) - ﬁ(t))ds) + G| Re (i + ad))
— |¢[2Re ((ét + adl) /Ot gt — 5)(a(s) — ﬁ(t))ds) 4 GC(f)|§|2Re (G + @) (i + i)
- @m?fze (fu(t + it))
(t — s) (a(t) — a(s)) ds 2 + 4la|§|2!ﬂt +ad)? + Gg)|€\2|ﬁt +adl?
G >r§|2|at|2 b6l + o
1 e
( Del2(g o a)(0) + o el + anf? + T ela, + aa + O Liepia
a : e
W epigoam + 2L ela + adf + R D jepa (1.21)
Combining these last inequalities with , we obtain . 0

Lemma 4.2.3 Assume that Condition (G.1) holds. Then, the functional
Fy(t) == —Re ((att +ai) [ “g(t— 8) [ + ad)(t) — ai(s)] ds> (4.25)
satisfies, along the solution of and for any € > 0, the estimate
Fy(t) < —(G(t) — ce)|tu + atiy|* + el€)* |y + at|* + ¢ (5 + i) (1 + &) |a?

(¢ o @)(t), Vt = 0. (4.26)

1 i
+cla+ g)!£|2(9 o@)(t) —
Proof. By differentiating Fy, we find
t _ _ _
FI(t) = — Re <(am +adu) [ gt = s) [(@+ad)(t) - ai(s) ds)

~ Re ((att o) /ot §(t - ) [(& + aB)(t) — ai(s) ds)

— ()i + vita]® — g(0) Re ((tir + avity )y ) -
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4.2. ENERGY METHOD IN THE FOURIER SPACE

We then use (4.10) to arrive at

Fy(t) =|¢[* Re ((ﬁut +W)/ g(t =) [( + ait)(t) — ait(s)] ds)
— ¢ Re(/ (t—s)u ds/otgt—s ut+au)(t)—au(s)}ds)

— Re ((utt + ady) / "t —s) {(ut + at)(t) — aﬁ(s)} ds)

— G(t)| iy + ot ]* — g(0)Re ((utt + ocut)ut) ) (4.27)

Now, we estimate the terms in the right-hand side of (4.27)). Using Young’s inequality,

(1.2) and (G.1), we obtain

e Re (B + 1) [ gt~ 5) (8 + a@) 1) — ai(s)] ds
=6 Re (B0, +10)G(0i) + ¢ Re (a(B +92) [ gt — 9) (3(0) — i(5)) ds
W e oe i +

<ol 1B+ vl + €184, + vaf

40(2,82

1662

2

(t —s) (@(t) - a(s)) ds

!5\ lﬁut+’WI2+ !5\ il + - !5\ (goa)(t)

_852
_*|5| |ut+*U|2+*|€| |ut|2+g|£| (g o a)(t)

|§| "+ R IUt+Oéu—Ut|2+*|§|2|u [+ ZIEPlg e a)(0)

262
<5 !5\ [ + ot + (e + )\5! Ja|* + - \5! (g oa)(t). (4.28)

Next,

—lePRe ([ gl = s)a()ds [ gt = ) (@ +ad) (1) - ai(s)] ds)
—|¢*Re ( /0 g(t — s)(@(t) — a(s))ds /O g(t = 8) [(@ + ad)(t) - ai(s)] ds)
_|¢PRe (G(t)a(t) / g(t— 5) [(@ + ad) (1) — ai(s)] ds)
2| [/ ot = s)ate) — asas| -+ Gl re (i [ ot — s)ate) — as)s)

— aG(t)[g]*Re (u gt - )(alt) - 5(8))d8> — G*(t)[¢]” Re(a,)

0
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CHAPTER 4. A MGT EQUATION WITH VISCOELASTIC TERM

2 A 215 12 4 12 N a’e 21512 1 g2 N
<aG(1)|€|7(g o )(t) + e|&|7 || +g|€| (gou)(t)+—8 €174l +g|§| (goa)(t)
a’e 2|A2 C| 2|A 2
+ S5 IePlal? + Sleadl

Ly e N Ll c2re 2 a’e 21~ 12
gc(a+g)|§! (QOU)(t)+C(€+g)|§| || + I3
2

1 . 1 . a’e 1, 1
<c(a + g)|§’2(9 o @)(t) + c(e + g)|f\2|ut\2 + T|f\2 a(ut + i) — -l

1 1
<e(a+2)IEP(g 0 0)(1) + el + 2)IEPladl + SI&P far + atf. (4:29)

Also, exploiting Young’s inequality and (1.3)), we arrive at

 Re ((att +ai) [ "t = 5) [+ aB)(t) — aii(s)] ds)
=—aRe ((ﬁtt + ady) /Ot gt —s)(a(t) — ﬁ(s))ds) — (g(t) — g(0)) Re ((ﬁtt + ozﬁt)ﬁt)

[ gt =9) (at0) - i) ds

2

2
N .2 O
<e |y + adiy +Zg

C
+é "LALtt + Oé’llt‘2 -+ g|ﬁt‘2

<2 |ty + aty|* — O‘Qio) (g o @)(t) + g(l 4+ 1€1%) || (4.30)
Similarly, we have

— 9(0)Re (it + e )iie) < e [ + v + (1 + [¢]?) fl*. (4.31)

Substituting the estimates ([4.28))-([4.31]) into gives (4.26)). O

4.2.1 The case: a(af —v) > g(0)

Lemma 4.2.4 The functional L defined by
L(t) == N(1+ [£P)E(t) + NIEPFu(t) + Na|¢PFa(t), (4.32)
satisfies, for a suitable choice of positive constants N,Ny,No

L~ (1+[PE. (4.33)
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4.2. ENERGY METHOD IN THE FOURIER SPACE

Proof. First, notice that
L(t) = N1+ [EPE®)| < Nil¢l? | Re (i + o) (@ + aid))|

t
AT /0 gt — 8) |( + ad)(t) — ad(s)| ds.

By Young’s inequality and relation (1.2)), we get

. Ny Ny
‘ﬁ(t)_N(1+|f|2)E(t)’ §N1|§|2|utt+aut|2+lef|2|ut+au|2+72|§|2|utt+aut|2
NQCY2

2 t ~ ~ 2 N2 2 A A 12
+ =216l | [ gt = s)(@at) — als)ds| + e i + o
NoG3(t N
+ O ey
N " N N N
< (N o+ N6l [ + e + =[] | + o
. NG (t .
velePloo )0+ 25T D epia
By recalling (4.11]), we arrive at
£(t) = N(L+ [P E)] < el B(t) + ealelF(g o a)(2), (4.34)

where ¢; = ¢1(Ny, N2). We then estimate the second term in the right-hand of (4.34]) as

follows

el (g a)(t) = e [ glt - s) [Vala() - a(s)) +

¢ R 1 A
<algf [ gt —s) Valalt) - als) + —=i| + eilelafds
0 Va
S ClEA(t)
Consequently, (4.34)) yields
L) = N1+ [EP)E®)| < cl E). (4.35)
So, by choosing N sufficiently large we arrive at (4.33)). O
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CHAPTER 4. A MGT EQUATION WITH VISCOELASTIC TERM

Lemma 4.2.5 Assume that (G.1) holds and a(af — ) > ¢(0). Then, for any ty > 0,

there exist constants Ay, Ao > 0 such that the functional L satisfies, along the solution of

(4.10), the estimate

L'(t) < =M i + aial® + €70 + ot + €1%] )] + alé] (g0 @) (£), VE > to. (4.36)

Proof. By recalling (4.12), (4.21)), (4.26) and (4.32), we have

/ N N ! N X
£1(0) < = [WlG(0) = =) = N 6P+t — (- 3: = Noe) el +

2
- [we = Mie = Macte + D] 1+ IePePIa? + [ - 40 i

(L +[€P)(g 0 a)(t) + clé (g 0 )(t), Yt = to.

1
Let go = G(to) and take ¢ = TN to get, for any ¢t > t
2

c . N l 1 N .
£/8) <~ [Nago — (5 + N0 e + i - (MNI - 2) €1l + af?

2
- [we— e - et + 28 1+ PPl + |V - 5]

(L+1€1*)(g" 0 a)(t) + clé]*(g 0 a)(2).
4
Put Ny = Ta and choose N, large enough such that

c 4o
Nggg—(§+7) > 0.

Then, select N so large that £ ~ (1 4 |€ |2)E remains valid and, furthermore,

4 1 24(0
Ne— [22 4ol vong)] 0, N - 990

N2 .
; 5 1 5 Vo>

Consequently, we end up with (4.36)), for all ¢ > ¢, and for two constants A, Ay > 0. O

Theorem 4.2.6 Let 4 be the solution of (4.10) and assume that (G.1)-(G.3) hold. Then

there exist two positive constants kq,ky such that
A A t
B(t) < ki B(0)e O Jont gt > 4, (4.37)

_ o lgp
where p(§) = T+ e[
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4.2. ENERGY METHOD IN THE FOURIER SPACE

Proof. From (4.11]) and (4.36]) we have

A

E(t) < ¢ [+ atu]® + [P |t + ai* + €7 [af* + € (g 0 ) ()],
and

L(t) < =M€ [ + aiu]” + [£ [0 + @i + [P )@ + €[ (g 0 2)(1)]

+A3[€[ (g 0 Q)(t), VE > to.
So, we get, for some Ay > 0,
L£(1) < =MlEPE®) + Asle (g 0 a)(1), V> to. (4.38)

Multiplying the last inequality by 7(¢) and using (G.2) and ([4.12)), we find

MOL() < = An@IEPE@) + Xslel* [ nte = s)gle — 9)la(e) — als)lds
< = An(D)IEPE() = Aslél* (g 0 a)(1)

< = A(OIEPE) — clePE' @), ¥t > to
Recalling that 7/(t) < 0 and setting L(t) := n(t)L(t) + ¢|¢|2E(t), we get
L'(t) < —en(t)EE(), vt = to.

Since 7(t) is bounded, we deduce that

L(t) ~ (1 + [€P) B (). (4.39)
Consequently,
2
L(t) < —ka f|’£‘2n(t)L(t), Vvt >t (4.40)

Integration of the last inequality over (to,t) yields
t
L(t) S L<t0)6_k2p(§) ftO ﬁ(s)ds
< cL(0)e *2r© Joneds g > g

By exploiting (4.39)), estimate (4.37) is established. O
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CHAPTER 4. A MGT EQUATION WITH VISCOELASTIC TERM

Remark 4.2.7 The estimate (4.37) remains true for any t € [0,to], by virtue of bound-

edness of p(§) and n(t). Thus, we get

E(t) < b B(0)e™ 2 Jynds gy > (4.41)

4.2.2 The critical case: a(af —v) = g(0)

We, first, define another functional F in the aim to recover the term —|d,|%. In this case,

(4.12) becomes

E'(t) < ZIEP(g 0 )(1). (4.42)

Lemma 4.2.8 Assume that (G.1) holds. Then, the functional

t _ _
Fy(t) = —Re (at | att = s)@t) - a(s))ds) (4.43)
0
satisfies, along the solution of (4.10) and for eq, €3 > 0, the following estimate

FU(t) < eolfigg +avtig|? — (/Otg(s)ds o, — 53) \ﬁtl2+;(goﬁ)(t)—i(2(g’oﬁ)(t). (4.44)

Proof. The derivative of F3 gives
t _ _ t _ _
FI(t) = —Re (att / g(t — $)(a(t) — ﬁ(s))ds) — Re (at / gt — s)(@(t) - a(s))ds)
0 0
! 12
- (/0 g(s)ds) | Q|
Exploiting Young’s inequality, ((1.2)) and (1.3)), we obtain for 4,5 > 0
/ €2 ~ ~ 12 C ~ ~ 12 9(0) AN t ~ 12
Fy(t) < oty + ally — oty + —(g o @) () +eslu|]” — =—=(g 0 @) () — | | g(s)ds ) |a]".
2 £9 483 0

Then, (4.44) is established. O
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4.2. ENERGY METHOD IN THE FOURIER SPACE

Lemma 4.2.9 Assume that a(afS — ) = g(0). The functional Ly defined by
La(t) = K(1+ D) E() + KPR () + Ko EPR() + KaleP(1+ [€2)Fa(t),  (4.45)
satisfies, for a suitable choice of positive constants K, K1, Ko, K3,
Lo~ (1+[EPE (4.46)
and the estimate

£4(t) < —clél? [l + atl? + |€l2la, + aal® + [¢Pa]?] + cleP(L + [€[2) (g 0 )(2), Ve > to.

(4.47)
Proof. The proof of (4.46) goes similarly to that of (4.33]).
Now, we prove (4.47). Combining (4.42)), (4.21), (4.26) and (4.44), we obtain
2 214 12
L5(t) < = [Ka(G(t) = e2) = Ky = Kaea(1+ [&)] 6 + it
1 .
- (g = B It [Ka(Gl0) - e —20) = Kic — Kaole-+ 1] (11610
a“g(0 0 N
1% = 00 g, - SO ] 21+ 1o 0 )0+l + I )

1 20/ a? 4oy

First, we choose ¢ = ——, 69 = ————— €3 = — and K1 = —.
2K, Ka(LH[ER) T Ky (L [EP) b
Then, we select K5 large enough so that
4
KQgO—(§+Ta+1)>0.

Next, we choose K3 large enough such that

4 1

Ksgo — <2a2 + % + c(5 + 2K§)> > 0.
Finally, select K so large that (4.46|) remains valid and, furthermore
a (a?g(0) 90) ;-
K- — K3+ :
1 ( > g2 i3 ) 70

Consequently, we end up with (4.47)), for all ¢ > . O
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CHAPTER 4. A MGT EQUATION WITH VISCOELASTIC TERM

Remark 4.2.10 FEstimate (4.37)) also holds in this “critical” case.

Indeed, similarly to (4.38]), we get from ,
Lo(t) < —cl€PE() + (1 + [€%) (g 0 a)(8), ¥ > to.
Multiplying the last inequality by n(t) and exploiting (G.2) and ([4.42)), we get
n(t)L5(1) < —cléPn(t)E() — (1 + €7 E'(t), V> to.
By setting Lo(t) == n(t)La(t) + c(1 + [€)E(t), we get
Ly(t) < —cl€Pn(t) E(t), Wt > to.

Since Ly(t) ~ (14 |€]2)E(t), then it is easy to get (A.37).
Moreover, we obtain as in Remark[{.2.7, the estimate (4.41)) in the critical case.

4.3 Decay estimates of problem (4.1

In this section, we state and prove our main result:

Theorem 4.3.1 Let r be a non-negative integer and assume that (G.1)-(G.3) hold and
that

Uy = (Ug + auq, Vug + aVug, Vul)T € HT<RH) N Ll(Rn)
Then, U = (uy + aug, Vuy + aVu, Vu)? satisfies, for allt > 0 and 1 < p < 2, the

following decay estimate

t (,1, t
IV U@l <€ (1+ [ n(s)ds) [Vally + Ce™ T[Ty o, (448)
where C' and ¢ are positive constants and 0 < k < r.

Proof. Let

Ea(t) = 5 [l + ot + [P + att]* + €[] (4.49)

N | —
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4.3. DECAY ESTIMATES OF PROBLEM [4.1]

Noting that |U(¢,t)|? and E, are equivalent, and E,(t) < cE(t), ¥Vt > 0, then, by applying
the Plancherel theorem and exploiting (4.41)), we find
IV, 013 = [ P10t OPds < c [ 6P Ea(e, t)d
< e [ [efeon® I e, o) g
Rn
= [ JePhen O Lo (e )
lgl<1
e et O Lot (e 0)Pde = 1+ (4.50)
=1

Now, we estimate [;. It is clear that p(§) > 1[¢]%, for |¢] < 1, where p(€) is given in

(4.37). Then, by applying Holder’s inequality and (1.4, we get

t A
th/|¢%%wme%W§ (4.51)
l€1<1
2
<ec |€|2ke*%2|€|2 fotn(s)ds (/ |00|p’d§> !
2 \Jlgl<1
t -5k )

<o (1 + /0 n(s)ds) 106]12, (4.52)

where % + :z% = 1. Applying Hausdorff-Young inequality, we obtain

t —k—2
no< vl (1+ [nes)ds) (453)

forallt > 0 and 1 < p < 2, where %—l—i = 1. Next, we estimate I5. So, for || > 1, we

1
have 2|¢[2 > 1 + [€]?, therefore p(&) > 3 and, hence,

I < Cemh Ot |0 (¢, 0)fd

|§1>1

< Ce—cfo n(s)ds /RTLK’Qk’UO‘de.

Again the Plancherel theorem yields

I < Ce=eJo 19| |7h |12, Wit > 0. (4.54)
Substituting (4.53) and (4.54) in (4.50]) we obtain (4.48]). O
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Remark 4.3.2 We note here that we have obtained the same decay result for both cases.

Remark 4.3.3 Notice that our result agrees with the result of [9] in the “subcritical”
case and for exponentially decaying relaxation functions. See estimate (3.1) of [9] and

our result when n(t) = 1.

Similarly to [72], the result of Theorem can be further improved and generalised.

For this purpose, we introduce the following weighted space

LY(R™) = {v € L'(R™) such that /Rn(l + |z|)?|v(z)|de < oo} :

Theorem 4.3.4 Let ¢ € N and m € N". Assume that Uy € H"(R") N L“2@+D)(R")
satisfying
/ xy™May™ L xy, " Ug(x)de = 0, Im| =0,1,...,2q. (4.55)

Then, for a positive constant C' and Yk < r, we have

_2ktn_ 2q+1

t 4 2
VUl < ¢ (1+ [ n(s)ds) (100l + 1Vl )
+ Ce o 1 TR 1, WE > 0. (4.56)

Proof. By combining (4.50)), (4.51) and (4.54), we have

VU2 < C/| (€2 el o s 7012 4 Ceme Sy 1O IGRUI2 e > 0. (4.57)
<1

Similarly to [37], we write Uy as follows

n

0o(&) = U(6,0) = |

R

= (cos(x.f) — zq:(—l)j (xg)QJ) Uo(z)dz

R’I’L

e Uy (z)dx = / (cos(z.£) —isin(x.£)) Up(x)dx

- @/n (sin(x.{) - Z(—l)j_lw) Up(x)dx

J=1
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+ /ngj(—l)j (J(I;i;'] Uo(z)dx — i/ng(—l)j_lgf)_];)!%(x)dx.

The last two terms are equal to zero by virtue of (4.55):
/ Up(x)dz =0 (by virtue (4.55)) for |m| = 0)

/Rn(xf)Uo(x)dx = /Rn(xlﬁl + oo + 2,80)Up(x)dz = 0 (by virtue for |m| =1)
/Rn(x.f)QUo(m)dx = /R" (3] + .+ 222 + 201602960 + . + 20,6000 160 1) Up()d

— 0 (by (E55) for |m| = 2)

/ (2.£)*1Uy(z)dx =0 (by virtue (&.55) for |m| = 2q).

So, we get

< j (2.6)%
cos(z.£) — jz_;)(—l) 2))

| I o
sin(z.§) — jz::l(—l) 2 =1

Gl < [ U ()| da

g/
R

|Uo()|d

cos(z.§) — > _o(—1)
T 2(q+1)
Iy = lim |x.§|ze|x'§| Gl |2t

From the remainder formula of the Taylor series, we have

a (2.2 (p.£)2a+D)
cos(x.f)—Z(—l)J( 7 _ (@) cos212)(9)

=0 (27)!  (2¢+2)!

where 6 is between 0 and (z.£). Thus,

b < eVt [ (e

= €2 [ Jaf2 0 Uolda
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< 6P [ (1 ] 20| Uolda
< gl I Up | procarn -

By the same manner, we have
Iy < cql €[ Uoll 12041
Then, (4.58)) yields
100l < ¢ (15 Ul prater 2 [ Uoll oanrs) (450)
By substituting the last inequality into (4.57)), we get

—C 2 [ s)as
VU1 elolfagen f P16 g

_elel? [P a(s)ds
+ c||Uo |13 2941 /§|<1|§’2k+2(2q+1)6 €12 [ n(s)d de

+ CeJo 1% | TR |2, Vit > 0.

Now, we apply (|1.4]) to obtain
. ) : —k—2(q+1)— 2
IV*U1B < cllUoll gy (1 + [ n(s)ds)

>_k_(2q+1)_g

t t
4 elUl s (1 [ nts)ds + Cee BT, vt > 0,

By using
¢ —k=2(q+1)- % ¢ —k=2(q+1) -2 +1
<1+/ n(s)ds) < (1+/ n(s)ds) :
0 0
we find
N ) t —k—(2¢+1)-% ) )
IV UIE < e (1+ [ n(s)ds) (10l gy + 10011 2011
+CeJo 1) TR |12, W > 0.,
This completes the proof. O

To illustrate our decay result, we give the following examples:
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Example 4.3.5 Let g(t) = ae 040" 0 < v < 1, where a,b > 0, with a small enough
so that (G.1) and (G.2) are satisfied. Then ¢'(t) = —n(t)g(t), where n(t) = vb(1 + ¢)*~ .
Therefore (4.48)) yields, for 0 <k <r and 1 <p <2,

vk

IVFU )]l < CO+ )" 2" ZG2D Uy, + Ce 0+ | VFU .

Example 4.3.6 Let g(t) = aie v > Land a > 0 so small that (G.1) and (G.2)
are satisfied. Then ¢'(t) = —n(t)g(t) such that n(t) = i%;. Therefore (4.48) yields, for

0<k<randl1 <p<2,
IVFU ()]s < C (14 vin(1 + t))‘rﬂH) 1Uoll, + C(1+ )~ || VFUp||2.

Remark 4.3.7 [t is worth to note here that our result allows a wider class of relaxation

functions which includes those of exponential and polynomial decay as special cases.
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Conclusion

In this dissertation, we studied the well-posedness and the asymptotic behavior of a
porous elastic system with thermoelasticity of type III, a viscoelastic plate equation,
and a Moore-Gibson-Thompson equation with a viscoelastic term. We proved, using
the semigroup theory, the existence and uniqueness of solution for porous elastic system
with thermoelasticity of type III. Then, by using the multiplier and energy methods, we
established the exponential stability of the system in the case of equal speeds of wave
propagation. When the wave-propagation speeds are different, we proved the polynomial
stability of solution. We also gave some numerical tests to illustrate our theoretical

results. Whereas, concerning the second problem, which is a viscoelastic plate equation
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in the whole space, by using the energy method in the Fourier space, we investigated the
general decay rate of the solution under the following general condition on the relaxation
function

g'(t) < —n(t)g(t), vt >0 (4.60)
where 7 is a differentiable non-increasing positive function. For the last problem, also by
using the energy method in the Fourier space, we established a general decay rate of the

solution in critical and subcritical cases under the condition (4.60)).

Future work

The following open questions can be addressed in our future work
1. The study of the general decay of the Cauchy problem for semilinear /nonlinear

plate equations with memory.

2. In chapter [, we investigated the general decay estimates of a MGT equation with
a type I memory term. The similar result of the MGT equation with a type II
memory have been proved recently in [§]. A question remains open, can we get a

similar result for the MGT equation with a type III memory term?

3. Discuss the general decay rate of the Cauchy problem for nonlinear MGT equation

with memory.

4. Related to problems in Chapter [3] and |4, an open question is whether we can obtain

a stability result for kernel satisfying
g'(t) < —n(t)H(g(t)), vt =0 (4.61)

with more general convex functions H as in the case of bounded domains, see [63, 55].
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