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Notations

• X : a Banach space .

• B(X) : the Banach algabra of bounded linear operators in X.

• B(X, Y ) : the space of linear and continuous operators from X to Y .

• A: operateur.

• D(A) : the definition set of A.

• D(A): overall adhesion .

• Im(A): the image of A.

• ker (A) : the kernel of A.

• ρ(A) : the resolvent set of A ∈ B(X) .

• σ(A) : the spectrum of A ∈ B(X).

• I: the unit of B(X).

• r(T (t)): the spectral radius T (t).

• SG(M,ω) : the set of C0-semigroup T (t)t≥0 ⊂ B(X).
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• Γ : unit circle inC.

• Γδ : the circle of radius δ .

• ∆ : the Laplace operator.

• Reλ : the real part of the complex number λ.

• R(λ;A): the operator (λI − A)−1.

• X1 ⊕X2: the direct sum of the spaces X1, X2.

• (T (t))t>0 : one-parameter semigroup of linear operators.

• f̂ : fourier transform of f .
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Introduction

In this desertation we are intereted in the C0-semigroup of (T (t))t≥0 bounded operator in Banach
space generator by non bounded operator A on its domain DA in [6],when ‖T (t) − T (s)‖ near the
origin and we exposed the generalisations of Estrele’s result by Nigel.K,Stephen.M,Krzysztof.O and
Yuri.T in [12]. Of everything that is Esterle observed in [7] that if a Banach algebra Edoes not
possess any nonzero indempotent then infx∈A‖X‖≥1/2 ‖X2−X‖ ≥ 1/4.These results led the author to
consider in [6] the behavior of the distance ‖T (s)−T (t)‖ for s > t near 0. The following results were
obtained in [6] :
(1) If the semigroup is norm continuous, and if there exists two sequences of positive real numbers
such that 0 < Tn < Sn,limn−→+∞ Sn = 0, such that‖T (tn) − T (sn)‖ < (sn − tn) snsn/sn−tn

tntn/sn−tn
; then

the closed subalgebra AT of B(X) generated by the semigroup possesses an exhaustive sequence of
idempotents.
(2) In [6] Esterle show that the operator on a complex Banach space satisfies the Ritt resolvant
condition if and only if T is power bounded and supn n‖T n+1 − T n‖ < ∞.it proved by Nagy and
Zeméanek [16] and independently Lyubich[13].

In([6],2004) the authers create a general framework which shows how to easily create results in
the same vein as Esterle’s result. For example, one can give conditions concerning ‖T n − Tm‖ that
imply that an operator with σ(T ) = {1} is the identity.

Our work was carried out according to the following plan:the first chapter is a presentation of the
general theory which will be used in this work .
In the second chapter we study some theorems of power bounded operators and related norm esti-
mates.
In the third chapter we study power bounded operators and semigroup (where we present application
C0-semigroups of contractions).
Then we finish this work by the conclusion and the bibliography.
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Chapter 1

General

1.1 Banach Algebras

Definition 1.1.1. LetA be a vector space,endowed with a third law called multiplication.A is an
algebra if the following conditions hold:
(1)x(yz) = (xy)z ∀x, y, z ∈ A.
(2)(x+ y)z = xz + yz, x(y + z) = xy + xz ∀x, y, z ∈ A.
(3) λ(xy) = (λx)y = x(λy) ∀λ ∈ R or C ∀x, y ∈ A.
If xy = yx for all x, y ∈ A then the algebra A is commutative .
If there exists e ∈ A such that xe = exfor all x ∈ A then the algebra A is unitary.

Definition 1.1.2. We call commutative Banach algebra A any commutative algebra over R or
C,endowed with a norm satisfying the inequality :

‖xy‖ ≤ ‖x‖‖y‖ ∀x, y ∈ A

and complete.
If A admits a unit e we will always oppose ‖e‖ = 1.

1.1.1 Quasinilpotents and nilpotents

Definition 1.1.3. Let A be a unital algebra.
An element x ofA is said to be quasinilpotent if r(x) = 0 i.e.σ(x) = {0}.
An element x of A is said to be nilpotent if xn = 0 for some n ∈ N.
We denote by =(A) the set of quasinilopotent elements of A.

Definition 1.1.4. A bounded linear operator A is called quasinilpotent if ρ(A) = 0.

Proposition 1.1.1. Let A be a unit algebra and x ∈ A. Then if x is nilpotent then x ∈ =(A).

1.1.2 Characters

Definition 1.1.5. Let A be a commutative Banach algebra.We call character of A any complex
homomorphism from A in to C.
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1.2. LINEAR OPERATORS

Theorem 1.1.1. Let A be a commutative Banach algebra.Then
(1) If ψis a complex homomorphism on A,then kerψ is a maximal ideal.
(2) If I ⊂ A is a maximal ideal of A, then

A = {x+ λeA , x ∈ I, λ ∈ C}

and the map

ψ : A −→ C

x+ λeA −→ ψ(x+ λeA) = λ

is a complex homomorphism,kerψ = I.

Theorem 1.1.2. Let x be an element of a commutative Banach algebra A.Then
(1) If ψ ∈ Â,then ψ(x) ∈ σ(x) .
(2) If λ ∈ σ(x),then there exists ψ ∈ Â such that ψ(x) = λ.
(3) An element x ∈ A is invertible if and only if ψ(x) 6= 0 for all ψ ∈ Â.

Theorem 1.1.3. Let A be a commutative Banach algebra,and ψ a complex homomorphism.Then ψ
is continuous and ‖ψ‖ = 1.

1.2 Linear Operators

Definition 1.2.1. Let X and Y be two vector spaces over the same field K.We say that the map or
the operator A : X −→ Y is linear if ∀x, y ∈ X, ∀λ ∈ K:

A(x+ y) = Ax+ Ay

A(λx) = λAx.

Definition 1.2.2. Let A : X −→ Y be a linear operator. We define the image of operator A by

Im(A) = {Ax, x ∈ X}

and the kernel of operator A by

ker (A) = {x ∈ X : Ax = 0}

1.2.1 Bounded Linear Operator

Let X and Y be two normed vector spaces and A : X −→ Y a linear operator

Theorem 1.2.1. The following properties are equivalent :
(1) A is continuous ,
(2) A is countinuous at 0 ,
(3) there is a constant c such that ‖Ax‖ ≤ c‖x‖ for all x ∈ X.

Definition 1.2.3. A bounded linear operator P is called a projection operator if P 2 = P .

3



1.2. LINEAR OPERATORS

Definition 1.2.4. A linear map A : X −→ Y between normed vector spaces which is continuous is
often said to be bounded.

example 1.2.1. Let Y be a closed subspace of a Hilbert space H.The projection operator PY is
continuous of norm 1 because PY (x) = x for all x ∈ Y and ‖PY (x)‖ ≤ ‖x‖ for all x ∈ H with
equality if x ∈ Y .

Theorem 1.2.2. Let X be a normed vector space and Y a Banach space. Then,the normed vector
space B(X, Y ) is a Banach space.

1.2.2 Inverse Operator

Definition 1.2.5. Let A ∈ B(X, Y ) where X and Y are two normed vector spaces.We say that A
is invertible if there exists B ∈ B(X, Y ) such that AB = IdY and BA = IdX .Such an operator is
unique.We call it the inverse operator of A and denote it B = A−1 .

Theorem 1.2.3. If A ∈ B(X, Y ) (Y Banach space) is bijective then its inverse A−1 is continuous.

Corollary 1.2.1. Let Y be a Banach space and A ∈ B(X, Y ). Then the following properties are
equivalent
(1) There exists c > 0 such that for x ∈ X :‖Ax‖ ≥ c‖x‖
(2) A is injective and Im(A) is closed in Y .

Corollary 1.2.2. Let Y be a Banach space and A ∈ B(X, Y ).Then, the following properties are
equivalent :
(1) Im(A) = Y and there exists c > 0 such that for all x ∈ Y : ‖Ax‖ ≥ c‖x‖.
(2) (A) is invertible .

Theorem 1.2.4. (ı) Let A ∈ B(X) be such that ‖A‖ < 1,then IdX − A is invertible and

(IdX − A)−1 =
+∞∑
n=0

An.

(ıı) If A is invertible then A+B is invertible for any B ∈ B(X) such that ‖B‖ < ‖A‖−1 and we have

(A+B)−1 =
+∞∑
n=0

(A−1B)nA−1

=
+∞∑
n=0

A−1−nBn if A,B commute.

1.2.3 Spectrum of an Operator

Definition 1.2.6. To any linear operator A we associate its spectral bound defined by

s(A) := sup{Reλ : λ ∈ σ(A)}.

Definition 1.2.7. Let A ∈ B(X)
(1) We call spectrum of A, the set

4



1.2. LINEAR OPERATORS

σ(A) = {λ ∈ K : (λIdX − A) not invertible}.

Any scalar λ ∈ σ(A) is said to be spectral value.
The spectral radius of A noted r(A) is defined by r(A) = sup{|λ|, λ ∈ σ(A)} and we always have
r(A) ≤ ‖A‖.If σ(A) = ∅, then by convention we put r(A) = 0.
(2) We call continuous spectrum of A, the set

σcA = {λ ∈ K : (λIdX − A) injective, Im(λIdX − A) dense but distinct from X}.

(3) We call residual spectrum of A,the set

σr(A) = {λ ∈ K : (λIdX − A) injective, Im(λIdX − A) not dense in X}.

(4) We call the resolver set of A,the set

ρ(A) = {λ ∈ K : (λIdX − A) invertible}.

Any scalar λ ∈ ρ(A) is said to be a resolvent value.We have σ(A) = K ρ(A).
If λ ∈ ρ(A),we denote Rλ(A) = (λIdX − A)−1 ∈ B(X) the resolvent of A.

example 1.2.2. LetX = C([0, 1],K).If we consider the Volterra operator then we have ker (A) = {0}
and Im(A) = {g ∈ X : g(0) = 0}.

Theorem 1.2.5. Let A ∈ B(X)
1.If |λ| > ‖A‖ then λ ∈ ρ(A) and σ(A) ⊂ B̄(0, ‖A‖).
2.ρ(A) is a nonempty open set of K.
3.σ(A) is a nonempty compact of K.
4.If A is invertible ,then σ(A−1) = { 1

λ
, λ ∈ σ(A)}.

5.We have σ(A) ⊂ B̄(0, r(A)).Moreover,we

r(A) = lim
n−→+∞

‖An‖
1
n .

1.2.4 Adjoint Operator

Definition 1.2.8. Let A : D(A) ⊂ X −→ Y be an operator whose domainD(A) is dense in X.We
call the adjoint of the operator A ,the operator A∗ : D(A∗) ⊂ Y −→ X defined by :

D(A∗) = {v ∈ Y such that ∃ω ∈ X; (v, Au)Y = (ω, u)X∀u ∈ D(A)}.

The uniqueness of ω follows from the density of D(A) in X .It is clear that D(A∗) is a vector subspace
of Y and that A∗ is a linear operator .By definition, we always have

(v, Au)X = (A∗v, u)Y ∀u ∈ D(A),∀v ∈ D(A∗).

Proposition 1.2.1. If A is bounded,then A∗ is also bounded and ‖A‖ = ‖A∗‖ .Moreover,we have A∗

is closed.

Proposition 1.2.2. Let A ∈ B(H).Then,we have
1.kerA∗ = (ImA)⊥

2.(kerA∗)⊥ = ImA

3.If moreover the operator A is closed:kerA = (ImA∗)⊥ and kerA⊥ = ImA∗.
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1.3. SEMIGROUPS IN A BANACH ALGEBRA

Proposition 1.2.3. Let A ∈ B(H).Then,we have
1.ρ(A∗) = {λ ∈ K : λ̄ ∈ ρ(A)},σ(A∗) = {λ ∈ K : λ̄ ∈ σ(A)}
2.λ ∈ ρ(A∗),Rλ(A∗) = (Rλ̄(A))∗.

example 1.2.3. Let A be the unbounded operator of L2(0, 1) defined by :

D(A) = {u ∈ H2(0.1);u(0) = u′(0) = 0}
∀u ∈ D(A) Au = −d2u

dx2 + u

we can check that its adjoint A∗ is defined by :

D(A∗) = {u ∈ H2(0.1);u(1) = u′(1) = 0}
∀u ∈ D(A∗) A∗u = −d2u

dx2 + u

and A∗∗ = A.

1.2.5 Autoadjoints Operator

We place ourselves in the framework of a Hilbert space .

Definition 1.2.9. Let A ∈ B(H) .We say that A is a autoadjoint operator if A = A∗.
We say that also symmetric if K = R and hermitian if K = C.

example 1.2.4. Orthogonal projection onto closed subspaces of H are autoadjoint.Indeed, let Y be
a closed subspace of a Hilbert space H.Let PY be the orthogonal projection of H onto Y .Then all
x, y ∈ H

< x, PY (y) > =< PY (x), PY (y) >
=< PY (x), y > .

Corollary 1.2.3. If A ∈ B(H) is a autoadjoint operator,then ‖A‖ = max
λ∈σ(A)

|λ| .

Corollary 1.2.4. Let A be a autoadjoint operator on H .If σ(A){0},then A = 0.

1.3 Semigroups in a Banach Algebra

Definition 1.3.1. Let A be a Banach algebra.A semigroups of A is a family (T (t))t>0 of elements
of A satisfying powt any pair s, t of strictly positive real numbers ta condition

T (t+ s) = T (t)T (s).

We will denote by AT the closed subalgebra of A generated by the semigroup (T (t))t>0 . we will say
that a semigroup (T (t))t>0 is countinuous in norm if

lim
h−→0

‖ T (t+ h)− T (t) ‖= 0 for all t > 0,

6



1.3. SEMIGROUPS IN A BANACH ALGEBRA

and we will say that (T (t))t−→0 admits a limit in norm at the origin if there is J ∈ A such that

lim
t−→0+

‖ T (t)− J ‖= 0 .

Note that if the semigroup (T (t))t>0 admits a limit in norm J at the origin then J is an idem-
potent of A , and the Banach algebra AT is unitary of unit J. plus in this case we knouw that there
exists u ∈ AT such that we have , for t > 0 ,

T (t) = exp (tu) := J +
+∞∑
n=1

tnun

n! .

Definition 1.3.2. Let (T (t))t>0 be a semigroup of bounded oparators on a Banach space X
(ı) we say that (T (t))t>0 is of dense image if ∪t>0T (t)(X) is dense in X.
(ıı) we say that (T (t))t>0 is strongly continuous if lim

h−→0
‖ T (t+ h)x− T (t)x ‖= 0 for all x ∈ X and

for all t > 0.
(ııı) we say that (T (t))t>0 is strongly continuous at the origin if lim

t−→0+
‖ T (t)x− x ‖= 0 for all x ∈ X

.
Note that if we set

F = ∪t>0T (t)(X),

so

∪t>0T (t)(F ) = ∪t>0,s>0T (t+ s)(X) = ∪t>0T (t)(X) = F.

So if we denote by T̃ (t) the restriction of T (t) to F̄ , the semi group (T̃ (t))t>0 is a semigroup of
bounded operators on F̄ which has dense image . On the other hand it is well known that if(T (t))t>0

is trongly continuous at the origin then it is strongly continuous ; we can then set T (0) = I , I
denoting the identity map x −→ x on X , and in this case the map t −→ T (t)x is a continuous map
from [0,+∞[ to E for all x ∈ X .
It follows immediately from the Banach-Steinuhaus theorem that if (T (t))t>0 is trongly continuous
at the origin , then lim sup

t−→0+
‖ T (t) ‖< +∞.

Conversely if lim sup
t−→0+

‖ T (t) ‖< +∞ ,and if (T (t))t>0 is of dense image , a routine check shows that

(T (t))t>0 is trongly countinuous at the origin.

Theorem 1.3.1. Let A be a Banach algebra over the field R or C and let f be a function defined on
]0,+∞[ with values in A verifying A
(ı) for 0 < t1, t2 < +∞

f(t1 + t2) = f(t1)f(t2)

(ıı) lim
t−→0+

f(t) = J exists. Then there exists an element a ∈ A such that a = Ja = aJ and

f(t) = J +
+∞∑
n=1

tn

n!a
n.

The series is absolutely convergent for any t ∈ R or C,and satisfies (ı).
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1.4. SEMIGROUP OF BOUNDED LINEAR OPERATORS

1.3.1 Existence of an Analytic Semigroup in an Algebra

Theorem 1.3.2 (The Sinclair Theorem). Let A be a commutative Banach algebra with bounded
approximate unit (en)n≥0 with bound M .For all x ∈∈ G,there exists an analytic semigroup (bt)Re t>0

in A such that
(ı) {‖bt‖} is bounded for |t| ≤ 1 and Re t > 0 .
(ıı) x ∈ btG for all t ∈ C with Re t > 0 .
(ııı) btx −→ x , when t −→ 0 and Re t > 0 .

Proof. See[15].

1.4 Semigroup of bounded linear operators

1.4.1 Definitions and Theorems

Definition 1.4.1. Let X be a Banach space the field C and let B(X) be the Banach algabra of
bounded linear operators on X . The family {T (t)}t≥0 ⊂ B(X) is called semigroup if :
(ı) T (0) = I(I the unit element of algebre B(X)
(ıı) T (s+ t) = T (s)T (t), ∀s, t ∈ R+.

Definition 1.4.2. The semigroup T is called strongly continuous semigroup and denoted C0-semigroup
if the map t −→ T (t) is countinuous for the strong topology of operators on B(X) i.e. lim

t−→t0
‖

T (t)f − T (t)f ‖= 0 for all f ∈ X and for all t ∈ R+ such that t −→ t0 .

Definition 1.4.3. We call uniformly continuous semigroup (T (t))t≥0 ⊂ B(X) satisfying the following
property :

lim
t−→0+

‖T (t)− I‖ = 0.

Definition 1.4.4 (Generator). The linear operator A defined by :

D(A) = {x ∈ A : lim
t−→t0

T (t)x− x
t

exists}

and

Ax = lim
t−→0+

T (t)x−x
t

= dT (t)x
dt
|t=0 pour x ∈ D(A) ,

is the infinitesimal generator of the semigroup T (t), D(A) is the domain of A .

Definition 1.4.5. We say that the C0-semigroup (T (t))t≥0 is uniformly bounded if there exists
M ≥ 1 such that

‖ T (t) ‖≤M, ∀t ≥ 0

Definition 1.4.6. Let us denote by ∆ the set

{z ∈ C;Rez > 0andϕ1 < ϕ2, ϕ1 < 0 < ϕ2}.

8



1.4. SEMIGROUP OF BOUNDED LINEAR OPERATORS

We call analytic C0-semigroup a family (T (z))z∈∆ ⊂ B(X) verifying the following properties:
(1) T (0) = I

(2) T (z1 + z2) = T (z1)T (z2),∀z1, z2 ∈ ∆
(3) lim

z−→0
T (z)x = x,∀z ∈ ∆

(4) The application

z ∈ ∆ −→ T (z) ∈ B(X).

is analytical in the sector ∆.

Theorem 1.4.1. Let (T (t))t≥0 ∈ SG(M,ω) and A be its infinitesimal generator.So
(ı) D(A) = X.
(ıı) A is a closed operator .

Theorem 1.4.2 ((Uniqueness of begetting)). That is two C0-semigroups (T (t))t≥0 and (S(t))t≥0

having for infinitesimal generator he same operator A. So

T (t) = S(t) ∀t ≥ 0.

1.4.2 The Spectral mapping Theorem

lemma 1.4.2.1. Let A ∈ B(X),then (etA)t≥0 is a uniformly continous semigroup of elements of
B(X) whose infinitesimal generator is A.

lemma 1.4.2.2. LetA be a bounded operator A ∈ B(X),there exists a unique uniformly (T (t))t≥0

such that

T (t) = eAt, ∀t ≥ 0.

Theorem 1.4.3 (Riez-Dunford). Let A infinitesimal generator of a uniformly continuous semi-
group (T (t))t≥0 if ΓA is an A-spectral Jordan contour,then we have

T (t) = 1
2πi

∫
ΓA
eλtR(λ;A)dλ ∀t ≥ 0.

Proposition 1.4.1. Let ω0 be the type of a strongly continuous semigroup (T (t))t≥0. Then the spectral
radius of

r(T (t)) = sup{|λ|, λ ∈ σ(T (t))}, t ≥ 0

check

r(T (t)) = eω0t.

Theorem 1.4.4. Let (T (t))t≥0 ∈ SG(M,ω)and A be its infinitesimal generator.Then

etσ(A) = {eλt;λ ∈ σ(A)} ⊆ σ(T (t)), ∀t ≥ 0.

9



1.4. SEMIGROUP OF BOUNDED LINEAR OPERATORS

1.4.3 The Hille-Yosida Theorem

Definition 1.4.7. We say that (T (t))t≥0 is a C0-semigroup contraction on the Banach space X if
(T (t))t≥0 ∈ SG(1, 0) i.e.

‖ T (t) ‖≤ 1, for all t ≥ 0 .

Theorem 1.4.5 (Hille-Yosida). A linear operator

A : D(A) ⊂ X −→ X

is the infinitesimal generator of a semigroup (T (t))t≥0 ∈ SG(M,ω) if and only if
(1) A is a closed operator and D(A) = X.
(2) There exist ω > 0 and M ≥ 1 such that Λω%(A) and for λ ∈ Λω we have

‖R(λ;A)n ≤ M
(Reλ−ω)n ,∀n ∈ N∗.

10



Chapter 2

Power Bounded Operator And Related
Norm Estimates

2.1 The Ritt Resolvent Condition

Theorem 2.1.1. Let T be a bounded linear transformation on a Banach space.Then

σ(T ) ⊂ U = {x ∈ X, ‖x‖ < 1} ∪ {1},

it exists C > 0,η > 0 if λ ∈ ρ(T ), |λ| > 1 and |λ− 1| ≤ η,then

‖(λ− 1).(λ− T )−1‖ ≤ C.

Then

lim
n−→+∞

n−1T n = 0.

Proof. Let ε > 0 be chosen, let η′ such that the length of the arc intercepted on the unit circle by
the circle of radiusη′ center at λ = 1, is less than 2πC−1ε. Let δ = min (η, η′) and Γδ the circle with
radius δ. Γδ intersects the unit circle in two points λ0, λ̄0. To be definite, let Im(λ0) > 0. Let Γ′ be
the arc of the unit circle which does not contain λ = 1. Let Γ̄δ be the arc of Γδ not interior to the
unit circle. Let N be such that if n > N,

∥∥∥n−1
∫

Γ′
λn(λ− T )−1dλ

∥∥∥ < 2πε, (2.1.1)

∥∥∥n−1
∫

Γ̄δ
(λ− T )−1dλ

∥∥∥ < 2πε, (2.1.2)

n−1 < C−1(e− 1)−1ε. (2.1.3)

Let n > N and, in what follows, hold n fixed. Let δ′ = min (n−1, δ), and Γδ′ the circle of radius δ′.
Γδ′ intersects the unit circle in λ′ and λ̄′, Im(λ′) > 0. Let Γ+ and Γ− be respectively the arcs of the
unit circle from λ0 to λ′ and λ̄0to λ̄′, and not exterior to Γδ. Let Γ̄δ′ be the arc of Γδ′ not interior to
the unit circle. Then,

∫
Γ̄δ
n−1λn(λ− T )−1dλ =

(∫
Γ̄δ′

+
∫

Γ+
+
∫

Γ−

)
n−1λn(λ− T )ç−1dλ. (2.1.4)

11



2.1. THE RITT RESOLVENT CONDITION

Now,

∫
Γ−
n−1λn(λ− T )−1dλ = n−1

n−1∑
=0

∫
Γ−
λ(λ− 1)(λ− T )−1dλ+ n−1

∫
Γ−

(λ− T )−1dλ, (2.1.5)

∫
Γ+
n−1λn(λ− T )−1dλ = n−1

n−1∑
=0

∫
Γ+
λ(λ− 1)(λ− T )−1dλ+ n−1

∫
Γ+

(λ− T )−1dλ, (2.1.6)

∫
Γ̄δ′
n−1λn(λ− T )−1dλ = n−1

n∑
=1

C,n

∫
Γ̄δ′

(λ− 1)−1(λ− 1)(λ− T )−1dλ+ n−1
∫

Γ̄δ′
(λ− T )−1dλ.

(2.1.7)
The sum of the last terms in the right members of (2.1.5), (2.1.6), and (2.1.7) is n−1

∫
Γ̄δ

(λ− T )−1dλ,
and is less, in norm, than 2πε by (2.1.2).

∥∥∥n−1
n−1∑
=0

∫
Γ+
λ(λ− 1)(λ− T )−1dλ

∥∥∥ ≤ C(length of Γ+) ≤ 2πε.

A similar statement can be made for the first term of the right member of (2.1.5). Finally,∥∥∥n−1∑n
=1C,n

∫
Γδ′

(λ− 1)−1(λ− T )−1dλ
∥∥∥

≤ n−1C2π∑n
=1C,n(δ′) = n−1C2π[(1 + δ′)n − 1]

≤ n−1C2π[(1 + n−1)n − 1] < n−1C2π(e− 1) < 2πε by (2.1.3).

But ‖n−1T n‖ = ‖(2πı)−1(
∫
Γ′ +

∫
Γ̄δ)n

−1λn(λ− T )−1dλ‖ and using (2.1.1) and the inequalities obtained
above, this is less than 5ε. The theorem is proved.

Remark 2.1.1. The Ritt’s condition for the resolvent R(λ;T ) = (T − λI)−1 of a bounded linear
operator T in a complex Banach space X is

‖R(λ;T )‖ ≤ C

|λ− 1| , |λ| > 1, (2.1.8)

where C is a constant ,C ≥ 1.Condition (2.1.8) originated in the context of ergodic theory a long
time ago [20].

Remark 2.1.2. The operators satisfying (2.1.8) attracted a new interest due to O. Nevanlinna who
showed in [17] that any sectorial extension of (2.1.8),

‖R(λ;T )‖ ≤ C(δ)
|λ−1|λ, λ ∈ Sδ,

where

Sδ = {λ : λ 6= 1, | arg (λ− 1)| ≤ π − δ}, 0 ≤ δ < π/2,

implies the power boundedness of T (see also[13]).

Remark 2.1.3. Assume that

σ(T ) ⊂ {|λ| < 1} ∪ {1}

12
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is satisfied.Observe that the differences T n − T n+1 are the Taylor coefficients of

(λ− 1)(T − λI)−1 = −I +
∞∑
n=1

(T n−1 − T n)λ−n (|λ| > 1).

It turns out that the boundedness of this analytic function, that is,the condition

‖(T − λI)−1‖ ≤ C
|λ−1| (|λ| > 1).

Theorem 2.1.2. Let T be an operator on a complex Banach space.Then T satisfies the Ritt resolvent
condition if and only if

(1) T is power bounded , and
(2) supn n ‖ T n+1 − T n ‖<∞.

Proof. We not that (2) characterizes the essentially quickest possible covergence ‖T n − T n+1‖ −→ 0
as n −→∞ ,in view of[17,Theorem 4.5.1] and [23].
Since

‖(T − λI)−1‖ ≥ 1
dist(λ, σ(T )) , (2.1.9)

we see that
‖(T − λI)−1 ≤ C

|λ− 1| (|λ| > 1) (2.1.10)

corresponds to the slowest possible growth of the resolvent at 1 ∈ σ(T ).This adds further interest to
the question about the relation between (2.1.9) and the condition(2),and motivates the more general
problem of relating the rate of growth of the resolvent at 1 to the rate of convergence in

lim
n−→∞

‖T n − T n+1‖ = 0.

2.2 Esterle’s Result

We give results similar to the special case of Sinclair’s Theorem[22] considered by Bonsall and
Crabb[3];Berkani,Esterle and Mokhtari [2];and by Esterle and Mokhtari[8].The functionW described
below is often called the Lambert function in [4].

Theorem 2.2.1. Let A be a bounded operator on a Banach space such that σ(A) = {0}.For each t > 0
such that ‖ AetA ‖≤ 1/et,we have that ‖ A ‖≤ 1/t.In particular, if lim inft−→∞ t ‖ AetA < 1/e,then
A = 0.

Proof. Let f(z) = zez.There is analytic functionW such that W (f(z)) = z in some neighborhood of
0. In particular, by the Riesz-Dunford functional calculus,W (tAetA) = tA.Now

W (z) =
∞∑
m=1

pmz
m

where, by Lagrange’s inversion formula[1],

pm = 1
m!

dm−1

dzm−1

(
z

f(z)

)m∣∣∣∣∣∣
z=0

= (−m)m−1

m! .

13
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The radius of convergence of W is 1/e,and
∞∑
m=1
|pm|e−m = 1,since f(−1) = −1/e.Therefore ‖

W (tAetA) ‖≤ 1,and the result follows.

Theorem 2.2.2. Let T be a bounded operator on a Banach space such that σ(T ) = {1}.For each
positive integer n such that ‖ T n+1 − T n ‖≤ nn/(n+ 1)n+1,we have that ‖ T − I ‖≤ 1/(n+ 1).In
particular, if lim infn−→∞ n ‖ T n+1 − T n ‖< 1/e,then T = I.

Proof. Let fn(z) = z(1 + z/n)n . There is analytic function Wn such that Wn(fn(z)) = z in some
neighborhood of 0. In particular, by the Riesz-Dunford functional calculus,Wn(n(T n+1 − T n)) =
n(T − I).Now

Wn(z) =
∞∑
m=1

pnmz
m

where

pnm = 1
m!

dm−1

dzm−1

(
z

fn(z)

)m∣∣∣∣∣∣
z=0

= (−1)m−1

nm−1(nm+m−1)

(
nm+m−1

m

)
.

The radius of convergence ofWn is rn = (n/(n+ 1))n+1, and
∞∑
m=1
|pnm|rmn = n/(n+ 1),since fn(−n/(n+ 1)) =

−rn. Therefore ‖ Wn(n(T n+1 − T n)) ‖≤ n/(n+ 1)and the result follows.

Theorem 2.2.3. (1) There exists an operator A 6= 0 on a Hilbert space, with σ(A) = {0}, and
lim supt−→∞ t ‖ AetA ‖≤ 1/e.
(2) There exists an operator T 6= I on a Hilbert space, with σ(T ) = {1} ,and lim supn−→∞ n ‖
T n+1 − T n ‖≤ 1/e.

Proof. Let us consider the operator on L2[0, 1]

A = −
∫ 1/2

0
Lαdα.

Lyubich [14] showed that the operator B =
∫ ∞

0
Jαdα has spectral radius equal to 0 on Lp([0.1]) for

all 1 ≤ p ≤ ∞.Now both −A and B are operators with positive kernels, and the kernel of −A is
bounded above by the kernel of B.It follows that on Lp([0, 1]) for p = 1 or p =∞ that ‖ An ‖≤‖ Bn ‖
for all positive integers n .Thus A has spectral radius equal to 0 on Lp([0, 1]) for p = 1 and p =∞,
and hence, by interpolation, for all 1 ≤ p ≤ ∞ .
We also de
ne the operator on L2(R)

Ã = −
1/2∫
0

L̃αdα.

Following the above argument, we see that ‖ AetA ‖≤‖ ÃetÃ ‖ , and that ̂̃AetÃf(ξ) = k(ξ)f̂(ξ),where

|k(ξ)| = |h(ξ)| exp (−tRe(h(ξ))),

and

h(ξ) =
∫ 1/2

0
mα(ξ)dα.

14
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One sees that arg (h(ξ)) −→ 0 as ξ −→∞ ,and hence it is an easy matter to see that lim supt−→∞ t ‖
AetA ‖≤ 1/e.
The second example is given by T = eA. Note that T 6= I, because otherwise A = log (T ) = 0 .The

estimate is easily obtained since T n+1 − T n =
∫ n+1

n
AetAdt.

2.3 Power Boundedness

Theorem 2.3.1. Let T be a bounded operator on a Banach space X such that lim supn−→∞ n ‖
T n+1 − T n ‖< 1/e . Then X decomposes as the direct sum of two closed T -invariant subspaces such
that T is the identity on one of these subspaces, and the spectral radius of T on the other subspace is
strictly less than 1. In particular, T n converges to a projection.

Proof. First note that σ(T ) must be contained in {1} ∪ {z : |z| < α} for some α < 1 , otherwise it
is easy to see that limit superior of the spectral radius of T n+1 − T n is at least 1/e (see, for example
[10,Theorem 4.5.1]). Thus there is a projection P that commutes with T such that σ(T |image(P )) = {1}
, and the spectral radius of T |ker (P ) is strictly less than 1.

A very similar proof works also for the following continuous time version. However, we were
also able to produce a different proof of this same result.

Theorem 2.3.2. Let A be a bounded operator on a Banach space X such that L = lim supt−→∞ t ‖
AetA ‖< 1/e. Then X decomposes as the direct sum of two closed A-invariant subspaces such that A
is the zero operator on one of these subspaces, and on the other subspace the supremum of the real
part of the spectrum is strictly negative. In particular, etA converges to a projection.

Proof. To illustrate the ideas, let us
first prove that etA converges in the case that L < 1/4, that is, there are constants c < 1/4

and t0 > 0 such that ‖ AetA ‖≤ c/t for t ≥ t0.It follows that ‖ A2e2tA ‖≤ c2/t2 for t ≥ t0 , or
‖ A2etA ‖≤ 4c2/t2 for t ≥ 2t0.Then for t ≥ 2t0 we have

‖ AetA ‖=‖ lim
τ−→∞

∫ τ

t
A2esAds ‖≤ 4c2

t
,

since AeτA −→ 0 as τ −→∞. Iterating this process, we get that ‖ AetA ‖≤ (4c)2k/4t for t ≥ 2kt0
. To put this another way,‖ AetA ‖≤ (4c)t/2t0/4t for t ≥ t0.It follows that

et1A − et2A =
∫ t1

t2
AesAds

converges to zero as t1, t2 −→∞, that is , etA is a Cauchy sequence. Hence it converges.
The case when L < 1/e is only marginally more complicated. Again, there are constants c < 1/e

and t0 > 0 such that ‖ AetA ‖≤ c/t for t ≥ t0 . For any integer M ≥ 2 we have that ‖ AMetA ‖≤
(cM)M/tM for t ≥Mt0 . Integrating (M − 1) times we obtain that

‖ AetA ‖≤ (cM)M
t(M−1)! for t ≥Mt0 .

A simple computation shows that
(cM)M
(M−1)! ≤

M
e

(ce)M ,
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2.3. POWER BOUNDEDNESS

and hence iterating we obtain that if t > Mkt0 then

‖ AetA ‖≤
(
M
e

)−1/(M−1)
(
ce
(
M
e

)1/(M−1)
)Mk

1
t
.

By choosing M is sufficiently large, we see that there exist constants c1, c2 > 1 such that ‖ AetA ‖≤
c1c2

−t/t for t ≥ t0, and hence ‖ AetA ‖ converges.
Now it is clear that S = limt−→∞ e

tA is a bounded projection (because S2 = S) such that SetA =
etAS = S. Let X1 = Im(S), and X2 = ker (S), so X = X1 ⊕ X2. These spaces are clearly
invariant under etA, and hence invariant under A = limt−→0 (etA − I)/t. Since S|X1 = I|X1 we see
immediately that etA|X1 = I|X1 , and so A|X1 = limt−→0

(
etA|X1 − I|X1

)
/t = 0. Furthermore, we have

that etA|X2 −→ 0. Let t0 be such that ‖ et0A|X2 ‖≤ 1/2. Then the spectral radius of et0A|X2 is
bounded by 1/2, and so supRe(A|X1) < − log (2)/t0 .

We also point out that one could prove Theorem 2.1.1 in a similar manner. But the details
can be quite complicated. It is also possible to deduce Theorem 2.1.1 from Theorem 2.1.2. Briefly
, if ‖ T n+1 − T n ‖≤ (1 + ε)L/(n+ 1) for large enough n , then by writing out the power series
for (T − I)etT about t = 0 one obtains that ‖ (T − I)etT ‖≤ (1 + 2ε)Let/t for large enough t

. The result now follows quickly by applying Theorem 2.1.2 to A = T − I, remembering that
σ(T ) ⊂ {1} ∪ {z : |z| < 1}.
Now we give some counterexamples to show that in general the condition supn n ‖ T n+1−T n ‖<∞

does not necessarily imply power boundedness.

Theorem 2.3.3. There exists a bounded operator T on L1(R) such that supn n ‖ T n+1 − T n ‖< ∞
, and ‖ T n ‖≈ log n .

Proof. The example is a multiplier on L(R) given by T̂ f(ξ) = m(ξ)f̂(ξ).It is well known that such
an operator is bounded if the inverse Fourier transform m̌ is a measure of bounded variation, and
indeed that the norm is equal to the variation of m̌.
Let us consider the case

m(ξ) =

1 if |ξ| ≤ 1
exp (1− |ξ|) if |ξ| > 1.

An explicit computation shows that the inverse Fourier transform of mn is
nx cos (x)+n2 sin (x)

πx(x2+n2)

and that the inverse Fourier transform of mn+1 −mn is
(x2−n(n+1)) cos (x)+(2nx+x) sin (x)

π(x2+n2)(x2+(n+1)2) ,

and it is now easy to verify the claims.

Proposition 2.3.1. Let X be an infinite dimensional Banach space and suppose (cn)∞n=1 is a sequnce
such limn−→∞ cn = ∞ and limn−→∞ cnn

− 1
2 = 0.Then X contains a be-orthogonal system (en, e∗n)∞n=1

such that :
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(a) If Pnx = ∑n
k=1 e

∗
k(x)ek then ‖ Pn ‖≥ cn and

(b) limn−→∞ ‖ e∗n ‖‖ en ‖= 1.

Proof. Let us suppose X is a Hilbert space .We pick an orthonormal sequence (fn)∞n=0 and a de-
creasing sequence of positive reals (τm)∞m=1 such that limm−→∞ τm = 0 and τm ≥ 2cnn−

1
2 whenever

2m−1 ≤ n < 2m. Note that this implies limm−→∞ 2m
2 τm = ∞ since limn−→∞ cn = ∞.Denote by

(f ∗n)∞n=0 the sequence bi-orthogonal to (fn) with ‖ f ∗n ‖= 1 (i.e. f ∗n(x) = (x, fn)).
en = fn + τmf0 for n ≥ 1 and 2m ≤ n < 2m+1.Let e∗n = f ∗n. Then (en, e∗n)∞n=1 is a bi-orthogonal

system with limn−→∞ ‖ en ‖‖ e∗n ‖= 1. Note that ‖ P1 ‖≥ τ1 ≥ c1.Now suppose 2m ≤ n ≤ 2m+1

where m ≥ 1. Then

‖
2m−1∑
k=2m−1

ek ‖≥ τm2m−1.

On the other hand for any r > m+ 1

‖
2m−1∑
k=2m−1

ek − τmτ−1
r 2m−r

2r−1∑
k=2r−1

ek ‖≤ 2(m−1)/2 + τmτ
−1
r 2m− 1

2 (r+1) .

The second term on the right tends to zero as r −→ ∞. We deduce that ‖ Pn ‖≥ τm2(m−1)/2 ≥
1
2τm+1

√
n ≥ cn.

Theorem 2.3.4. Suppose 0 < a < 1
2 .On any infinite dimensional Banach space X, there exists a

bounded operator T : X −→ X such that lim supn−→∞ n ‖ T n+1 − T n ‖= 1
2 and for some C > 0 we

have ‖ T n ‖≥ c(log n)a for all n ≥ 2 .

Proof. Suppose a < b < 1
2 .By Proposition 2.3.1 we may pick a biorthogonal sequence (en, e∗n)∗n=1 in

X so that limn−→∞ ‖ en ‖‖ e∗n ‖= 1 and the operators Pn satisfy ‖ Pn ‖≥ nb.Let M = maxn≥1 ‖
en ‖‖ e∗n ‖.
Define T : X −→ X by

Tx = x+
∞∑
k=1

(λk − 1)e∗k(x)ek

where λk = exp (−1/(2k)!).Since |λk− 1| ≤ 1/(2k)! it follows that T is bounded and ‖ T ‖≤Me+ 1.
Consider

(T n − T n+1)x =
∞∑
k=1

(λnk − λn+1
k )e∗k(x)ek.

Hence

n ‖ T n − T n+1 ‖≤
∞∑
k=1

ne−n/(2k)!

(2k)! ‖ ek ‖‖ e∗k ‖.

To estimate this sum suppose (2m− 1)! ≤ n < (2m+ 1)!. Then

n ‖ T n − T n+1 ‖≤M
(∑

k 6=m
n

(2k)!e
−n/(2k)!

)
+ n

(2m)!e
−n/(2m)! ‖ ek ‖‖ e∗k ‖ .

Simple estimates show that the
first term converges to 0 as n −→ ∞. We also note that te−t ≤ e−1 for t > 0.Hence lim supn n ‖

T n − T n+1 ‖≤ 1/e.
Next we estimate ‖ T n ‖.If (2m− 1)! ≤ n ≤ (2m+ 1)! then

(Pm + T n)x = x+
m∑
k=1

λnke
∗
k(x)ek +∑∞

k=m+1 (λnk − 1)e∗k(x)ek.
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Hence

‖ Pm + T n ‖≤ 1 +M

(
e−n/(2m)! +

m−1∑
k=1

e−n/(2k)! +
∞∑

k=m+1

n
(2k)!

)
.

Again it is simple to see that

‖ Pm + T n ‖≤M1

for some suitable constant M1 independent of n. Thus ‖ T n ‖≥‖ Pm ‖ −M1 ≥ mb − M1 .Since
log n ≤ (2m+ 1) log (2m+ 1) we have (log n)a ≤ C1m

b for a suitable constant C1 and the result
follows.

2.4 A General Approach

In a more general approach , we will discuss how to extend theories 2.2.1,2.2.2.

Lemma 2.4.1. Let f, h be analytic functions on the disk {z : |z| < R}. Suppose f ∈ P and that h
satisfies h(0) > 0,h(n) ≥ 0 for all n ≥ 1 and h is nonvanishing. Then if F (z) = f(z)/h(z) we have
F ∈ P.

Proof. To see [12] .

Theorem 2.4.1. Let A be a quasinilpotent operator on a Banach space X. Suppose f is an admissible
analytic function defined on a disk {z : |z| < R} and suppose ξ is the smallest positive solution of
f ′(x) = 0. Then if ‖ f(A) ‖≤ f(ξ) we have ‖ A ‖≤ ξ.

Proof. To see[12].

Theorem 2.4.2. Suppose T is a bounded operator with σ(T ) = {1} and for some m,n ∈ N with
m > n we have

‖ Tm − T n ‖≤
(
1− n

m

) (
n
m

)n/(m−n)
.

Then ‖ T − I ‖≤ 1− ( n
m

)1/(m−n).

Proof. We show that f(z) = (1− z)n − (1− z)m is admissible. This follows from Lemma 2.4.1 since
f(z) = (1− z)n(1− (1− z)m−n) and the function 1− (1− z)m−n is in P since its local inverse at the
origin is given by 1− (1− z)1/(m−n). Now apply Theorem 2.4.1 to I − T .

Other formulas can be applied of theorem 2.2.2 from theorem 2.4.2.For example we have the
following Corollaries:

Corollary 2.4.1. Suppose T is a bounded operator with σ(T ) = {1}. If

lim inf
m/n−→∞

‖ Tm − T n ‖< 1

then T = I.
More precisely if

lim sup
m/n−→∞

m
n log (m/n)(1− ‖ T

m − T n ‖) > 1
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then T = I .

Corollary 2.4.2. Suppose T is a bounded operator with σ(T ) = {1}. If

lim inf
p/n−→0

n
p
‖ T n+p − T n ‖< 1

e

then T = I.

Corollary 2.4.3. Suppose T is a bounded operator with σ(T ) = {1}.Suppose 0 < s < 1.If

lim inf
m/n−→s
m,n−→∞

‖ Tm − T n ‖< (1− s)ss/(1−s)

then T = I.

Then the next theorem is a generalization of the argument used by Bonsall and Crabb [3] to
prove a special case of Sinclair’s Theorem [22], namely that the norm of an hermitian element A of
a Banach algebra coincides with its spectral radius r(A).
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Chapter 3

Power Bounded Operators And
Semigroups (Application C0-semigroups
of Contractions)

3.1 Introduction

The author is interested in the neighborhood of ‖ T (t)−T (s) ‖ near the origin when the infinitesimal
generator A of the strongly continuous semigroup of bounded operators (T (t))t>0 on a Banach space
X is not bounded on its domain DA.
We pose

θ(s/t) = ( s
t−1)( t

s
)

s
t

s
t−1 = (s− t) t

t
s−t

s
s
s−t

if 0 < t < s,

value which will play an important role for the neighborhood of ‖ T (t)−T (s) ‖ when the infinitesimal
generator of the semi group is unbounded.
Let ÂT be the character space of the closed subalgebraAT of B(X) generated by the semigroup(T (t))t>0

and set

σT = {| φ(T (1)) |}
φ∈ÂT
∪{0}.

In the case when ÂT = ∅ , the semigroup is quasinilpotent .
We can distinguish between four situations:

(1)0 is an isolated point of σT , and the semigroup is not quasinilpotent;
(2) there exists δ > 0 such that [0, δ] ⊂ σT ,and in this case it is clear that there is η > 0 such that

‖ T (t)− T (s) ‖≥ θ(s/t) for 0 < t < s ≤ η;

(3) 0 is not an isolated point of σT .
(4) σT = {0}, so that the semigroup is quasinilpotent.

3.2 Quasinilpotent semigroups

In this section,we begin by using a well-known method due to Feller [8] which allows us to restrict
attention to quasinilpotent C0-semigroups of contractions.
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3.2. QUASINILPOTENT SEMIGROUPS

Lemma 3.2.1. Let (T (t))t>0 be a nontrivial, quasinilpotent, strongly continuous semigroup of bounded
operators on a Banach space X, let t0 > 0 such that T (t) 6= 0, and let ω > 0. Then there exists a
Banach space Y and a strongly continuous semigroup (T1(t))t>0 of bounded operators on Y satisfying
the following conditions:

(1) T1(1
3t0) 6= 0;

(2) ‖ T1(t) ‖≤ e−ωt for t > 0;
(3) lim

t−→0+
‖ T1(t)y − y ‖= 0 for y ∈ Y ;

(4) ‖ T1(t)− T1(s) ‖≤‖ T (t)− T (s) ‖ for s, t > 0.

Proof. See[5].

Lemma 3.2.2. Let α > 1, and set rα = log (α/(α− 1)) and Rα = (α− 1)α−1/αα. There exists
an analytic function gα : D(0, Rα) −→ D(0, rα) such that gα(0) = 0 and egα(z) − zeαgα(z) = 1 for
|z| < Rα. Moreover g(k)

α (0) > 0 for every k ≥ 1 and
+∞∑
k=1

g
(k)
α (0)
k! Rk

α = rα .

Theorem 3.2.1. Let (T (t))t>0 be a non-trivial strongly continous semigroup of bounded operators
on a Banach space X.If (T (t))t>0 is quasinilpotent, then there exists δ > 0 such that

‖ T (t)− T (s) ‖> θ(s/t) for 0 < t < s < δ.

Proof. Apply Lemma 3.2.1 with ω = 3/t0 and set S(t) = T1(t/ω) for t > 0. Then (S(t))t>0 is a
strongly continuous quasinilpotent semigroup on Y which satisfies the following properties:

(1) S(1) 6= 0;
(2) ‖ S(t) ‖≤ e−t for t > 0;
(3) lim

t−→0+
‖ S(t)y − y ‖ for y ∈ Y ;

(4) ‖ S(ωt)− S(ωs) ‖≤‖ T (t)− T (s) ‖ for t, s > 0;
Let D(A) be the domain of the infinitesimal generator A of the semigroup (S(t))t>0. Then D(A2) =
{y ∈ D(A)|Ay ∈ D(A)} is a dense subspace of Y (see for example Proposition 1.8 in [4]). If y ∈ D(A),
we have (S(t)− S(s))y =

∫ t

s
S(u)Aydu, and so ‖ (S(t)− S(s))y ‖≤‖ Ay ‖ (s− t) for s > t > 0. Since

A(S(t)− S(s)) = (S(t)− S(s))A, we see that ‖ (S(t)− S(s))2y ‖≤‖ A2y ‖ (s− t)2 for y ∈ D(A2)
and s > t > 0.
Fix 0 < t < s < 1, and set U = S(t) − S(s), α = s/t and γ = α − 1. It follows from Proposition

2.4 in[5] that S(t) = U exp gα(Uγ). Set h = egα . It follows from Lemma 3.2.2 that h(z) =
+∞∑
k=0

akz
k

for |z| ≤ Rα, with ak > 0 for k ≥ 0, and that
+∞∑
k=0

akR
k
α = erα .

We obtain

S(t) = U
+∞∑
k=0

ak(Uγ)k =
+∞∑
k=0

akU
kγ+1 =

+∞∑
k=0

akU
bkγc+2−λk ,

where bkγc ∈ z+ satisfies bkγc ≤ kγ < bkγc+ 1. Hence λk = bkγc − kγ + 1 ∈ ]0, 1].
Set S = S(1), and let λ ∈ ]0, 1] and y ∈ D(A2). A simple computation gives

U2−λSy = S(1− λt)(I − S(s− t))−λU2y.
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3.2. QUASINILPOTENT SEMIGROUPS

We know that ‖ U2y ‖≤‖ A2y ‖ (s− t)2, and we have

‖(I − S(s− t))−λ‖ =
∥∥∥I +

+∞∑
k=1

(−1)k (−λ)...(−λ− k + 1)
k! S(k(s− t))

∥∥∥
=
∥∥∥I +

+∞∑
k=1

λ...(λ+ k − 1)
k! S(k(s− t))

∥∥∥
≤ 1 +

+∞∑
k=1

λ...(λ+ k − 1)
k! e−k(s−t)

= (1− e−(s−t))−λ

≤ eλ(s−t)(s− t)−λ.

We obtain

‖ U2−λSy ‖≤‖ A2y ‖‖ eλt−1eλ(s−t)(s− t)2−λ ≤‖ A2y ‖ (s− t)2−λ

for 0 < t < s < 1, λ ∈ ]0, 1] and y ∈ D(A2). If‖ U ‖≤ θ(α),we have

‖ S(t)Sy ‖ ≤‖ A2y ‖
+∞∑
k=0

akθ(α)bkγc(s− t)2−λk

=‖ A2y ‖ (s− t)
+∞∑
k=0

akθ(α)kγ
(
s− t
θ(α)

)1−λk
.

We have (s− t)/θ(s/t ≤ e) .Also θ(α)γ = Rα,and so
+∞∑
k=0

akθ(α)kγ = erα = s/(s− t).
We obtain

‖ S(t)Sy ‖≤ e ‖ A2y ‖ s

if y ∈ D(A2),s ∈ (0, 1), and if t ∈ (0.s) satisfies ‖ S(t) − S(s) ‖≤ θ(s/t). Since S 6= 0 and
since D(A2) is dense in Y , there exists y ∈ D(A2) such that Sy 6= 0.Since the semigroup (S(t))t>0

is strongly continuous, there exists η > 0 such that ‖ S(t)Sy ‖≥ 1
2 ‖ Sy ‖for t ∈ ]0, η[. Set

δ = min{η, 1, ‖ Sy ‖ /2e(‖ A2y ‖ +1)} > 0.For 0 < t < s < δ, we have ‖ S(t)Sy ‖> e ‖ A2y ‖ s, and
so ‖ S(t) − S(s) ‖> θ(s/t). Hence ‖ T (t) − T (s) ‖≥‖ S(3t/t0) − S(3s/t0) ‖= θ(s/t) if 0 < t < s <
1
3t0δ.

Theorem 3.2.2. Let ε : (0, 1) −→ (0,+∞) be a nondecreasing function. Then there exixts a non-
trivial quasinilpotent, norm continuous semigroup (Tε(t))t>0 of bounded operators on the separable
Hilbert space which satisfies , for 0 < t < s ≤ 1,

‖ Tε(t)− Tε(s) ‖≤ θ(s/t) + (s− t)ε(s).

Proof. Let A(D) be the usual disc algebra, i.e. the algebra of functions analytic on the open unit
disc D which admit a continuous extension to the closed unit disc D̄,equipped with the norm ‖
φ ‖= maxz∈D̄ |φ(z)| = supz∈D |φ(z)| .The Banach algebra A(D) is a closed subalgebra of the Banach
algebra H∞(D) of bounded holomorphic functions on D .
If h is a nonnegative function on (0, 1), we will use the notation

Ωh := {z = x+ ıy ∈ C|0 < x < 1and0 < y < h(x)}.
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3.2. QUASINILPOTENT SEMIGROUPS

We will first associate a nontrivial norm-continuous semigroup in A(D) to each continuous function
f : [0, 1] −→ [0,+∞) such that f(0) = f(1) = 0 and f(x) > 0 for x ∈ (0, 1) .Set g(x) = x + ıf(x)
for x ∈ (0, 1) , and g(x) = 2 − x for x ∈ (1, 2) .We obtain a Jordan curve, and there exists a
conformal mapping G from the open unit disc D onto the interior Ωf of this Jordan curve. By
Caratheodory’s theorem, G extends to a homeomorphism from D̄ onto Ω̄f , which maps the unit
circle onto ∂Ωf = g([0, 2]) .Since 0 ∈ Ω̄f , |G−1(0)| = 1.Set F (z) = G(G−1(0)z) for z ∈ D̄ , so that
F (1) = 0.Then F is also a homeomorphism from D̄ onto Ω̄f , and the restriction of F to D is a
conformal mapping from D onto Ωf . Using the principal determination of the logarithm we now
define F t(z) for z ∈ D̄ , t > 0,by the formula

F t(z) =

e
t logF (z) , z ∈ D̄ {1},

0 , z = 1.

It follows from the definition of F t(z) that F s+t(z) = F s(z)F t(z) for s > 0, t > 0 and |z| ≤ 1. The
function F t is clearly continuous on D̄ {1} and analytic on D. Since |F t(z)| = |F (z)|t for t > 0
and |z| ≤ 1,and since F (1) = 0. We see that F t is also continuous at 1, and F t ∈ M := {H ∈
A(D)|H(1) = 0} for t > 0.

For η > 0 set Vη = {z ∈ D̄ ||z − 1| < η} . Fix t > 0 and ε > 0 .There exists η > 0 such that
|F s(z)| < 1

2ε for z ∈ Vη, s ∈ (1
2t,

3
2t) .Since minz∈D̄ Vη |F (z)| > 0 , the set {logF (z)|z ∈ D̄ Vη}

is compact,and lims−→t supz∈D̄ Vη |F s(z) − F t(z)| = 0 These two observations show that the map
t −→ F t is continuous on (0,+∞) with respect to the norm of A(D).
Consider the singular inner function Ψ(z) = e(z+1)/(z−1), and denote by P the orthogonal projection

of H2(D) onto H2(D)	ΨH2(D).
Now set

T (t)f = PF tf, f ∈ H2(D)	ΨH2(D).

A standard verification shows that we have ‖ T (t) ‖=‖ π(F t) ‖ ,where π : M −→ M/ΨM is the
canonical surjection. So (T (t))t>0 is norm-continuous on (0,+∞) .Since ∩∞n=1ψ

nM = {0},and since
the quotient algebraM/ΨM is radical,(T (t))t>0 is a nontrivial quasinilpotent semigroup. So in order
to prove the proposition it suffices to construct a function f such that |zt− zs| ≤ θ(s/t) + (s− t)ε(s)
for z ∈ Ω̄f and 0 < t < s ≤ 1.
To perform some elementary computations we will use polar coordinates. Set ∆ = {z ∈ C | |z| ≤

1and0 ≤ arg z ≤ 1
20π} , and let z = x+ ıy = reıα ∈ ∆ ,with 0 ≤ α ≤ 1

20π .
We have,for 0 < t < s ≤ 1,

|zt − zs|2 = r2t|1− zs−t|2

= r2t((1− rs−t)2 + 4rs−tsin2(1
2(s− t)α))

≤ (rt − rs)2 + rs+t(s− t)2α2.

We obtain
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3.3. THE GENERAL CASE

|zt − zs| ≤ rt − rs + (s− t)α ≤ (s− t)[log (1/r) + 1
20π] .

Since θ(s/t) ≥ (s− t)/es ≥ (s− t)/e , and as 1
20π < 1

6 < 1/2e ,we have |zt − zs| ≤ θ(s/t) if
r ≥ e−1/6s .In particular, |zt − zs| ≤ θ(s/t) if x ≥ e−1/6s,which is satisfied for s ∈ (0, 1] if x ≥ e−1/6 .
Also, since rt − rs ≤ θ(s/t),and as α ≤ tanα , we obtain

|zt − zs| ≤ θ
(
s
t

)
+ (s− t)ε(s)

if than α ≤ ε(s).But ε(s) ≥ ε(−1/6 log x) if 0 < x ≤ e−1/6s.So if z ∈ ∆ , and if tanα ≤ ε(−1/6 log x),
we have |zt − zs| ≤ θ(s/t) + (s− t)ε(s).Finally if we set ε1(0) = 0,

ε1(x) = xmin
{
ε

(
−1

6 log x

)
, tan π

20

}
for x ∈ (0, e−1/6),

ε1(x) = xmin
{√

1− x2, tan
(
π

20

)}
for x ∈ [e−1/6, 1],

we see that |zt − zs ≤ θ(s/t) + (s− t)ε(s) for z ∈ Ω̄ε1 ,0 < t < s ≤ 1 .Since ε1 is nondecreasing
on [0, e−1/6) , decreasing on [e−1/6, 1] and strictly positive on (0, 1) it is then easy to construct a
continuous function f on [0, 1] such that f(0) = f(1) = 0 which satisfies 0 < f(x) < ε1(x) for
x ∈ (0, 1). Then |zt − zs| ≤ θ(s/t) + (s− t)ε(s) for z ∈ Ω̄f ,0 < t < s < 1,which concludes the proof
of the theorem.

3.3 The general case

A sequence (Pn)n≥1 of nonzero idempotents of a commutative Banach algebra A will be said to be
exhaustive if Pn+1Pn = Pn+1 for n ≥ 1 and if for every φ ∈ Â there exists n(φ) ≥ 1 such that
φ(Pn) = 1 for n ≥ n(φ). The following corollary shows in particular that if the closed algebra AT
generated by a nontrivial strongly continuous semigroup (T (t))t>0 has no nonzero idempotent, then
there exists δ > 0 such that ‖ T (t)− T (s) ‖≥ θ(s/t) for 0 < t < s ≤ δ.

Corollary 3.3.1. Let (T (t))t>0 be a nontrivial strongly continuous sernigroup of bounded operators
on a Banach space X. If there exists two sequences ((s)n)n≥1 and (tn)n≥1 , with 0 < tn < sn for
n ≥ 1, such that lim

n−→+∞
sn = 0, and such that

‖ T (tn)− T (sn) ‖< θ
(
sn
tn

)
for n ≥ 1 ,

then the closed subalgebra .AT of B(X) generated by the semigroup (T (t))t>0 is not radical, and AT
possesses an exhaustive sequence (Pn)n≥1 of nonzero idempotents.

Proof. It follows from Theorem 3.2.1 that the semigroup (T (t))t>0 is not quasinilpotent,and it follows
from assume that [0, δ] ⊂ σT for some δ > 0.Then %(T (t)− T (s)) ≥ θ(s/t) for 0 < t < s ≤ −1/ log δ,
that there exists a decreasing sequence (δn)n≥1 of elements of (0, %(T (1))] such that limn−→+∞ δn = 0
and such that λ 6= δn for λ ∈ Spec(T (1)), n ≥ 1.Set Un = {φ ∈ ÂT | |φ(T (1))| ≥ δn} = {φ ∈
ÂT | |φ(T (1))| > δn} .Then Un is a nonempty compact subset of AT for n ≥ 1, and it follows from
Theorems 3.6.3 and 3.6.6 of [19] that there exists an idempotent Pn of AT such that φ(Pn) = 1 for
φ ∈ Un and φ(Pn) = 0 for φ ∈ ÂT Un (it is also possible to define Pn directly by the formula
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3.3. THE GENERAL CASE

Pn = 1
2ıπ

∫
C(0,1+%(T (1)))

(T (1)− zI)−1dz − 1
2ıπ

∫
C(0.δn)

(T (1)− zI)−1dz ,

where we denote by C(0, r) the circle of radius r centered at the origin, oriented counterclockwise, for
r > 0). An immediate verification shows then that (Pn)n≥1 is an exhaustive sequence of idempotents
of AT .

We get a more precise result for norm-continuous semigroups, which shows in particular that
the infinitesimal generator of the semigroup (PnT (t))t>0 is then bounded for n ≥ 1.

Corollary 3.3.2. Let (T (t))t>0 be a non-trivial strongly continous semigroup of bounded operators
on a Banach space X.If there exists two sequences (sn)n≥1 and (tn)n≥1, with 0 < (tn) < (sn) for n ≥
1,such that lim

n−→+∞
sn = 0, and such that

‖ T (tn)− T (sn) ‖< θ( sn
tn

) for n ≥ 1,

then the closed subalgebra AT of B(X) generated by the semigroup (T (t))t>0 is not radical, and AT
possesses an exhaustive sequence (Pn)n≥1 of nonzero idempotents satisfying the following conditions:

(ı) ∪∞n=1 PnAT is dense in AT ;
(ıı) lim

t−→0+
‖ PnT (t) − Pn ‖= 0 for every n ≥ 1, so that the infinitesimal generator of the

semigroup (PnT (t))t>0 is bounded for n ≥ 1.

Proof. Denote by I the closure of the ideal ∪∞n=1PnAT in AT , and let π : AT −→ AT/I be the
canonical map. We can consider the semigroup (π(T (t)))t>0 as a strongly continuous semigroup
acting on AT/I . It follows from Theorem 3.2.1 that π(T (t)) = 0 for t > 0, and so I = AT .
Now fix n ≥ 1. Then, the notation being the same as in the proof of Corollary 3.3.1, Pn is the

unit element of the Banach algebra An = PnAT , and ψ(PnT (1)) ≥ δn for ψ ∈ Ân , since the map
φ −→ φ|An is a surjection from Un onto the character space of An. Hence PnT (1) has an inverse S
in An, and

lim sup
h−→0+

‖ Pn − PnT (h) ‖≤‖ S ‖ lim sup
h−→0+

‖ T (1 + h)− T (1) ‖= 0.

Proposition 3.3.1. Let (T (t))t>0 be a strongly continuous semigroup of bounded operators on a
Banach space X, and assume that the closed subalgabra AT of B(X) generated by the semigroup
possesses a unit element P . Then either

lim
t−→0+

‖ P − T (t) ‖= 0.

so that the infinitesimal generator of the semigroup (T (t))t>0 is bounded, or

lim
t−→0+

lim sup
h−→0+

%(T (t+ h)− T (t)) = 2.

Theorem 3.3.1. Let (T (t))t>0 be a non-trivial strongly continous semigroup of bounded operators
on a Banach space X.If there exist δ > 0 and a continuous function s : [0, δ] −→ (0,+∞) such that
s(0) = 0, and such that 0 < t < s(t) and

‖ T (t)− T (s(t)) ‖< θ( s(t)
t

) for 0 < t ≤ δ ,
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3.3. THE GENERAL CASE

then the infinitesimal generator of the semigroup T (t)t>0 is bounded , so that

‖ T (t)− T (s) ‖=| s− t | (‖ u ‖ +M(s, t) | s− t |),

holds.

Proof. An elementary computation shows that θ(s/t) < (s− t)/s < 1 for 0 < t < s.It follows from
Theorem 3.2.1 that the semigroup is not quasinilpotent, and it follows from Proposition 3.1[11] that
there exists δ > 0 such that [0, δ) ∩ σT = {0}. Hence ÂT is compact and we see as in the proof
of Corollary 3.3.1 that there exists an idempotent P of AT such that φ(P ) = 1 for every φ ∈ ÂT .
The semigroup (S(t))t>0 = (PT (t))t>0 is strongly continuous and P is the unit element of the closed
subalgebra AS generated by this semigroup. Set S(0) = P , and denote by S(−t) the inverse of
S(t) in AS for t > 0. If lim supt−→0+ ‖ P − S(t) ‖> 0, it would follow from Proposition 3.3.1 that
lim supt−→0+ %(P − S(t)) = 2. Now let (rn)n≥1 be a decreasing sequence of positive real numbers
such that limn−→+∞ rn = 0 and such that limn−→+∞ %(P − PT (rn)) = 2.Since the map t −→ s(t) is
continuous on [0, δ], there would exist n0 ≥ 1 and a sequence (tn)n≥n0

of elements of [0, δ) such that
limn−→+∞ tn = 0 and such that s(tn)− tn = rn for n ≥ n0. We would have

lim
n−→+∞

%(T (s(tn))− T (tn)) ≥ lim
n−→+∞

%(PT (tn + rn)− PT (t[n]))

≥
(

lim
n−→+∞

%(S(−tn))
)−1

lim
n−→+∞

%(PT (rn)− P ) = 2.

But this is impossible since

%(T (s(tn))− T (sn)) ≤‖ T (s(tn))− T (tn) ‖< θ
(
stn
tn

)
< 1

for n ≥ 1.Hence lim
t−→0+

‖ P − PT (t) ‖= 0 .
The subspace Y = PX is closed.If R ∈ B(X) satisfies RP = PR, set π(R)y = Rx + Y for
y = x+ Y ∈ X/Y ,so that π(R) ∈ B(X/Y ) and ‖ π(R) ‖≤‖ R ‖.Then

π(T (t)) = π(T (t)− PT (t))

is quasinilpotent, and it follows from Theorem 3.2.1 that π(T (t)) = 0 for t > 0 .Hence T (t)(X) ⊂ Y ,so
that T (t)x = PT (t)x for x ∈ X,and

lim
t−→0+

‖ P − T (t) ‖= lim
t−→0+

‖ P − PT (t) ‖= 0.
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Conclusion

We conclude on the problem of the semi-groups consists in introducing an infinitesimal generator
which determines the structure of the semi-group and in characterizing the operators which can serve
as infinitesimal generators. This has been done by Hille-Yosida for semi-groups (Tt).
The norm of our semi-groups in general will be unbounded near T = 0.then we define the infinitesimal
generator in a way which seems most suited for our purposes.
The resolvent R(λI;A) will be an unbounded operator and its domain will not coincide with the
basic space. In fact, the right half of the complex λ-plane will be seen to belong to the continuous
spectrumm of rather than to the resolvent. Despite this radical difference the nature of the basic
theorems remains essentially the same. The reason lies in the fact that the domain of R(λI;A) can
be remetrized so as to make it a Banach space. With this new norm R(λI;A) becomes a bounded
operator.
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:P�l� •
T�AR²� Cdq��  ¤d�� T�wm�� ¢bJ ¤ ��A� �§dq� w¡ �m`�� �@¡ �� ¨sy¶r�� �dh��
d§d`�� ºAW�� ��@�¤ elretsE T�ytn� �Amym`t�� �� d§d`�� ºAK�¯ Tq§rV �}¤ Y��

XbR� ��.¨fyW�� £rW� �O� ©¤As§ £CAy`�  � ¨n`§ ©@�� ��Km�� Yl� ª¤rK�� ��

θ(s/t) = (s/t − 1)(t/s) s/t
s/t−1 = (s − t) tt/(s−t)

ss/(s−t)

T§w� ¢bJ �A�wm�� �� CAb� (T (t))t>0 �Ð� ¢�� Tsy¶r�� T�ytn�� rh\� .0 < t < s �Ð�
��� δ > 0 d�w� �� �An� T�As� ¨� �§dyqm�� �yl�Km�� �� Tyh§d� ry�¤ Tl}�wt�

.0 < t < s ≤ δ ��� �� ‖T (t)− T (s) > θ(s/t) ��Ð

:Ty�Atfm�� �Amlk�� •
.�¤d`� ¢bJ - dyq� ��A`-T�wm�m�� �O�

• Résumé :

L’objectif principal de ce travail est de présenter l’opérateur borné de puissance et le semigroup
ainsi que de décrire un moyen de créer de nombreuses généralisations du résult d’Esterle,et
également de donner de nombreuses conditions sur un opérateur qui impliquent que sa norme
est égale à son rayon spectral.Réglez ensuite

θ(s/t) = (s/t − 1)(t/s) s/t
s/t−1 = (s − t) tt/(s−t)

ss/(s−t)

si 0 < t < s.Le résultat clé montre que semigroupe quasinilpotent fortement continu non tri-
vial d’opérateurs bornés sur un espace de Banach alors il existe δ > 0telque ‖T (t) − T (s) >
θ(s/t)pour 0 < t < s ≤ δ.

• Mots clés :

semigroupe ,l’opérateur borné,quasinilpotent

• Abstract:

Themain objective of this work is to present power bounded operator and semigroup aswell as
describe away to createmany generalizations of Esterle’s result, and also givemany conditions
on an operator which imply that its norm is equal to its spectral radius.Then set

θ(s/t) = (s/t − 1)(t/s) s/t
s/t−1 = (s − t) tt/(s−t)

ss/(s−t)

if 0 < t < s. The key result shows that if (T (t))t>0 is a nontrivial strongly continuous quasinilpo-
tent semigroup of bounded operators on a Banach space then there exists δ > 0 such that
‖T (t)− T (s) > θ(s/t)for 0 < t < s ≤ δ.

• Keywords:

semigroup,bounded operator,qasinilpotent
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