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Introduction

The domain of fractional calculus is interested with the generalization of the classical in-
teger order differentiation and integration to an arbitrary order. Fractional calculus has
found important applications in different fields of science, especially in problems related to
biology, chemistry, mathematical physics, economics, control theory, blood flow phenomena
and aerodynamics, etc. The fractional hybrid differential equations have also been studied
by many researchers. In this type of equation, the perturbations of the original differential

equations are included in different ways.

In this work, we discuss existence of solutions for hybrid fractional differential equations,
these results are determined, by applying Leray-Schauder’s nonlinear alternative. Our as-
sumed problem will general than the problems considered [1], [2] and [3] .

This work is structured as follows.

The first chapter contains some basic concepts in addition to the notions of the functions
play an important role in the fractional calculus and characteristics of integrals and deriva-

tives related to the important approaches to fractional computation, the Caputo approach

The second chaper, we discuss existence and uniqueness results for fractional differential
equations with three-point boundary conditions, these results are determined, by applying

fixed point theorems such as Banach’s fixed point theorem

In the final chapter,In this chapter, we discuss existence and uniqueness results for hybrid
fractional differential equations with three-point boundary hybrid conditions, these results
are determined, by applying fixed point theorems such as Banach’s fixed point theorem and

Leray-Schauder Nonlinear Alternative.



Chapter 1

Prelimnaries

1.1 Useful functions

We learn about some of its functions The Gamma function , the Beta function and Mittag-

lefiler functions.

1.1.1 The Gamma Function

Definition 1.1.1. [6] We recall the definition

[(z) = /OOO t"Lexp (—t)dt

For z > 0 .Elementary considerations from the theory of improper integrals reveal that the
integral exists upon setting = = 1.

I'(1) = [T exp (—t)dt = lim, . [5 exp (—t)dt = lim, ,[—exp (—1)]§ =1

for arbitray > 0, manipulate the integral in the definition of the Gamma function by meons

of a partial itegration .This yields

I'(z+1)

/Oo texp (—t)dt = lim /Z t* exp (—t)dt
0 y

z—00,y—0t

= lim ([— exp (—)t"];Z) + x /yz t* exp (—t)dt)

z—00,y—0t

=z /OO t" Lexp (—t)dt = xT(z)
0

Theorem 1.1.1. [6/(Functional Equation for I') We have thus shown

If £ > 0 then al'(x) =T(z+1).

Now we may prove the all important relation between the Gamma function and the facto-
rial. The induction basis (n = 1) reads I'(1) = 0! = 1 which is true in view of(theorem1.1.1

)For the induction step ,we use the functional equation and the induction hypothesis:



1.1. USEFUL FUNCTIONS

I'(n+1)=nl'(n) =n(n—1)! =n!

There is one other important application of the functional equation of the Gamma func-
tion .We solve it for I'(z); it then reads

T 1
[(x) = 7(3: +1)
T
Theorem 1.1.2. Let 0 < x < 1.Then
T
I'(z)['(1 —2) =
($) ( m) sin mx

Definition 1.1.2. We define the Gamma function by: [9]

+oo
['(x) :/ t*te7tdt ;2 € C and Re(x) >0, (this integral is convergent). (1.1)
0
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Figure 2.2: Graph of the Gamma function I'(xr) in a real domain.
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Figure 2.3: Graph of the reciprocal Gamma function ﬁ in a real domain.

1.1.2 The Beta function

Definition 1.1.3. The Beta function is a unique function where it is classified as the first

kind of euler’s integral. B(x,y) is defined by

B(zx,y) = /01 t" 11 — 2)v"tdt Re(x), Re(y) > 0

This function is connected with the gamma functions by the relation:

B(z,y) = (x,y € C,Re(x),Re(y) > 0)

For example to find:
B(2,3) = Jyt(1 —t)dt

= [3(t —2t> +3)dt
1

127

Lemma 1.1.1.
D(2)D(y) = [ oty e e 2t dt,.

= oot (tg‘le“l“? dt2> dt;.




1.1. USEFUL FUNCTIONS

Proof. By change of variable t, = (t; + t5). We find

o0 +oo roy,
D(z)(y) = / tdty / (ty — 1)V te t2dt,.
0+oo ro, 0+t1 S
_ / et dt, / (ty — 1)Vt
0 0

t

;o we arrive at:
2

+oo / / 1 o / ;o / i
/ e_t2dt2</ (tyty)* ' (ty — tltz)y_ltzdtl)‘
0 0

+oo ro, ,
= [T et (@ By ).
0
+oo o, ,
= e "2 (ty) "V dty B(x, y).
0

=T'(z+y)B(x,y).

If we put t; =

Which gives the desired result.

Lemma 1.1.2. [10] Beta is symmetrical : B(z,y) = B(y, z)

M@y T
IFz+y) Ty+x)

Proof. We have : B(x,y) = = B(y, )

1.1.3 Mittag-Lefler Functions
The function E,(Z) defined by|§]

K

ior k1) (ZeC,R(Z) > 0)

’

In particular, when a = 1,we have
E\(Z) = exp (Z)

and the generalized Mittag-LefHler function E, g(z) is defined as follows:
When a = n € N the following differentiation formulas had for the function FE, (AZ")

d\" 0 n .
<dZ> E,(\Z") = AE,(\Z") (n € N; \ € C)

The function FE, p(Z) the integral repretation

Bz =~ [ 4
o5 - 2w ct® — Z
+oo Zn
EOC == /. A\ ) O
Ao =3 et (>0




1.2. FRACTIONAL INTEGRAL OF RIEMANN LIOUVILLE

1.2 Fractional integral of Riemann Liouville

Definition 1.2.1. Let Q = [a,b](—00 < a < b < 00) be a finite interval on the real axis
R.The Riemann -Liouville fraction integrale I, f and Ij* f of order a € C (a > 0;R(ar) > 0)
are defined by

EJ@”:réy[kigﬁa (a > 0;R(a) > 0) (1.3)
and
ﬁf@%:Fé%KCigﬁﬂ(a>mmw>o) (1.4

Here I'(a) is the Gamma function

Lemma 1.2.1. If a > 0 and [ > 0 then the equations

(18,12 f) (@) = (1e5°F) (@) and (I 1) f) (2) = (L7 F) (x)

Definition 1.2.2. The Rieman-Liouville fractional itegration and fractional differtiation op-
erators of the power functions (z — a)?~! yied power functions of the same form. If a > 0
and € C (8 > 0),then

(I2le =) (@) = g (@ =) (@0

and

_ I'(5) _

« _ 4\p-1 _ o B+a—1

(Ie-(b—1) >@)H6+®w ) (a > 0)

Lemma 1.2.2. The fractional integration operators I3 f with o > 0 are bounded in

Ly(a,b) (1 <p < o0):

b—a)®
HﬁJmskWMW$ﬂb§WNp<k:L J)

1.2.1 The fractional derivation in sence of Caputo

fractional derivative in the sense of Caputo In this section we present the definitions and

some properties of the Caputo fractional derivatives

Definition 1.2.3. Let @ > 0 and let n be in R, then the Caputo fractional derivatives
(CDg‘ +y) () and (CDgiy) (x) exist almost everywhere on [a, b], (CDQ‘ +y) (z) and (CD,?J/) (x)

are represented by

(D20) (0) = (170) ("0 = s | i gt = (2D") (@) (1)
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and

(D5 ) ()= (1729) () = s [ = 1 (D) @

(n—a) x — t)oentl
(1.6)
respectively, where n — 1 < a < n.
In particular ;,when 0 < o < 1,
1 @ g (t)dt -
e pe = / — (I'7°D 1.7
( a+y) (‘T) F(?’L . O{) “ ($ . t)a ( a+ y) (:L‘) ( )
and
1 @ g (t)dt -
°pg _— / — — (1;=°Dr 1.8
(Div) @ = —t=ay h te—pe =~ (B7D") @) (18)

we have if =0
(“Dly) (@) = (DY) (x) = y(x).

Using the above argument again, we derive that

(D20) @) = g [ (=0 0

1.2.2 Properties of the fractional derivation in the sense of Caputo

Theorem 1.2.1. [5, 7
Let a > 0 and n = [a] + 1 such that n € N* then the following equals

1.
‘DIif=f (1.9)

n—1 r(k) a _ak
LD () = 5(1) - 3 T (110

are true for almost everything t € [a,b].

Proof. 1. By (2.24) and the use of semi-group property (2.9), one finds

(“P°T2f) (1) = (T oD Tof) (1) = T0f

(Z2(°D ) () = (ZoT°D°) £(t)
According to the property (2.9), we have

(Zezp D" f) (t) = TST,T, D" f (1)

a~"a~"a




1.3. SOME IMPORTANT THEOREMS

_ T (1))
and like, 1

<ﬁ®wxw=fw—§%ﬂ3@u—@k
one finds

n=1 (k) (,
o (Do) = 1) — 3 LD —

= K

So the Caputo bypass operator is a left-handed inverse of the operator of fractional
integration but it is not a right inverse.
m

Theorem 1.2.2. Let fand g be two functions whose fractional derivatives of Caputo exist,
for X and p € R, then: “D*(\f + pg) ewists, and we have :

DN + ng(t)) = X“Df(t) + X“D(t)

1.3 Some important theorems

1.3.1 Banach contraction principle

Theorem 1.3.1. [6] Let S be a complete metric space and let T : S — S be a contracting
application, i.e. there exists 0 < k < 1 such that d(Tz,Ty) < k(z,y),Vx,y € S. Then T
admits a single fized point s € S..

1.3.2 Leray-Schauder’s nonlinear alternative

Theorem 1.3.2. [}/ Let X be a Banach space, let B be a closed, convezr subset of X, let U
be an open subset of B and 0 € U. Suppose that

P .U — B is a continuous and compact map. Then either

(a) P has a fized point in U, or

(b) there exist an x € OU (the boundary of U) and X € (0,1) with x = AP(z).




Chapter 2

Existence and uniqueness results for non

hybrid fractional differential equations

2.1 Introduction

In this literature, we show some contributions of researchers to the finding of the existence
and uniqueness of the solution for the different fractional differential equations. Bai [1] stud-
ied the existence and uniqueness of positive solutions for the following three-point fractional

boundary value problem:

“Dysa(t) = f(t,x(t), t€(0,1), g€ (1,2],
z(0) =0, (2.1)
z(1) = fz(n), n € (0,1),
where D? denotes the Riemann-Liouville fractional derivative, and 0 < 8n?~! < 1.
Ahmad et al in [2] discussed the existence and uniqueness of solutions for the following

boundary value problem of fractional order differential equations with three-point integral

boundary conditions:

Cqu(t) :f(t,l'(t))7 te (071)7 qc (172]7
2(0) = 0, (2.2)
2(1) = a fg w(s)ds, n € (0,1),

2
where ¢D9 denotes the Caputo fractional derivative of order ¢, and a € R, — # «.

In [3], the authors discussed the existence and uniqueness of solutions for the follow-

ing nonlinear fractional differential equations with three-point fractional integral boundary
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conditions:
chx(t) = f(t,l‘(t)), te (07 1)7 qc (172]7
x(0) =0, (2.3)
z(1) = alfz(n), ne(0,1),

where D denotes the Caputo fractional derivative of order ¢, I” is the Riemann-Liouville
L(p+2)

fractional integral of order p and o € R, o # e

In this chaper, we discuss existence and uniqueness results for fractional differential
equations with three-point boundary conditions, these results are determined, by applying
fixed point theorems such as Banach’s fixed point theorem. Our assumed problem will more
complicated and general than the problems considered before and aforementioned above, we

study the existence and uniqueness of solutions for fractional differential equations given by

Dy (x(1)) = f(t,2(t) ae(1,2],
z(0) = 0, (2.4)

a(lg.x)(n) + bz (1) = c,

1+~
an
- +b#0.
I'(v+2) 7

°Dgy denotes the Caputo fractional derivative of order a and [g+ denotes Riemann-Liouville

where t € [0,1] and v with m € N, € (0,1), and

fractional integral of order ¢, and a, b, ¢ are real constants with f € C([0,1] x R, R).

2.2 The study of existence and uniqueness

In this section, we show the existence results for the boundary value problems on the interval
[0, 1].

Lemma 2.2.1. Let A(t) be continuous function on [0,1]. Then the solution of the boundary

value problem
°D§.(x(t) = A(t), «e(1,2],te]0,1],
z(0) =0, (2.5)
a3 [t + be(1) =,
s given by
te — blg- A1) — algtAlw)

an™
L(vy+2)

x(t) = I+ A(t) + (2.6)

+b

Proof. for 1 < a < 2 and some constants cg, ¢; € R, the general solution of the equation

“Dg (x(t)) = A1),

10
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can be written as
x(t) = IS A(t) + co + et (2.7)

applying the boundary conditions, we find that

Co = 07
and y
c—blYA(l) —al A
1 = 0+ a(ll’y 0+ (77) ) (28)
ni + b
C(vy+2)
Substituting the values of ¢y, ¢;, we obtain the result, this completes the proof. O

Now we list the following hypotheses.
(Hy) The function f:[0,1] x R — R is continuous.

(Hs) There exist positive function ¢ with bounds [[1] 1, such that
m

|f(t 1) = [(E, 22)] < ()(Jz1 — 22f),
for t € [0,1], 21,22 € R, and ¥(t) € L ([0,1], R*) and p € (0,1 — a).

(H;) If A <1, where A is given by

1—p e L—p
W“i(a—u)l : 1) lalllll zn*™ “(FW_M)1 g
A = T (1+ T4+~ )_'_ 14~
(@) fog T Tlat g +b
T(y+2) I'(y+2)

Theorem 2.2.1. Assume that condition (Hy),(Hs) hold, then problem 2.4 has a unique
solution defined on [0, 1]

Proof. Define the space
X =C([0,1], R).

endowed with the norm

2|l = maxeo|z(t))|

Obviously, X is Banach espace. In order to obtain the existence results of problem 2.3, by

Lemma 2.2.1, we define an operator S : X — X as follows

te = bIg f(1,2(1) — alg™ f(n,2(n)))

a771+’y
C(vy+2)

Sz(t) = I f(t,z(t)) +

+0

11



2.3. EXAMPLE

Let z,y € X. Then for each t € [0, 1], we have

(S2)(t) = (Sy)O)] < [ (f(tx(t) = FE,y(1))]
Bl (f (1, 2(1) — f(Ly(1))) + |all 15" (f (n, 2(n1)) — f(n,y(n)))

- ——
F(ZH—Q) + 0]
N IS (l|x — y|)(1) + |a|l 1T (W]|lz — y|)(n)
< B (e -yl (o) + P =D Tleller (e =y,
= +b
lF(7 +2) |
by the Holder inequality, we have
L=y
ol (= "
|(Sz)(t) = (Sy)(t)] < 1+ —5 )z =yl
I'(v+2)
aty—pg L TH
Jalllv | sno T H ()
" aty—p _
+ s eyl
Noa+7v)|=——= +0b
(@4 Vg
Form the inequalities above, we can deduce that
152(t) = Sy()|| < Allz —yl|
By the contraction principale, we know that problem 3.3 has a unique solution O]

2.3 Example

consider the following fractional equation

i & (02)) Jaw)
D§ya(t) = el(d+t)2  1+x(t)]

[l'(f)]tzo =0,
%Ioa [m(t)}t:% + %[x(t)]tzl = i.

(2.9)

we take p = i and

_exp (sin (7 (L+1¢%))  |a(t)]
fOe0) = =G ;e 1+]a0)

12



2.3. EXAMPLE

we can show that

1

~(la(t) — (1)),

£ (t2(t),Drtt), Tio(t)) <

where () = &= Then, we have [|¢[1 & 0.0423 and A ~ 0.2109 < 1, By Theorem 1.3.1, we

know that proplem 2.4 has a unique solution defined on [0,1].

13



Chapter 3

Existence and uniqueness results for hybrid

fractional differential equations

3.1 Introdution

In this chapter, we discuss existence and uniqueness results for hybrid fractional differential
equations with three-point boundary hybrid conditions, these results are determined, by
applying fixed point theorems such as Banach’s fixed point theorem and Leray-Schauder
Nonlinear Alternative. Our assumed problem will more complicated and general than the
problems considered in chapter 2, we study the existence and uniqueness of solutions for the

hybrid fractional differential equations given by

D (@ (0~ I8, h(t, 2(8).° DYy a(t), I a(t)) = F(t,2(t). Dat), [&a(t)) @ € (1,2), Bandq € (0,1),
(3.1)
with boundary hybrid conditions

{[x(t) — Tt (). D (t), Tse(8)] o = 0.
Al [e(t) — Tuh(t,2(t). Dyr(t), Iuw(t) oy + Bla(t) — I3uh(t, (1) Dife(t), Ifux(t)) o
32
an1+'y

°Dg denotes the Caputo fractional derivative of order o and Ig+ denotes Riemann-Liouville

where t € [0, 1], v and ¢,n € (0, 1], and

fractional integral of order ¢, and a, b, c are real constants with f, h € C([0,1] x R? R).

3.2 The study of existence and uniqueness

In this section, we show the existence and uniqueness results for the boundary value problems
on the interval [0, 1].

14



3.2. THE STUDY OF EXISTENCE AND UNIQUENESS

Lemma 3.2.1. Let A(t) be continuous function on [0,1]. Then the solution of the boundary

value problem

D¢, (x(t) — IL h(t,x(t),° DS, x(t), I () = A(t), a < (1,2], Bandg € (0,1),
[w(t) — I3 h(t, 2 (0), Dy (t), I x())]i=o = 0,
all, [w(t) — I8 h(t, 2 (), DSa(t), I8 a(t)]imy + bla(t) — I h(t, x(t),C DY a(t), IL x(t))]i=1 = ¢,
(3.3)
where t € [0,1], v, B and q € (0,1),,

is given by

t(c— I A(1) — al i A(n))
a771+'y
C(v+2)

Proof. for 1 < a < 2 and some constants ¢, ¢; € R, the general solution of the equation

x(t) = IS A(t) + F I8 h(t (), D a(t), IS x(t).  (3.4)

+0b

Dy (x(t) — Igy ha(t, (), D (t), Iy x(t))) = A1),
can be written as
w(t) = ISy A(t) + co + et + I8 h(t, 2 (), DY a(t), I8, x(t)), (3.5)

applying the boundary conditions, we find that

Co = 07
and +y
c—bl%A(l) —al 77 A
cp = 0t a<1J>r7 Uk (n) . (36)
777 +b
C(vy+2)
Substituting the values of ¢y, ¢;, we obtain the result, this completes the proof. ]

Now we list the following hypotheses.
(Hy) The functions f, h: [0,1] x R* — R are continuous.

(H,) There exist positive functions ¢, with bounds ||¢||1, such that

|h(t>$1a?/1, 21) - h(t7$2,y2722)| < ¢(t)(|$1 - 5172| + |yl - y2| + |Z1 - 2’2|)7

for t € [0,1], (xr, ye, zx) €R3, k=1, 2 and ¢(t) € L+([0,1], R*) and 7 € (0,0 — 1), .

(Hj3) There exist positive function ¢ with bounds [[¢] 1, such that
m

15



3.2. THE STUDY OF EXISTENCE AND UNIQUENESS

|f(t,x1,y1,21) — f(t, 22, ¥, 22)| < V(E) (|21 — 22| + |y1 — y2| + |21 — 22),

for ¢ € 0,1], (zx, yi, z) € R3, k =1, 2 and 9(t) € L#([0,1], R*) and p € (0,a — 1).

(Hy) fA+A+6 <1, where A, A and © are given by

1 L—pyy L ot l—p o
N TR e =i
Fe) P Tat ey
(v +2) R YOE)
1 7_177'
=2
['(q)
ol (s vl i
R TOE T
Dla+ (g 55+ 0
aty—p 1—p I—p 77_ I—7
A e I e
I'(a+7)] I'(2q)
L—p L =gy
ol (— ey 1 (=t
6 - — o | o (I
@D g Ly T
['(y+2)
lal (g g (T
n - a+y—u )+ T B—q—T
@+ ) TG -0

Theorem 3.2.1. Assume that condition (Hy — Hy) hold, then problems (3.1) and (3.2) have

a unique solution defined on [0, 1]

Proof. Define the space
X ={z:x, I{zand °DJ,z € C([0,1], R), 0 < ¢, 8 < 1},
endowed with the norm

||| = mazycpoq|z(t)| + mazieo | L5 x(t)| + maxte[071}|CD€+x(t)|.

We put

Fa(t) = f(t,2(t).c Df,r(t), I, (1)),
Ha(t) = h(t, (), DL x(t), T4 x(t).  meN.

16



3.2. THE STUDY OF EXISTENCE AND UNIQUENESS

Obviously, X is Banach espace. In order to obtain the existence results of problems (3.1)
and (3.2), by Lemma 3.2.1, we define an operator S : X — X as follows

t(c = b(Ig: F)(1) — a(Iy" F)(n))
anl—l—'y
I'(y+2)

Since f, h continuous, it is easy to see that

Sx(t) =I5 Fx(t) + + I Ha(t).

+b

(I2.52)(t) = I () + ( )+ 12 Ha(t)

t(c — b5 F)(1) — a(Ig " Fz)(y))
(g +1)(5¢s +0)
¢ _ (qaf £ (e = b(Ig. )( ) = alIgI " Fx)()\ | s
(“Dys Sx)(t) = (Lo "Fx)(t) + ( r@— 5)(15(77;1; +b) )+ Iy "Hz)(1)

Let z,y € X. Then for each ¢ € [0, 1], we have

|WWF@WMS|&ww@MmHWWM—@&ﬁﬂEWM—MM)
)

D(v+2

+187%(Ha — Hy)(t)

S [()X+(77Z}||$ _ y||)(t) + ‘b|I(()X+(wa B y”)(l) + ‘a’[g+a<¢‘|x B 3/”)(77)

1+~
[ AR—— Y
C(vy+2)
+15 gl — yll.
by the Holder inequality, we have
L=y
H¢H/%(a _M)l g 1b|
|(Sz)(t) — (Sy)(t)] 1+ —5 )z —yll
C(vy+2)
aty—p(_ L TH 1o
al [0 7t
. T H
+ an™
I(o+7)|s——= +b
(@ + Vg
1—7
ol (=)
X |l —y|l + rT—y
Iz = yll T [l = yll
= Az -yl

17



3.3. THE STUDY OF EXISTENCE

similary, we have

| Ig+ (S)(t)  — 1'3+(Sy)()|

I 1—p 1_,u 1—p
< {w”(a“ AL (|b|(“‘“’)
Fla+q) I'(q + 1)<F?;7+ 5 +0) [(e)
_ L=y
ol (e " (— Ly
. Fff_ & )+ Iy HTH (1 e
o r<q+1><rg‘j+2)+b> )
_ L—p T
Jal (g gy ()t
aty—p Tqgtqg-—T _
)t Tt }“ 4
= Alle—y]
°Df, (Sa)(t) — CD§+<Sy><>|
{w (o B“ i ol (|b|<;j‘;>w
R Sl e l—7
i S Y O
aty—p T f—q—T .
T el YT - }” vl
= 6z —yl.

Form the inequalities above, we can deduce that
[Sz(t) = Sy(D)|| < (@ + A+ A)flz —yl.

By the contraction principale, we know that problem 3.1 and 3.2 have a unique solution [

3.3 The study of existence

Theorem 3.3.1. assume that
(1) We put Hy = sup h(t,0,0,0),

tel0,1]
(2) There exist tree non-decreasing functions pi, p2,ps : [0,00) — [0,00) and a function

e Lu([0,1],R*) with pu € (0,0 — 1)

£y, 2)] < (@) (oa(l2]) + pa(ly]) + ps((2]));
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3.3. THE STUDY OF EXISTENCE

fort €[0,1] and (x,y,z) € R
(3) There exists a constant Z > 0 such that

Z
Wi(2) + [ Wa(n(Z) & ol Z) + a(2)) = (3.7
Where
Wi(Z) — Icl(F(q+1)F(2—B)+r(2—5)+r(q+1))++Z”¢“i(q sl
D(g+ 12 = B) (|5 +bl) I'(q)
1—71 T
Il (5 )T H¢Hl(7)1‘7
T 4T Tq—p-—1
JE 7 B VR
oW W w )
|m+b\ F(Q-Fl)(Wer) F(2—ﬁ)(m+)
= (- L e
antt a o — .
T(a+7)|r(;7+2)+b| Mg+1) " T@-p) " Tlateg = Ta-p)

Then problem (3.1) and (3.2) has at least one solution on [0, 1].

Proof. Define the a ball B, as
By ={reX: || <r},
where the constant r satisfies
r 2 Wi(r) + [0l Walpr(r) + p2 + ps(r))-

Clearly, B, is a closed convex bounded subset of the Banach space X. By Lemma 3.2.1 the

boundary value problems (3.1) and (3.2) are equivalent to the equation

t(c— bl Fx(1) —al)F*F o
Sz(t) = I&Fx(t) + (c = blg: fn(ll 0 x(n))—FZIgLHZ-x(t), (3.8)
T(v+2) +b i=1
o (lef + [l I [ Fa(1)] + |al 15 [ Fa(n)])
[Sz(t)] < |15 Fa(t) + e + 15 Ha(t)], - (3.9)
————+b
|F(7+2) |

19



3.3. THE STUDY OF EXISTENCE

by the Holder inequality and the hypotheses, we have

]| 2 (2=22) 1k ol (1 Ty
Sa(t) () + o) ) (14— By M
g + U !
(v+2)
L—p
el (e 4 7) + (pa(7) + pa(r) + ps () [¥]| 1 [aln™~ )"
* ani T ’ AEYZE 4 H,
F(oz—i—’y)lr(g_i_z)—l—lﬂ
similary, we have
] (b .
FSO] < (90 +alr) + )y — L 4
F(q—i—l)(m—i-b)
|b|(p1(7°)+pz(7“)+p:a(7“))||¢||;<1 _“)1*“ 0]l 1 ( Ty
+ anlJr,y ra K —|—H0+7" F(qu)
['(a)(q + 1)(m +b)
aty—p 1—n 1—p
+<p1(r)+pz(r)+p3(r))||¢||;|a|n ) (a+v—u)
an'*t ’
I'a+~)(q + 1)|m + b
and
DRSO S (ulr) o) sy T - 'Z’n
Bsr)+ pale) + ()l (=) ||¢||¢<q_g;>“
T ere-a Ty TaD)
I'(vy+2)
(pr(r) + pa(r) + ps(r)) 1] L faln* 7=+ (52
T(a+9)0(2 = B)| 5 + 1
That is to say, we have
1Sz @) < Wi(r) + ([l 1 Walpi (r) + pa(r) + ps(r))- (3.10)

Secondly, we prove that S maps bounded sets into equicontinuous sets. Let B, be any

bounded set of X. Notice that f and h; are continuous, therefore, without loss of generality,
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3.3. THE STUDY OF EXISTENCE

we can assume that there is an M; and M},, such that

sup f(t,2(t),° Dg-x(t), gy () = My,

te(0,1]

and

sup h(t,z(t),” Dgra(t), [jsx(t)) = M.
te[0,1]

Now let 0 < t; <ty < 1.We have the following facts:

ta(c — b(I§ F)(1) — a(I7" Fx)(n))

|Sx(ty) — Sz(ty)| = |15+ Fa(tz) + + 1§ Ha(te)— IS Fa(ty)

an'
RS
e b(IéﬂF)(llL— a(lg " Fx)(n)) 19, Ha(ty)]
4
I(y+2)

— )t — (¢, — s)ott q
</ = f(s,2(5),° Disa(s), Iy x(s))ds
+/t‘3>)“+f(s 2(5).° Dgva(s), I8, a(s)ds

b —a(llT*Fax
+!tz—t1|(( b(lmff)aul)+7 a(Ig " F )(77)))
S/
I'(y+2)

t1

+ (/ (ta — S)MF(—(])(U — )1t h(s,z(s),° Dgex(s), Il x(s))ds

0

(s — )0+ ,
Foy s (5) Diea(s), ()
My(ta — 1) My(tF —15) + (fa —t1)"
I'(a+1) ['(a+1)
. (Mh(tQ — 1) Myt — ) + (s — tl)q)
I(g+1) I'(g+1)
_2My(ty 1) | 2My(ty —11)"
['(a+1) L(g+1)

we can get
|Sx(t;) — Sz(te)] — 0 as to — 1.
Similarly, we can obtain that

][g+5x(t1) — Ig+5$(t2)| —> 0asty — t1,

|0D8+S,I(t1) —° D8+S$<t2)| —> Oasty — t1.
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3.4. EXAMPLES

This implies that
’lS.I'(tl) — Sfﬂ(tz)” —> 0 asty — 1.
Finally, we let = ASz for A € (0,1). Due to (3.10) and for each ¢ € [0, 1] we have

[zl = IASz] < Walllz]l) + [l s Walpr (12 ]]) + pa(llz () + ps((l])-

That is to say,

] -,
Walllel) + T Walon (el + palel) + pslel) =

From (3.7), there exists Z > 0 such that x # Z. Define a set
O={yeX:[yll<Z}

The operator S : O — X is continuous and completely continuous.

By the definition of the set O there is no x € 9O such that x = ASx for some 0 < A < 1.
Consequently, by Theorem 1.3.2, we obtain that S has a fixed point x € O which is a solution
of problems (3.1) and (3.2). This is the end of the proof. O

3.4 Examples

. 3 exp (sin (7 (1 +¢2))  |x(t)] 1
7 (10Dl ) = S T b G

c 8 t* (t) + Dy x(t) s )
h( o Dow(ﬂmx(t)) m(m(t)+cDé+x()+1 e (t)’)%xp(_t)

CDOM( )’ +

(o))

+

We can show that

£ (100, °D80(0), 12 0) < 36 (1) = yO)] + D5 =D+ |1 0t0) - rw0)])
p (1 0(0), D0, 1 a(1)) < o (1et0) 001 + "D 2(0) — Dihytn)| + 1 att) — o))
where

b= =19

Then, we have
[l 1 ~0.0423, [|éu]l,, ~ 0.0356,

and
A ~0.2109, A=~0.1528, ©O ~0.2276
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3.5. EXAMPLES

and
A+A+0~05914 < 1.

By Theorem 3.2.1, we know that proplem 3.11, has a unique solution defined on [0, 1].

3.5 Examples

Consider the following fractional differential equation

Ra(t)

“Di, (x( ) _J(Jig?Hx(t)) =y (x(t)+;1§§?x(t))
[:c(t) o H(t)} — 0,

1 1 100"
173
10107L

x(t) — 1,9 Ha(t)

L
T 50

100
x(t) — I Ha:(t)] = £.
t=1

t=

N

We choose "
100 _ 28
p=3 a= 18 =k f (he@, DEa), [ ) = 5 sin (e(0) + 1)) +
Cate L
o D5 (b),

=

1 100 0] 15 “Dix(t) !
h (t,xt,CDl’t,[mlxt): £ T (4) + —
(B Dget) 2 ) = Em T ) T 160 O e T 1o

We can demonstrate that

7 (Ll D), 1) )| < w<>( <rx<>|>+p2(CDlx<>D+p3(fé§9x<t>])),
 (t2(t), D (t), 18 2(0) ) =hn (£y(0), DEy(e), 1u(®)) < 35 (j2(t) = (O] + [-DFa(t) = Diu()

100 100
1) - 1))
where

e 1
¢(t):7 ¢:T6’

1

ple)) = 5le@l e (|5 1

1
cD—at)|) = —
507 >D 30

%95(?5)

[

100 ‘

100 1 | 100
Iolﬁlx(t)D = o i),

) p3<

1
10°
After calculation, it ensues by 3.7 that the constant Z provides the inequality Z > 31.9308.

Hence we have
lollr = 0.0625, Hy =

Since all the stipulations of theorem 3.3.1 are completed, the problem 3.12 has at least one

solution on [0, 1].
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Abstract
In this work, we study the existence of solutions of fractional differential equations involving
a Caputo derivative of order Alpha. Our results are based on a standard fixed point theorem
for non hybrid fractional differential equations, and Leray-Schauder’s nonlinear alternative
for hybrid fractional differential equations.
Keywords: Caputo derivative - fixed point theo-rem - Existence and uniqueness.

Résumé

Dans ce travail, nous étudions 'existence de solutions d’équations différentielles fraction-

naires inclus une dérivée de Caputo d’ordre Alpha. Nos résultats sont basés sur un théoréme
de point fixe standard pour les équations différentielles fractionnaires non hybride, et sur
I’alternative non linéaire de Leray-Schauder pour les équations différentielles fractionnaires
hybride.
Mots-clés : dérivée de Caputo - Existence et a 'unicité — théoréme du point fixe

ucdla
Gun LAy b 5lS Fide (5 5a0 A pu bl Yol Jslall asa s Allie Al aigh ¢ Janll 138 3
3k oy sh A Aail) Ay Bt g Aieaa el A el bl o alaall daball A5G0 ALaE A a0y Jas Lieddiad
) Limgl) Ayl Alalall Y alaall dad Sl
A i) Ay las Ailaa ) 5 e sll - S s Aaliie cilalg
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