
KASDI MERBAH UNIVERSITY
OUARGLA

Faculty of mathematics and Sciences Material

MATHEMATICS DEPARTEMENT

MASTER

Mathematics Specialite

Specialiy : Modeling and Numerical Analysis

Present by: GUITOUN chahra

Theme

Finite element approximation for a non
local problem

Represented in : 15/06/2022

Limb for jury :

Mezabia Elhadi M.C.A. University KASDI Merbah - Ouargla Chairman

Ghezal Abderrazek M.C.A. University KASDI Merbah - Ouargla Examiner

Merabet Ismail Prof. University KASDI Merbah - Ouargla Supervisor

The university year : 2021/2022



Dedicaces

To each who taught me primary stage to university phase

To the pure ,sinless soul of MY FATHER , and MY MOTHER whow I tired a lot

in my life,May God bless her with for my path

To the whole generous family that suported and still supportng me including

brothers,sisters and of course my two friend of struggle names:SALHI MAROUA and

SOUMIA BOUDJRADA who have shared me its moments.

To everyone in the department of mathematics and all the graduates of 2022 university

of KASDI MERBAH OUARGLA

To each of those who influenced my life positively and who I loved but my pen is unable

to remember them .

i



Remerciement

First and last , oh praise be to God who had blessed and helped us to finish this work as

l feel deeply thankful

and geateful to the supervisor Mr.MERABET Ismail who presented one of the most

important subjects to me and also for the time , effort encouragement and guidance he

kindly donated to me as I also feel so grateful to my generous professors at faculty of

mathematics ,university of KASDI MERBAH OUARGLA

and I don’t want to forget my teacher at high school Mr.Bouggouffa Med Al Saddik who

gave me priceless .

ii



Contents

Dedication i

Acknowledgement ii

Notations and Conventions 1

1 non local problems 4

1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 The difference between local and non local . . . . . . . . . . . . . . . . . . 7

1.2.1 What are "local" PDEs? . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 How can define a fractional derivative ? . . . . . . . . . . . . . . . 7

1.3 Fractional Laplacian : 1d is a special case . . . . . . . . . . . . . . . . . . 9

2 Fractional Laplacian with Dirichlet boundary conditions 11

2.1 Derivation of a Variational Formulation . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Fractional Laplacian on Rn . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Variational formulation . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Some abstract Results for non local Variational problems . . . . . . . . . . 14

2.2.1 Fractional Sobolev space in Rn . . . . . . . . . . . . . . . . . . . . 14

iii



CONTENTS

2.2.2 Fractional Sobolev space in a domain Ω . . . . . . . . . . . . . . . . 14

2.3 Existence and a uniqueness of Solution of the Variational Formulation of

Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Coercivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Finite Element Analysis of non local Problem 19

3.1 Some useful remarks for the finite element computation . . . . . . . . . . . 19

3.2 The Discrete Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Direct formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 The Direct Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 A priori error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

iv



Notations

ä (., .): The scalar product and 〈., .〉: The duality product .

ä Hs(Rn) := {u ∈ S ′;
´

Ω
(1 + |ξ|2)s|(Fu)|2dξ <∞}.

ä H̃s(Ω) := {u ∈ Hs(Rn) : u = 0 in Rn\(Ω)}.

ä Hs
0(Ω) := C∞0 (Ω)

‖·‖s
.

ä |v|Hs(Rn) = 〈v, v〉1/2

äC∞0 (Ω) : The set of continuous functions with compact support on Ω

ä H̃s(Ω) := {u ∈ Hs(Rn) : u = 0 in Rn\(Ω)}

ä |v|s =
√´

Ω

´
Ω
|v(x)−v(y)|2
|x−y|n+2s dxdy .

ä ∆u =
∂2u

∂x2
+
∂2u

∂y2

ä
´

Ω
Ou.Ov =

´
Ω
v(−∆)u+

´
∂Ω
v∂vu .

ä ‖.‖s = (‖.‖2
L2 + |.|2s)1/2

ä Cn,s :is constant the one appearing in the defnition the fractional laplacian .
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introduction

In the recent years the fractional Laplace operator has received much attention both

in pure and in applied mathematics . The purpose of this work is to approximate the

finite element to a nonlocal problem , here we give some mathematical models related to

non-local equations, for example problem that arises in crystalline dislocation (which is

related to classicalmodel given by Peierls and Nabarro)[4] , a problem that arises in phase

transitions (which is related to a non-local version of the classic Allen Kahn equation) [6] .

In this work we will be interested in the fractional Laplace operator of order s , which

we will denote by (−∆)s and simply call the fractional Laplacian. In the theory of stochas-

tic processes , this operator appears as the infinitesimal generator of a stable L’evy process

[[11], [8]] , although there are results on the existence of the solution, but it is difficult

to find the analytical solution in the general case this is why numerical methods take on

their importance in apps.

In this work , we studied finite element approximation for a non local problem .This

thesis consists of three chapters .

In the first chapter, some concepts were introduced that help us to study fractional

laplacian with dirichlet boundary conditions, and finite element analysis of non local
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problem .

In the second chapter , some concepts were introduced that help us to study frac-

tional laplacian with dirichlet boundary conditions, which states to existons a unique

solution of the variational formulation problem , after taking into consideraton of some

abstract results for non local variational problems and all this after we get the variational

formulation .

In the third chapter we will study final element analysis of a non-local problem , which

states to a priori error analysis through eistence and uniqueness of a discrete solution ,

and all this after we get the discrete problem . This chapter is based on reference [1]
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Chapter 1

non local problems

In the first chapter , some concepts were introduced that help us to study fractional

laplacian with dirichlet boundary conditions , and finite element analysis of non local

problem .

1.1 Definitions

Let Ω be an open domain of Rn with boundary Γ , we denote by D′(Ω) the space of

distributions defined on Ω and we denote by S ′ the space of tempered distributions of Rn.

Let α = (α1, · · · , αn) ∈ Nn, denotes Dαu =
∂|α|u

∂α1x1 . . . ∂αnxn
with |α| =

n∑
i=1

αi

Hs(Ω) the classical fractional Sobolev space of order s ∈ Rn,

Hs(Rn) := {u ∈ S ′;
ˆ
Rn

(1 + |ξ|2)s|(Fu)|2dξ <∞}
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1.1. DEFINITIONS

Then we define the space H̃s(Ω) by

H̃s(Ω) := {u ∈ Hs(Rn) : u = 0 in Rn\(Ω)}

We recall that the fractional Sobolev space Hs(Ω) is defined by

Hs(Ω) := {u ∈ L2(Ω) : |v|s <∞}

Where

|v|s =

√ˆ
Ω

ˆ
Ω

|v(x)− v(y)|2
|x− y|n+2s

dxdy

We denote by C∞0 (Ω) the set of continuous functions with compact support on Ω that

is to say C∞0 (Ω) = {u ∈ C∞(Ω);∃K ⊂ Ω, k Compact;u = 0 on Kc

Hs
0(Ω) := C∞0 (Ω)

‖·‖s

Theorem 1.1 (The Lax-Milgram lemma)[10] Let H be a real Hilbert space and a be

bilinear forme continuous and corecive on H , i.e such that exists C, α > 0 such that

∀x, y ∈ H,

i) |a(x, y)| 6 C‖x‖‖y‖ and ii) a(x, x) > α‖x‖2

Then for any continuous linear form L of H there exists a unique u ∈ H such that ∀x ∈ H

L(x) = a(u, x)

moreover if a is symmetric , by setting J(x) = 1
2
a(x, x)− L(x) forx ∈ H, u is carac-

terized by

J(u) = min
x∈E

J(x).
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1.1. DEFINITIONS

Proof.

see reference[10]

Remarks: Analogously to integer order Sobolev spaces, an immediate consequence

of the Poincaré inequality is that the Hs−seminorm is equivalent to the full Hs−norm
over H̃s(Ω).

Observe that, given v ∈ H̃s(Ω), its Hs−seminorm is given by

|v|2Hs(Rn) = |v|2Hs(Ω) + 2

ˆ
Ω

|v(x)|2
ˆ

Ωc

1

|x− y|n+2s
dydx :

Definition 1.2 [1] Given a (not necessarily bounded) set Ω with Lipschitz continuous

boundary and s ∈ (0; 1), we denote by ωsΩ : Ω −→ (0;∞)the function given by

ωsΩ =

ˆ
Ωc

1

|x− y|n+2s
dy

Denoting δ(x) = d(x; ∂Ω), the following bounds hold

0 <
C

δ(x)2s
6 ωsΩ 6

σn−1

2sδ(x)2s
∀x ∈ Ω

where σn−1 is the measure of the n−1 dimensional sphere and C > 0 depends on Ω.

For the lower bound above we refer to [[9], formula(1.3.2.12)], whereas the upper bound is

easily deduced by integration in polar coordinates.

6



1.2. THE DIFFERENCE BETWEEN LOCAL AND NON LOCAL

1.2 The difference between local and non local

1.2.1 What are "local" PDEs?

Let u(x, t) be a function and we consider the following differential equation

F (u, ut, ux, utt, uxx, . . .) = 0

To check the equation at (x0, t0) we only need to know u in a neighborhood of (x0, t0).

For non local PDEs we need to know the solution in the whole space in order to check

the equation at a point.

Example 1.3 The aggregation equation. The aggregation equation consists in the scalar

equation
ut + (uv)x = 0 in Rn × Rn

+

v(x, t) = −(K ′ ∗ u(., t))(x)
u(x, 0) = u0

where the kernel K is a given potential and

(f ∗ g)(x) =

ˆ ∞
−∞

f(x− y)g(y) dy

is the convolution product. So in order to check the equation at a point we need to know the

support of the function u which could be the whole space Rn. So the aggregation equation

is a non local equation.

1.2.2 How can define a fractional derivative ?

Let u : Rn → Rn be a nice function and u′, u′′, u′′′ etc its derivatives.

Du is a derivative of u if :

i) D is linear.

ii) D is translation invariant i.e.,

Dτhu = τhDu where τhu(x) = u(x− h)

7



1.2. THE DIFFERENCE BETWEEN LOCAL AND NON LOCAL

iii) D acts on dilations as follow:

uλ(x) := u(λx), Duλ(x) = λσDu(λx), σ is the order of D

Second order incremental quotients

Du(x) =

ˆ ∞
0

u(x+ y) + u(x− y)− 2u(x)

y2+β
dy

Example 1.4 i) Check that D is linear

ii) Check that D is translation invariant

iii) Finally, prove that

uλ(x) = u(λx), Duλ(x) = λ1+βDu(λx), β ∈]− 1, 1[

solution

i) Clearly D is linear.

ii)

D(τhu)(x) = D(u(x− h)) =

ˆ ∞
0

u(x− h+ y) + u(x− h− y)− 2u(x− h)

y2+β
dy = τh(Du)(x)

iii)

Duλ(x) =

ˆ ∞
0

uλ(x+ y) + uλ(x− y)− 2uλ(x)

y2+β
dy

=

ˆ ∞
0

u(λ(x+ y)) + u(λ(x− y)− 2u(λx)

y2+β
dy

=

ˆ ∞
0

u(λ(x+ y)) + u(λ(x− y)− 2u(λx)

(λy)2+β
λ2+βdy

=

ˆ ∞
0

u(λx+ z) + u(λx− z)− 2u(λx)

z2+β
λ1+βdz

= λ1+βDu(λx)
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1.3. FRACTIONAL LAPLACIAN : 1D IS A SPECIAL CASE

1.3 Fractional Laplacian : 1d is a special case

• • • • • • •

Figure 1.1

i) The probability that the particle jumps from the point hk ∈ hZ to the point

hm ∈ hZ is K(k −m)

ii) ∑
k

K(k) = 1

iii) if K(y) ∼ |y|−(n+2s) with s ∈ (0, 1) and τ = h2s, then

K(k)

τ
= hK(kh)

Letting h, τ → 0 yields the fractional heat equation

ut −
ˆ
Rn

u(x+ y, t)− u(x, t)

|y|n+2s
dy = 0

iv) Long-range time memory: ut → ∂γt u(0 < γ < 1)

∂γt u+ (−∆)su = 0

The term ˆ
Rn

u(x+ y, t)− u(x, t)

|y|n+2s
dy

defines the fractional Laplacian.

In this subsection we consider the following non-local 1d Poisson equation

u = f, x ∈ (Ω). (1.1)

u = 0, x ∈ Rn \ (Ω). (1.2)

In (1.1), f is a given function and, for all s ∈ (0, 1), (−∆)s denotes the one-dimensional

fractional Laplace operator, which is defined as the following singular integral
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1.3. FRACTIONAL LAPLACIAN : 1D IS A SPECIAL CASE

(−∆)su(x) =
1

4π
p.v.
ˆ
Rn

u(x)− u(y)

|x− y|n+2s
dy. =

1

4π
lim
ε→0

ˆ
Rn\B(x,ε)

u(x)− u(y)

|x− y|n+2s
dy (1.3)

We start by giving a more rigorous definition of the fractional Laplace operator. Let

L1
s(Rn) := {u : Rn → Rn : u measurable ,

ˆ
Rn

|u(x)|
(1 + |x|)n+2s

dx <∞}

For any u ∈ L1
s(Rn) and ε > 0 we set

(−∆)sεu(x) = cn,s

ˆ
|x−y|>ε

u(x)− u(y)

|x− y|n+2ε
dy, x ∈ Rn

The fractional Laplacian is then defined by the following singular integral

(−∆)su(x) = lim
ε→0+

(−∆)sεu(x), x ∈ Rn (1.4)

provided that the limit exists.

We notice that if 0 < s < 1/2 and u is a smooth function, for example bounded and

Lipschitz continuous on Rn, then the integral in(1.4) is in fact not really singular near x .

Moreover , L1
s(Rn) is the right space for which v := (−∆)s exat theists for every ε > 0, v

being also continuous continuity points of u.
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Chapter 2

Fractional Laplacian with
Dirichlet boundary conditions

In the second chapter , some concepts were introduced that help us to study fractional

laplacian with dirichlet boundary conditions, which states to existons a unique solution of

the variational formulation problem , after taking into consideraton of some abstract re-

sults for non local variational problems and all this after we get the variational formulation

.

2.1 Derivation of a Variational Formulation

Problem setting

Let Ω be an open domain of Rn with boundary ∂Ω . The nonlocal dirichlet problem

consists of finding u : Ω→ Rn satisfies :

(−∆)su = f, in Ω

u = 0 in Rn\Ω
(2.1)
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2.1. DERIVATION OF A VARIATIONAL FORMULATION

wherc , for 0 < s < 1 and , (−∆)s is defined as follow

(−∆)su(x) = cs, P.V.

ˆ
Rn

u(x)− u(y)

|x− y|n+2s
dy (2.2)

where,

cs =
22ssΓ(s+ 1)

πI′(n− s)

Show that the classical integration by parts formule:
ˆ

Ω

∆udx =

ˆ
∂Ω

∂nuds (2.3)

2.1.1 Fractional Laplacian on Rn

The Fractional Laplacian (FL) is among the most prominent examples of a non-local

operator. For 0 < s < 1 , it is defined as

(−∆)su(x) = C(n, s) p.v.
ˆ
Rn

u(x)− u(y)

|x− y|n+2s
dy (2.4)

where

C(n, s) =
22ssΓ(s+ n

2
)

πn/2Γ(n− s)
is a normalization constant1.

(−∆)su(x) = F−1
[
|ξ|2sFu(ξ)

]
The FL, given by (2.4), is one of the simplest pseudo-differential operators.

Given a function f defined in a bounded domain Ω the homogeneous Dirichlet problem

associated to the FL reads: find u such that{
(−∆)su = f in Ω

u = 0 in Ωc
(2.5)

1 For other paper we may find :C(n, s) =
22ssΓ(s+ n

2 )

2πn/2Γ(n−s)

12



2.1. DERIVATION OF A VARIATIONAL FORMULATION

2.1.2 Variational formulation

To obtain the variational formulation, we multiply by a test function v ∈ H̃s(Ω)and inte-

grate over Rn, we get,

ˆ
Rn

(−∆)su(x)v(x)dx =

ˆ
Ω

f(x)v(x)dx (2.6)

Compensation 1.3 in relationship 2.6

C(n, s)

ˆ
Rn

ˆ
Rn

(u(x)− u(y))v(x)

|x− y|n+2s
dxdy =

ˆ
Ω

f(x)v(x) dx (2.7)

then, instead of integration by parts, we use the identity

ˆ
Rn

ˆ
Rn

(u(x)− u(y))v(x)

|x− y|n+2s
dxdy = −

ˆ
Rn

ˆ
Rn

(u(x)− u(y))v(y)

|x− y|n+2s
dxdy (2.8)

So, we may write,

− C(n, s)

ˆ
Rn

ˆ
Rn

(u(x)− u(y))v(y)

|x− y|n+2s
dxdy =

ˆ
Ω

f(x)v(x) dx (2.9)

Adding equation (2.7)with (2.9) we fnd the following

c(n, s)

ˆ
Rn

ˆ
Rn

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
· dydx = 2

ˆ
Ω

f · vdx

And from it

a(u, v) =
c(n, s)

2

ˆ
Rn

ˆ
Rn

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dydx

Then the variational problem reads:
Find u ∈H̃s(Ω) such that

C(n, s)

2

ˆ
Rn

ˆ
Rn

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dxdy =

ˆ
Ω

fv dx,
(2.10)

for all v ∈ H̃s(Ω)

13



2.2. SOME ABSTRACT RESULTS FOR NON LOCAL VARIATIONAL PROBLEMS

2.2 Some abstract Results for non local Variational prob-
lems

2.2.1 Fractional Sobolev space in Rn

The fractional Sobolev space in Rn is defined as:

Hs(Rn) := {u ∈ L2(Rn) : |v|Hs(Rn) <∞}

with

〈v, v〉 =

ˆ
Rn

ˆ
Rn

(v(x)− v(y))(v(x)− v(y))

|x− y|n+2s
dxdy

|v|Hs(Rn) = 〈v, v〉1/2

‖v‖Hs(Rn) :=
(
‖v‖2

L2(Rn) + |v|2Hs(Rn)

)1/2

2.2.2 Fractional Sobolev space in a domain Ω

Given an open set Ω ⊂ Rn and s ∈ (0, 1), define the fractional Sobolev space Hs(Ω) as

Hs(Ω) := {u ∈ L2(Ω) : |v|Hs(Ω) <∞}

where, |.|s is the Aronszajn-Slobodeckij seminorm

|v|Hs(Ω) =

¨
Ω2

|v(x)− v(y)|2
|x− y|n+2s

dxdy

It is evident that Hs(Ω) is a Hilbert space endowed with the norm

‖v‖Hs(Ω) :=
(
‖v‖2

L2(Ω) + |v|2Hs
Ω

)1/2

14



2.2. SOME ABSTRACT RESULTS FOR NON LOCAL VARIATIONAL PROBLEMS

+ Let us also define the space of functions supported in Ω, H̃s(Ω)

H̃s(Ω) := {v ∈ Hs(Rn)| v|Ωc = 0}

equipped with the energy norm

‖u‖H̃s(Ω) =

√
C(n, s)

2
‖u‖Hs(Rn)

+ We define the space Hs
0(Ω), as the closure of C∞0 (Ω) with respect to the Hs-norm.

+ Sobolev spaces of order grater than 1 are defined in the following way: given k ∈ N,

then

Hk+s(Ω) := {v ∈ Hk(Ω); Dαv ∈ Hs(Ω);∀α, |α| = k}

Remarks:

For s > 1/2, H̃s(Ω) coincides with the space Hs
0(Ω).

For s < 1/2 , H̃s(Ω) is identical to Hs(Ω) ( Have no trac for in border ).

The critical case s = 1/2 gives raise to the Lions-Magenes space H1/2
00 (Ω), which can

be characterized by

H
1/2
00 (Ω) := {v ∈ H1/2(Ω);

ˆ
Ω

(v(x))2

dist(x, ∂Ω)
<∞}

Note that

H
1/2
00 (Ω) ⊂ H

1/2
0 (Ω) = H1/2(Ω)

and the inclusion is strict.2

2 J-L LIONS and E. MAGENES noticed that when considering the interpolation spaces
(H1

0 (Ω), L2(Ω))θ,2 for a bounded open set with a Lipschitz boundary, it does give H1−θ
0 (Ω) for θ 6= 1/2

(and one has Hs
0(Ω) = Hs(Ω) for 0 ≤ s ≤ 1/2 ), but for θ = 1/2 it gives a new space, which they denoted

by H1/2
00 (Ω).
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2.3. EXISTENCE AND A UNIQUENESS OF SOLUTION OF THE VARIATIONAL
FORMULATION OF PROBLEM

2.3 Existence and a uniqueness of Solution of the Vari-
ational Formulation of Problem

Lemma 2.1 Assume that un is a bounded sequence in Hs, with its weak limit in L2 given

by u. Suppose also that

1) |un| <∞
2)un ⇀ u

if

lim
n→∞

|un|s = 0 then |u|s = 0

Proof. We have

|v|s =

ˆ
Ω

ˆ
Ω

|v(x)− v(y)|2
|x− y|n+2s

dxdy

=

ˆ
Ω

ˆ
Ω

ρ(x− y)|Dv(x, y)|2,

with

ρ(x− y) = |x− y|n−2s, and Dv(x, y) =
v(x)− v(y)

x− y
since un ⇀ u then

〈ϕ, un〉 → 〈ϕ, u〉 , ∀ϕ ∈ L2(Ω)

Let φ ∈ C∞0 (Ω), then

ϕ(x) =

ˆ
Ω

(x− y)ρ(x− y)Dφ(x, y) dy ∈ L2(Ω)

and

〈ϕ, un〉 =

ˆ
Ω

ˆ
Ω

ρ(x− y)Dun(x, y)(x− y) φ(x) dx dy

=

ˆ
Ω

ˆ
Ω

√
ρ(x− y)Dun(x, y)(x− y)

√
ρ(x− y)φ(x) dx dy

≤
(ˆ

Ω

ˆ
Ω

ρ(x− y)|Dun(x, y)|2 dx dy
)1/2(ˆ

Ω

ˆ
Ω

ρ(x− y)|(x− y)|2|φ(x)|2 dx dy
)1/2

≤ C

(ˆ
Ω

ˆ
Ω

ρ(x− y)|Dun(x, y)|2 dx dy
)1/2(ˆ

Ω

|φ(x)|2 dx
)1/2
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2.3. EXISTENCE AND A UNIQUENESS OF SOLUTION OF THE VARIATIONAL
FORMULATION OF PROBLEM

Note that the right-hand side goes to zero, as n→∞ by assumption.

Therefore 〈ϕ, u〉 → 0 as n→∞.

Proposition 2.2 (Poincaré) There exists a positive constant C such that:

‖v‖L2(Ω) ≤ C|v|s, ∀v ∈ H̃s(Ω) (2.11)

Proof. Using lemma2.1, Clearly ϕ ∈ L2(Ω) because φ ∈ C∞0 (Ω),

< ϕ, un >−→< ϕ, u >

lim
n→∞

< ϕ, un >=< ϕ, lim
n→∞

un >=< ϕ, u >

|un|s −→ 0

lim
n→∞

|v(x)− v(y)|
|x− y|n+2s

= 0

that

< ϕ, un >=

ˆ
Ω

ˆ
Ω

ρ(x− y)Dun(x, y)(x− y) φ(x) dx dy ≤ |un|s|φ|2L2

Since |un|s −→ 0 then limn→∞ < ϕ, un >= 0

We conclude that < ϕ, un >=⇒ |u|s = 0

So we find

‖v‖L2(Ω) ≤ C|v|s, ∀v ∈ H̃s(Ω) (2.12)

2.3.1 Coercivity

a(v, v) =
c(n, s)

2

ˆ
Rn

ˆ
Rn

(v(x)− v(y))(v(x)− v(y))

|x− y|n+2s
dydx

=
c(n, s)

2

ˆ
Rn

ˆ
Rn

|v(x)− v(y)|2
|x− y|n+2s

dydx︸ ︷︷ ︸
|v|2s

=
c(n, s)

2
|v|2s

>
c(n, s)

2
|v|2s
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2.3. EXISTENCE AND A UNIQUENESS OF SOLUTION OF THE VARIATIONAL
FORMULATION OF PROBLEM

Then the bilinear form a(·, ·) is continuous and coercive, Lax-Milgram Theorem 1.1

immediately implies that, then (2.10) admits a unique weak solution u ∈ H̃s(Ω).

18



Chapter 3

Finite Element Analysis of non
local Problem

In the third chapter we will study finite element analysis of a non-local problem , wich

states to a priori error analysis through existence and uniqueness of a discrete solution ,

and all this after we get the discrete problem . This chapter is based on reference [1]

3.1 Some useful remarks for the finite element compu-
tation

• The Hs-seminorms are not additive with respect to domain partitions.

• Functions with disjoint supports may have a non-zero inner product: if u, v > 0 on

its supports

〈u, v〉 = −2

¨
supp (u)×supp (v)

u(x)v(y) dx dy < 0

19



3.2. THE DISCRETE PROBLEM

supp (u)

supp (v)

• Computation of integrals on unbounded domains Ω× Ωc, where Ωc = Rn \ Ω

ˆ
Ω

ˆ
Ωc
u(x)v(x) dx dy < 0

3.2 The Discrete Problem

Our first approach is based on the strong imposition of the Dirichlet condition.

3.2.1 Direct formulation

. The fractional Poisson problem {
(−∆)su = f in Ω

u = 0 in Ωc
(3.1)

takes the variational form  Find u ∈ H̃s(Ω) s.t

a(u, v) = 〈f, v〉 , ∀v ∈ H̃s(Ω)
(3.2)

where,

a(u, v) =
c(n, s)

2

ˆ
Rn

ˆ
Rn

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dydx (3.3)

since both u and v vanish outside of Ω, we arrive at the bilinear form:

a(u, v) = b(u, v) + C(n, s)

ˆ
Ω

[ˆ
Ωc

1

|x− y|n+2s
u(x)v(x)dy

]
dx

20



3.2. THE DISCRETE PROBLEM

where

b(u, v) =
C(n, s)

2

ˆ
Ω

ˆ
Ω

(u(x)− u(y))(v(x)− v(y))

|x− y|1+2s
dxdy

the presence of the unbounded domain Ωc in the bilinear form a is somewhat undesirable.

Fortunately, we can dispense with Ωc using the following argument. The identity

1

|x− y|n+2s
=

1

2s
∇y ·

x− y
|x− y|n+2s

enables the second integral to be rewritten using the Gauss theorem as

C(d, s)

2s

ˆ
Ω

[ˆ
∂Ω

u(x)v(x) ny · (x− y)

|x− y|n+2s
dy

]
dx

where ny is the inward normal to ∂Ω at y.

3.2.2 The Direct Method

Henceforth, let Ω be a polygon, and let Th be a family of shape-regular and globally

quasi-uniform triangulations of Ω, and Ebh the induced boundary meshes. Let Nh be the

set of vertices of Th and hT be the diameter of the element T ∈ Th, and he the diameter

of e ∈ Eh. Moreover, let h = max
T∈Th

hT . Let φi be the usual piecewise linear basis function

associated with a node zi ∈ Nh, satisfying φi(zj) = δij for zj ∈ Nh, and let

Xh := span 〈φi〉 , zi ∈ Nh.

The finite element subspace Vh ⊂ H̃s(Ω) is given by

Vh :=

{
Xh when s < 1/2

Xh ∩H1
0 (Ω) when s ≥ 1/2

(3.4)

The discrete problem then reads:{
Find uh ∈ Vh s.t

a(uh, vh) = 〈f, vh〉 , ∀v ∈ Vh
(3.5)
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3.2. THE DISCRETE PROBLEM

Existence and Uniqueness of a Discrete Solution

The existence of a unique solution to the fractional Poisson problem and its finite element

approximation follows from the Lax-Milgram Theorem 1.1.

|a(uh, vh)| =
∣∣∣∣∣c(n, s)2

ˆ
Rn

ˆ
Rn

(uh(x)− uh(y))(vh(x)− vh(y))

|x− y|n+2s
dydx

∣∣∣∣∣
Using Cauchy-Schewartz

6
∣∣c(n, s)

2

∣∣∣∣ ˆ
Rn

ˆ
Rn

(uh(x)− uh(y))(vh(x)− vh(y))

|x− y|n+2s
dydx

∣∣
6 C|vh|s

And from it a(., .) continuous

|a(vh, vh)| =
∣∣∣∣∣c(n, s)2

ˆ
Rn

ˆ
Rn

(vh(x)− vh(y))(vh(x)− vh(y))

|x− y|n+2s
dydx

∣∣∣∣∣
Using Poincaré inequality proposition 2.2

a(vh, vh) > α|vh|2s

And from it a(., .) corecive

|L(vh)| =
∣∣ˆ

Ω

fvh, dx
∣∣ 6 ˆ

Ω

|f ||vh|dx 6 ‖f‖L2‖vh‖L2

And from it L(vh) continuous
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3.3. A PRIORI ERROR ANALYSIS

3.3 A priori error analysis

Nonetheless, here we provide some details regarding the direct discrete formulation. We

consider the discrete problem: find uh ∈ Vh,gh such that

a (uh, vh) = F (vh) ∀vh ∈ Kh,

where Vh,gh is the subset of Vh of functions that agree with gh in ΩH\Ω. The function

gh is chosen as an approximation of g; for instance, we may consider gh = Πh(g). As a

consequence, it holds that ‖g − gh‖H∗(Ωc) ≤ Ch1/2−ε‖g‖H∗+1/2(Ωc). Let u and u(h) be the

solutions of the continuous problem with right hand side f and Dirichlet conditions g and

gh, respectively. Using Proposition 2.2, we deduce that∥∥u− u(h)
∥∥
V
≤ Ch1/2−ε‖g‖Hs+1/2(Ωc).

Therefore, in order to bound ‖u− uh‖V it is enough to bound ‖u(h)− uh‖V . However, if

supp(g) ⊂ ΩH , then u(h) − uh ∈ K = H̃s(Ω) and due to the continuity and coercivity of

a in K we deduce the best approximation property,∥∥u(h) − uh
∥∥
V
≤ C inf

vh∈Vgh

∥∥u(h) − vh
∥∥
V

Taking vh = Πh(u) and using the triangle inequality we are led to bound
∥∥u(h) − u

∥∥
V
and

‖u− Πh(u)‖V . A further use of interpolation estimates allows to conclude

Theorem 3.1 [1] Let Ω be a bounded, smooth domain, f ∈ H−s+1/2(Ω), g ∈ Hs+1/2 (Ωc)

for some ε > 0, and assume that supp (g) ⊂ ΩH . For the finite element approximations

considered in this subsection, it holds that

‖u− uh‖V ≤ Ch1/2−ε (‖f‖H−s+1/2(Ω) + ‖g‖Hs+1/2(Ωc)

)
for a constant C depending on ε but independent of h,H, f and g.

Remark 3.2 [1] As the finite element approximation uh tou in ΩH has an Hs-error of

order h1/2−ε, we need the previous estimate for the nonlocal derivative to be at least of the

same order. Thus, we require H−(n/2+2s) 6 Ch1/2 , that is, H > Ch−1/(n+4s).

Collecting the estimates we have developed so far, we are ready to prove the following.
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3.3. A PRIORI ERROR ANALYSIS

Theorem 3.3 [1] Let f ∈ H1/2−s(Ω) and be the solution of 2.1. Then, for all ε > 0 ,

u ∈ Hs+1/2−ε(Rn) and there

‖u‖Hs+1/2−ε(Rn) 6 C
(
‖f‖H−s+1/2(Ω) + ‖g‖Hs+1/2(Ωc)

)
Regularity of the nonlocal normal derivative of the solution is deduced under an ad-

ditional compatibility hypothesis on the Dirichlet condition. Namely, we assume that

(−∆)sΩcg ∈ H1/2−s(Ωc) , where (−∆)s(Ωc) denotes the regional fractional Laplacian oper-

ator 2.2inΩc.

Theorem 3.4 [1] Assume the hypotheses of Theorem 3.3, andηinadditionlet g be such that

(-∆)sΩcg ∈ H1/2−s(Ωc) Then, for all epsilon> 0 ; u ∈ Hs+1/2−ε(Rn) and its nonlocal nor-

mal derivative λ ∈ H−s+1/2−ε(Ωc). Moreover, there exists C = C(ε) > 0 such that

‖u‖Hs+1/2−ε(Rn) + ‖λ‖H−s+1/2−ε(Ωc) 6 CΣf,g,

where

Σf,g = ‖f‖H1/2−s(Ω) + ‖g‖Hs+1/2(Ωc) + ‖(−∆)sΩcg‖H1/2−s(Ωc) (3.6)

Proposition 3.5 [1]The following estimates hold:

inf
vh∈Vh

‖u− vh‖Hs(ΩH
≤ Ch1/2−εΣf,g, (3.7)

where Σf,g is given by 3.6

Proof.

Estimate 3.7 is easily attained by taking into account that u vanishes on Ωc
H (because

we are assuming that the support of g is bounded), and applying the regularity jointly

with approximation identities for quasi-interpolation operators.

Proposition 3.6 (Quasi-interpolation see P. Ciarlet Jr (2013)[5]):Let for 0 < s < ` < 1,

if Πh is Scott-Zhang operator, then ∀v ∈ Hs(Ω)

ˆ
T

ˆ
ω(T )

|(v(x)− Πhv(x))− (v(y)− Πhv(y))|2
|x− y|n+2s

. h2`−2s
T |v|2s
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3.3. A PRIORI ERROR ANALYSIS

The rate of convergence of the finite element approximation is given by the following

theorem:

Theorem 3.7 If the family of triangulations Th is shape regular and globally quasi-

uniform, and u ∈ H`(Ω) for 0 < s < ` < 1 or 1/2 < s < 1 and 1 < ` < 2 then,

‖u− uh‖s ≤ C(n, s)h`−s|u|s (3.8)

In particular, by applying regularity estimates for u in terms of the data f , the solution

satisfies

‖u− uh‖s ≤


c(s)h1/2| ln(h)|‖f‖

C
1
2−s(Ω)

if 0 < s < 1/2

c(s)h1/2| ln(h)|‖f‖L∞(Ω) if s = 1/2

c(s, β)

2s− 1
h1/2

√
| ln(h)|‖f‖Cβ(Ω) if 1/2 < s < 1, β > 0

(3.9)

Moreover, using a standard Aubin-Nitsche argument gives estimates in L2(Ω):

Theorem 3.8 If the family of triangulations Th is shape regular and globally quasi-

uniform, and, for ε > 0 u ∈ H̃s+ 1
2
−ε(Ω) then,

‖u− uh‖L2(Ω) ≤

c(s, ε)h
s+ 1

2
−ε if s ∈ (0, 1/2)

c(s, ε)h1−2ε if s ∈ [1/2, 1)
(3.10)

Proof.

see reference [1]
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concluson

In this research , we have studied the finite element approximation of a non local

problem, namely the fractionl laplacian with dirichlet boundary condition.

We used the theory of random applications "the L’evy process" , which made it

easy for us to study in order to search for an approximate solution, although there are

consequences for the existence of the solution.

Prospects : We can study fractional laplacian with neuman boundary conditions.
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Résumé

Dans ce mémoire ,nous étudons la méthode des éléments finis pour un probléme
non local lié à l’opérateur (−∆)s ,oú s est un nombre réel positif cet opérateur
est le laplacien fractionnaire qui a de nombreuses applications aléatoires,nous
n’avons étudié que les conditions aux limites de dirichlet .

Mots clés: probléme non local , frontière de Dirichlet.

Abstract

In this work , we study the finite element method for a nonlocal problem
related to the operator(−∆)s, where s is a positive real number this operator
is the laplacian fractional that has many random aapplications here we only
studied dirichlet boundary conditions.

Key words: non-local problem, Dirichlet limits.
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