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Abstract

In the framework of relativistic and nonrelativistic quantum mechanics with spin 1/2, we

have treated the problem of a particle of mass m and charge e moving in a non-homogeneous

magnetic field via the formalism of path integrals.

In the first part, the problem is solved exactly in the configuration space representation

{|x >} and in the momentum space representation {|p >}. We adopt the space-time trans-

formation methods, which are dependent on the α-point discretization, to evaluate quantum

corrections. The propagator is calculated, the energy eigenvalues and their corresponding

eigenfunctions are extracted. The limit cases are then deduced for a small parameter.

In the second part, we treated the same previous system under the influence of an energy-

dependent inhomogeneous magnetic field, which leaves behind a new normalization of the

wave function, that is examined via Feynman’s path integral method. The propagator has been

calculated. The energy eigenvalues with their corresponding eigenfunctions are deduced.

In the last part of this research, we adopt the path integral formalism for non-relativistic

particle with spin 1/2 moving in a non-homogeneous magnetic field in the modified Heisenberg

algebra is developed by Kempf. This type of system is significant as it represents a Coulomb

potential which means a realistic description of the physics. Following the well-known steps

of the path integral, we found a Green’s function relative to the complex potential. We then

proposed some ideas that help to achieve the existence of the exact solution in later work.

Keywords: The propagator, Green function, Dirac equation, Point of discretization,

Energy-dependent potential, Minimal length, Inhomogeneous magnetic field.
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Chapter 1

General introduction

The widely known path integral formalism is an alternative to the well-known Schrödinger

and Heisenberg quantization methods. Path integral approach constitutes one of the powerful

tools of modern quantum physics. This achievement was presented by Feynman in his thesis

in 1942, and used in his Nobel-prize-winning work related to relativistic quantum mechan-

ics [1]. Feynman’s approach is particularly intriguing because it establishes a link between

the classical Lagrangian description of the physical world and the quantum one, restoring the

classical concept of trajectory into quantum mechanics. Where we find several concepts of

the path integrals, for example, the path integral is a powerful and efficient tool for studying

and formulating quantum mechanics. Also this integral is a functional integral, in which we

integrate over a space of functions unlike ordinary integrals such as those of Riemann. This

functional integral is like a mathematical object that deals with an infinite number of variables.

The mathematical object is an extension of the Riemann integral to the case of an infinite num-

ber of integrals (Wiener integral), and for the Feynman path integral, the situation is even more

complicated since it is not possible to associate it with a measure in the mathematical sense.

On the other hand, this approach provides a rich and elegant framework for treating problems

containing random variables. The basic idea of path integration is that the concept of the func-

tional action S[x(t)] in classical mechanics determines the unique path x(t) that a particle takes

between the endpoints xa and xb. There is no such path in quantum physics that describes the

particle’s motion. Instead, when moving from xa to xb, the quantum particle has a probabil-

ity amplitude. Feynman showed that this probability amplitude expressed as a sum over all



2 General introduction

possible paths connecting the points xa and xb with weight factor exp( i
h̄
S[x(t)]). This sum is

called the integral kernel of the time-evolution operator, which contains all the information of

the physical system and is the Green function solution to the underlying diffusion equation for

the option value. Here the S is the action given by the time integral of the Lagrangian along

the path.

This method has been widely adopted and profitably applied in many fields of physics

such as in quantum mechanics [2, 3], in quantum field theory [4–6], in cosmology [7, 8], in

black hole physics [9], and also in the statistical physics [10, 11]. Which is used extensively

in the study of systems with random impurities. The path integral formalism has proven to

be one of the most powerful methods for studying symmetries, drawing unperturbed results,

and identifying connections between various theories and sectors of theories. Their flexibility

and intuitive appeal have enabled us to apply quantization to increasingly complex systems,

resulting in a rich cross-fertilization of ideas across high energy and condensed matter physics

[12]. In nuclear physics, the path integrals have been applied to semiclassical approximation

schemes for scattering theory [13]. The use of path integrals in a schematic model of multi-

particle nuclear systems with pairing and particle-hole forces allows the establishment of firm

foundations for the so-called Nuclear Field Theory, which had previously been proven euris-

tically. Today, path integrals have found their main application in several problems such as

polarons [5], elementary quantum mechanics,disordered systems [14] (or fluctuons), polymers

[15], dislocations [16], plasmaron[17], etc. Other applications of functional integrals are used

both analytically and numerically [18–22] in many other areas of physics, in chemistry and

materials science, as well as in quantitative finance [23].

The magnetic field is ubiquitous in the current universe and plays various roles in differ-

ent environments. In recent years the study of physical phenomena with applying magnetic

fields is one of the exciting areas of research, holding the attention of scientists. Magnetic

fields are used throughout various fields of study, such as astrophysics, plasma physics, con-

densed matter physics, and particle physics. Inhomogeneous magnetic fields continue to play

an essential role in modern physics. From the famous Stern-Gerlach experiment [24] on a

beam of silver atoms passing through a transverse inhomogeneous magnetic field to the post-
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World War II achievements in magnetic confinement of plasmas [25].The magnetic levitation

of macroscopic objects [26]. In addition, changing the topology of an electron gas is an al-

ternative approach to creating non-homogeneous magnetic fields [27]. These new technolo-

gies have made clear progress in characterizing and understanding the transport properties of

reduced dimensionality semiconductor systems, which will be a critical focus for both fun-

damental physics and device applications. Theoretically, several recent papers have looked

at the transport features of reduced dimensionality semiconductor systems subjected to a spa-

tially dependent magnetic field. The single-particle energy spectrum of a 2DEG subjected to a

non-homogeneous magnetic field was calculated for different step-like [28], linearly [29, 30],

and parabolically (in the transverse direction of a one-dimensional channel) [31]. Analysis of

the weak localization and calculation of the Hall and magneto-resistivities of the 2DEG in a

heterogeneous magnetic field have been obtained in [32–35].

In cosmological physics, research and experiments have proven that galaxy formation,

and even cluster dynamics, could be influenced by magnetic forces. One particular result is

that universes containing large-scale inhomogeneous B-fields would rotate more than their

magnetic-free counterparts [36]. The non-uniform magnetic fields could then play an impor-

tant role in particle cosmology by modifying the dispersion or clustering properties of various

particles. A great deal of effort has long been devoted to studying the behavior of the electron

under the influence of these IMFs, which has led to the discovery of a number of remarkable

experimental results, where studies have proven that the treatment by magnetic nanocom-

plex and spatially inhomogeneous magnetic field of permanent magnet with adhesive force

40kg and 70MHz led to an increase of 16% of the anti-tumor effect compared to conventional

doxorubicin where the growth factor for tumor volumes was minimal, the braking ratio was

maximal [37]. Obtained results have a perspective for future clinical applications of magnetic

nanotherapy of cancer patients. Other research demonstrates that the inhomogeneous magnetic

field has a positive assisting effect on the laser-plasma in the growth of the functional films, in-

fluencing the deposition rate and thickness distribution of the DLC film. More significantly, it

can improve the DLC film’s structural and mechanical properties[38], such as micro-surface,

nano-hardness, and so on. In addition, magnetic fields are now widely recognized as a vi-
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able choice for confining electrons in a space region [39–41]. In fact, the Dirac-Weyl equation

(DWE) is used to simulate the interaction of the massless Dirac electron in graphene with

external magnetic fields, and the same happens for other carbon allotropes as the carbon nan-

otubes and fullerenes [42, 43]. This problem has been solved exactly for graphene in some

inhomogeneous magnetic fields [44]. However, the Hall problem in the presence of an in-

homogeneous magnetic field has recently become essential for the composite fermion theory

in the FQHE [45], since for a density-modulated 2DEG, which is in the FQHE regime, the

problem can be mapped onto the modulation of the magnetic field.

Recently, different inhomogeneous magnetic fields structures of nanometer-scale have

been realized experimentally. For example, by deposition of ferromagnetic microstructures

[46] or by either a permanent magnet arrangement (multipole ), by curving the membrane

[47]. Or picket fence field generated by current-carrying conductors. Indeed, a recent exper-

iment [48] successfully explored weak localization in graphene in inhomogeneous magnetic

fields (produced by a thin film of type-II superconducting niobium placed near the graphene

layer). To make magnetic fields that are circularly symmetric.

In addition, the deformed algebra is very important in the field of physics, and this is

through the continuity of its applications in all branches of physics. A very good example is

the Snyder [49] model. This model is described by the deformation of commutation relations,

introducing two deformation parameters, which leads to the appearance of a nonzero minimal

uncertainty in position and also in momentum. The concept of minimal distance is one of the

choices proposed to understand the differences that appear in the fusion of the main four phys-

ical interactions, which results: A natural approach that involves quantifying the gravitational

field as the other fields. But the resulting theory is non-renormalizable, i.e., without physi-

cal interest. Several scenarios have been presented to tackle this type of problem, including

Kempf and his collaborators on quantum mechanical formalism in the presence of the minimal

length [50–55]. Thus, the gravitation should guide us to a break in space up to small distances,

which requires very high energy. Therefore, the gravitational effects will be disturbed by the

structure of space-time, and a lower limit of space resolution becomes inevitable [56–58]. This

minimum length is supposed to be close to the Planck length.
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There are multiple motivations for this idea; in string theory, a minimum length arises since

the particle size cannot probe distances smaller than the string scale [59–61]. Moreover, in

quantum gravity, the Planck length can play a fundamental role, in which gravitational effects

cannot be neglected and new phenomena are observed [62–64]. More arguments play for the

occurrence of a minimal length, coming from non-commutative geometries [65, 66] and the

black hole physics [67, 68].

A first consequence of the minimal length is the appearance of a natural cutoff which

prevents the usual (UV) divergences. Another interesting implication of this concept is the

UV\IR connection: when ∆p is large (UV ), ∆x is proportional to ∆p and thus also large (IR).

This type of relation has appeared in several other contexts as the ADS\CFT correspondence

[69] and the theory of non-commutative fields [65]; etc. It is assumed that some effects of

a short distance can be manifested in the long-distance (IR), bringing a justification to the

problems of the quantum mechanical analysis in the presence of the minimal length.

Concerning the previous paragraph, several applications have been studied in the frame-

work of this deformed version of non-relativistic quantum mechanics: The harmonic oscillator

of arbitrary dimensions has been solved [50–54, 70], the cosmological constant problem has

been studied [65, 71], the effect of the minimal length (LM) on the energy spectrum of the

Colomb potential in three dimensions has also been studied in [72, 73], the one-dimensional

box [74], the study of the dynamics of a non-relativistic particle with variable mass m(t) mov-

ing in a linear time-dependent potential [75], etc. In addition, the relativistic extension of this

problem has limited some attempts among, among them we mention: Dirac’s equation in the

presence of a minimum length in Ref. [76], where the one-dimensional Dirac oscillator has

been solved exactly, the generalized Dirac equation was recently studied by Nozari[77], the

one-dimensional Dirac oscillator was solved by Nouicer [78], the DKP bosonic oscillator (spin

0 and 1) in one and three dimensions which have been treated in[78] and[79] respectively, etc.

In physics, wave equations with energy-dependent potentials are already well-known and

commonly found in the literature. Numerous applications of the energy-dependent potential

of wave equations have been seen in hydro-dynamics [80], confined quantum systems [81], or

multi-nucleon systems [82]. Heavy quark systems are a natural application of this model [83].
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As we know, the introduction of energy dependence in the Schrödinger equation has several

implications concerning standard quantum mechanics. The most obvious is the scalar product

modification, which is required to maintain the norm. This modification can modify some

behavior or physical properties of a physical system. For thus, the energy-dependent potentials

must meet certain conditions to emerge a meaningful quantum theory. Which in Ref [84]

provides a comprehensive review of these formal aspects, demonstrating that the qualities of a

good quantum theory are well preserved. In the same context, Budaca [85] studied an energy-

dependent Coulomb-like potential within the framework of Bohr Hamiltonian, had reported

that the energy dependence on the coupling constant of the potential drastically changes the

analytical properties of the wave function and the corresponding eigenvalues of the system.

Studying analytical examples allows us to get acquainted with the influence of the en-

ergy dependence of the potential and to demonstrate the differences concerning the usual case.

Recently, wave equations with energy-dependent potentials have been studied by several au-

thors. In non-relativistic quantum mechanics, momentum-dependent interactions, as shown

by Green [86]. Lombard investigated the Schrödinger equation with energy-dependent poten-

tials by solving it in one and three dimensions exactly [87], Hassanabadi et al.[88] studied

the exact solutions of D-dimensional Schrödinger equation for an energy-dependent Hamilto-

nian that linearly depends on energy and quadratic on the relative distance. The many-body

problem with energy-dependent confining potentials [89], the static properties of heavy quark

systems given by energy-dependent potentials [90]. More recently, the problem of wave func-

tion normalization for energy-dependent potentials, which has been studied in the context of

the path integral, Sazdjian [91] and Formanek et al. [92] observed that the probability density,

or scalar product, must be modified from the usual definition, to have a conserved norm. Fur-

thermore, in the relativistic case, the Klein-Gordon (KG) equation with an energy-dependent

potential has been exactly treated in D dimensions using the Nikiforov-Uvarov method [84].

The Hamiltonian formulation of the relativistic many-body problem in connection with the

manifestly covariant formalism with constraints [93–95], there are many studies in this direc-

tion [96–100]. Furthermore, energy dependent-potentials can be found in the frameworks of

non-commutative space-time Refs [101, 102] and minimal length quantum mechanics Refs
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[103].

The aim of this thesis is to adapt the formalism of the path integral for a relativistic and

nonrelativistic particles with spin 1/2 moving in a non-homogeneous magnetic field in the

representations of the momentum and the configuration spaces. This thesis is divided into the

following chapters:

The second chapter gives a brief overview of the path integral formalism as well as the

method of space-time transformation. Whereas in the third chapter, we give the exact solution

of the relativistic spinning particle in the inhomogeneous magnetic field (IMF), where we find

the difficulty of a potential singularity at the point y = 1/a: For this, we adopt the method of

Duru-Kleinert mapping of the path integral formalism, which gives a mass of this system rel-

ativistic dependent space coordinate, and by the transformation of this space coordinates we

can formulate the Green function and the electron propagator, we extract the energy eigen-

values and their corresponding eigenfunctions in terms of a-parameter. In the fourth chapter,

which is the principal part of this work, we find the exact solutions of a relativistic quantum

particle is subjected to an IMF, described by the path integral method in momentum space rep-

resentation. We adopt the space-time transformation methods, which depend on the α-point

discretization, to evaluate quantum corrections. We calculate the propagator and illustrate the

energy eigenvalues. Also in chapter 5, we study the effect of energy-dependent potentials

for the relativistic spinning particle with the IMF. That leaves behind a new normalization of

wave functions, which is examined by Feynman’s path integral method. Then, we calculate

the propagator and deduce the energy eigenvalues with their corresponding eigenfunctions. In

chapter 6, we present a description of the non-relativistic quantum particle with an inhomoge-

neous magnetic field according to Feynman’s method, in momentum space in the presence of

the minimal length that was developed by Kempf, using the space-time transformation method.

By a precise calculation, we will obtain the quantum corrections. In chapter 6, we present a de-

scription of the non-relativistic quantum particle with an inhomogeneous magnetic field in the

presence of the minimal length that was developed by Kempf according to Feynman’s method

in momentum space. We adopt the space-time transformation method to obtain the local ac-

tion of Feynman. While this problem becomes quite complicated, we suggest some ways to
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solve it in the future. In the last chapter, we present a summary of the main results and our

general conclusions.



Chapter 2

Path Integrals Formulation of Quantum

Theory

2.1 Historical remarks

Feynman suggested an alternate formulation of quantum mechanics in terms of path integrals

in the early 1960s [1]. This formalism has been greatly instrumental in the attempt to rec-

oncile the quantum description of a physical system with its classical analog. It is therefore

applicable to mechanical systems whose equations of motion cannot be put into Hamiltonian

form. It is only required that some sort of least-action principle be available. Dirac was the

first to propose using the Lagrangian rather than the Hamiltonian to formulate quantum me-

chanics. He concluded that (in more modern language) the propagator in quantum mechanics

"corresponds to exp((i/h̄)S), where S is the classical action evaluated along the classical path.

By analogy with these ideas, Feynman succeeded in deriving a space-time formulation based

on the fact that the propagator (denoted K), which contains all the information of the physical

systems; such as, the Green’s function of the Schrödinger equation. The quantum particle has

a probability amplitude for going from xa to xb. Feynman showed that this probability ampli-

tude is obtained by summing up phase factors exp
(

i
h̄
S [x(t)]

)

over each every path connecting

xa and xb. This sum is called the Feynman path integral, with SΓ =
∫

Γ L(x, ẋ, t) and L(x, ẋ, t) is

a lagrangian of the particle.
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As a result, Dirac considered only the classical path Γ0, Feynman showed that all paths

contribute: in a sense, the quantum particle takes all paths. This formulation is of particular

interest since it has the merit of establishing the link between quantum mechanics and classical

mechanics. We must note that at the limit h̄ → 0, the primary contribution of the propagator

comes from the paths that obey the classical variational principle δS = 0,

Moreover, the Path integral formalism of quantum mechanics has greatly influenced the

theoretical developments of physics. It has an elegant structure for treating time-independent

and time-dependent problems with space-time transformations in the same way, with no need

to use a Hamiltonian, unlike other approaches. As we know, this technique is an alternative to

the well-known quantization methods of Schrödinger and Heisenberg. It has been introduced

to satisfy the need for comprehension of the quantum mechanics starting from classical tools

such as action, trajectories, Lagrangian, etc.

This new approach is quickly established in theoretical physics with its generalization to

the quantum field theory. Then it has been applied in several fields of physics such as quantum

mechanics [2, 3], statistical physics [10, 11], condensed matter [12], cosmology [7, 8], and

black hole physics [9]. The path integral formulation has been successfully applied to the

free particle and harmonic oscillator but remains constrained by quadratic systems. However,

it encountered difficulties in the study of the hydrogen atom. In 1978, based on the Duru-

Kleinert transformation, several quantum systems are at the origin of recorded successes of

the Schrödinger equation were exactly solved via the path integral. Duru and Kleinert worked

by mapping the three-dimensional Hydrogen atom to the Harmonic oscillator problem with the

Kustaanheimo Stiefel transformation [104] (Duru and Kleinert, 1979) [105]. Much work has

been done that has allowed this formalism to develop further (see for example; [106–109]).

However, in relativistic quantum mechanics, especially for spinning particles, the Feynman

approach has not known the same development, mainly because of the fact that the spin has no

classical origin.
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2.2 Construction of the propagator in the coordinates space

For a nonrelativistic spinless particle in one-dimensional space, the wave function of this par-

ticle evolves according to the Schrödinger equation

ih̄
Ψ(x, t)

∂ t
= ĤΨ(x, t) , (2.1)

with Ĥ is the Hamiltonian operator given by

Ĥ = T̂ +V̂ =
P̂2

2m
+V̂ , (2.2)

where T̂ and V̂ are the kinetic energy and the potential energy operators, respectively. More-

over, the propagator is defined as the transition amplitude from the initial point (xa, ta) to the

final point (xb, tb) as follows:

K (xb, tb;xa, ta) = 〈xb|
(

exp

[

− i

h̄
Ĥ(tb− ta)

])

|xa〉 , (2.3)

or

K (xb, tb;xa, ta) = 〈xb|
(

exp

[

− i

h̄
(T̂ +V̂ )ε

])N+1

|xa〉 , (2.4)

with ε = (tb− ta)/(N + 1). After this to construct K (xb, tb;xa, ta) we will eliminate the op-

erators T̂ and V̂ by first inserting (N) closure relations (
∫

dx |x〉〈x| = 1) and (N + 1) closure

relations (
∫

d p |p〉〈p|= 1) at each of the intermediate instants, and also by using the following

Trotter formula

exp

[

− i

h̄
(T̂ +V̂ )ε

]

= exp

[

− i

h̄
T̂ ε

]

exp

[

− i

h̄
V̂ ε

]

, ε << 1. (2.5)

Thus we can write

K (xb, tb;xa, ta) =
∫ N

∏
k=1

dxk

N+1

∏
k=1

∫

d pk 〈xk|exp
[

− i

h̄
T̂ ε

]

|pk〉〈pk|exp
[

− i

h̄
V̂ ε

]

|xk−1〉 , (2.6)
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we have

exp

[

− iε

h̄
T̂

]

|pk〉= exp

[

− iε

h̄

p2k
2m

]

|pk〉 , (2.7)

and

exp

[

− iε

h̄
V̂

]

|xk−1〉= exp

[

− iε

h̄
V (xk−1)

]

|xk−1〉 . (2.8)

Moreover, following the below relation

〈xk |pk〉=
1√
2π h̄

exp

(

i

h̄
pkxk

)

= 〈pk |xk〉∗ , (2.9)

we obtain

K (xb, tb;xa, ta) =
∫ N

∏
k=1

dxk

∫ N+1

∏
k=1

d pk

2π h̄

×exp

{

iε

h̄

N

∑
k=1

[

pk

(

xk− xk−1
ε

)

−
(

p2k
2m

+V (xk−1)

)]

}

(2.10)

At the limit continuous ε −→ 0, N −→ ∞, the Feynman path integral becomes as

K (xb, tb;xa, ta) =
∫

DxDpexp

[

i

h̄

(

∫ tb

ta

(

pẋ−
(

p2

2m
+V (x)

))

dt

)]

, (2.11)

otherwise

K (xb, tb;xa, ta) =
∫

DxDpexp

[

i

h̄

(

∫ tb

ta

(pẋ−H)dt

)]

. (2.12)

This last equation expresses the propagator in phase space. To perform the integrations on the

pk, we use the following identity,

∫

d pk

2π h̄
exp

[

− iε

h̄

p2k
2m

+
i

h̄
pk (xk− xk−1)

]

=

√

m

2iπ h̄ε
exp

[

i

h̄

m

2ε
(xk− xk−1)

2

]

. (2.13)

We will get

K (xb, tb;xa, ta) =
∫ N

∏
k=1

dxk

N+1

∏
k=1

√

m

2iπ h̄
exp

{

iε

h̄

N

∑
k=1

[ m

2ε2
(xk− xk−1)

2−V (xk−1)
]

}

. (2.14)
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At the limit ε −→ 0, N −→ ∞, we will then have the propagator in the configuration space in

the following form

K (xb, tb;xa, ta) =
∫

Dxexp

[

i

h̄

(

∫ tb

ta

L(x, ẋ, t)dt

)]

, (2.15)

with

Dx = lim
N→∞
ε→0

(√

m

2iπ h̄

)N+1 N

∏
k=1

dxk, (2.16)

and

L =
m

2
ẋ2−V (x) , (2.17)

represents the classical Lagrangian. This last result represents the expression of the propagator.

2.3 Construction of the propagator in the momentum space

The expression of propagator in momentum space is defined as the transition amplitude from

the initial point (pa, ta) to the final point (pb, tb) as follows:

K (pa, pb; ta, tb) =
〈

pb

∣

∣Û (tb, ta)
∣

∣ pa

〉

. (2.18)

Following the same steps we did in the case of the coordinate space, just replace the x by

p. Therefore we decompose the evolution operator Û (tb, ta) = e−iĤ(tb−ta)/h̄ into (N + 1) el-

ementary operators. Then, by inserting N closure relations
∫+∞
−∞ d p j

∣

∣p j

〉〈

p j

∣

∣ = 1 between

infinitesimal evolution operators (Û
(

t j, t j−1
)

= e−iĤ(t j−t j−1)/h̄), The propagator expressed as a

product of (N +1) elementary propagators,

K (pa, pb; ta, tb) = lim
N→∞

N

∏
j=1

∫ +∞

−∞
d p j

N+1

∏
j=1

K
(

p j, p j−1;ε
)

, (2.19)

where

K
(

p j, p j−1;ε
)

=
〈

p j

∣

∣exp
[

−iεĤ/h̄
]∣

∣ p j−1
〉

, (2.20)
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with the standard Hamiltonian operator Ĥ = p̂2/2m +V (x̂) and ε =
(

t j− t j−1
)

is very small.

This infinitesimal propagator is found in the momentum representation,

K
(

p j, p j−1;ε
)

=
∫ +∞

−∞

dx j

2π h̄

[

1− iε
h̄

(

p2j
2m

+V
(

ih̄ ∂
∂ p j

)

)]

e−
ix j
h̄ (p j−p j−1), (2.21)

=
∫ +∞

−∞

dx j

2π h̄
e−

ix j
h̄ (p j−p j−1)

[

1− iε
h̄

(

p2j
2m

+V
(

x j

)

)]

, (2.22)

=
∫ +∞

−∞

dx j

2π h̄
e−

ix j
h̄ (p j−p j−1)e−

iε
h̄ (p2j/2m+V(x j)). (2.23)

This is done with the help of the following relationships

x̂ = ih̄
∂

∂ p
, p̂ = p, (2.24)

and

〈

p | p′
〉

=
∫ +∞

−∞

dx
2π h̄

e−
ix
h̄ (p−p′). (2.25)

By substituting (2.23) into (2.19) and defining the Green’s function G(pa, pb;E) as the Fourier

transform of the propagator K (pa, pb; ta, tb), we obtain

G(pa, pb;E) =
∫ ∞

0
dTe

i
h̄ ET lim

N→∞

N

∏
j=1

∫ +∞

−∞
d p j

N+1

∏
j=1

∫ +∞

−∞

dx j

2π h̄

×exp

[

− i
h̄

N+1

∑
j=1

[

x j

(

p j− p j−1
)

+ ε

(

p2j
2m

+V
(

x j

)

)]

]

. (2.26)

There are few cases can be solved exactly; namely, the case of a linear potentialV (x) = gx and

the case of a harmonic oscillator potential V (x) = mω2

2
x2.

2.4 Derivation of the wave equation from the propagator

The goal of this paragraph is to obtain the Schrödinger equation from the propagator (Green

function). Thus we have to consider an infinitesimal transition between the two instants t and
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t +∆t: According to the previous construction, the infinitesimal propagator is

K(x, t +∆t;y, t) =

√

m

2iπ h̄(∆t)
exp

[

i

h̄

(

m
(x− y)2

2∆t
−V (y)∆t

)]

, (2.27)

and the wave function at time t +∆t is given by

ψ(x, t +∆t) =
∫

dyK(x, t +∆t;y, t)ψ(y, t). (2.28)

Equation (2.28) indicates the way in which the particle or the transition amplitude propagates

from (y, t) to (x, t +∆t). That is, K has details about the evolution of quantum systems. The

propagator for t +∆t > t is also often written as

ψ(x, t +∆t) =
∫

dy

√

m

2iπ h̄(∆t)
exp

[

i

h̄

(

m
(x− y)2

2∆t

)]

×exp

[

− i

h̄
V (y)∆t

]

ψ(y, t). (2.29)

We use the development

exp

[

− i

h̄
V (y)∆t

]

= 1− i

h̄
V (y)∆t +O(∆t)2 , (2.30)

to have

ψ(x, t +∆t) =
∫

dy

√

m

2iπ h̄(∆t)
exp

[

i

h̄

(

m
(x− y)2

2∆t

)]

×
(

ψ(y, t)− i

h̄
V (y)ψ(y, t)∆t

)

. (2.31)
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Now we make the change y→ ξ = x− y

ψ(x, t +∆t) =
∫

dξ

√

m

2iπ h̄(∆t)
exp

[

i

h̄

m

2∆t
ξ 2

]

×
(

ψ(x+ξ , t)− i

h̄
V (x+ξ )ψ(x+ξ , t)∆t

)

.

=

√

m

2iπ h̄(∆t)

(

∫

dξ exp

[

i

h̄

m

2∆t
ξ 2

]

ψ(x+ξ , t)

− i

h̄
∆t

∫

dξ exp

[

i

h̄

m

2∆t
ξ 2

]

V (x+ξ )ψ(x+ξ , t)

)

. (2.32)

We then do the expansion of ψ(x+ξ , t)

ψ(x+ξ , t) = ψ(x, t)+ξ ψ
′
(x, t)+

1

2
ξ 2ψ

′′
(x, t)+ .... (2.33)

and we use
∫

ξ exp
[

−a

ε
ξ 2

]

dξ = 0. (2.34)

To obtain

∫

dξ exp
[

− m

2ih̄∆t
ξ 2

]

ψ(x+ξ , t) = ψ(x, t)
∫

dξ exp
[

− m

2ih̄∆t
ξ 2

]

+
1

2

∂ 2

∂x2
ψ(x, t)

∫

dξ ξ 2 exp
[

− m

2ih̄∆t
ξ 2

]

. (2.35)

This integral has the form of a simple Gaussian integral for the variable ξ ,

∫

exp
[

−a

ε
ξ 2

]

dξ =

√

π

a

√
ε,

∫

dξ ξ 2 exp
[

− m

2ih̄∆t
ξ 2

]

=

√

π

a

(

1

2a

)

(√
ε
)3
. (2.36)

For having

√

m

2iπ h̄(∆t)

∫

dξ exp
[

− m

2ih̄∆t
ξ 2

]

ψ(x+ξ , t) = ψ(x, t)+

(

ih̄∆t

2m

∂ 2

∂x2
ψ(x, t)

)

+O(∆t)2 ,

(2.37)



2.5 Space-time transformation method 17

and

i

h̄
∆t

√

m

2iπ h̄(∆t)

∫

dξ exp

[

i

h̄

m

2∆t
ξ 2

]

V (x+ξ )ψ(x+ξ , t)

=
i

h̄
V (x)ψ(x, t)∆t +O(∆t)2 , (2.38)

which gives us

ψ(x, t +∆t) = ψ(x, t)+
ih̄∆t

2m

∂ 2

∂x2
ψ(x, t)− i

h̄
V (x)ψ(x, t)∆t +O(∆t)2 . (2.39)

Also we have ψ(x, t +∆t) = ψ(x)+∆t∂tψ(x, t). This leads to the Schrödinger equation

ih̄
∂

∂ t
ψ(x, t) =− h̄2

2m

∂ 2

∂x2
ψ(x, t)+V (x)ψ(x, t). (2.40)

The same purpose we can do to derive the wave equations that describe relativistic particles,

such as the Klein-Gordon equation and the Dirac equation (see Ref. [110]).

2.5 Space-time transformation method

One of the physical examples that received experimental proof is the theoretical problem of

the hydrogen atom through Schrödinger’s quantum model. The Schrödingerer wave equation

succeeded in proving quantized energies at different levels. Feynman’s method was too late

to prove this. Until Duru and Kleinert introduced us to the Kustaanheimo-Stifel (KS) trans-

formation for the first time in the Coulomb potential problem [105]. This transformation (KS)

consists of a spatial transformation (not necessarily a coordinate change) followed by a tempo-

ral transformation [104]. It can be used to integrate many potentials in addition to the Coulomb

potential as will be explained in this section.

We start with the propagator expressing the integral of the conventional path

K
(

x′′, t ′′;x′, t ′
)

=
∫

exp

[

i
h̄

∫ t ′′

t ′
Ldt

]

D(x(t)) , (2.41)

with L = m
2

ẋ−V (x) is the Lagrangian.
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For a simple explanation of the transformation method, we choose a problem in one di-

mension. The propagator should be considered as the limit of the discretized form KN while

N → ∞,

KN = AN

∫

exp

[

i
h̄

N

∑
j=1

S j

]

N−1
∏
j=1

dx j, (2.42)

with the normalization factor AN =
(

m
2πih̄ε

)N/2
. The discrete action in the interval

[

t j−1, t j

]

takes the form

S j =
m
2ε

(

x j− x j−1
)2− εV (x j) (2.43)

The coordinate transformation is applied as follows:

x = f (q). (2.44)

In the discretized version, we express the increments ∆x j = x j− x j−1 in terms of increments

∆q j =
(

q j−q j−1
)

. Here the η-point rule is a safe bet. We must conserve the contributions

up to the order ε in the action, and take into account that
(

∆q j

)2 ≈ ε . We expand f (q j) and

f (q j−1) in the vicinity of the η-point q̄
(η)
j = ηq j +(1−η)q j−1, and retaining the terms up to

third order in ∆q j we have:

∆x j = f̄
(η)′
j ∆q j

[

1+∆q j
1−2η
2!

f̄
(η)′′
j

f̄
(η)′
j

+ 1+3η2−3η
3!

f̄
(η)′′′
j

f̄
(η)′
j

(

∆q j

)2

]

, (2.45)

where the prime denotes the derivatives f̄
(η)

j with respect to q̄
(η)
j , then we find the kinetic

energy term in the action:

m
2ε

(

∆x j

)2
= m

2ε

(

f̄
(η)′
j

)2

∆q2j

(

1+∆q j (1−2η)
f̄
(η)′′
j

f̄
(η)′
j

+
(

∆q j

)2

[

(1−2η)2

4

(

f̄
(η)′′
j

f̄
(η)′
j

)2

+ 1+3η2−3η
3

f̄
(η)′′′
j

f̄
(η)′
j

])

. (2.46)

The term of potential energy takes a simple form

εV (x j) = εV
[

f (q̄
(η)
j )

]

+O
(

ε2
)

= εV ( f j). (2.47)
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Now consider the term
N−1
∏
j=1

dx j =
N−1
∏
j=1

f ′jdq j, (2.48)

which must be symmetric on the points q j,q j−1. So, preferably, we avoid the end-point of

the interval when we expand it on the η-point q̄
(η)
j of the interval. This may be done through

rewriting
N−1
∏
j=1

dx j =
[

f ′(qN) f ′(q0)
]−1

2

N

∏
j=1

(

f ′(q j) f ′(q j−1)
) 1
2

N−1
∏
j=1

dq j. (2.49)

We expand f (q j) and f (q j−1) to second order ∆q j, so that

(

f ′(q j) f ′(q j−1)
) 1
2 = f̄

(η)′
j

(

1+ 1−2η
2

f̄
(η)′′
j

f̄
(η)′
j

∆q j

+

[

(1−η)2+η2

4

f̄
(η)′′′
j

f̄
(η)′
j

− η(1−η)
2

(

f̄
(η)′′
j

f̄
(η)′
j

)2
]

∆q2j

)

, (2.50)

and therefore

N−1
∏
j=1

dx j =
[

f ′(qN) f ′(q0)
]−1

2

N

∏
j=1

f̄
(η)′
j

(

1+ 1−2η
2

f̄
(η)′′
j

f̄ j
∆q j

+

[

(1−η)2+η2

4

f̄
(η)′′′
j

f̄
(η)′
j

− η(1−η)
2

(

f̄
(η)′′
j

f̄
(η)′
j

)2
]

∆q2j

)

. (2.51)

The discretized form of the path integral is sufficiently complicated enough due to the (2.44)

transformation. Moreover, the mass parameter is dependent on
(

f ′j
)

, so we apply the follow-

ing local time transformation to overcome this difficulty

dt

ds
=
[

f ′(q(s))
]2
; t(sN)≈ t ′′, t(s0)≈ t ′, (2.52)

where s represents the new ”time”. For consistency, we must first symmetrize (2.52) over the

interval ( j−1, j) to avoid any preference of one endpoint over the other. This means that

ε = σ j f ′(q j) f ′(q j−1), (2.53)
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where σ j = s j− s j−1. We expand f ′(q j) and f ′(q j−1) around the η -point q̄
(η)
j , we have

ε = σ j

(

f̄
(η)′
j

)2
(

1+(1−2η)
f̄
(η)′′
j

f̄
(η)′
j

∆q j +

[

(1−η)2+η2

2

f̄
(η)′′′
j

f̄
(η)′
j

−η (1−η)

(

f̄
(η)′′
j

f̄
(η)′
j

)2
]

∆q2j

)

. (2.54)

Note that σ j are no longer of equal length. An immediate consequence of (2.51) and (2.54)

that the differential path measure takes the form

AN

N−1
∏
j=1

dx j =
[

f ′
(

q′
)

f ′
(

q′′
)]−1

2

N

∏
j=1

(

m
2πih̄σ j

) 1
2

N−1
∏
j=1

dq j. (2.55)

By inserting the expression (2.54) for ε in (2.46) and retaining terms up to
(

∆q j

)4
, we get

m(∆x j)
2

2ε =
m(∆q j)

2

2σ j
+

m(∆q j)
4
λ j

8σ j
, (2.56)

where

λ j =



(16η (1−η)−3)

(

f ′′j
f ′j

)2

− 2

3

f ′′′j

f ′j



 . (2.57)

Moreover, the Schwarzian derivative of f (x) is −2λ
3

, a quantity that remains invariant under

any fractional transformation. Also, the potential energy term takes the form

εV (x j) = σ j( f ′j)
2V ( f j) = σ j( f ′j)

2Vj. (2.58)

Combining all these results, we find that

exp
[

i
h̄
S j

]

= exp
[

i
h̄

{

m
2σ j

(

∆q j

)2
+ m

8σ j
λ j

(

∆q j

)4−σ j f ′
2

j Vj

}]

. (2.59)

We may eliminate the term in
(

∆q j

)4
by applying the following formula

∫ +∞

−∞
exp

(

−ax2−bx4
)

dx =
∫ +∞

−∞
dxexp

(

−ax2− 3
4a2

b
)

+0
(

1/a3
)

. (2.60)
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In our case, a = m/2ih̄σ j, b = mλ j/8ih̄σ j and thus

exp
[

i
h̄
S j

]

= exp
[

i
h̄

{

m
2σ j

(

∆q j

)2−σ j

(

(

f ′j
)2

Vj +
3h̄2

8m
λ j

)}]

. (2.61)

The last important point is that the new time difference (s′′− s′) is a path-dependent quantity.

So, we use the constraint to incorporate this dependency

T = t ′′− t ′ =
∫ s′′

s′
ds

[

f ′ (q(s))
]2
, (2.62)

into the path integral. For this, we use the following identity

[

f ′
(

q′′
)

f ′
(

q′
)]

∫ ∞

0
dsδ

(

T −
∫ s′′

s′
ds

[

f ′ (q(s))
]2

)

= 1. (2.63)

As a result, we’ll be able to write the propagator

K
(

f
(

q′′
)

, f
(

q′
)

;T
)

≈ lim
N→∞

∫ s′′

s′
δ

(

T −
∫

dτ
[

f ′ (q(τ))
]2

)

KNds, (2.64)

where KN is the transformed discretized form

KN =
√

f ′ (q′′) f ′ (q′)
∫ N

∏
j=1

(

m
2iπ h̄σ j

) 1
2

N−1
∏
j=1

dq j exp
(

i
h̄
S j

)

. (2.65)

The Fourier representation of the function δ gives

K = 1
2π h̄

∫ +∞

−∞
exp

(−iT E
h̄

)

G
(

x′′,x′;E
)

dE, (2.66)

where

G
(

x′′,x′;E
)

=
[

f ′
(

q′′
)

f ′
(

q′
)] 1

2

∫ ∞

o
dsP

(

q′′,q′;s
)

. (2.67)

P(q′′,q′;s) is the promoter, which we can define as the limit of the discretized form PN , just

like the propagator

P
(

q′′,q′;s
)

= lim
N→∞

∫ N

∏
j=1

(

m
2iπ h̄σ j

) 1
2

N−1
∏
j=1

dq j exp
(

i
h̄
S̃
)

, (2.68)
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where S̃ denotes a new action

S̃ =
N

∑
j=1

{

m
2σ j

(

∆q j

)2−σ j

(

(

f ′j
)2
(V −E)+ 3h̄2

8m
λ j

)}

. (2.69)

The success of the coordinate and local time transformation depends on the ability to evaluate

the promoter in closed form. We can also write the expression for the promotor in Feynman

form as

P
(

q′′,q′;s
)

=
∫

exp
{

i
h̄
S̃ [q(s)]

}

D [q(s)] , (2.70)

where

S̃ [q(s)] =
∫ s

0

[

m
2

(

dq
dσ

)2

−Ṽ (q)

]

dσ . (2.71)

The new potential Ṽ (q) is of the following shape:

Ṽ (q)≈
[

f ′ (q)
]2
[V ( f (q))−E]+ 3h̄2

8m
λ . (2.72)

Rather than using the classical action, the original promoter implied path integration of the

classical Hamilton characteristic function W = S + Et. With the action S̃ [q(s)], the modi-

fied promotor behaves like the propagator in new coordinates and time. The advantage of the

formulation given here is that the coordinate transformation implies a local temporal transfor-

mation.



Chapter 3

Exact Solution of the Electron Propagator

in the Inhomogeneous Magnetic Field

3.1 Introduction

The study of particles behavior under magnetic fields has always been one of the most re-

searched topics. It has attracted theoretical and experimental studies. These results lead to

radical changes in several fields, including astrophysics, plasma physics, condensed matter

physics, and particle physics. As we know, the evolution of structure in the universe can be

affected by the large-scale magnetic fields of G strength, and studies of their effects have a

long history. Several advancements for the strong-field calculation in inhomogeneous fields

have been made in recent years. So far, new techniques have concentrated mainly on the ef-

fective action or effective Lagrangian in strong-fields as a primary quantity of interest. In

addition the exact solutions [111, 112] of quantum electrodynamics, semiclassical [113], in-

stanton techniques, and quantum kinetic equations have been developed and applied to pair

production in inhomogeneous fields, namely, the imaginary part of the action, as reviewed in

[114]. As well as in other associated application scenarios, magnetic field inhomogeneity may

play a significant role, such as transition radiation induced by a magnetic field [115], neutrino

driver magnetic field instability in a compact star [116], and the effects of asymmetric neu-

trino propagation in proto-neutrons star [117]. On the other hand, for the composite fermion
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theory in the FQHE [118] and the Hall problem in the presence of a heterogeneous magnetic

field, this has lately become essential because the problem can be transposed onto the mod-

ulated 2DEG in the FQHE regime. In addition, scientific development has made it possible

to generate various inhomogeneous magnetic fields on a nanometer scale. For example, by

using MBE growth, semiconductor materials (e.g. GoAs) can be doped with magnetic ions

(e.g. Mn). These ions congregate and form ferromagnetic clusters (e.g. MnAs) with control-

lable sizes in the 5−30 nm range under specified growth circumstances [119]. Knowing that

there are many applications in which the heterogeneous magnetic field is the basis and we will

discuss here later.

The Dirac equation [120, 121] describes the quantum and relativistic behavior of a spin

1/2 particle and is one of the most important contributions in modern physics. It is attributed

to Dirac himself that the relativistic wave equation of the electron is the basis of almost chem-

istry and physics [122]. Furthermore, the Dirac equation is remarkable as it describes anti-

matter, the genesis of spin, the elementary particles, and the realistic behavior of atoms and

molecules, among many other things. Despite that Dirac equation benefits, accurate solutions

to this equation have only been found for few configurations. There is some interesting ex-

amples as: Coulomb potential [123], a constant magnetic field [124], a constant electric field

[125], the field of a plane wave [126], the field of a plane wave with a constant magnetic field

parallel to the direction of propagation of the plane wave [127], four cases in which the elec-

tromagnetic potentials assume functional dependence on the space coordinates [128] and one

where electric and magnetic fields are crossed [129]. Kulkarni and Sharma [130] have solved

the two-component form of the Dirac equation for the IMF

Bz(y) =
B

y2
, (3.1)

by identifying it with the Schrodinger equation, with the Kratzer’s potential, Vasudevan et al

[131] indicate only the scattering solutions for the same configuration which does not allow

a transition to the homogeneous case unlike fields considered by Stanciu [132]. In this con-

text and to keep the Stanciu proposals, Gorden did preliminary work leading to some exact

solutions of the Dirac equation with the following four field formations in [133], the first one
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is

Bz(y) = B/(1−ay)2 , Bx = By = 0

Ey(y) = E/(1−ay)2 , Ex = Ez = 0. (3.2)

The second field is defined as:

Bz(y) = B/(1−ay)2 , Bx = By = 0

Ez(z) = E/(1−az)2 , Ex = Ey = 0. (3.3)

The two fields (3.2) and (3.3) only bound state solutions are presented.

For the fields

Ez(z) = E, Ex = Ey = 0, (3.4)

and

Ez(z) = E/(1−az)2 , Ex = Ey = 0, (3.5)

only scattering solutions are given and no bound states are possible for these case. But in fact,

we mainly relied on the inhomogeneous magnetic field studied by Ashuthan [134], where

Bz(y) =B/(1−ay)2 , Bx = By = 0. (3.6)

The IMF (3.6) is derived from the vector potential

Ax(y) =−By/(1−ay), Ay = Az = 0, (3.7)

which will be the focus of our current work.

Technically, the following section we will present simple formulation of the path integral

for spinorial particles but without use Grassmann variables proved in [135, 136]. It is based

to make the path integration over the elements Green function matrix. This approach has

already been used in [137, 138]. Furthermore, in expression (3.7) there is singularity at the
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point y = −1/a, then to avoid this, we apply the method of space-time transformation which

gives to the mass of this system a space coordinate dependence and next via this technique

we calculate the Green function of the corresponding problem. Finally, we pass to obtain the

electron propagator in order to extract the related spectrum energy and their corresponding

waves functions.

3.2 Path integral formalism

To construct the path integral for the problem of a relativistic particle subjected to an inhomo-

geneous magnetic field, let us consider the Green function corresponding to the Dirac equation

(setting c = h̄ = 1)

(

γµΠ̂µ−m+ iε
)

Ŝ = I, µ = 0,1,2,3. (3.8)

Here Π̂µ is the quadri-momentum of the charged fermion expressed as

Π̂0 = i∂0, Π̂i := [(i∂1− eA1 (y)) , i∂2, i∂3] , (3.9)

where e describes the charge of the particle and A is a magnetic vector potential. The Dirac

matrices γµ satisfy

{γµ ,γν}= 2ηµν
I4, [γµ ,γν ] = 2iσ µν ,µ,ν = 0,1,2,3, (3.10)

where, ηµν = diag(1,−1,−1,−1), the spin tensor σ µν = i
2
γµγν and I4 represents the identity

matrix.

It is known that the corresponding solution of Eq. (3.8) can be presented as the inverse of

the Dirac operator
(

Od
−
)

Ŝc =
[

Od
−
]−1

= Od
+

[

Od
−O

d
+

]−1
, (3.11)

where the Dirac operator
(

Od
−
)

and the global projection
(

Od
+

)

operator are giving by

Od
± = γµΠ̂µ ±m. (3.12)
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In the first stage, we write Sc
(

x
µ
b ,x

µ
a

)

as the matrix element in the coordinate representa-

tion of the operator Ŝc to construct a path integral representation. Then according to the

equation 3.11 and by inserting the completeness relation of the space-time eigen states given

by (
∫

dxµ |xµ〉〈xµ |= 1, µ = 0,1,2,3) between the operators Od
+ and

[

Od
−O

d
+

]−1
, we get the

global representation for the causal Green function as

Sg (xb,xa,x0b,x0a) =
(

γµΠ̂µ +m
)

b
G(xb,xa,x0b,x0a) . (3.13)

where

G(xb,xa,x0b,x0a) = 〈xb,x0b|
[

Od
−O

d
+

]−1
|xa,x0a〉 . (3.14)

Following that, the product O−O+ is reorganized as follows:

O−O+ = p̂20−
(

p̂x +
eBy
1+ay

)

2− p̂2y− p̂2z −m2+
ieB

(1+ay)2
γ1γ2. (3.15)

Since the system is undefined at y = −1/a, we will have to use the following transformation

to avoid the singularity problem at y =−1/a

G(xb,xa,x0b,x0a) = gl (xb)gr (xa)G(xb,xa,x0b,x0a) . (3.16)

In our case, gl (x) = gr (x) = 1+ay, which are arbitrary functions denoted the regulating func-

tions dependent only y−variable, with y ∈]−∞;+∞[

G(xb,xa,x0b,x0a) = 〈xb,x0b|
[

ĝrO
d
−O

d
+ĝl

]−1
|xa,x0a〉 . (3.17)

Let us note that this transformation makes the path integral formulation and the solution of the

problem straightforward. According to the Schwinger proper-time method on Eq. (3.17), the

new Green function G(xb,xa,x0b,x0a) becomes

G(xb,xa,x0b,x0a) =−i

∫ ∞

0
dτ 〈xb,x0b|exp

(

−iτĤ
)

|xa,x0a〉 , (3.18)
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where

Ĥ =
(

−p̂20− p̂2z +m2
)

(1+ay)2+
(

p̂x +
eBy
1+ay

)2

(1+ay)2

+(1+ay) p̂2y (1+ay)− ieBγ1γ2. (3.19)

Then, by taking into account the properties of the following exponential matrix, we can sim-

plify it as:

exp
(

−τeBγ1γ2
)

= cos(eBτ)+ iγ1γ2 sin(eBτ) , (3.20)

this is done in cooperation with the properties of Dirac’s matrices (γ1γ2)2 = −1. Hence the

Eq. (3.20) becomes in another form:

exp
(

−τeBγ1γ2
)

=
1

2
∑

s=±1

[

1+ isγ1γ2
]

exp(iseBτ) . (3.21)

this is done in cooperation with the properties of Dirac’s matrices (γ1γ2)2 = −1. Hence the

Eq. (3.20) becomes in another form:

exp
(

−τeBγ1γ2
)

=
1

2
∑

s=±1

[

1+ isγ1γ2
]

exp(iseBτ) . (3.22)

As a result, Eq. (3.18) can be written as follow,

G(xb,xa,x0b,x0a) =−
i

2
∑

s=±1

[

1+ isγ1γ2
]

∫ ∞

0
dτ 〈xb,x0b|exp

(

−iτĤ(s)
)

|xa,x0a〉 , (3.23)

with

Ĥ(s) =
(

−p̂20− p̂2z +m2
)

(1+aŷ)2+
(

p̂x +
eBŷ
1+aŷ

)2

(1+aŷ)2

+(1+aŷ) p̂2y (1+aŷ)− seB. (3.24)

To construct a path integral for Green function G(xb,xa,x0b,x0a) we proceed as usually done

via the standard discretization method. For the kernel of (3.18), we decompose the exponential

exp(−iτĤ(s)) into (N +1) exponential exp(−iεĤ(s)), with ε = τ/(N +1), and insert N reso-
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lutions of identities
∫ |x〉〈x|d4x = 1 between each pair of infinitesimal operator exp(−iεĤ(s)).

Indeed we have

〈xb,x0b|e−iτĤ(s) |xa,x0a〉= lim
N→∞
ε→0

N

∏
k=1

∫

dxkdx0k

N+1

∏
k=1

〈xk,x0k|exp(−iεĤ(s))
∣

∣xk−1,x0,k−1
〉

.

(3.25)

To go further, it is convenient to develop the exponential up to the first order of ε . Conse-

quently, we find:

lim
N→∞
ε→0

〈xk,x0k|e−iεĤ(s) ∣
∣xk−1,x0,k−1

〉

= lim
N→∞
ε→0

[

〈

xk,x0k | xk−1,x0,k−1
〉

− iε 〈xk,x0k|Ĥ(s)
∣

∣xk−1,x0,k−1
〉

]

.

(3.26)

As we know, the operator Ĥ(s) has a symmetric form with respect to usual operators x̂, ŷ, ẑ,

x̂0, p̂x, p̂y, p̂z and p̂0. The basis vectors |x,x0〉 := |x,y,z,x0〉 and |p, p0〉 :=
∣

∣px, py, pz, p0
〉

are

used in order to eliminate the operators. So the matrix element (3.18) can be expressed in

terms of the Weyl symbols in the mid-point x̄k = (xk + xk−1)/2. To explain more the factor

corresponding to the third term in the right hand side of Eq. (3.24), one can get rid of its

operator form as follows:

〈xk,x0k|(1+aŷ) p̂2y (1+aŷ)
∣

∣xk−1,x0,k−1
〉

=
∫

dpkd p0k 〈xk,x0k|(1+aŷ) p̂2y |pk, p0k〉〈pk, p0k|(1+aŷ)
∣

∣xk−1,x0,k−1
〉

, (3.27)

=
〈

xk,x0k | xk−1,x0,k−1
〉

(1+ayk) p2yk
(1+ayk−1) . (3.28)

It is defined formally as a Dirac delta function

〈

xk,x0k | xk−1,x0,k−1
〉

=
∫

dpkd p0k exp
(

ip
µ
k ∆xµk

)

. (3.29)

Then, the expression G(xb,xa,x0b,x0a) is transformed into the following path integral in phase-
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space,

G(xb,xa,x0b,x0a) =−
i

2
∑

s=±1

[

1+ isγ1γ2
]

lim
N→∞

∫ ∞

0
dτ

N

∏
k=1

∫

d4xk

N+1

∏
k=1

∫

d4pk

×exp

{

i
N+1

∑
k=1

[

−p0k∆x0k +pk∆xk + ε

(

p20k−m2− p2zk
−
(

pxk
+ eByk

1+ayk

)2
)

(1+ayk)
2

−ε (1+ayk)(1+ayk−1) p2yk
+ εseB

]}

. (3.30)

Furthermore, this Green function will be transformed to the Lagrangian path integral repre-

sentation as follows

G(xb,xa,x0b,x0a) =−
i

2
∑

s=±1

[

1+ isγ1γ2
]

∫

dE
2π

d px

2π
d pz

2π

×e−iE(tb−ta)eipx(xb−xa)+ipz(zb−za)Ks (yb,ya,E) , (3.31)

where

Ks (yb,ya,E) =
∫ ∞

0
dτ lim

N→∞

N

∏
k=1

∫

dyk

N+1

∏
k=1

√

1

4iπε (1+ayk)(1+ayk−1)

×exp

(

iε
N+1

∑
k=1

[

(∆yk)
2

4ε2 (1+ayk)(1+ayk−1)
+

(

E2−m2− p2z −
(

px +
eByk

1+ayk

)2
)

(1+ayk)
2+ seB

])

.

(3.32)

Due to the privileged discretized point y present in the mass of the kinetic term, the latter

expression of the transition amplitude does not give a valid wave equation. To avoid this prob-

lem, we have to use the space coordinate transformation by introducing the function f (ξ ) = y

with

∂ f

∂ξ
= 1+ay. (3.33)

This transformation leads to two corrections the first was about the action, while the second

was about the measure.

The mid-point expansion of ∆yk reads at each (k)

∆yk = f (ξk)− f (ξk−1) =
∂ f̄k

∂ξ
∆ξ +

1

24

∂ 3 f̄k

∂ξ 3
(∆ξ )3+ ... (3.34)
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We impose the following condition on the choice of f (ξ ):

d f

dξ
= 1+a f ⇒ f (ξ ) =

eaξ −1

a
. (3.35)

Thereafter, we develop the exponential of the kinetic term as

exp

(

iε
N+1

∑
k=1

[

(∆yk)
2

4ε2 (1+ayk)(1+ayk−1)

])

= exp

(

iε
N+1

∑
k=1

[

(∆ξk)
2

4ε2

]

)

(1+Cact) , (3.36)

where Cact is given by

Cact = i
(∆ξk)

4

4ε

[

−1

4

(

∂ 2 f̄k/∂ξ 2

∂ f̄k/∂ξ

)2

+
1

6

(

∂ 3 f̄k/∂ξ 3

∂ f̄k/∂ξ

)

+ ...

]

. (3.37)

The measure induce also following correction as

N

∏
k=1

∫

dyk

N+1

∏
k=1

√

1

4iπε (1−ayk)(1−ayk−1)
=
(

f ′ (ξb) f ′ (ξa)
)−1/2 N

∏
k=1

∫

dξk

N+1

∏
k=1

√

1

4iπε
.

(3.38)

The corrections terms are evaluated perturbatively using the rule of expectation values

〈

(∆ξ )2n
〉

= (2iε)n (2n−1)!!, (3.39)

and by some straightforward calculations, we obtain the total quantum correction as the fol-

lowing effective potential

Ve f f =
1
4ε

[

−1

4

(

∂ 2 f/∂ξ 2

∂ f/∂ξ

)2

+
1

6

(

∂ 3 f/∂ξ 3

∂ f/∂ξ

)

]

(∆ξ )4 =
a2

4
, (3.40)

The Green function relating to the nonrelativistic problem with position dependent mass is

finally the following

Ks (ξb,ξa,E) =
(

f ′ (ξb) f ′ (ξa)
)−1/2

∫ ∞

0
dτe−ia2( κ

a− s
2)

2
τ

× lim
N→∞

N

∏
k=1

∫

dξk

N+1

∏
k=1

√

1

4iπε
exp

(

iε
N+1

∑
k=1

[

(∆ξ )2

4ε2
−a2V 2

E

(

e2aξk −2αEeaξk

)]

)

, (3.41)
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Let us note following expression by

aVE =
√

m2+ p2z +(px +κ)2−E2,κ =
eB

a
and αE =

κ(px +κ)

m2+ p2z +(px +κ)2−E2
. (3.42)

By performing the following change z = aξ , we obtain after some calculations that the latter

propagator (3.41) is exactly formally identical to the path integral representation of an effective

Morse potential studied in Ref.[3], and the solutions of Ks (ξb,ξa,E) can be written as

Ks (zb,za,E) = e−
1
2 (zb+za)∑

n

n!(2VE)
2αEVE−2n−1

aΓ(2αEVE −n)

2αEVE −2n−1

(κ
a
− s

2
)2− (αEVE −n−1/2)2

×exp [(za + zb)(αEVE −n−1/2)−VE (e
za + ezb)]

×L
(2αEVE−2n−1)
n (2VEezb)L

(2αEVE−2n−1)
n (2VEeza)+

1

π2

∫

dk...,

(3.43)

Substituting (3.43) into (3.32) and then into (3.16), we find

G(xb,xa,x0b,x0a) =−
i

2
∑
n

∑
s=±1

[

1+ isγ1γ2
]

∫

d px

2π
d pz

2π eipx(xb−xa)+ipz(zb−za)

×
∫

dE

2π

e−iE(tb−ta)

E2−ω2
n,s

m2+p2z+(px+κ)2−E2

(µ+n+1/2)2
n!(1+2n−2αEVE)
2aVE Γ(2αEVE−n)

×
(

κ
a (px+κ)+( κ

a− s
2+n+1/2)

√
m2+p2z+(px+κ)2−E2

)

(

κ
a (px+κ)−(n+1/2− κ

a +
s
2)
√

m2+p2z+(px+κ)2−E2
)e−

1
2 (ηa+ηb) (ηa)

(αEVE−n) (ηb)
(αEVE−n)

×L
(2αEVE−2n−1)
n (ηa)L

(2αEVE−2n−1)
n (ηb)+

1

π2

∫

dk..., (3.44)

where

ω2
n = m2+ p2z +(px +κ)2−

κ2

a2
(px +κ)2

(µ +n+1/2)2
, (3.45)

η = 2VE (1+ay) and µ =
κ

a
− s

2
(3.46)

which has the poles

En =±

√

√

√

√m2+ p2z +(px +κ)2−
κ2

a2
(px +κ)2

(κ
a
+n− s

2
+ 1

2
)2
. (3.47)
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The determination of the wave functions is performed by applying the residue theorem. Let us

choose a special contour C in the complex plane. The poles of the Green function are positive

energies and negative energies given respectively by

E+ = E
(a)
n,s − iε, E− =−E

(a)
n,s + iε. (3.48)

For positive energies E+, the contour of integration is chosen below the real axis with T > 0.

On the other hand, for negative energies E−, it is chosen above the real axis with T < 0. In

conclusion, we have

∮

dE

2π
f (E)

e−iET

(

E2− (E
(a)
n,s )2

) =−i

[

Θ(T ) f (E
(a)
n,s )

e−iE
(a)
n T

2E
(a)
n,s

+Θ(−T ) f (−E
(a)
n,s )

eiE
(a)
n,s T

2E
(a)
n,s

]

, T = tb−ta,

(3.49)

where Θ(T ) is the Heaviside function. This leads to the following expression of Green func-

tion

G(xb,xa,x0b,x0a) = ∑
n=0

∑
s=±1

∑
ε=±1

∫

d px

2π
d pz

2π eipx(xb−xa)+ipz(zb−za)

×
[

1+ isγ1γ2
]

κ
a
(px +κ)

(κ
a
+n− s

2
+ 1

2
)2

n!

Γ
(

2κ
a
+n− s+1

)

[

Θ(εT ) e
−iεE

(a)
n,s T

2E
(a)
n,s

]

×e−
1
2 (ηa+ηb) (ηa)

( κ
a− s

2+1/2) (ηb)
( κ

a− s
2+1/2)L

(2 κ
a−s)

n (ηa)L
(2 κ

a−s)
n (ηb)

+
1

π2

∫

dk..., (3.50)

where the energy spectrum are

E
(a)
n,s =

√

√

√

√m2+ p2z +(px +κ)2−
κ2

a2
(px +κ)2

(κ
a
+n− s

2
+ 1

2
)2
. (3.51)

In what follows, we will extract exactly the energies eigenvalues and also the corresponding

the eigenfunctions for electron particle.
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3.3 Energy Spectrum and Wave Functions

In order to evaluate exactly the energies and their wave functions corresponding, we must

act the operator Od
+ |b on the function (3.17), We finally obtain the spectral decomposition of

Green function (3.11) as follows

Sg (xb,xa, tb, ta) = ∑
n

∑
s=±1

∑
ε=±1

∫

d px

2π

d pz

2π

×
[

Θ(εT ) e
−iεE

(a)
n,s T

2E
(a)
n,s

] κ
a
(px +κ)

(κ
a
+n− s

2
+ 1

2
)2

n!

Γ
(

2κ
a
+n− s+1

)

×
[

iγ0
∂

∂ tb
− γ1

(

−i
∂

∂xb

+ eByb

1+ayb

)

+ iγ2
∂

∂yb

+ iγ3
∂

∂ zb

+m

]

[

1+ isγ1γ2
]

×eipx(xb−xa)+ipz(zb−za)e−
1
2 (ηa+ηb) (ηa)

( κ
a− s

2+1/2) (ηb)
( κ

a− s
2+1/2)

×L
(2 κ

a−s)
n (ηa)L

(2 κ
a−s)

n (ηb)+
1

π2

∫

dk..., (3.52)

we can use the following identity to replace the summation on the ε-parameter:

∑
ε=±1

g(ε)Θ(εT ) = g(s)Θ(sT )+g(−s)Θ(−sT ) , (3.53)
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where g(ε) is an arbitrary function. After this step and simple calculations, Eq. (3.52) is

rewritten in a more compact form

Sg (xb,xa, tb, ta) = i∑
n

∑
s=±1

∫

d px

2π

d pz

2π
eipx(xb−xa)+ipz(zb−za)

×Θ(sT ) e
−isE

(a)
n,s T

2E
(a)
n,s

{

κ
a
(px +κ)

(κ
a
+n− s

2
+ 1

2
)2

n!

aΓ
(

2κ
a
+n− s+1

)

×







(

γ0sE
(a)
n,s − γ3pz +m

)

L
(2µ)
n (ηb)− γ1

(

(px +κ)− 2κVE

η

)

L
(2µ)
n (ηb)

+iγ22aVE

[(

−1
2
+

κ
a− s

2+
1
2

η

)

L
(2µ)
n (ηb)−L

(2µ+1)
n−1 (ηb)

]







×
[

1+ isγ1γ2
]

e−
1
2 (ηa+ηb) (ηa)

( κ
a− s

2+1/2) (ηb)
( κ

a− s
2+1/2)L

(2 κ
a−s)

n (ηa)

+
κ
a
(px +κ)

(κ
a
+n− s

2
+ 1

2
)2

(n− s)!

aΓ
(

2κ
a
+n+1

)

×







(

γ0sE
(a)
n,s − γ3pz +m

)

L
(2 κ

a +s)
n−s (ηb)− γ1

(

(px +κ)− 2κVE

η

)

L
(2 κ

a +s)
n−s (ηb)

+iγ22aVE

[(

−1
2
+

κ
a +

s
2+

1
2

η

)

L
(2 κ

a +s)
n−s (ηb)−L

(2 κ
a +s+1)

n−s−1 (ηb)

]







×
[

1− isγ1γ2
]

e−
1
2 (ηa+ηb) (ηa)

( κ
a +

s
2+1/2) (ηb)

( κ
a +

s
2+1/2)L

(2 κ
a +s)

n−s (ηa) , (3.54)

and with helping of associated Laguerre polynomials properties [139]























dL
(α)
n (η)
dη =−L

(α+1)
n−1 (η)

η
d2L

(α)
n (η)

dη2 +(α +1−η) dL
(α)
n (η)
dη +nL

(α)
n (η) = 0

L
(α−1)
n (η) = L

(α)
n (η)−L

(α)
n−1 (η) ,

(3.55)
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we find Green function by performing straightforward computations, as follows:

Sg (xb,xa, tb, ta) = i∑
n

∑
s=±1

∫

d px

2π

d pz

2π
eipx(xb−xa)+ipz(zb−za)

×e−
1
2 (ηa+ηb)

κ
a
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{
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)
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(
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[

(n−s)!

Γ(2 κ
a +n+1)

(

γ0sE
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(
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(3.56)

In Eq. (3.8), we can write the elements of Green’s function which contains (4×4) element

listed below:

S11 =

[

n!(1+s)
[

E
(a)
n,s +m

]

Γ(2 κ
a +n−s+1)

η
κ
a− s

2+1/2
a η

κ
a− s
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a η
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n−s (ηb)

]

. (3.57)

and

S22 =
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]
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(3.58)

The other elements of the Green function can also be written as:

S13 =

[

− n!pz(1+s)

Γ(2 κ
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η
κ
a− s

2+1/2
a η
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Γ(2 κ
a +n+1)

η
κ
a +
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b L
(2 κ

a +s)
n−s (ηa)L

(2 κ
a +s)

n−s (ηb)

]

. (3.59)
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and

S14 =

[

−s(1− s)
(2 κ
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s
2+1/2

b

+s(1+ s)
(2 κ

a +n− s
2+
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n+s η
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b

]

.

(3.60)

The elements S33, S44, S42, S41 are expressed by the same expressions as S22, S11, S13, S14

respectively where we only replace (1+ s) with (1− s) and vice versa (1− s) with (1+ s).

We notice have that S12 = S21 = S34 = S43 = 0 and also that S42 = −S24, S13 = −S31 and

S32 =−S14, S41 =−S23.

In Eq.(3.54), we have two types of propagation. One with positive energy (+E
(a)
n,s ) propagating

to the future and the other with negative energy (−E
(a)
n,s ) propagating to the past. We obtain

the electron propagator corresponding to Dirac particle in the presence of a non-homogeneous

magnetic field

S(xa,xb,T ) = i∑
n

∑
s=±1

∫

d pxd pz

(2π)2

[

sΦs
n (xb,yb,zb, tb)(Φ

s
n (xa,ya,za, ta))

†
]

σ3Θ(s(tb− ta))

(3.61)

Therefore, the normalized wave functions are

Φs
n,px,pz

(x,y,z, t) = eipxx+ipzze−iE
(a)
n,s te−

η
2

[

U
(a)
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, (3.62)

where
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, (3.63)
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and

Vn,s =
1

2
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, (3.64)

with

F
(2 κ

a−s)
n (η) = η

κ
a− s

2+1/2L
(2 κ

a−s)
n (η) , F

(2 κ
a +s)

n−s (η) = η
κ
a +

s
2+1/2L

(2 κ
a +s)

n−s (η) , (3.65)

Here E
(a)
n,s is obtained from the poles of the Green function which is written as:

E
(a)
n,s = s

√

√

√

√m2+ p2z +(px−κ)2
[

1− (κ/a)2 /

(

κ

a
− s

2
+n+

1

2

)2
]

. (3.66)

We note that when s = 1 the spectrum energy defined in Eq. (3.66) coincides exactly with the

ones obtained in [134].

In the end, it is remarkable if we consider a very small (a) parameter, the form of (3.66)

can easily be expanded in terms of (a) we obtain the corrections to the energy spectrum of the

homogeneous magnetic field, namely:

E
(a)
n =±

√

m2+ p2z +2e |Q|Bn±a
2npx

√

m2+ p2z +2e |Q|Bn
+O(a2)+ .... (3.67)

It also applies to the wave functions, where the limit a → 0 one can find exactly the wave

function in configuration space representation of the homogeneous magnetic field [140].

Before ending this section, let us show that we can also solve the problem of inhomo-

geoneus electric and magnetic fields defined by

B =
(

0,0,B/(1−ay)2
)

, E =
(

0,0,E/(1−ay)2
)

. (3.68)

Finally, this result is considered as very important in the area of physics [141, 142] which we
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have treated using the path integral formalism.

3.4 Thermodynamic properties

As the exact analytical expressions for the energy spectrum and wave function have been

calculated in the presence of an inhomogeneous magnetic field, therefore, in this section, we

will show how to calculate the various thermodynamic properties of this system. We determine

particularly the behavior of the thermodynamic quantities by using the fundamental object in

statistical mechanics which is the canonical partition function Z allowing us to determine any

thermal function of a system, such as the specific heat C, the entropy S, the free energy F , the

mean energy U .

To obtain the thermodynamics of our system, we first need to derive the partition function

from the following equation

Z(β ,a) =
∞

∑
n=0

e−βEn , (3.69)

where β = (kBT )−1 and kB is the Boltzmann’s constant and T is the equilibrium temperature,

En is the energy eigenvalues at the first order of (a) defined in Eq. (3.67). Which can be

rewritten as:

E
(a)
n =±

√
B+2An±a

µn√
B+2An

, (3.70)

We introduce the following notations

A = e |Q|B ,

B = m2+ p2z ,

µ = 2px. (3.71)

Therefore, the partition function Z(β ,a) becomes as,

Z(β ,a) =
∞

∑
n=0

e−β
√

B+2Ane
−βa

µn√
B+2An =

∞

∑
n=0

e−β
√

B+2An

(

1−βa
µn√

B+2An

)

, (3.72)
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This sum (3.72) can be evaluated with the help of the Poisson summation

nmax

∑
n=0

f (x) =
1

2
( f (0)+ f (nmax+1))+

∫ nmax+1

0
f (y)dy. (3.73)

By substituting (3.72) into (3.73), we can obtain the first and second summation which appear

in formula (3.72) are given by:

∞

∑
n=0

e−β
√

B+2An =
1

2
e−β

√
B +

∫ ∞

0
exp

{

−β
√

B+2An
}

dn, (3.74)

and
∞

∑
n=0

βa
µn√

B+2An
e−β

√
B+2An = βa

∫ ∞

0

µn√
B+2An

e−β
√

B+2Andn, (3.75)

We can find the value of these integrals that appear in Eq. (3.74) and (3.75) by using the

mathematical software, and they are obtained as follows

∫ ∞

0
e−β

√
B+2Andn =

eβ(−
√

B)(β
√

B+1)

Aβ 2
, (3.76)

we also have
∫ ∞

0
βa

µn√
B+2An

e−β
√

B+2Andn = βaµ
(β
√

B+1)eβ(−
√

B)

A2β 3
. (3.77)

According to the relations 3.76 and 3.77, the partition function Z(β ,a) can explicitly be written

as

Z(β ,a) = H(β ,a)−aG(β ,a),

where

H(β ,a) =

(

1

2
+

(
√

Bβ+1)

Aβ 2

)

e−
√

Bβ , (3.78)

and

G(β ,a) = µ
(
√

Bβ+1)e−
√

Bβ

A2β 2
. (3.79)

Now, after we get the partition function, all related thermodynamic functions can be derived,

for example, the Helmholtz free energy, the entropy, the mean energy and the specific heat,

and can be obtained through the partition function (Z(β ,a)) or ln(Z(β ,a)) via the following
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relations:











U(β ,a) =− ∂
∂β (ln(Z(β ,a))), C(β ,a) = kBβ 2 ∂ 2

∂β 2 (ln(Z(β ,a)))

S(β ,a) = kB ln(Z(β ,a))− kBβ ∂
∂β (ln(Z(β ,a))), F(β ,a) =− 1

β ln(Z(β ,a))
, (3.80)

and to make the calculation easier, we know that the term (a) is considered a small quantity, as

a result, the expression ln(Z(β ,a)) can be written in the form:

ln(Z(β ,a)) = ln(H(β ,a))+ ln

(

1−a
G(β ,a)

H(β ,a)

)

= ln(H(β ,a))+ ln

(

exp

(

−a
G(β ,a)

H(β ,a)

))

= ln [H(β ,a)]−a
G(β ,a)

H(β ,a)
. (3.81)

From Eqs. (3.80) and (3.81), we get the thermodynamic functions, which are related to this

system, and are described in the subsequent order:

1- Vibrational internal energy is given as:

U(β ,a) = − ∂

∂β

[

ln(H(β ,a))−a
G(β ,a)

H(β ,a)

]

=
β
√

B
(
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(

Aβ 2+2β
√
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√
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(

Aβ 2+2β
√
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) . (3.82)

2- Vibrational free energy is determined by:

F(β ,a) = − 1

β

[

ln(H(β ,a))−a
G(β ,a)

H(β ,a)

]

= − 1

β
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.(3.83)
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3- Vibrational entropy becomes:

S(β ,a) = kB
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√
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√
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.(3.84)

4- The vibrational heat capacity is calculated simply:

C(β ,a) = kBβ 2 ∂ 2

∂β 2
(ln(H(β ,a))−a

G(β ,a)

H(β ,a)
)

= kBβ 2

(

4
(

3Aβ 2+β
√
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(
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)

+Bβ 2+2
)

β 2
(
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√
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(√

Bβ +3
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√
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)3

)

.

(3.85)

To illustrate the behavior of the thermodynamic functions concerning parameter of (a), let us

consider the six different values a = 0.00 (homogeneous case), 19.6, 39.2, 58.8, 78.4, and

98 (MeV ), it is worth mentioning that the following conversion factors were used throughout

the calculations: 1m = 1015 f m = 5.1× 1012MeV, 1MeV = 106eV . As a general result, we

observed that the nonhomogeneous effects are not weak. In Figure 3.1, The vibrational par-

tition function curves increase as the temperature increases for the selected values a, where

these curves are increased monotonically as the temperature increases from 10MeV . Beyond

a temperature of 10MeV , the growth of the curves remains constant. The plots of the vibra-

tional partition function for different values of a, do not differ significantly. The behavior of

Z for homogeneous and nonhomogeneous cases is similar. A careful look at Figure 3.2 shows

that the vibrational internal energy U decreases as T increases for both values of ”a” at a tem-

perature less than 0.5MeV . The curves are seen to increase monotonically as the temperature

increases from 0.5MeV to 20MeV , these curves behave as linear functions of temperature at a

temperature more than 20MeV . The homogeneous case (a= 0) increases linearly with temper-

ature. There is an inverse proportion between parameter a and the vibrational internal energy

U . We notice that the curves with a 6= 0 are below the red curve which represent the homo-
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geneous case. In Figure 3.3, we observe the reverse trend for the variation of the vibrational

free energy F with T . We note that the curves are coincident, and the effect of heterogene-

ity is not clear. Figure 3.4 shows that the vibrational entropy curves are increasing sharply

at a temperature less than 0.5MeV . As the temperature increases beyond 0.5MeV , the vibra-

tional entropy curves remains uniquely constant and S inversely proportional to a. In Figure

3.5. The vibrational specific heat capacity C is inversely proportional to a at a temperature

less than 1,28MeV . As the temperature increases beyond 1,28MeV , there is a direct propor-

tion between the vibrational specific heat capacity C and a parameter(T = 1,28) is the point

of intersection of the curves). The vibrational specific heat capacity decreases with increas-

ing T , then it changes direction to take its growth with increasing temperature at the point

T = 0,7MeV .

Figure 3.1: Vibrational partition function versus temperature of electron
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Figure 3.2: Vibrational unternal energy versus temperature of electron

Figure 3.3: Vibrational free energy versus temperature of electron
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Figure 3.4: Vibrational entropy versus temperature of electron

Figure 3.5: Vibrational specific heat versus temperature of electron

3.5 Conclusion

In summary, we have applied the path integrals approach to solving spinning particles sub-

jected to an inhomogeneous magnetic field. As a first step, the problem of singularity at the

point
(

y =−1
a

)

has been avoided via the usual method of space-time transformations and we
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have described the spin degrees of freedom for the relativistic problem by an elegant matrix

calculus and then write the system as the non-relativistic case one. By using the procedure

which allows us to derive path integrals representations for the propagator the Green’s func-

tion in the so-called global projection is presented. After that, we make a direct calculation to

obtain the similar Morse potential action that was previously evaluated in [3]. The spectral de-

composition of the Green function (electron propagator) is obtained by inserting the Fourier

transformation, which gave the exact eigenvalues and the wave functions in accordance with

the literature. Finally, we defined the partition function using the approximate methods and

Poisson summation formula, which enabled us to deduce the other thermodynamic functions

like vibrational free energy, the mean energy, vibrational entropy, and vibrational specific heat

capacity. With these results, the thermodynamic properties of our system have been studied

graphically and discussed, as it varies with temperature.

The energy value limit at (a→ 0) gives the same energy to the Dirac particle moving under

the action of a constant magnetic field [140].



Chapter 4

Electron Propagator Solution for an Inho-

mogeneous Magnetic Field in the Momen-

tum Space Representation

4.1 Introduction

It is well-known that the quantum theories of the electron [143, 144] were presented by Dirac

equation which permits a good description of the motion of a relativistic particle, gives an

explanation of the antimatter and elucidates the origin of the electron spin. Actually, these the-

ories have been a great development, and played a major role not only on differential equation,

but also in statistical physics, quantum field theory, quantum cosmology and quantum grav-

ity. We cite, for example in relativistic quantum mechanics: the exact solutions of a Coulomb

potential [145], the construction of a complete spectrum of the Spinorial particle in a box

[146] and various other problems [147–149]. Further examples in quantum gravity are given

by the Spinorial relativistic particle in a non-commutative (NC) space [150], in (NC) phase

space [151] and also in the case of the generalized Heisenberg algebra [152–154]. While it

was previously impossible to set up these issues, for technical reasons, according to these con-

siderations, except researches that have given many successes in this field and that have been

summarized in the reference [155]. Where they provided strong evidence of the phenomena of



48

Electron Propagator Solution for an Inhomogeneous Magnetic Field in the

Momentum Space Representation

the Zeman effect, the Stark effect and the Aharonov-Boom effect. Numerous theoretical cal-

culations have been the subject of exact results, we mention them, the exact solutions of the

Dirac equation in the presence of a uniform electromagnetic field [156, 157], an inhomoge-

neous magnetic field (IMF) [158], orthogonal electric and magnetic fields [159], linear scalar

potentials [160, 161] the scalar Coulomb field [162] and the two-component Dirac equation

for the case of an electron in the IMF [134].

From the natural truth of the magnetic fields in the universe, the behavior of the elec-

tron under the influence of these inhomogeneous magnetic fields (IMFs) [142] have enabled

researchers to obtain important experimental results. Where the creation of magnetic dots

became possible and integrates ferromagnetic materials with semiconductors, as well as the

patterning of such films was recently demonstrated experimentally [163]. These results will

clearly contribute to the advancement of the present semiconductor technology. We find also

the magnetic confinement fusion to generate thermonuclear fusion power that uses magnetic

fields with variable geometry, the fractional quantum hall effect, current spintronics efforts

[164–166], superconductivity and thermal entanglement [167]. On the other hand, the con-

trol of the Dirac electron in graphene in the presence of IMF is an alternative approach, which

is expected to play a needful role in the fabrication of desirable nanoelectronic devices [168].

Knowing that there are promising applications such as the experimental study of magnetic

field sensors that use hybrid Hall junctions in the diffusive regime [169, 170]. In addition they

had investigated in the possibility of use the IMF for MRI of biological tissues [171], and its

effect on the magnetic properties of NiFe/IrMn thin film structures [172].

In the past years, there are some physicists who have taken care of these IMFs in the quan-

tum theory area. For example, Achuthan et al have presented a series of researches on this

kind of topics [134, 173–175]. Furthermore [134] have formulated the two-component Dirac

equation for the case of an electron, and at the present time it was treated mathematically on

the Dirac-Weyl equation in graphene [176], by explaining the expressions for the bound-state

energy eigenvalues and eigenfunctions as a function of the parameter inhomogeneity. In ad-

dition, Achuthan et al [173] have shown the spontaneous electron-positron pair creation, and

have given some physical implications due to heterogeneous magnetic fields and which are
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supposed to exist only in neutron stars. But with this IMF [174] (i.e., B/cosh(ay)), they have

evaluated the magnetic moment density numerically in the degeneracy limit for several val-

ues of the magnetic field strength and the chemical potential. Furthermore, they discussed in

Ref. [175] the thermodynamic and magnetic properties of the electron gas in IMF, where it is

a possibility to establish the spontaneous magnetisation, i.e., the ferromagnetic behaviour. The

latter exhibits a pressure of the electron gas with a magnitude higher than those in a homo-

geneous magnetic field and crossed homogeneous electric and magnetic fields for comparable

field strengths.

In the present analysis, we exerted much effort to establish the exact solutions of a quan-

tum particle is subjected to an inhomogeneous magnetic field, described by the path integral

method in momentum space representation. It is known by the Dirac equation in Ref. [134],

Bz(y) =B/(1−ay)2 , Bx = By = 0. (4.1)

where a is an inhomogeneity parameter. The IMF (4.1) is derived from the vector potential in

the Cartesian coordinate system

Ax(y) =−By/(1−ay), Ay = Az = 0. (4.2)

The content of our proposal is outlined as follows: In the next section, we will present the path

integral for Spinorial particles by a formulation that differs from the Grassmann variables for-

mulation [135, 136]. The advantage of our formulation is based to make the path integration

over the Green function matrix elements. So, it is very easy for the beginner to understand this

type of formulation. This same approach has been applied in several works like [137]. In fact,

the main difficulty of this chapter is purely mathematical, and it is how to deal with this type

of IMF (4.1) using the Feynman approach without worrying about the physical implication

of these singular potentials problems. However, thanks to the Duru-Kleinert regularization,

we were able to eliminate the problem of the singularity at the point y = 1/a by introduc-

ing regularizing functions on the left and on the right of the Hamiltonian of IMF systems in

the momentum space representation. In section 3, we show how we can use the method of
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Duru-Kleinert mapping of the path integral formalism. To our knowledge, this type of treat-

ment makes the mass of this relativistic system, momentum coordinate dependent. By the

transformation of this coordinates space, we can formulate the Green function and the electron

propagator. In section 4, we validate the accuracy of α-points discretization to coincide with

the exact solution to our issue. In section 5, we calculate the Dirac’s electron propagator for an

inhomogeneous magnetic field in the momentum space representation and the corresponding

exact energy eigenvalues. Finally, the relevant conclusion is given in section 6.

4.2 Formulation of the problem in momentum coordinates

The Green function Ŝ of the relativistic Dirac particle subjected to an inhomogeneous magnetic

field given by Eqs. (4.1) and (4.2) is defined as the inverse of the Dirac operator. Setting the

natural units c = h̄ = 1, we have,

(

γµΠ̂µ−m+ ıε
)

Ŝ =−I, with µ = 0,1,2,3. (4.3)

Here γµ are the Dirac matrices in the 4-dimensional Minkowski space,

γ0 =







I2×2 0

0 −I2×2






, γ i =







0 σi

−σi 0






, (4.4)

I2×2 is the unit matrix of rank 2 and σi=1,2,3 are the Pauli matrices. Under the magnetic field

defined in Eq. (4.1) and with the choice of the gauge (4.2), the components of Π̂µ are expressed

as

Π̂0 = p̂0,
−→̂
Π =

(

(p̂x−
eQBŷ

(1−aŷ)
), p̂y, p̂z

)

, (4.5)

where p̂µ are the generalized canonical momentum conjugate operators to xµ = (x0, ı∇p), ∇p

denotes the standard derivative of the impulsions variables p and Q is the sign of the fermions

charge (it can be taken ±1). In view to solve Eq. (4.3) by using the path integral method, put

Ŝ =−
(

γµΠ̂µ−m+ ıε
)−1

=
(

γµΠ̂µ+m+ ıε
)

Ĝ, and 0< ε ≪ 1, (4.6)
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with Ĝ is an operator. It can easily be shown that

Ĝ =−
(

γµΠ̂µγνΠ̂ν−m2+ ıε
)−1

. (4.7)

Let us now look at the equation (4.2): it is clear that there is a singularity at the point y= 1/a. In

order to construct the path integral method of the transition amplitude avoiding the singularity,

we choose two arbitrary regulating functions gl(ŷ) and gr(ŷ) as it follows

gl

(

γµΠ̂µγνΠ̂ν−m2+ ıε
)

grg
−1
r Ĝ =−gl. (4.8)

So, following the habitual construction procedure of the global projection [136], we express

the Green function S (pb,pa, p0b, p0a) in momentum space representation:

S (pb,pa, p0b, p0a) =
(

γνΠ̂ν+m
)

b
G(pb,pa, p0b, p0a) . (4.9)

Using the Schwinger proper-time method, we define the Green function as the matrix element

of the evolution operator Ĝ between the initial state |pa, p0a〉 and the final state |pb, p0b〉. More

clearly, the key to quantum regularization is the following written form of the Green function

G(pb,pa, p0b, p0a) =−〈pb, p0b|gr(ŷ)
1

gl(ŷ)
[

γµΠ̂µγνΠ̂ν−m2+ ıε
]

gr(ŷ)
gl(ŷ) |pa, p0a〉

= ıĝr(yb)ĝl(ya)
∫ ∞

0
dτ 〈pb, p0b|exp

[

ıτ
(

Ĥ− ıε
)]

|pa, p0a〉 . (4.10)

As far as what we do, we have done just about everything there is possible to do. In the first

one, we have to choose functions gl(y) and gr (y) of the same form, to get rid of the singularity

problem on point y = 1/a, with y ∈ ]−∞;+∞[. The second reason, it maintains the ordering

symmetry of the Hamiltonian operator whose each term is written as an average of the term

ordered with all the p’s on the left-hand side plus the term ordered with all the p’s on the

right-hand side. (i.e. Ôsym(p̂y, ŷ) =
1
2
[F(p̂y)G(ŷ)+G(ŷ)F(p̂y)]) see, Refs. [177, 178]. The
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Hamiltonian Ĥ is defined by:

Ĥ =

(

p̂20−
(

p̂x− eQB
ŷ

1−aŷ

)2

− p̂2z −m2

)

(1−aŷ)2− (1−aŷ) p̂2y (1−aŷ)+ ıeQBγ1γ2.

(4.11)

Here ı
2
γ1γ2 = 1

2
σ3⊗ I2×2 is the spin tensor, σ3 is the Pauli matrix and I2×2 the unit matrix

2× 2. It is known that the systems that describe the interaction between spin and field can

be treated using the Feynman’s approach according to two fundamental models: The first one

is the Fradkin-Gitman model, which presents the Dirac propagator by using a Grassmannian

path integral [135, 136, 179]. The second model is described in Refs. [180–182], where we

replace the Pauli matrices σi=1,2,3 with a pair of Fermionic operators (u,d). But in our present

paper, we do not intend to use these two models, we just focus on conducting path integration

on the elements of the Green Matrix. As it should be noted that an attempt has already been

made in the case of the Dirac oscillator to obtain a path integral formalism for Green function’s

matrix elements [137]. Therefore, in momentum space representation {|p0,p〉} and using the

development of exponential matrix of Ĥ, we find the Green’s function G(pb,pa, p0b, p0a) as

G(pb,pa, p0b, p0a) =



















G+ (pb, pa) 0 0 0

0 G− (pb, pa) 0 0

0 0 G+ (pb, pa) 0

0 0 0 G− (pb, pa)



















. (4.12)

Here p = (p0,p) represent the quadri-momentum variable. From Eq. (4.12) the matrix ele-

ments G(pb,pa, p0b, p0a) are defined in the same expression:

G± (pb,pa, p0b, p0a) = ıĝr(yb)ĝl(ya)
∫ ∞

0
dτ 〈pb, p0b|exp

(

−ıτĤ±) |pa, p0a〉 , (4.13)

which given a new Hamiltonian Ĥ± operator defined by

Ĥ± =−
[(

p̂20−
(

p̂x− eQB
ŷ

1−aŷ

)2

− p̂2z −m2

)

(1−aŷ)2− (1−aŷ) p̂2y (1−aŷ)± eQB

]

.

(4.14)
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Let us subdivide the time τ into (N +1) interval having a length each one equal to ε =

τ/(N +1) and by inserting the completeness relation
∫ ∫ |p, p0〉〈p, p0|dpd p0 = 1 between

all the infinitesimal operators exp(−ıεĤ±), we have

G± (pb,pa, p0b, p0a) = ıĝr(yb)ĝl(ya)
∫ ∞

0
dτ lim

N→∞

N

∏
j=1

∫

dp j p0 j

N+1

∏
j=1

G±
(

p j,p j−1, p0 j, p0 j−1
)

.

(4.15)

Then inserting (N + 1) times the identity of the completeness relation for the eigenvectors

|x,x0〉 and we use the usual scalar product in (3+1) dimensions,

∫ ∫

|x,x0〉〈x,x0|dxdx0 = 1,
〈

x j,x0 j | p j, p0 j

〉

=
1

(2π)2
exp

(

ıx j p j

)

, (4.16)

the infinitesimal Green function element can be written as

G±
(

p j,p j−1, p0 j, p0 j−1
)

=
∫

dx jdx0 j

(2π)4
exp

{

−ı
[

x jp j− x0 j p0 j− ε
((

p20 j− p2x j
− p2z j

−m2
)

(

1−ay j

)

2

−(eQB)2y2j+2eQB
(

1−ay j

)

y j− p2y j

(

1−ay j

)

+a
(

p2y j
y j +2ıpy j

)

(

1−ay j

)

± eQB

)]}

,

(4.17)

where p = (p0, px, py, pz) satisfies the boundary conditions

p j=0 = pa, p0 j=0 = p0a,pN+1 = pb, p0N+1 = p0b. (4.18)

The integrations over x0 j, x j and z j give N Dirac functions δ (p0 j−1− p0 j
), δ (px j−1− px j

) and

δ (pz j−1 − pz j
) respectively. This leads to the conservation of the energy p0 = E and the two

momentum components (px, pz)

p0 j=1
= p0 j=2

= ...p0 j=N
= E, (4.19)

px j=1
= px j=2

= ...px j=N
= px, (4.20)

pz j=1
= pz j=2

= ...pz j=N
= pz. (4.21)
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So we can write the equation (4.17) as

G±
(

pb,pa, p0b
, p0a

)

=−ıδ (p0b
− p0a

)δ (pxb
− pxa

)δ (pzb
− pza

)

×ĝr(yb)ĝl(ya)

∞
∫

0

dτ
N

∏
j=1

∫

d py j

N+1

∏
j=1

∫

dy j

2π

×exp
{

ı∑
N+1
j=1

[

−εa2
(

P2
E + p2y j

)

y2j +
(

△py j
+2aε

(

ξ Q(px +Qξ )−
(

P2
E + p2y j

)

+ ıapy j

))

y j

+ε
(

ξ Q(2px +Qξ )−
(

P2
E + p2y j

)

+2ıapy± eQB

)]}

. (4.22)

After performing the Gaussian integrals over y j, the propagator elements in momentum space

coordinates are given by

G±
(

pb,pa, p0b
, p0a

)

=−ıδ (p0b
− p0a

)δ (pxb
− pxa

)δ (pzb
− pza

)

×ĝr(yb)ĝl(ya)

∞
∫

0

dτ
N

∏
j=1

∫

d py j

N+1

∏
j=1

√

1

4πıεa2P2
E

(

1+p2y j
/P2

E

)

×exp

{

ı∑
N+1
j=1

[

1
4εa2

△p2y j

P2
E

(

1+p2y j
/P2

E

) −
(

1
a
− ξ Q(px+Qξ )

aP2
E

(

1+p2y j
/P2

E

) − ıpy j

P2
E

(

1+p2y j
/P2

E

)

)

△py j

+ε

(

(ξ Q(px+Qξ )+ıapy)
2

P2
E

(

1+p2y j
/P2

E

) −Q2ξ 2± eQB

)]}

, (4.23)

where

P2
E =

√

(px +Qξ )2+ p2z +m2−E2, (4.24)

such that ξ = eB/a. From the expression of the propagator elements (4.23), it appears a

system describing a mass that depends on the py−momentum variable. In order to convert

this expression to the standard form of Feynman path integral, we will use the coordinate

transformation method. It is self-evident that we are faced with the problem of determining the

appropriate interval point to calculate the exact quantum corrections. For example, different

potentials have been applied to the coordinate-time transformations method, where the use of

mid-point gives an exact solution to these quantum systems [183]. Also, the problem of the

particle with variable mass has its role in determining the appropriate interval point [184].

The same problem was discussed in the presence of generalized uncertainty principle and in
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relativistic case, such as [137, 138]. Before making this procedure, we will eliminate the

second complex term of the action with the third term. Which is given as

ξ Q(px+Qξ )
a

△py j

p2y j
+P2

E

= ξ Q(px+Qξ )

aP2
E

(

arctan(
pyb

PE
)− arctan(

pya

PE
)
)

−2εıξ Q(px +Qξ )
apy j

p2y j
+P2

E

.

(4.25)

Substituting the above obtained result into Eq. (4.23). The Green functions elements can be

easily obtained,

G±
(

pb,pa, p0b
, p0a

)

= ıδ (p0b
− p0a

)δ (pxb
− pxa

)δ (pzb
− pza

)

×ĝr(yb)ĝl(ya)e
− ı

a
(pyb

−pya) exp
{

ıξ Q(px+Qξ )
aPE

(

arctan(
pyb

PE
)− arctan(

pya

PE
)
)}

×
∞
∫

0

dτ lim
N→∞

N

∏
j=1

∫

d py j

N+1

∏
j=1

√

1

4πıεa2P2
E

(

1+p2y j
/P2

E

) exp

{

ı∑
N+1
j=1

[

1
4εa2

△p2y j

P2
E

(

1+p2y j
/P2

E

) +
ıpy j

∆py j
(

p2y j
+P2

E

)

+ε

(

(ξ Q(px+Qξ ))2
(

p2y j
+P2

E

) −
a2p2y j

(

P2
E+p2y j

) −Q2ξ 2± eQB

)]}

, (4.26)

In order to find the standard form of Feynman’s path integral, it must be calculated by follow-

ing the next steps.

4.3 Quantum corrections evaluation

If we look more closely at the Green function elements G± (pb, pa), we can see that it is not

identical to the standard formula of Feynman. Since the above expression of the path integral

(4.26) represents the kinetic term of the action, where it is obvious that the “mass” is dependent

from the py−momentum. This dependency can be removed by using the point transformation

method. We define α−point discretization interval as

p̄
(α)
y j

= α py j
+(1−α) py j−1 , (4.27)

when α = 1/2 the p̄
(α=1/2)
y j

represents the mid-point prescription. In this section we do not use

this mid-point prescription, because we will find it invalid in this work. To make this consid-

eration more accurate, we chose the above α−point discretization interval (4.27). Therefore,



56

Electron Propagator Solution for an Inhomogeneous Magnetic Field in the

Momentum Space Representation

according to the standard method [183], the Green functions elements (4.26) can be expressed

in terms of the α−point discretization interval (4.27). Which indicate that there are three

corrections in expression (4.26), namely:

1- The first is related to the action C
(1)
act ,

2- the second is related to measurement C
(1)
m

3- and the third is related to the pre-factor C f .

As usual ∆ f ′
(

py j

)

represents the subtracting of the two functions f ′
(

py j

)

and f ′
(

py j−1
)

.

Expanding f ′
(

py j

)

and f ′
(

py j−1
)

about the α−point prescription p̄
(α)
y j
, and retaining terms up

to third order in ∆py j
, we find

∆ f ′
(

py j

)

= ∆py j
f̄
(α)′
j

(

1+ (1−2α)
2!

f̄
(α)′′
j

f̄
(α)′
j

∆py j
+ (1−α)3+α3

3!

f̄
(α)′′′
j

f̄
(α)′
j

∆p2y j
+ ...

)

, (4.28)

where the notation used is ∆py j
= py j

− py j−1 and f̄
(α)′
j , f̄

(α)′′
j , f̄

(α)′′′
j are the abbreviated deriva-

tives function f (p̄
(α)
y j
) at the point p̄

(α)
y j
. Then we develop the exponential of kinetic term about

the α−point prescription, and setting f
′ (

py j

)

= (1/
√

1+ p2y j
/P2

E), we find it with some sim-

plifications:

exp

[

ı
N+1

∑
j=1

(

1
4εa2

(

△py j

)2
/P2

E

1+p2y j
/P2

E

)]

= exp

[

ı
N+1

∑
j=1

(
(

f̄
(α)′
j

)2

4εa2P2
E

(

∆py j

)2

)]

(

1+C
(1)
act

)

, (4.29)

where C
(1)
act is the first quantum correction related to the action,

C
(1)
act =

ı

4εa2P2
E

[

2(1−α) f̄
(α)′′
j

(

f̄
(α)′
j

)2

f̄
(α)′
j

(

∆py j

)3
+(1−α)2

(
(

f̄
(α)′′
j

)2

(

f̄
(α)′
j

)2 +
f̄
(α)′′′
j

f̄
(α)′
j

)

( f̄
(α)′
j )2

(

∆py j

)4

]

− 2(1−α)2

(4εa2P2
E)

2

(

f̄
(α)′′
j

)2

(

f̄
(α)′
j

)2

(

f̄
(α)′
j

)4 (
∆py j

)6
. (4.30)

In this correction, we have retained only the terms which are all of order ε . Also, the measure

term contains corrections, and from it we have,

N

∏
j=1

∫

d py j

N+1

∏
j=1

√

1

4πıεa2P2
E

(

1+p2y j
/P2

E

) =
N

∏
j=1

∫

d py j

N+1

∏
j=1

√

1

4πıεa2P2
E

f ′
(

py j

)

. (4.31)
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Expanding f ′
(

py j

)

about the α−point prescription p̄
(α)
y j
, and retaining terms up to second order

in ∆py j
, we get the following expression

f ′
(

py j

)

= f̄
(α)′
j

(

1+C
(1)
m

)

, (4.32)

where C
(1)
m is the second correction related to measurement

C
(1)
m = (1−α)

f̄
(α)′′
j

f̄
(α)′
j

∆py j
+ (1−α)2

2

f̄
(α)′′′
j

f̄
(α)′
j

∆p2y j
. (4.33)

In addition to these corrections there is the pre-factor term which defined in the second term

of action (4.26). It will be developed to second order in ∆py j
,

exp

(

−
py j

∆py j

p2y j
+P2

E

)

= 1+C f . (4.34)

which gives a third correction given by

C f =
f̄
(α)′′
j

f̄
(α)′
j

∆py j
+

[

(

α− 1

2

)(

f̄
(α)′′
j

f̄
(α)′
j

)2

+(1−α)
f̄
(α)′′′
j

f̄
(α)′
j

]

∆p2y j
. (4.35)

We have calculated the three corrections resulting from the development of the Green function

at the α−point discretization. We will perform a new coordinate transformation py j
/PE =

g(ky j
), to get the conventional form of the kinetic term. This transformation makes us adopt

two other corrections:

1- the first is related to the action C
(2)
act ,

2- the second is related to measurement C
(2)
m

The α-point expansion of ∆py j
is written by index ( j)

∆py j
/PE = ∆ky j

ḡ
(α)′
j

(

1+ (1−2α)
2!

ḡ
(α)′′
j

ḡ
(α)′
j

∆ky j
+ (1−α)3+α3

3!

ḡ
(α)′′′
j

ḡ
(α)′
j

∆k2y j

)

. (4.36)

The choice of g(k) is fixed by the following condition: ((∂g/∂k) = (∂ f/∂ p)−1), which

makes the transformation py j
/PE = g(ky j

) = sinhky j
where py j

∈ ]−∞,+∞[ is mapped to



58

Electron Propagator Solution for an Inhomogeneous Magnetic Field in the

Momentum Space Representation

ky j
∈ ]−∞,+∞[. But the other variables remain the same (px = kx and pz = kz). Subsequently,

we develop the exponential kinetic term as

exp

[

ı
N+1

∑
j=1

(

1
4εa2

△p2y j
/P2

E

1+p2y j
/P2

E

)

]

= exp

{

ı
N+1

∑
j=1

[

∆k2j

4εa2

]

}

[

1+C
(1)
act

][

1+C
(2)
act

]

, (4.37)

where C
(1)
act is defined in Eq. (4.30) and C

(2)
act is given by

C
(2)
act =

{

ı
4εa2

[

(1−2α)
ḡ
(α)′′
j

ḡ
(α)′
j

∆k3y j
+

[

(1−2α)2

4

(

ḡ
(α)′′
j

)2

(

ḡ
(α)′
j

)2 +
(1−α)3+α3

3

ḡ
(α)′′′
j

ḡ
(α)′
j

]

∆k4y j

− (1−2α)2

2(4εa2)
2

(

ḡ
(α)′′
j

)2

(

ḡ
(α)′
j

)2 ∆k6y j
+ ...

}

. (4.38)

The measure induce also a correction

N

∏
j=1

∫

d py j

N+1

∏
j=1

√

1

4πıεa2
(

p2y j
+P2

E

) =

√

1

g′
b
g′aP2

E

N

∏
j=1

∫

dky j

N+1

∏
j=1

√

1
4πıεa2

(

1+C
(1)
m

)(

1+C
(2)
m

)

,

(4.39)

where C
(1)
m is given by (4.33) and

C
(2)
m = (1−2α)

2

ḡ
(α)′′
j

ḡ
(α)′
j

∆ky j
+

[

−α(1−α)
2

(

ḡ
(α)′′
j

)2

(

ḡ
(α)′
j

)2 +
(1−α)2+α2

4

ḡ
(α)′′′
j

ḡ
(α)′
j

]

∆k2y j
, (4.40)

is the second correction on the measure.

By combining all these corrections, we obtain the following total correction:

CT =−3
2

ḡ
(α)′′
j

ḡ
(α)′
j

∆ky j
+

[

(

3− 3
2
α
)

(

ḡ
(α)′′
j

)2

(

ḡ
(α)′
j

)2 +
3
2
α− 5

4

]

∆k2y j
− ı

4εa2

ḡ
(α)′′
j

ḡ
(α)′
j

∆k3y j

+ ı
4εa2

[

(

11
4
−α2

)

(

ḡ
(α)′′
j

)2

(

ḡ
(α)′
j

)2 +

(

α− 2

3

)

]

∆k4y j
− 1

2

(

1
4εa2

)2
(

ḡ
(α)′′
j

)2

(

ḡ
(α)′
j

)2 ∆k6y j
. (4.41)

We can remove the terms in
(

∆ky j

)2n
by making use of the following expectation values

〈

(

∆ky j

)2n
〉

=
(

ıεa2
)n
(2n−1) . (4.42)
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Then Eq. (4.41) becomes as,

CT = ıεa2
((

3

2
+3α (α−1)

)

tanh2 k j−1/4

)

. (4.43)

At this stage, we remark that the correction CT depends on the α-point discretization interval.

It is not definitively settled and asked for clarification of the path integral method in this prob-

lem. This resembles the case of curved spaces in which the mid-point was privileged. The

development in Refs. [10, 183] treat this problem of curved space and gives an outcome that

considers all points of the interval as equivalent. Also, this is similar in the case of deformation

Heisenberg uncertainty relation which has been discussed in Ref. [137, 138]. For a convincing

answer, see what the next section holds.

4.4 Point determination of discretization interval

Our aim in this section is to determine exactly the value of α−point discretization in order to

find exact solution of the electron propagator in the inhomogeneous magnetic field defined in

Eqs.(4.1) and (4.2). From Eq. (4.26) we write the Green function as follow:

Gs(pb,pa; p0b
, p0a

) = ıδ (p0b
− p0a

)δ (pxb
− pxa

)δ (pzb
− pzb

)

×ĝr(yb)ĝl(ya)ℜ(pb)ℜ∗ (pa)
∫ +∞

0
dτKs

PE
(kb,ka;τ) . (4.44)

The kernal Ks
PE
(pb, pa;τ) represents the path integral representation of the transition ampli-

tude of a point particle moving in Roson-Morse (RM) potential, which defined by

Ks
PE
(kb,ka;τ) = lim

N→∞

N

∏
j=1

[
∫

dky j

]
N+1

∏
j=1

[

√

1
4πıεa2

]

exp

{

ı∑
N+1
j=1

[

△k2y j

4εa2
+

+εa2

(
(

Qξ
aPE

(px+Qξ )
)2

cosh2(k j)
+

(

1

2
+3α (α−1)

)

tanh2 k j−1/4−Q2ξ 2/a2+ s
Qξ

a

)]}

, (4.45)

and the function ℜ(py) is equal to

ℜ(py) =
e
− ı

a
(py)

√

p2y+P2
E

exp
{

ıQξ (px+Qξ )
aPE

(

arctan(
py

PE
))
)}

. (4.46)
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Let us emphasize that the correction CT depends on the α-point discretization interval, and

this resembles the case of curved spaces in which the mid-point α = 1/2 was privileged. So

our question that baffles is the prominent result in this work. Therefore, the analogy with the

Schrodinger equation of the infinitesimal propagation Ks
PE
(kb,ka;τ) is:

Φ(k,τ + ε) =
∫

1+CT√
4πıεa2

e

ı







(k−k′)2

4εa2
+εa2







(

Qξ
aPE

(px+Qξ )
)2

cosh2(k j)
−tanh2 k j−Q2ξ 2/a2−s

Qξ
a













Φ
(

k′,τ
)

dk′.

(4.47)

By following the same procedure represented in Ref. [50], by substituting k′ = η + k, we are

led to expand Φ(k′,τ) in a Taylor series around η = 0:

Φ(k,τ + ε) = e−ıεVe f f

∫

[

Φ(k, t)+η
∂Φ(k, t)

∂k
+

η2

2

∂ 2Φ(k, t)

∂k2
+ ...

]

×
[

1+
3

2

g′′(k)
g′(k) η + ı

4εa2
g′′(k)
g′(k) η3

]

e
ı

η2

4εa2
dη√
4πıεa2

, (4.48)

where the effective potential Ve f f is given by

Ve f f =−a2
[

(

3α (α−1)− Q2ξ 2(px+Qξ )2

a2P2
E

+ 1
2

)

tanh2 k+ Q2ξ 2(px+Qξ )2

a2P2
E

−
(

Qξ
a
+ s

2

)2
]

. (4.49)

Performing all the integrations over η , where the kind of integrals is Gaussian. Besides this,

we expand the left wave function Φ(k,τ + ε) in a power series to the first order in ε . This

leads to get the explicit result

ε
∂Φ

(

k j,τ
)

∂τ
= ıε

(

a2
d2

dk2j
−Ve f f

)

Φ
(

k j,τ
)

. (4.50)

This latter represents the Schrodinger equation, which agrees with the above propagator

Ks
PE
(kb,ka;τ) . In order to verify the correctness of the Hamiltonian Ĥ±, which we set out

to determine the spectral energies in the section 2: we have,

Ψ(k,τ) = ℜ(k)Φ(k,τ) . (4.51)
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Substituting (4.51) into (4.50) , we find

− ı
∂Ψ(k,τ)

∂τ
=

(

a2
d2

dk2
+2a2

d ln
(

ℜ−1 (k)
)

dk

d

dk
+

a2

ℜ−1 (k)

d2
(

ℜ−1 (k)
)

dk2
−Ve f f

)

Ψ(k,τ) .

(4.52)

By returning to the old variables by means of the following relations

sinhk =
py

PE
, coshk =

√

P2
E + p2y

PE
, (4.53)

we obtain the same Hamiltonian operator Ĥ± defined in Eq. (4.14) plus a function of α and a

constant term

ı
∂Ψ(py,τ)

∂τ
=

[

Ĥ±−a2
(

1

4
+3α (α−1)

)

p2y

P2
E + p2y

+
a2

4

]

Ψ(py,τ) . (4.54)

Here Ĥ± is Hamiltonian of a particle moving in an inhomogeneous magnetic field and is

defined in Eq.(4.14). To obtain the exact Schrodinger equation corresponding to our system,

we assure us that the correct choice for the discretization point is the different mid-point,

1

4
+3α (α−1) = 0 and Ψ(py,τ) = e−

ıa2

4 τψ (py,τ) . (4.55)

Moreover, it is different result in the presence of the nonzero minimum position uncertainty

[137].

4.5 Propagator and Spectral Energies

In order to evaluate the exact solution of electron propagator and corresponding spectral en-

ergies for an inhomogeneous magnetic field in the momentum space representation, let us

evaluate the transition amplitude defined in Eq. (4.45) under the conditions (4.55). We can
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therefore write this Kernel as follow :

Ks
PE
(kb,ka;τ) = lim

N→∞

N

∏
j=1

∫

dky j

N+1

∏
j=1

√

1
4πıεa2

e
ıa2τ

(

(

Qξ
aPE

(px+Qξ )
)2
−Q2ξ 2/a2+s

Qξ
a − 1

2

)

×exp

{

ı∑
N+1
j=1

[

△k2y j

4εa2
− εa2

[

(

Qξ
aPE

(px +Qξ )
)2

−1/4

]

tanh2 k j

]}

. (4.56)

This expression is exactly the path integral representation of the transition amplitude of a point

particle moving in the Rosen-Morse (RM) potential, which has been discussed in the literature

by means of the path integral (See Refs. [3, 183]):

Ks
PE
(kb,ka;τ) =

∞

∑
n=0

Γ(ℓ)2
[

22ℓ−1(ℓ+n)n!
πΓ(2ℓ+n)

]

e
ıa2τ

(

(

Qξ
aPE

(px+Qξ )
)2
−Q2ξ 2/a2+s

Qξ
a − 1

2

)

×eıa2τ(n2−(2n+1)ℓ) coshℓ (kb)cosh
ℓ (ka)Cℓ

n (tanh(kb))Cℓ
n (tanh(ka)) , (4.57)

and the parameter ℓ check the following relation

ℓ(ℓ+1) =
(

Qξ
aPE

(px +Qξ )
)2

−1/4, (4.58)

which gives

ℓ=−1
2
+ Qξ

aPE
(px +Qξ ). (4.59)

In order to evaluate exactly the propagator expression, we write its Fourier transformation

(4.44) with respect to k0b
and k0a

variables. The result is

Gs(kb,ka; tb, ta) =−(1−aŷb)(1−aŷa)δ (kxb
− kxa

)δ (kzb
− kza

)

×
∞

∑
n=0

Γ(ℓ)2
[

22ℓ−1(ℓ+n)n!
πΓ(2ℓ+n)

]

+∞
∫

−∞

dE

E2−En
e−ıE(tb−ta)

P2
E

(

Qξ
aPE

(px+Qξ )+n+Qξ
a + 1

2+
s
2

)

Qξ
aPE

(px+Qξ )−n+Qξ
a − 1

2+
s
2

×e
− ıPE

a
(sinhkb−sinhka) exp

{

ıQξ (px+Qξ )
aPE

(arctan(sinhkb)− arctan(sinhka))
}

×coshℓ−1/2 (kb)cosh
ℓ−1/2 (ka)Cℓ

n (tanh(kb))Cℓ
n (tanh(ka)) , (4.60)

Cℓ
n (x) are Gegenbauer polynomials [139]. To obtain the exact solutions for the spectral ener-

gies for the system governed by the Dirac equation in an inhomogeneous magnetic field and in
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momentum space coordinates, it must bring the corresponding spectral decomposition by the

action of the operator
(

γνΠ̂ν+m
)

b
on Eq. (4.12). This will be simplified as

S (pb,pa, tb, ta) =

δ (pxb
− pxa

)δ (pzb
− pzb

)
∞

∑
n=0

Γ(ℓ)2
[

22ℓ−1(ℓ+n)n!
πΓ(2ℓ+n)

]

+∞
∫

−∞

dE
e−ıE(tb−ta)

E2−En

P2
E

(

Qξ
aPE

(px+Qξ )+n+Qξ
a + 1

2+
s
2

)

Qξ
aPE

(px+Qξ )−n+Qξ
a − 1

2+
s
2

×









































































(E +m)

×ĝ(ŷb) ĝ(ŷa)
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0
pzĝ(ŷb) ĝ(ŷa)
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(4.61)

where

F(p) = e
− ı

a

[

py−
Qξ (px+Qξ )

PE
(arctan(py/PE))

]

(

√

1+ p2y/P2
E

)ℓ−1/2
Cℓ

n

(

py/
√

P2
E + p2y

)

. (4.62)

The above equation (4.61) lacks the integration over energy E: This can be converted to a

complex integration along the special contour C and then using the residue theorem, the poles

of this latter are given by:

En =±
√

En =±






m2+ p2z +(px +Qξ )2






1− (Qξ/a)2

(

n+ Qξ
a
+ 1

2
+ s

2

)2













1/2

. (4.63)
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Where the relativistic spectral energies are dependent on n and parameter a. In Figure 4.1, we

represent the energy graph as a function of n for several values of a with n ≥ 20. The dark

and red points graph correspond to the positive and negative energy for a constant magnetic

field (i.e. a = 0). When we raise value a, the energy is convergence to zero (See to the below

curves).

Figure 4.1: En is the energy spectrum versus n for several values of a.

Figure 4.2: En is the energy spectrum verus a for n = 0,1,2, ... .

At the end, it is remarkable if we consider a very small ”a” parameter, the form of (4.63)

can easily be expanded in terms of ”a”. Making this expansion, we obtain the corrections to
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the energy spectrum, namely:

E
(a)
n =±

√

m2+ p2z +2e |Q|Bn±a
2npx

√

m2+ p2z +2e |Q|Bn
+O(a2)+ .... (4.64)

It also applies to the wave functions, where the limit a → 0 one can find exactly the wave

function in configuration space representation of the homogeneous magnetic field [140].

Before ending this work, let us show that can be solved the problem of the inhomogeneous

magnetic and electric fields defined by

B =
(

0,0,B/(1−ay)2
)

, E =
(

0,0,E/(1−ay)2
)

. (4.65)

Finally, this work is considered as a very important in physics [141, 142]. Also we were very

lucky when we have treat it using the path integral formalism. We also suggest bringing up

the same topic but with the concept of the minimal length uncertainty relation [185], where we

expect to obtain valuable results from the physical and mathematical sides.

4.6 Conclusion

We have solved the problem of the electron particle moving in an inhomogeneous magnetic

field by using the Feynman’s path integrals in the momentum space representation. In the

first stage, we have eliminated a problem with the singularity in point y = 1/a, where we do

not describe the spin degrees-of-freedom by Fermionic variables (Grassmannian variables).

We only apply the path integral formalism on the Green function elements. Then, the exact

Green’s function is calculated in Cartesian coordinates, where we found the relativistic particle

is free in the axis direction (Ox) and (Oz). We have obtained the energy spectrum and the

propagator of Dirac expressed in terms of Gegenbauer polynomials. The main result is that the

calculation depends on the α−point discretization interval and we conclude that the problem of

discretization is not definitively settled in the path integral framework. This situation resembles

that of the quantization with constraint in which the mid-point is privileged. The reason for

this difference is due to the first formality in which we prepared the quantum propagator to get
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rid of a problem singularity. While a→ 0 this problem is canceled, where we find the same

results for the electron particle moving in a homogeneous magnetic field.



Chapter 5

Spinorial relativistic particle in energy de-

pendent inhomogeneous magnetic field (IMF)

5.1 Introduction

Wave equation with energy-dependent potentials is an extensively studied subject and its in-

terest arises for many reasons. They occur in relativistic quantum mechanics, First with the

Klein-Gorden equation for a particle in an external electromagnetic field [186–188] leads to

a wave equation withe energy-dependent potential. Even if the initial potential is not intrin-

sically energy dependent, the reduction to a wave equation introduces an effective potential

depending on the energy [189]. A similar situation occurs with the Pauli-Schrödinger equa-

tion which results from the reduction of the Dirac equation for a fermion in a scalar or vector

potential. In recent years, much works have been done to study the Hamiltonian formula-

tion of relativistic quantum mechanics in connection with constraints [190]. This approach

enables us in a simple way to achieve the proper separation of relative and center-of-mass co-

ordinates in few body and even in many body problem. Several researchers have also given

great attention to investigate the energy dependent potentials. Hassanbadi et al.[88, 191] stud-

ied the exact solutions of D-dimensional Schrödinger and Klein-Gorden equations using the

Nikiforov-Uvarov method. They also studied the Dirac equation for an energy-dependent po-

tential in the presence of spin and pseudospin symmetries arbitrary spin-orbit quantum num-



68

Spinorial relativistic particle in energy dependent inhomogeneous magnetic field

(IMF)

ber. Also Boumali and Labidi [192] solved the Klein-Gorden equation with energy dependent

potential, the Shannon and Fisher information theory was also considered. As we know the

energy dependent potentials play a role in non-relativistic physics, they arise form momen-

tum dependent interaction, as shown by Green [86]. Sazdjian [92] and Formanek et al.[84]

have noted that the density probability, or the scalar producthas to be modified with respect to

the usual definition, in order to have a conserved norm. Many examples show the infleunce

of the different form of energy dependent potentials on the schrodinger equation, which has

been solved in a number of ways, the Harmonic oscillator in the 1D-space and in D-dimension

space [193, 194] and was also studied in [195] the coulomb potential, Budaca [85] studied an

energy-dependent coulomb-like potential withing the framework of Bohr Hamiltonian. Mor

generally, energy dependent potentials have been used in the Schrödinger equation to simulate

non-linear effect, for the soliton propagation or interacting clusters [196–198].

Therefore, the energy dependent potential in the Schrödinger equation or other wave equa-

tions in physics has many applications such as features in spectrum of confined systems and

heavy quark systems in nuclear and molecular physics [199].

The presence of energy dependent in wave equation created a modification of the scalar

product and the normalization condition to meet the foundations of quantum mechanics and

necessary to ensure the conservation of the norm [92]. This modification can modified some

behavior of physical properties of physical system for example the modification of the scalar

product itself is not sufficient to justify the use of the common rules of quantum mechanics.

On the other hand, the inhomogeneous magnetic field has very importance, there are some

physicists who have taken care of these IMFs [142] in the quantum theory area where the work

has been carried out by Achuthan et al. [134, 174, 175]. In particular they have presented a

series of researches on these topics [173], and have shown the spontaneous electron-positron

pair creation, they have given some physical implications due to hetrogeneous magnetic fields

and which are supposed to exist only in neutron star, the investigated also in Ref. [175] the

thermodynamic and magnetic properties of the electron gaz in IMF, where it is a possibility to

establish the spontaneous magnetization, i.e. the ferromagnetic behavior. The study of the be-

haviour of the electron under the influence of this type of field in recent times brings interesting
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features which has mad it possible to obtain experimental results such as the creation of mag-

netic dots become possible and integrates ferromanetic materials with semiconductors, these

results will contribute to the advancement of the present semiconductors technology, it also ap-

pears in the fabrication of desirable nanoelectronic devices and superconductivity and thermal

entanglement. Since the tow approaches have good prospects in modern physics, we decided

to combine them into one work. The main goal of this chapter is to study the normalization

of wave functions for a quantum particle is subjected to an energy dependent inhomogeneous

magnetic field IMF through the framework of path integral formalism. It is known by the Dirac

equation in Ref [134]

Bz(y) =BE/(1−aEy)2 , Bx = By = 0. (5.1)

where aE is an inhomogeneity parameter. The IMF (5.1) is derived in the Cartesian coordinate

system

Ax(y) =−BEy/(1−aEy), Ay = Az = 0. (5.2)

The chapter is organized as follows. In section 2, we shall recall the main aspects of the

wave equation with an energy-dependent magnetic field, and we will examine the problem of

normalization related to this case. Technically, in section 3. we have presented the general

form of path integral to the problem of the electron particle moving in the energy-dependent

inhomogeneous magnetic field. So we have calculated the Green function using the global

projection technique. In section 4, it is remarkable that in this case, we must use the Duru-

Kleinert method to eliminate the singularity at the point y = 1/aE , which makes the mass

relate to coordinate space then we adapt the space transformation method to evaluate quantum

corrections. Next, we will obtain the corrections related to the normalization constants from

the wave functions identified through spectral decomposition. Section 5 is left for concluding

remarks.



70

Spinorial relativistic particle in energy dependent inhomogeneous magnetic field

(IMF)

5.2 Construction of orthogonality relation and norm

The Hamiltonian for a Dirac electron in the Cartesian coordinate system with energy-

dependent magnetic field has the form

i
∂

∂ t
Ψ(r, t) =

(

α.

(

−i∇− eA

(

r, i
∂

∂ t

))

+mσ3

)

Ψ(r, t) . (5.3)

with α = (αx = σx,αy = σy) and σ3 being (2×2) Pauli matrices. Schulze-Halberg and Pinaki

Roy [96] developed a modified orthogonality relation and norm for the two-dimensional mass-

less Dirac equation for the energy-dependent hyperbolic Scarf potential in a recent publication.

Based on these findings, Benzair [200] also used supersymmetric path integral formalism to

generalize the same idea for a spinorial relativistic scenario in coordinates representation with

vector and scalar potentials in (2+1) dimensional space-time. As for us, we seek through this

work to apply the same techniques to treat the problem of the inhomogeneous magnetic field

with energy-dependent. As is well-known in the published literature, the continuity equation

for the Dirac equation in the lack of potentials depends on the energy is provided by the iden-

tity
∂ρ0

∂ t
+∇.J = 0, where ρ0 = Ψ+Ψ is the density probability and J = Ψ+αΨ is the current

density. One of the main objectives of this research is to calculate the density probability and

compare it to a recent paper by Schulze. We have achieved this by following the well-known

canonical steps.

i ∂
∂ t

(

Ψ+Ψ
)

= iΨ+ ∂
∂ t
(Ψ)+ i ∂

∂ t

(

Ψ+
)

Ψ, (5.4)

=−i
−→
∇
[

Ψ+ (x,y, t)αΨ(x,y, t)
]

−Ψ+ (x,y, t)α ·
[

A(x,y, i
−→
∂
∂ t
)−A(x,y,−i

←−
∂
∂ t
)

]

Ψ(x,y, t) .

(5.5)

The Right arrow
−→
O operators denote the function’s derivation on the right, whereas the left

arrow
←−
O operators denote the function’s derivation on the left. As a result, in comparison to

[96], the current study provides alternative forms that lead to a perfect solution of the Dirac

equation when mass is present. Based on the preceding arguments, the general form of the
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continuous Dirac equation for energy-dependent magnetic fields is as follows:

i
∂ρ0

∂ t
+
−→
∇ .J−Ψ+α ·

[

A(x,y, i
−→
∂
∂ t
)−A(x,y,−i

←−
∂
∂ t
)

]

Ψ = 0. (5.6)

J = Ψ+αΨ is the ordinary current density, which has stayed constant throughout this con-

sideration. It differs from the probability density, which allows for some adjustments and is

depicted in the following equation:

ρ = ρ0− i

∫ t

dsΨ+ (x,y,s)α ·

[

A(x,y, i
−→
∂
∂ t
)−A(x,y,−i

←−
∂
∂ t
)

]

Ψ(x,y,s) . (5.7)

Since the Hamiltonian system is independent of time t, setting Ψ(x,y, t) and Ψ+ (x,y, t) in the

energy basis {|En〉} separates the wave function and its Hermitian conjugate on time t.

Ψ(x,y, t) = Ψ(x,y)e−iEnt . (5.8)

A stationary state is defined as Ψ(x,y). Insertion into (5.6) and making the integration over

time s. (5.6) becomes

ρ = Ψ+Ψ−Ψ+α ·
[

A(x,y,En)−A(x,y,Em)
En−Em

]

Ψ, (5.9)

As we know, ρ0 is the probability density for the standard quantum system, plus a second

term ρ1 (En) is representative of the right side in equation (5.8). In the case of an energy-

independent magnetic field, the ρ1 term vanishes. However, to derive the orthogonality relation

for the relativistic spinning particle under the action of an energy-dependent magnetic field,

we integrate overall coordinate space, which gives

∫

dxΨ+
m

[

1−α ·
[

A(x,y,En)−A(x,y,Em)
En−Em

]]

Ψn = δnm. (5.10)

As an outcome, the modified norm (the scalar product) in the limit Em→ En is provided by:

∫

dxdyΨ+
n (x,y)

[

1−α · ∂A(x,y,En)
∂En

]

Ψn (x,y) = 1, (5.11)
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where

α · ∂A(x,y,En)
∂En

= σx
∂A(x,En)

∂En
= qδB0

a0y2 (1+δE)3q−1−2y(1+δE)2q−1

(1−ay)2
σx. (5.12)

From the equation (5.10), we can deduce the normalization of the wave function for the rela-

tivistic spinning particle subjected to an energy-dependent magnetic field. It must satisfy the

previous condition, and its norm integrals modification must be a non-negative function.

5.3 Path integral formalism in (1+2) dimensions

In the first stage, we give a path integral formulation according the so-called global projection,

where we express the Green function S (xb,xa), which yields as follow:

(

γνΠ̂ν −m
)

Ŝ =−I. (5.13)

The γµ−Dirac matrices are then represented by the Pauli matrices in the two-dimensional

γ0 = σ3, γ1 = iσ2, γ2 =−iσ1, (5.14)

where σx,σy,σz are the Pauli matrices. For the magnetic field defined in Eq.(5.1) and the

choice of the gauge (5.2), the components of Π̂µ reduced to

Π̂0 = i∂0, Π̂i = ((i∂1− eA1 (x,y)), i∂2) . (5.15)

Then the solution of Eq. (5.2) is:

Ŝ =
[

O−
]−1

=
[

O+
][

O−O+
]−1

, (5.16)

where

O± = γ0i∂t + γ1
(

i∂x−
eQBEy

1−aEy

)

+ γ2i∂y±m, (5.17)
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here we use the natural units c = h̄ = 1, and Q is the sign of the fermions charge, it can be ±1.

The operator (O−O+) can take the following form

O−O+ = P̂2
0−

(

p̂x +
eQBE y
1−aE y

)2

− p̂2y−m2+ i
eQBE

(1−aE y)2
γ1γ2, (5.18)

and its matrix elements are

G(xb,xa,x0b,x0a) =
〈

xb,x0b

∣

∣O−O+
∣

∣xa,x0a

〉

. (5.19)

So, from Eq. (5.15) we can write

S (xb,xa,x0b,x0a) = O+
b G(xb,xa,x0b,x0a) . (5.20)

It also appears that the discrete action is sometimes not well defined because of the singularity,

which appears in some types of potentials. We encounter this problem in our system. So, we

will have to modify the propagator in such a way that we can avoid the singularity problem

at the point (1/aE) because the system is undefined at (y = (1/aE)). Where we multiply the

resolvent operator on the left and the right by ĝl , ĝr, which are arbitrary functions called the

regulating functions in our case g = (1− aEy), multiplying the two functions is done from

both sides to maintain the Hamiltonian symmetry. The key to quantum regularization is the

following written form of the Green function

G(xb,xa,x0b,x0a) = gl(x̂b)gr(x̂a)G(xb,xa,x0b,x0a) , (5.21)

where

G(xb,xa,x0b,x0a) = 〈xb,x0b|
[

gl(x̂)
(

γµΠ̂µγνΠ̂ν−m2
)

gr(x̂)
]−1 |xa,x0a〉 . (5.22)

The choice of functions is as follows:

gl(x̂) = gr(x̂) = (1−aEy). (5.23)
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Under these consideration and using the Schwinger proper-time method, the Green function

G(xb,xa,x0b,x0a) is a diagonal 2× 2 matrix in a configuration space representation and is

written as

G(xb,xa,x0b,x0a) = (−i)
∫ ∞

0
dλ0 〈xb,x0b|exp

(

−iλ0Ĥ
)

|xa,x0a〉 , (5.24)

which given new Hamiltonian Ĥ operator defined by

Ĥ = g(ŷ)

[

−P̂2
0 +

(

p̂x +
eBE y
1−aE y

)2

+ p̂2y +m2− i eBE

(1−aE y)2
γ1γ2

]

g(ŷ). (5.25)

In order to build a path integral representation for G± (xb,xa,x0b,x0a), we follow the stan-

dard discretization method for the kernel of (5.23). first the time interval is divided into

(N +1) infinitesimal equal parts ε = λ0/(1+N), the exponential is decomposed into (N +1)

exponentials according the Trotter formula. Then, the closure relations
∫ |x〉〈x|dx = 1 and

∫ |p〉〈p|d p = 1 are inserted between all the infinitesimal operators exp
(

−iεĤ
)

. As we know,

the operator Ĥ has a symmetric form with respect to usual operators x̂ and p̂, so the matrix ele-

ment (5.23) can be expressed in terms of theWeyl symbols in the mid-point x̄k = (xk+xk−1)/2.

And taking, at the end, the limit N → ∞, this transforms the expression of G(xb,xa,x0b,x0a)

into the following path integral:

G(xb,xa,x0b,x0a) = (−i) lim
N→∞

∫ ∞

0
dλ0

N

∏
k=1

∫

dx̄k

N+1

∏
k=1

∫

dpk exp

{

i
N+1

∑
k=1

[pk∆xk

+ε

(

p2x0k
−m2−

(

pxk
+ eQBE ȳk

1−aE ȳk

)2

− p2yk
− p2zk

)

g(yk)g(yk−1)+ eQBEσ3

]}

. (5.26)

On the other hand, we have











∑s=±1 χsχ
+
s = I2×2

σ3χs = sχs, σ3χ+
s = sχ+

s

(5.27)
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with χT
s = 1

2
((1+ s) ,(1− s)) . Therefore, the Green function will then be transformed into a

Lagrangian path integral representation, as seen below:

Gs (xb,xa,x0b,x0a) = (−i) ∑
s=±1

χsχ
+
s

∫

d p0
2π

d px

2π e−ip0(tb−ta)eipx(xb−xa)Ks (yb,ya) , (5.28)

where

Ks (yb,ya) =
∫ ∞

0
dλ0 lim

N→∞

N

∏
k=1

∫

dyk

N+1

∏
k=1

√

1

4iπεg(yk)g(yk−1)
(5.29)

exp

{

iε
N+1

∑
k=1

[

(∆yk)
2

4ε2(1−aE yk)(1−aE yk−1)
+
(

p20−m2
)

(1−aEyk)
2

−
(

pxk
+ eQBE

yk

1−aE yk

)2

(1−aEyk)
2+ seQBE

]}

.

We remark that the kinetic term is dependent on the space coordinate. To convert this expres-

sion to the usual form of Feynman path integral, we will use the space coordinate transforma-

tion as follows:

y = f (ξ ) and
∂ f

∂ξ
= g(y). (5.30)

This transformation appears to result in two corrections: The first was about the action Cact ,

while the second was about the measure Cmes. The expansion of ∆yk around the mid-point

∆yk = f (ξk)− f (ξk−1) =
∂ f̄k

∂ξ
∆ξ +

1

24

∂ 3 f̄k

∂ξ 3
(∆ξ )3+ ... (5.31)

The choice of f (ξ ) is arbitrary, we impose the following condition

d f

dξ
= 1−a f ⇒ f (ξ ) =

1− e−aξ

a
. (5.32)

Let’s start by developing the exponential with the kinetic term.

exp

(

iε
N+1

∑
k=1

[

(∆yk)
2

4ε2(1−aE yk)(1−aE yk−1)

]

)

= exp

(

iε
N+1

∑
k=1

[

(∆ξk)
2

4ε2

]

)

(1+Cact) , (5.33)
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where

Cact = i
(∆ξk)

4

4ε

[

−1

4

(

∂ 2 f̄k/∂ξ 2

∂ f̄k/∂ξ

)2

+
1

6

(

∂ 3 f̄k/∂ξ 3

∂ f̄k/∂ξ

)

+ ...

]

, (5.34)

and the measure term will be developed as

N

∏
k=1

∫

dyk

N+1

∏
k=1

√

1

4iπεg(yk)g
(

yk−1

) =
(

f ′ (ξb) f ′ (ξa)
)−1/2 N

∏
k=1

∫

dξk

N+1

∏
k=1

√

1

4iπε
. (5.35)

We can calculate all the correction terms proportional to (∆ξ )4 and (∆ξ )2, which are evaluated

perturbatively and replaced by their expectation values, using the following formula

〈

(∆ξ )2n
〉

= (2iε)n (2n−1)!!, (5.36)

by collecting the two corrections, we obtain CT which is replaced by the following effective

potential

Ve f f =
1
4ε

[

−1

4

(

∂ 2 f/∂ξ 2

∂ f/∂ξ

)2

+
1

6

(

∂ 3 f/∂ξ 3

∂ f/∂ξ

)

]

(∆ξ )4 =
a2E
4
, (5.37)

The Green’s function relating to this problem becomes as:

Ks (ξb,ξa,E) =
(

f ′ (ξb) f ′ (ξa)
)−1/2

∫ ∞

0
dτe−iτa2E(

κ
a− s

2)
2

× lim
N→∞

N

∏
k=1

∫

dξk

N+1

∏
k=1

√

1

4iπε
exp

(

iε
N+1

∑
k=1

[

(∆ξ )2

4ε2
−a2EV 2

E

(

e−2aE ξk −2αEe−aE ξk

)]

)

. (5.38)

It should introduce the following notations

aEVE =
√

m2−E2+(px−κ)2 and αE =− κ(px−κ)

m2−E2+(px−κ)2
. (5.39)

If we introduce z = −aEξ , the latter propagator (5.39) is similar to the propagator submitted

to an effective Morse potential, and following the result of Ref.[92], we find

Ks (zb,za,E) = e−
1
2 (zb+za)∑

n

n!(2VE)
2αEVE−2n−1

aΓ(2αEVE −n)

2αEVE −2n−1

(κ
a
− s

2
)2− (αEVE −n−1/2)2

×exp [(za + zb)(αEVE −n−1/2)−VE (e
za + ezb)]

×L
(2αEVE−2n−1)
n (2VEezb)L

(2αEVE−2n−1)
n (2VEeza)+

1

π2

∫

dk.... (5.40)
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Substituting (5.15) into (5.28) and then into (5.23), we find

Gs (xb,xa,x0b,x0a) =−i
∞

∑
n=0

∑
s=±1

∫

d px

2π eipx(xb−xa)
∫ +∞

−∞

dE

2π

e−iE(tb−ta)

E2−ω2
E,n,s

×χsχ
+
s
(m2−E2+(px−κE)

2)
(µE,s+n+1/2)2

n!(1+2n−2αEVE)
2aEVE Γ(2αEVE−n)

(

κE
aE

(px−κE)+
(

κE
aE
− s

2+n+ 1
2

)√
m2+(px−κE)2−E2

)

(

κE
aE

(px−κE)−
(

− κE
aE

+ s
2+n+ 1

2

)√
m2+(px−κE)2−E2

)

×e−
1
2 (ηa+ηb) (ηa)

(αEVE−n) (ηb)
(αEVE−n)

×L
(2αEVE−2n−1)
n (ηa)L

(2αEVE−2n−1)
n (ηb)+

1

π2

∫

dk..., (5.41)

where

ω2
E,n,s = m2+(px−κE)

2− κ2
E

a2E

(px−κE)
2

(µE,s +n+1/2)2
. (5.42)

η = 2VE (1−aEy) and µE,s =
κE

aE
− s

2
. Under the magnetic field dependent energy and as well

as for a−parameter, they obey the following relations

κE =
eQBE

aE
, BE =B0 (1+δE)2q

and aE = a0 (1+δE)q . (5.43)

For these conditions we find κE

aE
= κ0

a0
= cte and µE = µ0.

Eq (5.40) has the poles where their expressions are extracted from the following equation,

E2 = m2+(px−κE)
2− κ2

0

a20

(px−κE)
2

(κ0

a0
+n− s

2
+ 1

2
)2
. (5.44)

Eq. (5.43) becomes as

E2 = m2+
[

p2x +κ2
0 (1+δE)2q−2κ0px (1+δE)q

]

f (n,s), (5.45)

where

f (n,s) = 1− (κ0/a0)
2 /

(

κ0

a0
− s

2
+n+

1

2

)2

.

Let us take the following particular values of q :
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1- q = 1, the Eq. (5.44) gives a polynomial of the second order, which is written as

−
[

1−κ2
0δ 2 f (n,s)

]

E2+[2δκ0 f (n,s)(κ0− px)]E

+
[

p2x +κ2
0 −2κ0px

]

f (n,s)+m2 = 0, (5.46)

and their poles are given as:

E±,n,s =−
δκ0 f (n,s)(px−κ0)

1−κ2
0δ 2 f (n,s)

∓ϖn,s, (5.47)

where ϖn,s =

√

m2[1−κ2
0δ 2 f (n,s)]+(px−κ0)

2
f (n,s)

1−κ2
0δ 2 f (n,s)

.

2- Also in the case q = 2, the Eq. (5.44) gives fourth degree polynomial:

E2 = m2+
(

p2x +κ2
0 (1+δE)4−2κ0px (1+δE)2

)

f (n), (5.48)

which becomes as

E4+bE3+ cE2+dE + e = 0, (5.49)

where

b =
4

δ
,c =

6−2px/κ0

δ 2
− 1

δ 4κ2
0 f (n)

, d =
4(κ0− px)

κ0δ 3

and e =
1

κ2
0δ 4

(

m2

f (n)
+(px−κ0)

2

)

. (5.50)

This equation can be solved via the following formula

E2+(b+A)
E

2
+ yn +

byn−d

A
= 0, (5.51)

where A =±
√

8yn +b23−4c3 thus there are four solutions:

E1,2,3,4 =
1

4

[

−(b−A)±
√

(b+A)2−16

(

yn−
byn−d

A

)

]

, (5.52)
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where

yn =
3

√√
D− Q

2
− 3

√√
D+

Q

2
+

R

3
, (5.53)

is the solution of the following cubic equation

8y3n−4cyn +(2bd−8e)yn + e
(

4c−b2
)

−d2 = 0. (5.54)

With

D =

(

P

3

)3

+

(

Q

2

)3

,P =
3s−R2

3
,

Q =
2R3

27
− Rs

3
+T and R =

−c

2
,s =

bd

4
− e

T =
e
(

4c−b2
)

−d2

8
. (5.55)

In the next section, we will obtain the exact solution of the electron propagator in the

energy-dependent magnetic field, and as well as we find the energy eigenvalues and the

corresponding wave functions.

5.4 Energy Spectrum and Wave Functions in (1+2) dimen-

sions

In order to evaluate exactly the energies and their wave functions corresponding, we must

integrate over spectral energy. For the first case of q = 1, the new Green function reads as,

Gs (xb,xa,x0b,x0a) =−i∑
n

∑
ε=±1

∑
s=±1

χsχ
+
s

∫

d px

2π eipx(xb−xa)

[

Θ(εT ) f (Eε
n,s)

e−iEε
n,sT

2ϖn,s

]

×e−
1
2 (ηa+ηb) (ηa)

(

κ0
a0
− s

2+1/2
)

(ηb)

(

κ0
a0
− s

2+1/2
)

L

(

2
κ0
a0
−s

)

n (ηa)L

(

2
κ0
a0
−s

)

n (ηb) . (5.56)

This is done using the residue theorem, which the poles of the Green function are positive

energies and negative energies. In positive energies E+
n,s,q=1, the contour of integration is

chosen below the real axis with T > 0. On the other hand, for negative energies E−n,s,q=1, it is



80

Spinorial relativistic particle in energy dependent inhomogeneous magnetic field

(IMF)

chosen above the real axis with T < 0. In conclusion, we have

∫

dE

2π
f (E)

e−iET

E2−ω2
E,n,s,q=1

=−i ∑
ε=±1

Θ(εT ) f (Eε
n,s,q=1)

e
−iEε

n,s,q=1T

2ϖn,s
, (5.57)

with

f (Eε
n,s,q=1) =

κ0

a0

(

px−κ0(1+δEε
n,s,q=1)

)

[

1−κ2
0δ 2 f (n,s)

]

(κ0

a0
+n− s

2
+ 1

2
)2

n!

Γ

(

2κ0

a0
+n− s+1

) . (5.58)

Then we act the operator
(

γµΠ̂µ+m
)

b
on the function (5.27), with the use of the following

relationships






















σ3χsχ
+
s = sχsχ

+
s ,

σ1χsχ
+
s = χ−sχ

+
s ,

σ2χsχ
+
s = isχ−sχ

+
s ,

(5.59)

We finally obtain the spectral decomposition of Green function (5.23) as follows

Sg (xb,xa, tb, ta) = ∑
n

∑
s=±1

∑
ε=±1

∫

d px

2π
eipx(xb−xa)

×κ0

a0

(

px−κ0(1+δEε
n,s,q=1)

)

[

1−κ2
0δ 2 f (n,s)

]

(κ0

a0
+n− s

2
+ 1

2
)2

n!

Γ

(

2κ0

a0
+n− s+1

)

[

Θ(εT )
e
−iEε

n,s,q=1T

2ϖn,s

]

×
[

(

sEε
n,s,q=1+m

)

χsχ
+
s + s

(

px +
eB0

(

1+δEε
n,s,q=1

)2
yb

1−a0

(

1+δEε
n,s,q=1

)

yb

)

χ−sχ
+
s +χ−sχ

+
s

d
dyb

]

×e−
1
2 (ηa+ηb) (ηa)

(

κ0
a0
− s

2+1/2
)

(ηb)

(

κ0
a0
− s

2+1/2
)

L

(

2
κ0
a0
−s

)

n (ηa)L

(

2
κ0
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we can use the following identity to replace the summation on the ε−parameter:

∑
ε=±1

g(ε)Θ(εT ) = g(s)Θ(sT )+g(−s)Θ(−sT ) , (5.61)

where g(ε) is an arbitrary function. Furthermore, in order to extract the wave functions and

spectral energies corresponding, we must write this Green function on a symmetrical form.

The meaning of that is the unification of the energy value in the Green function expression,

where we perform the following changing into the terms which are multiplied by Θ(−sT ) ,
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(i.e., s→−s, n→ n− s).

Sg (xb,xa, tb, ta) = ∑
n

∑
s=±1

∑
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∫

d px

2π
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. (5.62)

After that, we use the following associated Laguerre polynomials properties,
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(5.63)

we can find Green’s function by performing straightforward and lengthy computations, as

follows:

Sg (xb,xa, tb, ta) = i∑
n

∑
s=±1

∫
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2π
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82

Spinorial relativistic particle in energy dependent inhomogeneous magnetic field

(IMF)

we can rewrite the causal Green’s function as follows:

Sg (xb,xa, tb, ta) = i∑
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(5.65)

where Es
n,s,q=1 is obtained from the poles of the Green function which is written as:

Es
n,s,q=1 =−

δκ0 f (n,s)(px−κ0)

1−κ2
0δ 2 f (n,s)

+ s

√

m2
[

1−κ2
0δ 2 f (n,s)

]

+(px−κ0)
2

f (n,s)

1−κ2
0δ 2 f (n,s)

. (5.66)

Figure 5.1: E
q=1
n is the energy spectrum versus n for several values of a = 0.2,a = 0.0 when δ = 2

For s = 1 and in limit δ → 0 we obtain the spectrum energy coincides exactly with the ones
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obtained in [134].

E
(a)
n =

√

m2+(apx + e |Q|B)2 n(a2n+2e |Q|B)(a2n+ e |Q|B)
−2
. (5.67)

Figure 5.2: E
q=1
n is the energy spectrum versus n for several values of a = 0.2,a = 0.0 when δ = 0.0.

In Eq.(5.59), we have two types of propagation. One with positive energy (E+
n,s,q=1) prop-

agating to the future and the other with negative energy (E−n,s,q=1) propagating to the past.

We obtain the electron propagator corresponding to Dirac particle in the presence of a non-

homogeneous magnetic field in the compact form

S(xa,xb,T ) = i∑
n

∑
s=±1

∫

d px

2π

[

sΦs
n (xb,yb, tb)(Φ

s
n (xb,yb, tb))

†
]

σ3Θ(s(tb− ta)) . (5.68)

Consequently, the normalized wave functions are
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, (5.69)
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where

F
(2 κ

a−s)
n (η) = e−

η
2 η

κ
a− s

2+1/2L
(2 κ

a−s)
n (η) . (5.70)

F
(2 κ

a +s)
n−s (η) = e−

η
2 η

κ
a +

s
2+1/2L

(2 κ
a +s)

n−s (η) , (5.71)

and η = 2VEe
−ξ a

E±
n,s,q=1 with E±n,s,q=1 are the positive and negative energies defined in Eq.

(5.65). We can extract the corresponding wave functions (5.66)which are verified the Eqs.

(5.9) and (5.10).

Whereas in the q = 2 case, the energy eigenvalues En,s,q=2 are determined by an equation of

the fourth-order, which given in Eq. (5.48). To obtain the wave functions, we must activate the

integration on the energy E, where the poles retained are two racines lead to normalizable wave

functions, one positive E+
n,s,q=2 and the other negative E−n,s,q=2. Therefore, after integration over

E in the second case (q = 2), the Green function becomes as,
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n (ηb) . (5.72)

This is done using the residue theorem, which the poles of the Green function are positive

energies and negative energies. In positive energies E+
n,s,q=2, the contour of integration is

chosen below the real axis with T > 0. On the other hand, for negative energies E−n,s,q=2, it is

chosen above the real axis with T < 0. In conclusion, we have

∫

dE

2π
f (E)

e−iET

E2−ω2
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with
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and

Ωn,s = κ2
0δ 4

(

4E3
ε,n,s,q=2+3b1E2

ε,n,s,q=2+2c1Eε,n,s,q=2+d1

)

. (5.75)
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Consequently to obtain the normalized wave functions in q = 2 cas, we follow the same pre-

vious steps in q = 1 case, we have:

Φs
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eixpx
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In the end, it is remarkable if we consider the case of a = 0 parameter, the form of (5.66) can

easily be obtained as:

E
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n,q=1,s =−

2eB0δ
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2
+ 1

2
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2
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2

) , (5.77)

It also applies to the wave functions, where the limit δ → 0 one can find exactly the wave

function in configuration space representation of the homogeneous magnetic field [140]

E
(a=0)
n,s = s

√

m2+2eB0

(

n− s
2
+ 1

2

)

.

To obtain the energy level in non relativistic limit case ENR
n,s,q for the inhomogeoneus magnetic

field dependent on energy, we have m≫ ENR
n,s,q and using the Taylor development of (5.65) in

the second order approximation, we find:

En,s,q = sm
(

1−κ0δ 2 f (n,s)
)−1/2

+ENR
n,s,q, (5.78)

with

ENR
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δκ0 f (n,s)

1−δ 2κ0 f (n,s)
(px−κ0)+ s

1

2m

(px−κ0)
2

f (n,s)

(1−κ0δ 2 f (n,s))
2/3

+ ... (5.79)

m represents the rest energy of the particle, the second term ENR
n,s,q represent the energy of the

non-relativistic case. Also, when δ → 0, we obtain the spectrum energy coincides exactly with

the ones obtained in [134].

This implies that the corresponding eigenvalues associated with this energy level in the non-
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relativistic limit are given by
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(5.80)

where we have used the following limits:
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and
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m→∞
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Finally we can also deal with the case q = 2.

5.5 Conclusion

In conclusion, in this paper, we have solved by the path integral approach the problem of Dirac

particle subjected to the energy-dependent inhomogeneous magnetic field, and we have jus-

tified the change made to the normalization of the wave functions for the energy-dependent

potentials. In the first stage, we determined a modified orthogonality relation and norm for our

system. We calculated the Green functions and obtained the exact spectral energies and corre-

sponding eigenfunctions. We found that the wave functions extracted are correctly normalized

based on their spectral decomposition. We have also deduced special cases:

Where the limit a→ 0 one can find exactly the wave function in configuration space repre-

sentation of the homogeneous magnetic field [140], and in limit δ → 0 we obtain the spectrum

energy coincides exactly with the ones obtained in [134]. Finally, we can conclude the energy
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level and the corresponding wave functions in non relativistic limit case for the inhomogeneous

magnetic field dependent on energy.



Chapter 6

The problem of non-homogeneous mag-

netic field in the deformed case

6.1 Introduction

In recent years, the theory of algebraic structure deformation has attracted the attention of

physicists. And great efforts have been made by mathematicians in the same context. The

goal is to know the unification of gravitational interactions and strong, electromagnetic, and

weak interactions. Indeed, the introduction of gravitational forces into the quantum fields

theory reveals divergences that make the theory non-renormalizable. As a result, it proposed

that gravity should result in an effective ultraviolet cutoff, i.e. to a minimal observable length.

Remarkably, every attempt towards a fundamental theory assumes the presence of such a small

length scale. So it is expected that the minimal length, Lm is close by or identical to the

Planck length. The existence of minimal length was a great prediction deduced from different

approaches such as string theory [59, 201], quantum gravity [56], non-commutative geometry

[202], and black hole physics [67].

To incorporate the minimal length into quantum mechanics. The Heisenberg uncertainty

principle can be modified. Because the uncertainty principle is related to the Heisenberg al-

gebra, so any modification of the uncertainty principle will deform the Heisenberg algebra

[203–207]. Typically, the fundamental commutation relation is deformed to achieve the GUP.
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We will consider in this chapter a particular case of such a modification, which has been ob-

tained previously in a series of Kempf papers (see for example [50]). As an illustration, The

deformed commutator between position and momentum in a 1D quantum system can have the

following form.

[

X̂ , P̂
]

= ih̄
(

1+β P̂2
)

. (6.1)

The uncertainty relation is derived from the commutation relation as follows.

∆X∆P≥ h̄

2

(

1+β (∆P)2
)

, (6.2)

This suggests that there is a nonzero minimal uncertainty

(∆X)min = h̄
√

β . (6.3)

β is a very small parameter, assumed to be positive. If β = 0, Eq (6.1) clearly reduces to the

ordinary Heisenberg algebra.

The establishment of a natural cutoff, which prevents the usual UV divergences, is one

of the main consequences of the minimal length. Another consequence of such a general-

ized Heisenberg uncertainty is that it exhibits the UV/IR mixing phenomenon, which allows

probing short distance physics (UV) from long distance one (IR). However, Eq. (6.2) has an

intriguing UV/IR relationship: when ∆p is large (UV), ∆x is proportional to ∆p and hence is

large (IR). This type of UV/IR relation has appeared in several other contexts: more recently in

attempts at understanding quantum gravity in asymptotically de Sitter spaces [208, 209]. Con-

formal Field Theory before (AdS/CFT) correspondence [68], non-commutative field theory

[64].

Furthermore, several authors [210] have claimed that the UV/IR relationship, as defined

by Eq. (6.2), is essential to understanding the cosmological constant problem [211]. Likewise,

it has been suggested in the literature that utilizing a concrete UV/IR relation enables us to

understand the observable implications of short-distance physics on inflationary cosmology.

Recently, the deformed Heisenberg algebra is one of the most prominent proposals to de-

scribe many phenomena, including non-pointlike particles: Hadrons, quasi-particles, collec-
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tive excitations [53]. On the other hand, the application of deformed commutation relations

introduces new difficulties in quantum problem-solving. So far as we know, there are only a

few problems for which exact spectra are available. Many attempts have been made to study

the implications of non-zero minimal length were considered in the context of the follow-

ing problems: the harmonic oscillator in arbitrary dimensions [50, 69], particles scattering

[212, 213]. The cosmological constant problem and the classical limit of physics have also

been solved [69, 214]. The one-dimensional box [215], the exact solution of the effect of

non-zero minimum position uncertainty on the energy spectrum of the 3D Coulomb poten-

tial [71, 216], and on the Casimir effect in [217]. The time-dependent linear potential [218],

hydrogen atom [219–222], etc. In this framework, the relativistic extension also has an impor-

tant, among them the Bosonic oscillator in one-dimension case of spin (0 and 1) [78], and in

(1+3) dimension in Ref [79], The recently discussed generalized Dirac equation (Ref. [76]).

For this problem, we will use the path integral formalism in the momentum space represen-

tation to adapt this type of deformation developed by Kempf in the case of the non-relativistic

particle with spin 1/2, moving in a non-homogeneous magnetic field. In the following section,

we will recall the relations of quantum mechanics with the generalized Heisenberg relations

as we highlight the changes that occur in generalized plane waves and the modified closing

momentum. In section 3, following the standard recipe, we discuss quantum propagators and

quantum corrections via the Feynman technique, with nonzero minimum position uncertainty.

Then we use the space-time transformation method, and with a precise calculation, we will

obtain the quantum corrections. And we find the Green function but with a complex potential

where we propose ways to solve this system through future works.

6.2 Quantum mechanics in the presence of the minimal

length

In the quasi-coordinate representation, X does not own eigenfunctions for which mean value

of kinetic energy is finite. As a result, eigenstates of functions of operator X do not belong to

the physical states ( see [185]). So, we prefer to use the momentum representation.
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According to Kempf et al. [50, 53, 185], we consider the following one-dimensional realiza-

tion of the position and momentum operators in momentum space by

X̂ = ih̄
[(

1+β p2
)

x̂
]

, P̂ = p̂, (6.4)

where

x̂ = i
∂

∂ p
, p̂ = p,and [x̂,p̂] = i (6.5)

β is a small parameter. This commutation relation leads to a generalized Heisenberg uncer-

tainty (GUP) which defines a non-zero minimum length in position, and the corresponding

uncertainty relation is

∆x∆p≥ h̄

2

(

1+β (∆p)2+β 〈p〉2
)

. (6.6)

For a fixed (∆x), the integrality (6.6) is satisfied in the interval: [∆p−,∆p+],such that:

∆p± =
∆x

h̄β
±
√

(
∆x

h̄β
)−β −〈p〉2. (6.7)

A minimal length is obtained by minimizing the saturation GUP with regard to (∆p)

(∆x)min(〈p〉) = h̄
√

β

√

1+β 〈p〉2

= h̄
√

β corresponds to 〈p〉= 0. (6.8)

In all Hilbert spaces L2(R,d p), the operator X̂ is not symmetric, hence we must change this

space to subspace (L2
R, d p

(1+β p2)
), the definition of the scalar product becomes

〈ψ|φ〉=
∫ +∞

−∞

d p
(

1+β p2
)ψ∗(p)φ(p). (6.9)

This definition ensures the Hermiticity of the position operator: Note that we can generate the

standard relations of conventional quantum mechanics by setting β = 0. The completeness
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relation for the eigenstates |p〉 is

∫ +∞

−∞

d p
(

1+β p2
) |p〉〈p|= 1, (6.10)

and the projection relation can be determined simply by

〈

p|p′
〉

= (1+β p2)δ (p− p′), (6.11)

or else

〈

p|p′
〉

= δ

(

arctan(
√

β p)√
β

− arctan(
√

β p′)√
β

)

=
∫ +∞

−∞

dx

2π
e

i
h̄

(

arctan(
√

β p)√
β

−
arctan(

√
β p′)√

β

)

, (6.12)

and we have that

〈

p|X̂ |p′
〉

= (1+β p2)i
∂

∂ p

〈

p|p′
〉

= −
∫ +∞

−∞
xe

i
h̄

(

arctan(
√

β p)√
β

−
arctan(

√
β p′)√

β

)

dx

2π
. (6.13)

We assume that there is no deformation in the time component of the quadri-momentum

〈

p0|p′0
〉

= (1+β p2)δ (p0− p′0),
∫ +∞

−∞
d p0 |p0〉〈p0|= 1. (6.14)

6.3 Path integral in momentum space

The Hamiltonian of the non-relativistic particle with spin 1/2 in momentum space is deter-

mined as follows

Ĥ = 1
2m

(p̂x− eB0ŷ
1−aŷ

)2+
p̂2y
2m

+
p̂2z
2m

+ eh̄
2m

B0

(1−aŷ)2
σz, (6.15)
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Since we have the Hamiltonian (6.15) independent of (x,z), we can treat the system in one

dimension with the following representation

ŷ = ih̄
β
α (1+α p2y)

∂

∂ py
with α = β

1+β (p2x+p2z )
, (6.16)

and the scalar product of the two states is simplified by

〈

p|p′
〉

= β
α δ

(

px− p′x
)

δ
(

pz− p′z
)

δ
(

arctan(
√

α py)√
α

− arctan(
√

α p′y)√
α

)

. (6.17)

The propagator is the Fourier transform of the Green function defined as follows

K(α)(p f , pi;T ) =
∫

dE
2π h̄

e−
i
h̄ ET Gα(p f , pi;E), (6.18)

the latter is written as follows

G(α)(p f , pi;E) =
〈

p f

∣

∣

∣

ih̄

E−Ĥ+iε

∣

∣

∣
pi

〉

, (6.19)

where R̂ = ih̄

E−Ĥ+iε
is the resolvent operator, to avoid the singularity problem at point (1/a)

and to keep the Hamiltonian symmetry must multiply R̂ on the left and the right by arbitrary

functions ĝl , ĝr, we have

G(α)(p f , pi;E) = g(α)(ŷ f )g
(α)(ŷi)

〈

p f

∣

∣

∣

∣

ih̄

gl(ŷ)(E−Ĥ)gr(ŷ)+iε

∣

∣

∣

∣

pi

〉

, (6.20)

and as we did, the Green function is a diagonal matrix 2×2 in the momentum space written as

G(α)(p f , pi;E) = g(α)(ŷ f )g
(α)(ŷi)







G+(p f , pi;E) 0

0 G−(p f , pi;E)






, (6.21)

then, using the Schwinger method, we define the elements matrix G(α)(p f , pi;E) in the same

expression respectively

G(α)(p f , pi;E) = g(α)(ŷ f )g
(α)(ŷi)

∫ ∞

0
dτ

〈

p f

∣

∣exp
[

iτ
h̄

Ĥα
]∣

∣ pi

〉

, (6.22)
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next, we define the new operator Ĥ(α)

Ĥ(α) =
1

2m

[[

2mE− (p̂x− eB0ŷ/(1−aŷ))2− p̂2z )
]

(1−aŷ)2

−(1−aŷ) p̂2y(1−aŷ)− seh̄B0

]

. (6.23)

We use the Heisenberg bracket [ŷ,F(p̂y)] = ih̄
(

1+βp2
)

F
′ (py) for the simplifying Hamilto-

nian as the quadratic form of ŷ. To build a path integral representation for G(α)(p f , pi;E),

following the standard discretization method for the kernel of Eq (6.22). We divide the time

interval into(N + 1) equal infinitesimal parts ε = τ/(N + 1). Where the exponential decom-

posees into (N +1) exponential (following Trotter). Inserting the closure relation for momen-

tum states given by the equation (6.10) between each pair of infinitesimal evolution operators.

So, G(α,s)(p f , pi;E) can be obtained as

G(α,s)(p f , pi;E) =− i
h̄
g(α)(ŷ f )g

(α)(ŷi)
∫ ∞

0
dτδ (px f

− pxi
)δ (pz f

− pzi
)

×β
α

N

∏
j=1

∫

d py j

β
α

(

1+α p2y j

)

N+1

∏
j=1

∫ +∞

−∞

dy j

2π h̄
exp

[

−
εa2β 2

(

p2E+p2y j

)

y2j

ih̄2mα2 +

(

i
(

△arctan(
√

α py j
)
)

h̄
√

α

+ εaβ
m
√

α

(

p2E + p2y j
−ξ (px +ξ )−

2ih̄aβ
(

1+α p2y j

)

α p2y j

))

y j− εξ 2

2m

− εseh̄B0

2m
+

ε(ξ (px+ξ )+ih̄apy)
2

2mp2E

(

1+p2y j
/p2E

)

]

. (6.24)

By carrying out the multiple Gaussian integrations on y j in (6.24), we obtain

G(α,s)(p f , pi;E) =− i
h̄
g(α)(ŷ f )g

(α)(ŷi)
∫ ∞

0
dτδ (px f

− pxi
)δ (pz f

− pzi
)

×
N

∏
j=1

∫

d py j

β
α

(

1+α p2y j

)

N+1

∏
j=1

√

m

2πih̄εa2
(

p2E+p2y j

) exp

{

i
h̄

N+1

∑
j=1

[

mα2

2εa2β 2

(

△arctan(
√

α py j
)
)2

α
(

p2E+p2y j

)

− α
βa

(

△arctan(
√

α py j
)

√
α

)

(

1− ξ (px+ξ )

p2E+p2y j

−
ih̄a

β
α

(

1+α p2y j

)

py j

p2E+p2y j

)

+ε

(
(

ξ (px+ξ )+ih̄a
β
α

(

1+α p2y j

)

py j

)2

2m
(

p2E+p2y j

) − seh̄B0

2m
− ξ 2

2m

)]}

. (6.25)

The complex term in the expression of the action can be eliminated, since it creates a problem

betewen Feynman’s approach and quantum mechanics. So, it is necessary to expand the term
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( iα
h̄βa

△arctan(
√

α py j
)

√
α

ξ (px+ξ )

p2E+p2y j

) at the post point

ih̄

(

△arctan(
√

α py j
)

√
α

)

(

1+α p2y j

)

py j
(

p2E+p2y j

) =
ih̄py j

△py j
(

p2E+p2y j

) − ε
(h̄aβ )2p2y j

(

1+α p2y j

)

αm
, (6.26)

and the term ih̄

(

△arctan(
√

α py j
)

√
α

)

(

1+α p2y j

)

py j
(

p2E+p2y j

) will be developed at the discretization η-point as

ih̄

(

△arctan(
√

α py j
)

√
α

)

(

1+α p2y j

)

py j
(

p2E+p2y j

) =
ih̄py j

△py j
(

p2E+p2y j

) − ε
(h̄aβ )2p2y j

(

1+α p2y j

)

αm
, (6.27)

and considering only the contributions which are relevant to order ε .The Green function

G(α,s)(p f , pi;E) is simplified by

G(α,s)(p f , pi;E) =− iβ
h̄α g(α)(ŷ f )g

(α)(ŷi)
∫ ∞

0
dτδ (px f

− pxi
)δ (pz f

− pzi
)

×e

i
h̄

α
βa

(

αξ (px+ξ )

(1−α p2
E
)
−1

)(

arctan(
√

α p f )−arctan(
√

α pi)√
α

)

e

i
h̄

α
βa

ξ (px+ξ )

pE (1−α p2
E
)

[

arctan(
p f
pE

)−arctan( pi
pE

)
]

×
N

∏
j=1

∫

d py j
(

1+α p2y j

)

N+1

∏
j=1

√

m

2πih̄εa2
(

p2E+p2y j

) exp

{

i
h̄

N+1

∑
j=1

mα2

2εa2β 2

(

△arctan(
√

α py j
)
)2

α
(

p2E+p2y j

)

+ih̄
py j
△py j

(

p2E+p2y j

) + ε

(

(ξ (px+ξ ))2

2m
(

p2E+p2y j

) −
(

h̄aβ
α

)2(

1+α p2y j

)2
p2y j

2m
(

p2E+p2y j

)

− ξ 2

2m
− seh̄B0

2m
−

(h̄aβ )2p2y j

(

1+α p2y j

)

αm

)}

. (6.28)

To return the standard Feynman kernel, we must use the space-time transformation ε j → σ j

and py j
/pE = g(ky j

), which are expressed in the next section.

6.4 Evaluation of the quantum corrections

To the first, we will apply a time transformation following the well-known steps, if we assume

that

ε j = σ j f ′(py j
) f ′(py j−1). (6.29)
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By the development f ′(py j
) and f ′(py j−1) at the η-point of discretization to the second order

of ∆py j
, we find

ε j = σ j

(

f̄
(η)′
j

)2
(

1+(1−2η)
f̄
(η)′′
j

f̄
(η)′
j

∆py j
+

[

(1−η)2+η2

2

f̄
(η)′′′
j

f̄
(η)′
j

−η (1−η)

(

f̄
(η)′′
j

f̄
(η)′
j

)2
]

∆p2y j

)

. (6.30)

By developing
((

△arctan(
√

α py j
)
)

/
√

α
)

at the η-point of discretization, we will have:

△arctan(
√

α py j
)

√
α

= f̄
(η)′
j ∆py j

[

1+∆py j

1−2η
2

f̄
(η)′′
j

f̄
(η)′
j

+ 1+3η2−3η
3!

f̄
(η)′′′
j

f̄
(η)′
j

(

∆py j

)2

]

. (6.31)

The term of kinetic energy is simplified by:

mα2

2εa2β 2

(

△arctan(
√

α py j
)
)2

α
(

p2E+p2y j

) = mα2

2εa2β 2

(

f̄
(η)′
j

)2
∆p2y j

(

p2E+p2y j

)

(

1+∆py j
(1−2η)

f̄
(η)′′
j

f̄
(η)′
j

+
(

∆py j

)2

[

(1−2η)2

4

(

f̄
(η)′′
j

f̄
(η)′
j

)2

+ 1+3η2−3η
3

f̄
(η)′′′
j

f̄
(η)′
j

])

. (6.32)

From the two expressions (6.30) and (6.32), thus the exponential of kinetic term will be devel-

oped as

exp

(

i
h̄

N+1

∑
j=1

mα2

2εa2β 2

(

△arctan(
√

α py j
)
)2

α
(

p2E+p2y j

)

)

= exp

(

i
h̄

N+1

∑
j=1

mα2

2σ ja
2β 2

∆p2y j
(

p2E+p2y j

)

)

(1+Cact) , (6.33)

where

Cact =
mα2

2σ ja
2β 2

(

p2E+p2y j

)∆p4y j

[

(

4η (η−1)− 3

4

)(

f̄
(η)′′
j

f̄
(η)′
j

)2

− 1

6

f̄
(η)′′′
j

f̄
(η)′
j

]

. (6.34)

To assess the correction terms, we use the following expectation values

〈

(∆p)2n
〉

=

(

ih̄σ ja
2β 2

(

p2E+p2y j

)

mα2

)n

(2n−1)!!. (6.35)



96 The problem of non-homogeneous magnetic field in the deformed case

we obtain the expression of Cact as

Cact =−σ j

3
(

p2E+p2y j

)

2m

(

h̄aβ
α

)2

[

(

4η (η−1)− 3

4

)(

f̄
(η)′′
j

f̄
(η)′
j

)2

− 1

6

f̄
(η)′′′
j

f̄
(η)′
j

]

. (6.36)

The measure also leads to a correction

N

∏
j=1

∫

d py j
(

1+α p2y j

)

N+1

∏
j=1

√

m

2πih̄εa2
(

p2E+p2y j

) =
N

∏
j=1

∫

f ′(p j)d py j

N+1

∏
j=1

√

m

2πih̄εa2
(

p2E+p2y j

) , (6.37)

which can be achieved by rewriting the volume term

[

f ′
(

p f

)

f ′ (pi)
]−1/2 N

∏
j=1

d py j

N+1

∏
j=1

√

√

√

√

m f ′(p j) f ′
(

py j−1

)

2πih̄εa2
(

p2E+p2y j

)

=
[

f ′
(

p f

)

f ′ (pi)
]−1/2 N

∏
j=1

d py j

N+1

∏
j=1

√

m

2πih̄σ ja
2
(

p2E+p2y j

) . (6.38)

The expression (6.28) become as follows

G(α,s)(p f , pi;E) =− iβ
h̄α g(α)(ŷ f )g

(α)(ŷi)δ (px f
− pxi

)δ (pz f
− pzi

)
[

f ′
(

p f

)

f ′ (pi)
]−1/2

e

i
h̄

α
βa

(

αξ (px+ξ )

(1−α p2
E
)
−1

)(

arctan(
√

α p f )−arctan(
√

α pi)√
α

)

e

i
h̄

α
βa

ξ (px+ξ )

pE (1−α p2
E
)

[

arctan(
p f
pE

)−arctan( pi
pE

)
]

×
∞
∫

0

dτKs(k f ,ki,τ) (6.39)

with the propagator Ks(p f , pi,τ) given by

Ks(p f , pi,τ) =
N

∏
j=1

∫

d py j

N+1

∏
j=1

√

m

2πih̄σ ja
2
(

p2E+p2y j

) exp

{

i
h̄

N+1

∑
j=1

mα2

2σ ja
2β 2

∆p2y j
(

p2E+p2y j

) + ih̄
py j
△py j

(

p2E+p2y j

)

+σ j

(

(ξ (px+ξ ))2

2m
(

p2E+p2y j

)(

1+α p2y j

)2 −
(

h̄aβ
α

)2
p2y j

2m
(

p2E+p2y j

) − (ξ 2+ξ h̄as)

2m
(

1+α p2y j

)2 −
(

h̄aβ
α

)2
α p2y j

m
(

1+α p2y j

)

)

−σ j
3
2m

(

h̄aβ
α

)2

[

(4η (1−η)−1)
4α p2y j

(

p2E+p2y j

)

(

1+α p2y j

)2 +
α
(

p2E+p2y j

)

3
(

1+α p2y j

)2

]}

, (6.40)
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Here, σ j = s j− s j−1 is the path-dependent time. This dependence links to the following con-

dition

τ = τ f − τi =
∫ s f

si

ds
(

1+α p2y j

)(

1+α p2y j−1
) . (6.41)

By means of the following identity:

1
√

(

1+α p2y f

)

(1+α p2yi)

∫ ∞

0
ds δ

(

τ−
∫ s f

si

ds
(

1+α p2y j

)(

1+α p2y j−1
)

)

= 1. (6.42)

Also, we found that the kinetic term of this propagator is similar to the ordinary case. The

above path integral expression represents the kinetic term of the action
[mα2/2σ ja

2β 2]∆p2y j

p2E+p2y j

is

obvious that the "mass" is dependent on the momentum py. It is analogous to that generated

by the motion of point particles on curved spaces. To obtain the standard form of the Feynman

path integral, we use the point transformation method at the η -point discretization interval.

Following the method proposed in Ref. [183], we can show that there are three corrections in

the (6.40) expression.

1- The first is related to the action Cact ,

2- the second is related to the action Cm

3- and the third correction is related to the pre-factor C f .

The calculation steps of these quantum corrections will be the same in the ordinary case dif-

fering only in the mass parameter, which is equal
(

mα2/2a2β 2
)

. after a lengthy and precise

calculation. We arrived at the following result

CT =

[

(3− 3

2
η)(

ḡ
(η)′′
j

ḡ
(η)′
j

)2+
3

2
η− 5

4

]

∆k2y j
− 1

2
( mα2

2σ j h̄a2β 2 )
2(

ḡ
(η)′′
j

ḡ
(η)′
j

)2∆k6y j

+ imα2

2σ jh̄a2β 2

[(

11

4
−η2

)

(
ḡ
(η)′′
j

ḡ
(η)′
j

)2− 2

3
+

4

3
η

]

∆k4y j
. (6.43)

By using the formula [10], the correction terms
(

∆ky j

)n
are calculated perturbatively and re-

placed by their expectation values
〈(

∆ky j

)n〉

〈

(∆k)2ℓ
〉

=
(

ih̄a2β 2σ j

mα2

)ℓ
(2ℓ−1)!!. (6.44)
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Thus, we calculate all the correction terms proportional to
(

∆ky j

)2
and

(

∆ky j

)4
,
(

∆ky j

)6
, we

can conclude that the total correctionCT according to the discretization of the η-point is given

by

CT =
ih̄σ ja

2β 2

mα2

[

(
3

4
+

3

2
η (η−1))(

ḡ
(η)′′
j

ḡ
(η)′
j

)2− 1

4

ḡ
(η)′′′
j

ḡ
(η)′
j

]

, (6.45)

We note that if we pose (β → 0). We return to the system in the ordinary case, which gives

us the ability to consider that
(

η = 1/2±
√
6/6

)

. Where the expression of the Green’s func-

tion K(s)(k f ,ki;E) is fixed by the pseudo energy E to be evaluated at E=0, it is the Fourier

transformation for the Kernel Ks(p f , pi,τ) is written by

K(s)(k f ,ki;E) =
∫ ∞

0
dτ

∫ ∞

o
dsP(α,s)(k f ,ki,s), (6.46)

where the promoter P(α,s)(k f ,ki;s) is defined by

P(α,s)(k f ,ki;s) =
N

∏
j=1

∫

dky j

N+1

∏
j=1

√

m
2π h̄iσ ja

2

×exp

{

i
h̄

N+1

∑
j=1

mα2(△ky j
)2

2σ ja
2β 2 +

σ j(h̄aβ/α)2

2m

[

tanh2
(

ky j

)

4
− 1

2

+ c(αξ (px+ξ )/h̄aβ )2

p2E cosh2(ky j
)

− ξ 2+ξ sh̄a−2mE+B(αξ (px+ξ )/h̄aβ )2
(

1+α p2E sinh2(ky j
)
)2 − 9α p4E sinh2(ky j

)cosh2(ky j
)

(

1+α p2E sinh2(ky j
)
)2

− α p2E cosh2(ky j
)

(

1+α p2E sinh2(ky j
)
)2 −

2α p2E sinh2(ky j
)

(

1+α p2E sinh2(ky j
)
) − A(αξ (px+ξ )/h̄aβ )2p2E sinh2(ky j

)
(

1+α p2E sinh2(ky j
)
)2

]}

. (6.47)

Then we have

A =
α2

α2p4E −2α p2E +1
, (6.48)

and

B =
2α−α p2E

α2p4E −2α p2E +1
, (6.49)

with

C =
α2

α2p4E −2α p2E +1
(6.50)

1- To evaluate this result, we will simplify this effective potential by the exponential terms

like these Refs [223–228], with the fixing of the condition of α p2E = ...?



6.4 Evaluation of the quantum corrections 99

2- To avoid this problem, we propose another type of deformation following the Snyder [229]

model defined as follows.

[

x̂i, p̂ j

]

= ih̄
(

δi j +β pi p j

)

. (6.51)

with

x̂i = ih̄

√

1+βP2X̂i, p̂i =
P̂i√

1+βP2
, (6.52)

where X̂i and P̂i are the position and moment operators that verify the ordinary Heisen-

berg bracket
[

X̂i, P̂j

]

= ih̄.

3- Or we have to repeat the space-time transformation, but we have put another consideration

for σ j which takes the following form

σ j = ε
(

p2y j
+ p2E

)

. (6.53)

In this case the η-point-discretization are the same points in Refs [137, 138, 230]. For

the boundary, a → 0 becomes a constant magnetic field with the presence of minimal

length.

The promoter P(α)(kb,ka,s) to the first order of β gives the effective potential as follows:

Ve f f =
ξ 2(px+ξ )2

2mp2E cosh2
(

ky j

) − 2βξ 2(px+ξ )2

2m
tanh2

(

ky j

)

− ξ 2+sξ h̄a−2mE

2m
− h̄2a2

8m

+β

{

2p2E
ξ 2+sξ h̄a−2mE

2m
sinh2

(

ky j

)

+ h̄2a2

2m

[

− (p2x+p2z)
2cosh2

(

ky j

) − (p2x+p2z)
2

+2p2E −3p2E cosh
2
(

ky j

)

−9p4E cosh
2
(

ky j

)

sinh2
(

ky j

)]}

. (6.54)

From the latter, we can ask the following question: what are the systems studied that give the

same effective potential?.
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6.5 Conclusion

The goal of this chapter is the introduction of a minimal length on the same previous system.

We have determined the Green function via the Kempf example, which has a very complex

form requiring the use of the technique of space-time transformations and also includes an

additional quantum correction depending on the deformation parameter based on the standard

Feynman technique. These two steps allowed us to convert the problem from a time-dependent

mass to a constant mass problem. We found an expression identical to the standard Feynman

formula But with a complex potential, which led us to pursue other means of resolution, such

as changing the deformation or applying another space-time transformation. In the end, all

we can confirm is that the subject has good prospects, especially concerning the systems with

coulomb potentials.



Chapter 7

General conclusion

In the framework of relativistic quantum mechanics, we have treated the behavior of a particle

of mass m and charge e with spin 1/2 moving in a non-homogeneous magnetic field in mo-

mentum space and configuration space representations using the path integrals formulation. In

our work, we have used and presented in chapter two the fundamental tools of this formalism

in nonrelativistic quantum mechanics, which are generalized in relativistic cases.

In the third chapter, we have been able to successfully find the energies spectra and

their wave functions. This process depends mathematically on the elaborate construction of

Greene’s function using the global projection technique for the electron (positron) particles

moving in an inhomogeneous magnetic field. After that, we have maked the possible cal-

culations to obtain the Morse potential action. Then inserting the Fourie transformation, we

found the spectral decomposition of Green function "electron propagator", which gave the ex-

act eigenvalues and the wave functions. The energy value limit at (a→ 0) represents the same

energy to the Dirac particle moving under a constant magnetic field.

In addition, the fourth chapter discuss, the same issue using the path integral formalism

in the momentum space representation. In the first stage, we have eliminated a problem with

the singularity in point y = 1/a, where we do not describe the spin degrees-of-freedom by

Fermionic variables (Grassmannian variables). We only apply the path integral formalism on

the Green function elements. Then, the exact Green’s function is calculated in momentum

space, where we found the relativistic particle is free in the axis direction (Ox) and (Oz).

We have obtained the energy spectrum and the propagator of Dirac expressed in terms of



102 General conclusion

Gegenbauer polynomials. The main result is that the calculation depends on the α−point

discretization interval and we conclude that the problem of discretization is not definitively

settled in the path integral framework. This situation resembles that of the quantization with

constraint in which the mid-point is privileged. The reason for this difference is due to the first

formality in which we prepared the quantum propagator to get rid of a problem singularity.

Also in this case, when a→ 0 the problem is canceled, where we find the same results for the

electron particle moving in a homogeneous magnetic field.

In chapter 5, we presented the general form of path integral in the problem of the elec-

tron particle moving in the energy-dependent inhomogeneous magnetic field. So we have

calculated the Green function using the global projection technique. Then inserting the Fourie

transformation, we obtained the spectral decomposition of the Green functions, which gave

the exact eigenvalues. The determination of the wave functions is performed by applying the

residue theorem. In addition, the normalization problem of the wave functions stands out in

this type of system, and can be shown by a continuity equation, where density probability is

related to the vector and scalar energy-dependent potentials and can be examined by the path

integral formalism. The energy value limit at (a → 0) gives the same energy to the Dirac

particle moving under the action of a constant magnetic field.

Finally, we benefited from the sixth chapter, the construction of the Greene function for

the problem of a particle placed in a non-homogeneous field based on the generalized Heisen-

berg algebra. This construction made the kinetic expression non-local, so we eliminated this

difficulty using the space-time transformation technique. After this stape, we found the total

quantum corrections are dependent on the deformation parameter using the standard Feyn-

man technique. But the effective potential obtained was very complex, and its solution was

very difficult. In the end, all we can confirm is that the subject has good prospects, especially

concerning coulomb potentials.
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Problèmes dépendants du champ magnétique non-homogène et intégral de 

chemin 

Résumé : 

Dans le cadre de la mécanique quantique relativiste avec spin 1/2, nous avons traité par le formalisme 

des intégrales de chemin le comportement d'une particule de masse m et de charge e se déplaçant dans 

un champ magnétique non homogène dans la représentation de l'espace de configuration et dans la 

représentation de l'espace des moments {|p>}. 

Dans la première partie, le problème est résolu exactement dans les deux cas, l'espace de configuration 

et l'espace des moments. Nous adoptons les méthodes de transformation spatio-temporelle, qui 

dépendent de la discrétisation α-point, pour évaluer les corrections quantiques. Le propagateur est 

calculé, les valeurs propres d'énergie et leurs fonctions propres correspondantes sont extraites et 

obtenues. Le cas limite est ensuite déduit pour a un petit paramètre. Dans la deuxième partie, nous 

traitons le même système précédent sous l'influence d'un champ magnétique inhomogène dépendant de 

l'énergie, qui laisse derrière lui une nouvelle normalisation de la fonction d'onde, qui est examinée par 

la méthode de l'intégrale du chemin de Feynman. Le propagateur a été calculé. L'énergie propres et 

leurs fonctions propres correspondantes sont déduites. Dans la dernière partie de cette recherche. Nous 

adaptons le formalisme des intégrales de chemin pour une particule non-relativistes avec spin 1/2 se 

déplaçant dans un champ magnétique non-homogène dans un nouveau cadre de l'algèbre de 

Heisenberg modifiée qui est développé par Kempf. Ce type de système est important car il représente 

un potentiel de Coulomb, ce qui signifie une description réaliste de la physique. Suivant les étapes 

bien connues de l'intégrale de chemin, nous avons trouvé une fonction de Green relative au potentiel 

complexe. Nous avons ensuite proposé quelques idées qui permettent d'obtenir l'existence de la 

solution exacte dans des travaux ultérieurs. 

Mots-clés : Propagateur, Fonction de Green, L’équation de Dirac, Point de discrétisation, longueur 

minimal, Potentiel dépendant de l'énergie, Champ magnétique non-homogène.  

 

 متعمقة بحقل مغناطيسي غير متجانس و تكامل المسار اشكاليات
  :ممخص 

 يتحرك في حقل مغناطيسي غير متجانس باستعمال e وشحنة m، قمنا بمعالجة جسيم ذو كتلة  (½)في إطار ميكانيكا الكم النسبية حيث السبين 
 <{.p| }تقنية تكامل الدسار في تمثيل فضاء الإحداثيات وفي تمثيل فضاء الزخم 

حيث نعتمد طرق التحويل الزمكاني ، والتي تعتمد على تقدير . في الجزء الأول، يتم حل الدشكلة بالضبط في الحالتين، فضاء الإحداثيات وفضاء الزخم
في الجزء الثاني، نتعامل مع نفس النظام . ثم يتم حساب الناشر و استخراج القيم الذاتية للطاقة و دوالذا الدوجية. نقطة الفا لتقييم التصحيحات الكمومية

السابق تحت تأثير لرال مغناطيسي غير متجانس يعتمد على الطاقة ، والذي يترك وراءه تطبيعًا جديدًا لدالة الدوجة يتم فحصو بطريقة تكامل مسار 
Feynman .نقوم بتكييف  تكامل الدسار لجسيم . في الجزء الأخير من ىذا البحث. ثم نقوم بحساب الناشر و نستنتج عبارة الطاقة و الدوال الدوجية

 الدعدل والذي تم تطويره من طرف Heisenbergيتحرك في لرال مغناطيسي غير متجانس في إطار جديد لجبر  (½)غير النسبي حيث السبين 
Kempf .بإتباع الخطوات الدعروفة لتكامل الدسار ، وجدنا دالة . ىذا النوع من الأنظمة مهم لأنو يمثل إمكانية كولوم ، مما يعني وصفًا واقعيًا للفيزياء
Greenالأمر الذي جعلنا نفكر في اقتراح بعض الأفكار التي تجعل من الدمكن الحصول على الحل الدقيق في الأعمال اللاحقة.   تتعلق بكمون معقد. 

  . حقل مغناطيسي غير متجانسكمون متعلق بالطاقة، الطول الاصغري،الناشر، دالة غرين، معادلة ديراك، النقطة التقديرية،  :الكلمات المفتاحية
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The relativistic quantum mechanics of the electron in an inhomogeneous magnetic field
problem is solved exactly in terms of the momentum space path integral formalism. We

adopt the space–time transformation methods, which are α-point discretization depen-
dent, to evaluate quantum corrections. The propagator is calculated, the energy eigen-

values and their associated curves are illustrated. The limit case is then deduced for a

small parameter.

Keywords: Dirac equations; path integral formalism; inhomogeneous magnetic field.

PACS numbers: 03.65.Ca, 03.65.Ge, 03.65.Pm

1. Introduction

It is well known that the quantum theories of the electron1,2 were presented by

Dirac equation which permits a good description of the motion of a relativistic

particle, gives an explanation of the antimatter, and elucidates the origin of the

electron spin. Actually, these theories have been a great development, and played

a major role not only on differential equation, but also in statistical physics, quan-

tum field theory, quantum cosmology and quantum gravity. We cite, for example

in relativistic quantum mechanics: the exact solutions of a Coulomb potential,3 the

construction of a complete spectrum of the spinorial particle in a box4 and various

other problems.5–7 Further examples in quantum gravity are given by the spinorial

∗Corresponding author.
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relativistic particle in a noncommutative (NC) space,8 in NC phase space9 and

also in the case of the generalized Heisenberg algebra.10–12 While it was previously

impossible to set up these issues, for technical reasons, according to these considera-

tions, except researches that have given many successes in this field and that have

been summarized in Ref. 13, where they provided strong evidence of the phenomena

of the Zeeman effect, the Stark effect and the Aharonov–Bohm effect. Numerous

theoretical calculations have been the subject of exact results, we mention them,

the exact solutions of the Dirac equation in the presence of a uniform electromag-

netic field,14,15 an inhomogeneous magnetic field (IMF),16 orthogonal electric and

magnetic fields,17 linear scalar potentials,18,19 the scalar Coulomb field20 and the

two-component Dirac equation for the case of an electron in the IMF.21 We must

not forget also the recent works which have been devoted to the study of the path

integral method for the quantum theories of the electron.22–26

From the natural truth of the magnetic fields in the universe, the behavior of the

electron under the influence of these IMFs27 has enabled researchers to obtain im-

portant experimental results, where the creation of magnetic dots became possible

and integrates ferromagnetic materials with semiconductors, as well as the pattern-

ing of such films was recently demonstrated experimentally.28 These results will

clearly contribute to the advancement of the present semiconductor technology. We

find also the magnetic confinement fusion to generate thermonuclear fusion power

that uses magnetic fields with variable geometry, the fractional quantum Hall effect,

current spintronics efforts,29–31 superconductivity and thermal entanglement.32 On

the other hand, the control of the Dirac electron in graphene in the presence of

IMF is an alternative approach, which is expected to play a needful role in the

fabrication of desirable nanoelectronic devices.33 Knowing that there are promis-

ing applications such as the experimental study of magnetic field sensors that use

hybrid Hall junctions in the diffusive regime.34,35 In addition they had investigated

the possibility of use the IMF for MRI of biological tissues,36 and its effect on the

magnetic properties of NiFe/IrMn thin-film structures.37

In the past years, there are some physicists who have taken care of these IMFs

in the quantum theory area. For example, Achuthan et al. have presented a series

of researches on this kind of topics.21,38–40 Furthermore in Ref. 21, the authors

have formulated the two-component Dirac equation for the case or an electron,

and at the present time it was treated mathematically on the Dirac–Weyl equa-

tion in graphene,41 by explaining the expressions for the bound-state energy eigen-

values and eigenfunctions as a function of the parameter inhomogeneity. In addition,

Achuthan et al.38 have shown the spontaneous electron–positron pair creation,

and have given some physical implications due to heterogeneous magnetic fields

and which are supposed to exist only in neutron stars. But with this IMF39 (i.e.

B/ cosh(ay)), they have evaluated the magnetic moment density numerically in the

degeneracy limit for several values of the magnetic field strength and the chemical

potential. Furthermore, they discussed in Ref. 40 the thermodynamic and magnetic

properties of the electron gas in IMF, where it is a possibility to establish the
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spontaneous magnetization, i.e. the ferromagnetic behavior. The latter exhibits a

pressure of the electron gas with a magnitude higher than those in a homogeneous

magnetic field and crossed homogeneous electric and magnetic fields for comparable

field strengths.

In the present analysis, we exerted much effort to establish the exact solutions of

a quantum particle is subjected to an IMF, described by the path integral method

in momentum space representation. It is known by the Dirac equation in Ref. 21,

Bz(y) =
B

(1− ay)2
, Bx = By = 0 , (1)

where a is an inhomogeneity parameter. The IMF (1) is derived from the vector

potential in the Cartesian coordinate system

Ax(y) = − By
(1− ay)

, Ay = Az = 0 . (2)

The content of our proposal is outlined as follows. In Sec. 2, we will present the path

integral for spinorial particles by a formulation that differs from the Grassmann

variables formulation.42,43 The advantage of our formulation is based to make the

path integration over the Green function matrix elements. So, it is very easy for

the beginner to understand this type of formulation. This same approach has been

applied in several works like in Ref. 44. In fact, the main difficulty of this paper

is purely mathematical, and it is how to deal with this type of IMF (1) using

the Feynman approach without worrying about the physical implication of these

singular potentials problems. However, thanks to the Duru–Kleinert regularization,

we were able to eliminate the problem of the singularity at the point y = 1/a by

introducing regularizing functions on the left and on the right of the Hamiltonian

of IMF systems in the momentum space representation. In Sec. 3, we show how we

can use the method of Duru–Kleinert mapping of the path integral formalism. To

our knowledge, this type of treatment makes the mass of this relativistic system,

momentum coordinate dependent. By the transformation of this coordinates space,

we can formulate the Green function and the electron propagator. In Sec. 4, we vali-

date the accuracy of α-points discretization to coincide with the exact solution to

our issue. In Sec. 5, we calculate the Dirac’s electron propagator for an IMF in the

momentum space representation and the corresponding exact energy eigenvalues.

Finally, the relevant conclusion is given in Sec. 6.

2. Formulation of the Problem in Momentum Coordinates

The Green function Ŝ of the relativistic Dirac particle subjected to an IMF given by

Eqs. (1) and (2) is defined as the inverse of the Dirac operator. Setting the natural

units c = ~ = 1, we have,(
γµΠ̂µ −m+ ıε

)
Ŝ = −I , with µ = 0, 1, 2, 3 . (3)
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Here γµ are the Dirac matrices in the four-dimensional Minkowski space,

γ0 =

(
I2×2 0

0 −I2×2

)
, γi =

(
0 σi
−σi 0

)
, (4)

I2×2 is the unit matrix of rank 2 and σi=1,2,3 are the Pauli matrices. Under the mag-

netic field defined in Eq. (1) and with the choice of the gauge (2), the components

of Π̂µ are expressed as

Π̂0 = p̂0 , Π̂ =

((
p̂x −

eQBŷ
(1− aŷ)

)
, p̂y, p̂z

)
, (5)

where p̂µ are the generalized canonical momentum conjugate operators to xµ =(
x0, ı∇p), ∇p denotes the standard derivative of the impulsions variables p and Q

is the sign of the fermions charge (it can be taken ±1). In view to solve Eq. (3) by

using the path integral method, put

Ŝ = −
(
γµΠ̂µ −m+ ıε

)−1
=
(
γµΠ̂µ +m+ ıε

)
Ĝ and 0 < ε� 1 , (6)

with Ĝ is an operator. It can be easily shown that

Ĝ = −
(
γµΠ̂µγ

νΠ̂ν −m2 + ıε
)−1

. (7)

Let us now look at Eq. (2): it is clear that there is a singularity at the point y = 1/a.

In order to construct the path integral method of the transition amplitude avoiding

the singularity, we choose two arbitrary regulating functions gl(ŷ) and gr(ŷ) as

follows:

gl
(
γµΠ̂µγ

νΠ̂ν −m2 + ıε
)
grg
−1
r Ĝ = −gl . (8)

So, following the habitual construction procedure of the global projection,43 we

express the Green function S(pb,pa, p0b, p0a) in momentum space representation:

S(pb,pa, p0b, p0a) =
(
γνΠ̂ν +m

)
b
G(pb,pa, p0b, p0a) . (9)

Using the Schwinger proper-time method, we define the Green function as the

matrix element of the evolution operator Ĝ between the initial state |pa, p0a〉 and

the final state |pb, p0b〉. More clearly, the key to quantum regularization is the

following written form of the Green function

G(pb,pa, p0b, p0a)

= −〈pb, p0b|gr(ŷ)
1

gl(ŷ)
[
γµΠ̂µγνΠ̂ν −m2 + ıε

]
gr(ŷ)

gl(ŷ)|pa, p0a〉

= ıĝr(yb)ĝl(ya)

∫ ∞
0

dτ〈pb, p0b| exp[ıτ(Ĥ − ıε)]|pa, p0a〉 . (10)

As far as what we do, we have done just about everything there is possible to do.

In the first one, we have to choose functions gl(y) and gr(y) of the same form, to

get rid of the singularity problem on point y = 1/a, with y ∈ ]−∞; +∞[ . The

second reason, it maintains the ordering symmetry of the Hamiltonian operator
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whose each term is written as an average of the term ordered with all the p’s on

the left-hand side plus the term ordered with all the p’s on the right-hand side (i.e.

Ôsym(p̂y, ŷ) = 1
2 [F (p̂y)G(ŷ) + G(ŷ)F (p̂y)]), see Refs. 45 and 46. The Hamiltonian

Ĥ is defined by:

Ĥ =

(
p̂2

0 −
(
p̂x − eQB

ŷ

1− aŷ

)2

− p̂2
z −m2

)
(1− aŷ)2

− (1− aŷ)p̂2
y(1− aŷ) + ıeQBγ1γ2 . (11)

Here ı
2γ

1γ2 = 1
2σ3 ⊗ I2×2 is the spin tensor, σ3 is the Pauli matrix and I2×2

the unit matrix 2 × 2. It is known that the systems that describe the interaction

between spin and field can be treated using the Feynman’s approach according to

two fundamental models: the first one is the Fradkin–Gitman model, which presents

the Dirac propagator by using a Grassmannian path integral.42,43,47 The second

model is described in Refs. 48–52, where we replace the Pauli matrices σi=1,2,3 with

a pair of fermionic operators (u, d). But in our present paper, we do not intend to

use these two models, we just focus on conducting path integration on the elements

of the Green matrix. As it should be noted that an attempt has already been

made in the case of the Dirac oscillator to obtain a path integral formalism for

Green function’s matrix elements.44 Therefore, in momentum space representation

{|p0,p〉} and using the development of exponential matrix of Ĥ, we find the Green’s

function G(pb,pa, p0b, p0a) as

G(pb,pa, p0b, p0a) =


G+(pb, pa) 0 0 0

0 G−(pb, pa) 0 0

0 0 G+(pb, pa) 0

0 0 0 G−(pb, pa)

 . (12)

Here p = (p0,p) represent the quadri-momentum variable. From Eq. (12) the matrix

elements G(pb,pa, p0b, p0a) are defined in the same expression:

G±(pb,pa, p0b, p0a) = ıĝr(yb)ĝl(ya)

∫ ∞
0

dτ〈pb, p0b| exp(−ıτĤ±)|pa, p0a〉 , (13)

which given a new Hamiltonian Ĥ± operator defined by

Ĥ± = −
[(
p̂2

0 −
(
p̂x − eQB

ŷ

1− aŷ

)2

− p̂2
z −m2

)
× (1− aŷ)2 − (1− aŷ)p̂2

y(1− aŷ)± eQB
]
. (14)

Let us subdivide the time τ into (N + 1) interval having a length each one equal to

ε = τ/(N+1) and by inserting the completeness relation
∫∫
|p, p0〉〈p, p0|dp dp0 = 1

2050150-5

In
t. 

J.
 M

od
. P

hy
s.

 A
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
N

E
W

 E
N

G
L

A
N

D
 o

n 
09

/0
7/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



September 3, 2020 13:46 IJMPA S0217751X2050150X page 6

H. Hamdi & H. Benzair

between all the infinitesimal operators exp(−ıεĤ±), we have

G±(pb,pa, p0b, p0a) = ıĝr(yb)ĝl(ya)

∫ ∞
0

dτ lim
N→∞

N∏
j=1

∫
dpj p0j

×
N+1∏
j=1

G±(pj ,pj−1, p0j , p0j−1) . (15)

Then inserting (N + 1) times the identity of the completeness relation for the

eigenvectors |x, x0〉 and we use the usual scalar product in (3 + 1) dimensions,∫∫
|x, x0〉〈x, x0|dx dx0 = 1 , 〈xj , x0j |pj , p0j〉 =

1

(2π)2
exp(ıxjpj) , (16)

the infinitesimal Green function element can be written as

G±(pj ,pj−1, p0j , p0j−1)

=

∫
dxj dx0j

(2π)4
exp

{
−ı
[
xjpj − x0jp0j − ε

((
p2

0j − p2
xj − p

2
zj −m

2
)
(1− ayj)2

− (eQB)2y2
j + 2eQB(1− ayj)yj − p2

yj (1− ayj)

+ a
(
p2
yjyj + 2ıpyj

)
(1− ayj)± eQB

)]}
, (17)

where p = (p0, px, py, pz) satisfies the boundary conditions

pj=0 = pa , p0j=0 = p0a , pN+1 = pb , p0N+1 = p0b . (18)

The integrations over x0j , xj and zj give N Dirac functions δ
(
p0j−1 − p0j

)
,

δ
(
pxj−1

− pxj
)

and δ
(
pzj−1

− pzj
)
, respectively. This leads to the conservation of

the energy p0 = E and the two momentum components (px, pz)

p0j=1
= p0j=2

= · · · p0j=N = E , (19)

pxj=1 = pxj=2 = · · · pxj=N = px , (20)

pzj=1
= pzj=2

= · · · pzj=N = pz . (21)

So we can write Eq. (17) as

G±
(
pb,pa, p0b , p0a

)
= −ıδ(p0b − p0a)δ(pxb − pxa)δ(pzb − pza)ĝr(yb)ĝl(ya)

×
∫ ∞

0

dτ

N∏
j=1

∫
dpyj

N+1∏
j=1

∫
dyj
2π
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× exp

{
ı

N+1∑
j=1

[
−εa2

(
P 2
E + p2

yj

)
y2
j +

(
4pyj + 2aε

(
ξQ(px +Qξ)

−
(
P 2
E +p2

yj

)
+ ıapyj

))
yj + ε

(
ξQ(2px+Qξ)−

(
P 2
E +p2

yj

)
+ 2ıapy ± eQB

)]}
. (22)

After performing the Gaussian integrals over yj , the propagator elements in momen-

tum space coordinates are given by

G±(pb,pa, p0b , p0a)

= −ıδ(p0b − p0a)δ(pxb − pxa)δ(pzb − pza)

× ĝr(yb)ĝl(ya)

∫ ∞
0

dτ

N∏
j=1

∫
dpyj

N+1∏
j=1

√
1

4πıεa2P 2
E

(
1 + p2

yj/P
2
E

)
× exp

{
ı

N+1∑
j=1

[
1

4εa2

4p2
yj

P 2
E

(
1 + p2

yj/P
2
E

)
−

(
1

a
− ξQ(px +Qξ)

aP 2
E

(
1 + p2

yj/P
2
E

) − ıpyj
P 2
E

(
1 + p2

yj/P
2
E

))4pyj
+ ε

((
ξQ(px +Qξ) + ıapy

)2
P 2
E

(
1 + p2

yj/P
2
E

) −Q2ξ2 ± eQB

)]}
, (23)

where

P 2
E =

√
(px +Qξ)2 + p2

z +m2 − E2 , (24)

such that ξ = eB/a. From the expression of the propagator elements (23), it appears

a system describing a mass that depends on the py-momentum variable. In order

to convert this expression to the standard form of Feynman path integral, we will

use the coordinate transformation method. It is self-evident that we are faced with

the problem of determining the appropriate interval point to calculate the exact

quantum corrections. For example, different potentials have been applied to the

coordinate-time transformations method, where the use of midpoint gives an exact

solution to these quantum systems.53 Also, the problem of the particle with variable

mass has its role in determining the appropriate interval point.54 The same problem

was discussed in the presence of generalized uncertainty principle and in relativistic

case, such as in Refs. 44 and 55. Before making this procedure, we will eliminate

the second complex term of the action with the third term, which is given as

ξQ(px +Qξ)

a

4pyj
p2
yj + P 2

E

=
ξQ(px +Qξ)

aP 2
E

(
arctan

(
pyb
PE

)
− arctan

(
pya
PE

))
− 2εıξQ(px +Qξ)

apyj
p2
yj + P 2

E

. (25)
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Substituting the above obtained result into Eq. (23). The Green functions elements

can be easily obtained,

G±(pb,pa, p0b , p0a)

= ıδ(p0b − p0a)δ(pxb − pxa)δ(pzb − pza)ĝr(yb)ĝl(ya)e−
ı
a (pyb−pya)

× exp

{
ıξQ(px +Qξ)

aPE

(
arctan

(
pyb
PE

)
− arctan

(
pya
PE

))}

×
∫ ∞

0

dτ lim
N→∞

N∏
j=1

∫
dpyj

N+1∏
j=1

√
1

4πıεa2P 2
E

(
1 + p2

yj/P
2
E

)
× exp

{
ı

N+1∑
j=1

[
1

4εa2

4p2
yj

P 2
E

(
1 + p2

yj/P
2
E

) +
ıpyj∆pyj(
p2
yj + P 2

E

)
+ ε

(
(ξQ(px +Qξ))2(

p2
yj + P 2

E

) −
a2p2

yj(
P 2
E + p2

yj

) −Q2ξ2 ± eQB

)]}
. (26)

In order to find the standard form of Feynman’s path integral, it must be calculated

by following the next steps.

3. Quantum Corrections Evaluation

If we look more closely at the Green function elements G±(pb, pa), we can see that it

is not identical to the standard formula of Feynman. Since the above expression of

the path integral (26) represents the kinetic term of the action, where it is obvious

that the “mass” is dependent from the py-momentum. This dependency can be

removed by using the point transformation method. We define α-point discretization

interval as

p̄(α)
yj = αpyj + (1− α)pyj−1

, (27)

when α = 1/2 the p̄
(α=1/2)
yj represents the midpoint prescription. In this paper we

do not use this midpoint prescription, because we will find it invalid in this work. To

make this consideration more accurate, we chose the above α-point discretization

interval (27). Therefore, according to the standard method,53 the Green functions

elements (26) can be expressed in terms of the α-point discretization interval (27),

which indicate that there are three corrections in expression (26), namely

(1) the first is related to the action C
(1)
act,

(2) the second is related to measurement C
(1)
m ,

(3) and the third is related to the prefactor Cf .

As usual ∆f ′(pyj ) represents the subtracting of the two functions f ′(pyj ) and

f ′(pyj−1
). Expanding f ′(pyj ) and f ′(pyj−1

) about the α-point prescription p̄
(α)
yj , and
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Electron propagator solution for an inhomogeneous magnetic field

retaining terms up to third order in ∆pyj , we find

∆f ′(pyj ) = ∆pyj f̄
(α)′
j

(
1 +

(1− 2α)

2!

f̄
(α)′′
j

f̄
(α)′
j

∆pyj +
(1−α)3 +α3

3!

f̄
(α)′′′
j

f̄
(α)′
j

∆p2
yj + · · ·

)
,

(28)

where the notation used is ∆pyj = pyj − pyj−1
and f̄

(α)′
j , f̄

(α)′′
j , f̄

(α)′′′
j are the

abbreviated derivatives function f(p̄
(α)
yj ) at the point p̄

(α)
yj . Then we develop the

exponential of kinetic term about the α-point prescription, and setting f ′(pyj ) =(
1/
√

1 + p2
yj/P

2
E

)
, we find it with some simplifications:

exp

[
ı

N+1∑
j=1

(
1

4εa2

(4pyj )2/P 2
E

1 + p2
yj/P

2
E

)]
= exp

[
ı

N+1∑
j=1

((
f̄

(α)′
j

)2
4εa2P 2

E

(∆pyj )
2

)](
1 + C

(1)
act

)
,

(29)

where C
(1)
act is the first quantum correction related to the action,

C
(1)
act =

ı

4εa2P 2
E

[
2(1− α)f̄

(α)′′
j

(
f̄

(α)′
j

)2
f̄

(α)′
j

(∆pyj )
3

+ (1− α)2

((
f̄

(α)′′
j

)2(
f̄

(α)′
j

)2 +
f̄

(α)′′′
j

f̄
(α)′
j

)(
f̄

(α)′
j )2(∆pyj )

4

]

− 2(1− α)2(
4εa2P 2

E

)2
(
f̄

(α)′′
j

)2(
f̄

(α)′
j

)2 (f̄ (α)′
j

)4
(∆pyj )

6 . (30)

In this correction, we have retained only the terms which are all of order ε. Also,

the measure term contains corrections, and from it we have,

N∏
j=1

∫
dpyj

N+1∏
j=1

√
1

4πıεa2P 2
E

(
1 + p2

yj/P
2
E

) =

N∏
j=1

∫
dpyj

N+1∏
j=1

√
1

4πıεa2P 2
E

f ′(pyj ) .

(31)

Expanding f ′(pyj ) about the α-point prescription p̄
(α)
yj , and retaining terms up to

second order in ∆pyj , we get the following expression

f ′
(
pyj
)

= f̄
(α)′
j

(
1 + C(1)

m

)
, (32)

where C
(1)
m is the second correction related to measurement

C(1)
m = (1− α)

f̄
(α)′′
j

f̄
(α)′
j

∆pyj +
(1− α)2

2

f̄
(α)′′′
j

f̄
(α)′
j

∆p2
yj . (33)

In addition to these corrections there is the prefactor term which is defined in the

second term of action (26). It will be developed to second order in ∆pyj ,

exp

(
−
pyj∆pyj
p2
yj + P 2

E

)
= 1 + Cf , (34)
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which gives a third correction given by

Cf =
f̄

(α)′′
j

f̄
(α)′
j

∆pyj +

[(
α− 1

2

)(
f̄

(α)′′
j

f̄
(α)′
j

)2

+ (1− α)
f̄

(α)′′′
j

f̄
(α)′
j

]
∆p2

yj . (35)

We have calculated the three corrections resulting from the development of the

Green function at the α-point discretization. We will perform a new coordinate

transformation pyj/PE = g(kyj ), to get the conventional form of the kinetic term.

This transformation makes us adopt two other corrections:

(1) the first is related to the action C
(2)
act,

(2) the second is related to measurement C
(2)
m .

The α-point expansion of ∆pyj is written by index (j)

∆pyj
PE

= ∆kyj ḡ
(α)′
j

(
1 +

(1− 2α)

2!

ḡ
(α)′′
j

ḡ
(α)′
j

∆kyj +
(1− α)3 + α3

3!

ḡ
(α)′′′
j

ḡ
(α)′
j

∆k2
yj

)
. (36)

The choice of g(k) is fixed by the following condition:
(
(∂g/∂k) = (∂f/∂p)−1

)
,

which makes the transformation pyj/PE = g(kyj ) = sinh kyj where pyj ∈ ]−∞,+∞[

is mapped to kyj ∈ ]−∞,+∞[. But the other variables remain the same (px = kx
and pz = kz). Subsequently, we develop the exponential kinetic term as

exp

[
ı

N+1∑
j=1

(
1

4εa2

4p2
yj/P

2
E

1 + p2
yj/P

2
E

)]
= exp

{
ı

N+1∑
j=1

[
∆k2

j

4εa2

]}[
1 + C

(1)
act

][
1 + C

(2)
act

]
, (37)

where C
(1)
act is defined in Eq. (30) and C

(2)
act is given by

C
(2)
act =

{
ı

4εa2

[
(1− 2α)

ḡ
(α)′′
j

ḡ
(α)′
j

∆k3
yj

+

[
(1− 2α)2

4

(
ḡ

(α)′′
j

)2(
ḡ

(α)′
j

)2 +
(1− α)3 + α3

3

ḡ
(α)′′′
j

ḡ
(α)′
j

]
∆k4

yj

]

− (1− 2α)2

2
(
4εa2

)2
(
ḡ

(α)′′
j

)2(
ḡ

(α)′
j

)2 ∆k6
yj + · · ·

}
. (38)

The measure also induces a correction

N∏
j=1

∫
dpyj

N+1∏
j=1

√
1

4πıεa2
(
p2
yj + P 2

E

)
=

√
1

g′bg
′
aP

2
E

N∏
j=1

∫
dkyj

N+1∏
j=1

√
1

4πıεa2

(
1 + C(1)

m

)(
1 + C(2)

m

)
, (39)
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where C
(1)
m is given by (33) and

C(2)
m =

(1− 2α)

2

ḡ
(α)′′
j

ḡ
(α)′
j

∆kyj +

[
−α(1− α)

2

(
ḡ

(α)′′
j

)2(
ḡ

(α)′
j

)2 +
(1− α)2 + α2

4

ḡ
(α)′′′
j

ḡ
(α)′
j

]
∆k2

yj ,

(40)

is the second correction on the measure.

By combining all these corrections, we obtain the following total correction:

CT = −3

2

ḡ
(α)′′
j

ḡ
(α)′
j

∆kyj +

[(
3− 3

2
α

)(
ḡ

(α)′′
j

)2(
ḡ

(α)′
j

)2 +
3

2
α− 5

4

]
∆k2

yj −
ı

4εa2

ḡ
(α)′′
j

ḡ
(α)′
j

∆k3
yj

+
ı

4εa2

[(
11

4
− α2

)(
ḡ

(α)′′
j

)2(
ḡ

(α)′
j

)2 +

(
α− 2

3

)]
∆k4

yj −
1

2

(
1

4εa2

)2
(
ḡ

(α)′′
j

)2(
ḡ

(α)′
j

)2 ∆k6
yj .

(41)

We can remove the terms in
(
∆kyj

)2n
by making use of the following expectation

values 〈
(∆kyj )

2n
〉

=
(
ıεa2

)n
(2n− 1) . (42)

Then Eq. (41) becomes

CT = ıεa2

((
3

2
+ 3α(α− 1)

)
tanh2 kj −

1

4

)
. (43)

At this stage, we remark that the correction CT depends on the α-point discretiza-

tion interval. It is not definitively settled and asked for clarification of the path

integral method in this problem. This resembles the case of curved spaces in which

the midpoint was privileged. The development in Refs. 53 and 56 treat this problem

of curved space and gives an outcome that considers all points of the interval as

equivalent. Also, this is similar in the case of deformation Heisenberg uncertainty

relation which has been discussed in Refs. 44 and 55. For a convincing answer, see

what Sec. 4 holds.

4. Point Determination of Discretization Interval

Our aim in this section is to determine exactly the value of α-point discretization

in order to find exact solution of the electron propagator in the IMF defined in

Eqs. (1) and (2). From Eq. (26) we write the Green function as follows:

Gs(pb,pa; p0b , p0a) = ıδ(p0b − p0a)δ(pxb − pxa)δ(pzb − pza)

× ĝr(yb)ĝl(ya)<(pb)<∗(pa)

∫ +∞

0

dτ KsPE (kb, ka; τ) . (44)
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The kernel KsPE (pb, pa; τ) represents the path integral representation of the transi-

tion amplitude of a point particle moving in Rosen–Morse (RM) potential, which

defined by

KsPE (kb, ka; τ) = lim
N→∞

N∏
j=1

[ ∫
dkyj

]N+1∏
j=1

[√
1

4πıεa2

]

× exp

{
ı

N+1∑
j=1

[
4k2

yj

4εa2
+ εa2

((
Qξ
aPE

(px +Qξ)
)2

cosh2(kj)

+

(
1

2
+ 3α(α− 1)

)
tanh2 kj −

1

4
− Q2ξ2

a2
+ s

Qξ

a

)]}
, (45)

and the function <(py) is equal to

<(py) =
e−

ı
a (py)√

p2
y + P 2

E

exp

{
ıQξ(px +Qξ)

aPE

(
arctan

(
py
PE

))}
. (46)

Let us emphasize that the correction CT depends on the α-point discretization

interval, and this resembles the case of curved spaces in which the midpoint α =

1/2 was privileged. So our question that baffles is the prominent result in this

paper. Therefore, the analogy with the Schrödinger equation of the infinitesimal

propagation KsPE (kb, ka; τ) is:

Φ(k, τ + ε) =

∫
1 + CT√
4πıεa2

e

ı

 (k−k′)2

4εa2
+εa2


(
Qξ
aPE

(px+Qξ)

)2
cosh2(kj)

−tanh2 kj−Q2ξ2/a2−sQξ
a




Φ(k′, τ)dk′ .

(47)

By following the same procedure represented in Ref. 57, by substituting k′ = η+k,

we are led to expand Φ(k′, τ) in a Taylor series around η = 0:

Φ(k, τ + ε) = e−ıεVeff

∫ [
Φ(k, t) + η

∂Φ(k, t)

∂k
+
η2

2

∂2Φ(k, t)

∂k2
+ · · ·

]
×
[
1 +

3

2

g′′(k)

g′(k)
η +

ı

4εa2

g′′(k)

g′(k)
η3

]
eı

η2

4εa2
dη√

4πıεa2
, (48)

where the effective potential Veff is given by

Veff = −a2

[(
3α(α− 1)− Q2ξ2(px +Qξ)2

a2P 2
E

+
1

2

)
tanh2 k

+
Q2ξ2(px +Qξ)2

a2P 2
E

−
(
Qξ

a
+
s

2

)2
]
. (49)
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Performing all the integrations over η, where the kind of integrals is Gaussian.

Besides this, we expand the left wave function Φ(k, τ + ε) in a power series to the

first order in ε. This leads to get the explicit result

ε
∂Φ(kj , τ)

∂τ
= ıε

(
a2 d

2

dk2
j

− Veff

)
Φ(kj , τ) . (50)

This latter represents the Schrödinger equation, which agrees with the above prop-

agator KsPE (kb, ka; τ). In order to verify the correctness of the Hamiltonian Ĥ±,

which we set out to determine the spectral energies in Sec. 2, we have,

Ψ(k, τ) = <(k)Φ(k, τ) . (51)

Substituting (51) into (50), we find

−ı∂Ψ(k, τ)

∂τ
=

(
a2 d

2

dk2
+ 2a2 d ln

(
<−1(k)

)
dk

d

dk
+

a2

<−1(k)

d2
(
<−1(k)

)
dk2

−Veff

)
Ψ(k, τ) .

(52)

By returning to the old variables by means of the following relations

sinh k =
py
PE

, cosh k =

√
P 2
E + p2

y

PE
, (53)

we obtain the same Hamiltonian operator Ĥ± defined in Eq. (14) plus a function

of α and a constant term

ı
∂Ψ(py, τ)

∂τ
=

[
Ĥ± − a2

(
1

4
+ 3α(α− 1)

)
p2
y

P 2
E + p2

y

+
a2

4

]
Ψ(py, τ) . (54)

Here Ĥ± is Hamiltonian of a particle moving in an IMF and is defined in Eq. (14).

To obtain the exact Schrödinger equation corresponding to our system, we assure

us that the correct choice for the discretization point is the different midpoint,

1

4
+ 3α(α− 1) = 0 and Ψ(py, τ) = e−

ıa2

4 τψ(py, τ) . (55)

Moreover, it is different result in the presence of the nonzero minimum position

uncertainty.44

5. Propagator and Spectral Energies

In order to evaluate the exact solution of electron propagator and corresponding

spectral energies for an IMF in the momentum space representation, let us evaluate

the transition amplitude defined in Eq. (45) under the conditions (55). We can
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therefore write this kernel as follows:

KsPE (kb, ka; τ) = lim
N→∞

N∏
j=1

∫
dkyj

N+1∏
j=1

√
1

4πıεa2

× e
ıa2τ

((
Qξ
aPE

(px+Qξ)
)2
−Q2ξ2/a2+sQξa −

1
2

)

× exp

{
ı

N+1∑
j=1

[4k2
yj

4εa2
− εa2

[(
Qξ

aPE
(px +Qξ)

)2

− 1

4

]
tanh2 kj

]}
.

(56)

This expression is exactly the path integral representation of the transition ampli-

tude of a point particle moving in the RM potential, which has been discussed in

the literature by means of the path integral (see Refs. 53 and 58):

KsPE (kb, ka; τ) =

∞∑
n=0

Γ(`)2

[
22`−1(`+ n)n!

πΓ(2`+ n)

]
e
ıa2τ

((
Qξ
aPE

(px+Qξ)
)2
−Q2ξ2/a2+sQξa −

1
2

)

× eıa
2τ(n2−(2n+1)`) cosh`(kb) cosh`(ka)C`n(tanh(kb))C

`
n(tanh(ka)) ,

(57)

and the parameter ` check the following relation

`(`+ 1) =

(
Qξ

aPE
(px +Qξ)

)2

− 1

4
, (58)

which gives

` = −1

2
+

Qξ

aPE
(px +Qξ) . (59)

In order to evaluate exactly the propagator expression, we write its Fourier trans-

formation (44) with respect to k0b and k0a variables. The result is

Gs(kb, ka; tb, ta) = −(1− aŷb)(1− aŷa)δ
(
kxb − kxa

)
δ
(
kzb − kza

)
×
∞∑
n=0

Γ(`)2

[
22`−1(`+ n)n!

πΓ(2`+ n)

] ∫ +∞

−∞

dE

E2 − En

× e−ıE(tb−ta)
P 2
E

(
Qξ
aPE

(px +Qξ) + n+ Qξ
a + 1

2 + s
2

)
Qξ
aPE

(px +Qξ)− n+ Qξ
a −

1
2 + s

2

× e−
ıPE
a (sinh kb−sinh ka)

× exp

{
ıQξ(px +Qξ)

aPE
(arctan(sinh kb)− arctan(sinh ka))

}
× cosh`−1/2(kb) cosh`−1/2(ka)C`n(tanh(kb))C

`
n(tanh(ka)) , (60)
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C`n(x) are Gegenbauer polynomials.59 To obtain the exact solutions for the spectral

energies for the system governed by the Dirac equation in an IMF and in momentum

space coordinates, it must bring the corresponding spectral decomposition by the

action of the operator (γνΠ̂ν +m)b on Eq. (12). This will be simplified as

S
(
pb, pa, tb, ta

)
= δ(pxb − pxa )δ(pzb − pza )

∞∑
n=0

Γ(`)
2

[
22`−1(`+ n)n!

πΓ(2`+ n)

]

×
∫ +∞

−∞
dE

e−ıE(tb−ta)

E2 − En

P 2
E

(
Qξ
aPE

(px +Qξ) + n+ Qξ
a + 1

2 + s
2

)
Qξ
aPE

(px +Qξ)− n+ Qξ
a −

1
2 + s

2

×



(E +m)ĝ(ŷb)ĝ(ŷa)

×F(pb)F
∗(pa)

0
pz ĝ(ŷb)ĝ(ŷa)

×F(pb)F
∗(pa)

(Π̂x − ıpy)ĝ(ŷb)ĝ(ŷa)

×F(pb)F
∗(pa)

0
(E +m)ĝ(ŷb)ĝ(ŷa)

×F(pb)F
∗(pa)

(Π̂x + ıpy)ĝ(ŷb)ĝ(ŷa)

×F(pb)F
∗(pa)

−pz ĝ(ŷb)ĝ(ŷa)

×F(pb)F
∗(pa)

−pz ĝ(ŷb)ĝ(ŷa)

×F(pb)F
∗(pa)

−(Π̂x − ıpy)ĝ(ŷb)ĝ(ŷa)

×F(pb)F
∗(pa)

(−E +m)ĝ(ŷb)ĝ(ŷa)

×F(pb)F
∗(pa)

0

−(Π̂x + ıpy)ĝ(ŷb)ĝ(ŷa)

×F(pb)F
∗(pa)

pz ĝ(ŷb)ĝ(ŷa)

×F(pb)F
∗(pa)

0
(−E +m)ĝ(ŷb)ĝ(ŷa)

×F(pb)F
∗(pa)



,

(61)

where

F(p) = e
− ı
a

[
py−Qξ(px+Qξ)

PE
(arctan(py/PE))

]

×
(√

1 + p2
y/P

2
E

)`−1/2

C`n

 py√
P 2
E + p2

y

 . (62)

The above equation (61) lacks the integration over energy E: this can be converted

to a complex integration along the special contour C and then using the residue

theorem, the poles of this latter are given by:

En = ±
√
En = ±

[
m2 + p2

z + (px +Qξ)2

[
1−

(
Qξ
a

)2(
n+ Qξ

a + 1
2 + s

2

)2
]]1/2

, (63)

where the relativistic spectral energies are dependent on n and parameter a. In

Fig. 1, we represent the energy graph as a function of n for several values of a with

n ≥ 20. The dark and red points graph correspond to the positive and negative

energy for a constant magnetic field (i.e. a = 0). When we raise value a, the energy

is convergence to zero (see to the below curves). In Fig. 2, the energy En is presented

as a function of a for several values of n.

At the end, it is remarkable if we consider a very small “a” parameter, the form

of (63) can be easily expanded in terms of “a”. Making this expansion, we obtain
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are given by:

En = �
p
En = �

264m2 + p2z + (px +Q�)
2

2641� (Q�=a)2�
n+ Q�

a +
1
2 +

s
2

�2
375
375
1=2

: (63)

Where the relativistic spectral energies are dependent on n and parameter a. In Fig. 1, we represent

the energy graph as a function of n for several values of a with n � 20. The dark and red points

graph correspond to the positive and negative energy for a constant magnetic �eld (i.e. a = 0).

When we raise value a, the energy is convergence to zero (See to the below curves).

-2 0 2 4 6 8 10 12 14 16
-8

-6

-4

-2

0

2

4

6

8

En
er

gy
(M

ev
)

n
En

+  a=0   a=0,1  a=0,2  a=0,3 a=0,4  a=0,5
En

-   a=0 a=0,1  a=0,2  a=0,3  a=0,4  a=0,5

Fig. 1. En is the energy spectrum versus n for several values of a

In Fig. 2, the energy En is presented as a function of a for several values of n.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
-20

-10

0

10

20
1

2

3

4
5

6 7

A

B

C

D
E

F G

En
er

gy
(M

ev
)

a(1/fm)

E+
n(a) (n=1) (n=2) (n=3) (n=6) (n=8)

E-
n(a) (n=1) (n=2) (n=3) (n=6) (n=8)

E+
n(a) (n=20) (n=30) (n=40) 1 (n=50)

E-
n(a) (n=20) (n=30) (n=40) (n=50)

Fig.2. En is the energy spectrum verus a for n=0; 1; 2; ...

At the end, it is remarkable if we consider a very small "a" parameter, the form of (63) can easily

be expanded in terms of "a". Making this expansion, we obtain the corrections to the energy

15

Fig. 1. (Color online) En is the energy spectrum versus n for several values of a.

are given by:

En = �
p
En = �

264m2 + p2z + (px +Q�)
2

2641� (Q�=a)2�
n+ Q�

a +
1
2 +

s
2

�2
375
375
1=2

: (63)

Where the relativistic spectral energies are dependent on n and parameter a. In Fig. 1, we represent

the energy graph as a function of n for several values of a with n � 20. The dark and red points

graph correspond to the positive and negative energy for a constant magnetic �eld (i.e. a = 0).

When we raise value a, the energy is convergence to zero (See to the below curves).

-2 0 2 4 6 8 10 12 14 16
-8

-6

-4

-2

0

2

4

6

8

En
er

gy
(M

ev
)

n
En

+  a=0   a=0,1  a=0,2  a=0,3 a=0,4  a=0,5
En

-   a=0 a=0,1  a=0,2  a=0,3  a=0,4  a=0,5

Fig. 1. En is the energy spectrum versus n for several values of a

In Fig. 2, the energy En is presented as a function of a for several values of n.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
-20

-10

0

10

20
1

2

3

4
5

6 7

A

B

C

D
E

F G

En
er

gy
(M

ev
)

a(1/fm)

E+
n(a) (n=1) (n=2) (n=3) (n=6) (n=8)

E-
n(a) (n=1) (n=2) (n=3) (n=6) (n=8)

E+
n(a) (n=20) (n=30) (n=40) 1 (n=50)

E-
n(a) (n=20) (n=30) (n=40) (n=50)

Fig.2. En is the energy spectrum verus a for n=0; 1; 2; ...

At the end, it is remarkable if we consider a very small "a" parameter, the form of (63) can easily

be expanded in terms of "a". Making this expansion, we obtain the corrections to the energy
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the corrections to the energy spectrum, namely:

E(a)
n = ±

√
m2 + p2

z + 2e|Q|Bn± a 2npx√
m2 + p2

z + 2e|Q|Bn
+O(a2) + · · · . (64)

It also applies to the wave functions, where the limit a→ 0 one can find exactly the

wave function in configuration space representation of the homogeneous magnetic

field.60

Before ending this work, let us show that can be solved the problem of the

inhomogeneous magnetic and electric fields defined by

B =

(
0, 0,

B
(1− ay)2

)
, E =

(
0, 0,

E
(1− ay)2

)
. (65)

Finally, this work is considered as a very important in physics.27,61 Also we were

very lucky when we have treated it using the path integral formalism.
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We also suggest bringing up the same topic but with the concept of the minimal

length uncertainty relation,62 where we expect to obtain valuable results from the

physical and mathematical sides.

6. Conclusion

We have solved the problem of the electron particle moving in an IMF by using the

Feynman’s path integrals in the momentum space representation. In the first stage,

we have eliminated a problem with the singularity in point y = 1/a, where we do

not describe the spin degrees of freedom by fermionic variables (Grassmannian vari-

ables). We only apply the path integral formalism on the Green function elements.

Then, the exact Green’s function is calculated in Cartesian coordinates, where we

found the relativistic particle is free in the axis directions (Ox) and (Oz). We have

obtained the energy spectrum and the propagator of Dirac expressed in terms of

Gegenbauer polynomials. The main result is that the calculation depends on the

α-point discretization interval and we conclude that the problem of discretization

is not definitively settled in the path integral framework. This situation resembles

that of the quantization with constraint in which the midpoint is privileged. The

reason for this difference is due to the first formality in which we prepared the

quantum propagator to get rid of a problem singularity. While a→ 0 this problem

is canceled, where we find the same results for the electron particle moving in a

homogeneous magnetic field.
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