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Abstract

Fractional differential equations have been extensively investigated in the re-
cent years, due to a wide range of applications in various fields of sciences
and engineering. They are particularly used to describe many physical phe-
nomena.

In this thesis, we study the existence and uniqueness of solutions of some
non-linear fractional differential equations.

First, we prove some results about the existence and uniqueness of solutions
of a nonlinear fractional differential equation with a nonlocal initial condi-
tion, in Banach space. Then we studied in a weighted Banach space. After
that we studied the uniqueness of the solution in Sobolev space and finally we
discussed the existence and uniqueness of solutions of a fractional differential
problem with several nonlinear terms.

Key words: Riemann-Liouville Integral and Derivative, Caputo deriva-

tive, Point fixed theorem, Weighted space, Fractional differential equation,
Integral deferential equation, Fractional Sobolev space.
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Résumé

Les équations différentielles fractionnaires ont été largement étudiées ces
dernieres années, en raison d’une large gamme d’applications dans divers
domaines de la science et de I'ingénierie. Elles sont particuliérement utilisées
pour décrire de nombreux phénomenes physiques.

Dans cette these, nous étudions 'existence et 'unicité des solutions de cer-
taines équations différentielles fractionnaires non linéaires.

Tout d’abord, nous prouvons quelques résultats sur 'existence et 1'unicité
des solutions d’une équation différentielle fractionnaire non linéaire avec une
condition initiale non locale, dans I'espace de Banach. Ensuite, nous avons
étudié dans un espace poid de Banach. Apres cela, nous avons étudié I'unicité
de la solution dans I'espace de Sobolev et enfin nous avons discuté de 'exis-
tence et de 'unicité des solutions d'un probleme différentiel fractionnaire a
plusieurs termes non linéaires.

Mots clés : Intégral et Dérivée de Riemann Liouville, Dérivée de Caputo,

Théoreme du point fixe, Espace poids, Equation différentielle fractionnaire,
Equation différentielle intégrale, Espace de Sobolev fractionnaire.
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Introduction

FRactional calculus is an old topic and dates back to the 17th century when Leibniz asked

mn

d
L'Hopital in 1695, and the latter had symbolized the derivative of the order d—f when n is
xn

a natural number, saying what if n equals 1/2 ? Answered on 30 September 1695 "... This is an
apparent paradox from which, one day, useful consequences will be drawn. ..."

Then it was mentioned by Euler in 1730, Lagrange in 1772, P.S. Laplace(1812); ].B.]J. Fourier(1822),
N.H. Abel(1823 -1826); ]. Liouville(1832-1873), B. Riemann(1847), H. Holmgren(1865-1867), A.K.
Grunwald(1867-1872), A.V. Letnikov(1868-1872), H. Laurent(1884), P.A. Nekrassov(1888), A.
Krug(1890), J. Hadamard(1892), O. Heaviside(1892- 1912), S. Pincherle(1902), G.H. Hardy et
J.E. Littlewood(1917-1928), H. Weyl(1917), P. Levy (1923), A. Marchaud(1927), M. Riesz(1949)
and another others.

However, it did not receive much attention until the end of the twentieth century, where it re-
ceived many researches and books, as A. Kolmogorov, S. Fomine in 1973, Oldham and Spanier
in 1974, I. Podlubny in 1999 and A. A. Kilbas, H.M. Srivastava and ].J. Trujillo in 2006, D Ca-

puto, N Katsuyuki, and some researches.

The fractional integral arithmetic was considered an esoteric field without its applications. But
in last three decades, there has been an explosion in research activities and scientific confer-
ences about its applications, where thousands of research papers were published in this field,
describing different real phenomena and many models in various applied engineering sciences
such as mechanics of obstacles, viscoelasticity, bioengineering, chaos mechanics [28, 34, 55]

The classic questions related to the fractional differential equation do not have a general method
of application and to find solutions to some equations we use the Picard method, and the exis-
tence of oneness and stability is one of the most important basic issues in the study of equations
and this explains why many results have been published about fractional differential equations
during the past few years. See[2, 3,4, 5] 16, 20, 29, 33, 42, 36, 140, (15, [19]].

This thesis is devoted to the study of some nonlinear fractional differential equations by us-
ing fixed point theorems. Since Riemann-Liouville and Caputo fractional derivatives are the
most used in differential equations, we investigate, in the second chapters, the existence and
uniqueness of solution for differential equation involving Caputo, and in the third and fourth
chapters, the existence of solutions for differential equations involving Riemann-Liouville type
derivative.

Now we present to you a review of each of the thesis chapters.

In the first chapter, we introduce some functions of fundamental importance in the different
theory of partial equations, the gamma function and Mittag-Leffler function. We provide some
basic knowledge about fractional integrals and derivatives, such as the Riemann-Liouville in-

1



tegral, the Riemann-Liouville fractional derivative, and the Caputo derivative. We give a char-
acterization of a compact set in the space of continuous functions and in the space L” and some
fixed point theorems.

In the second chapter, we study existence and uniqueness results for the following fractional
integro-differential problem

(

“Dgu(t) = h(u(t)) + f(t,u(t)) —I—/O K(t,s,u(s))ds, te€0,1],

(1)

9
u(0) = U/u(s)ds, 0<é<,
0

\

where o is a real constant, 0 < o < 1, CD8‘+ is the Caputo fractional derivative, f : [0,1] x R —
R, K:D xR — R,where D = {(t,s) : 0 <s <t <1}, h: R— Rare appropriate functions
satisfying some conditions.

In section 2.2| we transform the problem into an integral equation and we prove the existence
and uniqueness of solution for the problem (1) by Banach'’s fixed point theorem, the results are
illustrated by an example.

In section [2.3| we prove the existence of solutions for the problem (1) by Krasnoselskii’s fixed
point theorem, the results are illustrated by an example.

In the third chapter, we consider an important problem from the point of view of application in
sciences and engineering, namely, the existence and uniqueness of solutions for the following
IVP of fractional integro-differential equation:

D) = ot 1) 4 57 00D, 1€ = 0420,
2(0) =0, D} a( ):)\fofxsds

where ), ¢ are two positive real constants, D, is the standard Riemann-Liouville fractional
derivative of order 1 <y <2and f,g:J x R — R are two continuous functions.

In section 3.2| we transform the problem into an integral equation and we prove the existence
and uniqueness of solution for the problem (2) by Banach’s fixed point theorem in a weighted
Banach space, the results are illustrated by an example.

In section 3.3 we prove the existence of solutions for the problem (@) by Krasnoselskii’s fixed
point theorem in a weighted Banach space, the results are illustrated by an example.

2)

The results of this chapter are accepted for publication: Boulfoul A, Tellab B, Abdellouahab
N, Zennir K. Existence and uniqueness results for initial value problem of nonlinear fractional
integro-differential equation on an unbounded domain in a weighted Banach space. Math Meth
Appl Sci. 2020. 1-12. https://doi.org/10.1002 /mma.6957.

In the fourth chapter, we concentrate on the existence and uniqueness of the solution for the
following initial value problem

D a(t) = f(t2(t), DG w(t), te ) ©)

Dyt (0) = zg,  IZT%x(0) = 4,

where 79,71 € R, 1 < a < 2, D, is the Riemann-Liouville fractional derivative of order v and
f:JxR?—R.



In section 4.1| we gave a definition of fractional Sobolev space and weight fractional Sobolev
space, and we did lowered the derivative using the properties of the exponential function, and
we transform the problem (3) into an integral equation .

In section 4.2 we prove the existence and uniqueness of the problem (3) by Banach’s fixed point
theorem in a weighted fractional Sobolev space on R*, and by Schauder’s fixed point theorem
in fractional Sobolev space on [0, 1], the results are illustrated by an example.

The results of this chapter are accepted for publication: Boucenna, D., Boulfoul,A., Chidouh,A.,
Ben Makhlouf, A., Tellab, B. Some results for initial value problem of nonlinear fractional equa-
tion in Sobolev space. J. Appl. Math. Comput. 67, 605-621(2021). https:/ /doi.org/10.1007 /s12190-
021-01500-5

In the last chapter, we concentrate on the existence and uniqueness of the solution for the fol-
lowing initial value problem

(AFDS& + (1= Al)fg“f)x(@ = f(s,2(s)) + “Dgig(s,x(s)), 0<s<T,
(4)
2(0) =0,  NCDRz(T)+ (1 - ) DEa(T) = a,

so that D, is the Caputo n'"-derivative with n € {a1,as, 51, 52}, ap € R and I? stands for
the Riemman-Liouville fractional ozgh-integral such that 1 < aj,a3 < 2,01 > a3,0 < ay <1,
0< M <1,0<<1,0<p,6<a—azand f,g € (J(J X R,R) are two given functions,
here J =: [0, 7).

In section 5.2 we transform the problem (@) into an integral equation .

In section 5.3 we prove the existence and uniqueness of solution for the problem (@) by Ba-
nach’s fixed point theorem, and we prove the existence of solutions for the problem (@) by
Krasnoselskii’s, Schauder’s, Leray—-Schauder’s fixed point theorems in Banach space, an exam-

ple illustrating our results is presented.



Chapter 1
PRELIMINARIES

1.1 Some Elements of Functional Analysis

Definition 1. [37] Let 2 = [a,b] (—o00 < a < b < 00), be a finite or infinite interval of the real
axis R = (—o0,00). We denote by LP(a,b) (1 < p < o), the set of those Lebesgue complex-valued
measurable functions f on Q) for which || f||, < oo, where

1l = ( / b If(t)\pdt) " d<p<oo

and

[flloo = ess sup |f(z)].

a<xz<b

Here ess sup | f(z)| is the essential maximum of the function | f(z)|.

Definition 2. [37] Let Q@ = [a,b](—0c0 < a < b < o0) and n € N. We denote by C™(Q2) a space of
functions f which are n times continuously differentiable on Q) with the norm

I £llen = Z Hf(k)”C — ZSUP }f(k)(x)
k=0 k=0 <
In particular, for n = 0, C°(2) = C(Q) is the space of continuous functions f on Q with the norm

Ifllc = sup|f(x)].
€N

, n€eN.

Definition 3. [37] Let [a,b] (—00 < a < b < 00) be a finite interval and let ACa, b] be the space of
functions f which are absolutely continuous on [a,b]. AC|[a,b] coincides with the space of primitives of
Lebesgue summable functions:

feaciul s fa) =c+ [ ot (o) € L(ab),

and therefore an absolutely continuous function f(x) has a summable derivative f'(x) = (x) almost
everywhere on [a,b]. For n € N we denote by AC"[a, ] the space of real-valued functions f(x) which
have continuous derivatives up to order n — 1 on [a, b] such that f™= € AC|a, b]

AC"[a,b] = {f € C"([a,b]), and " € ACla,b]}

4



The space AC™|a, b] consists of those and only those functions f(x) which can be represented in the form

n—1

fz) = (L) () + Y enla —a)t,

k=0
where (t) € L'(a,b), (k= 0,1,--- ,n — 1) are arbitrary constants, and
1 x
Jid — _ 3\n—1
(1249) (@) = o= | (@ =0 et

Theorem 1.1.1 (Banach'’s fixed point theorem). [31l] Let U be a non-empty complete metric space and
T : U — U is contraction mapping. Then, there exists a unique point u € U such that T'(u) = u.

Theorem 1.1.2 (Schauder’s fixed point theorem). [63] Let E be a nonempty closed bounded and
convex subset of a normed space. Let N be a continuous mapping from E into a compact subset of E,
then N has a fixed point in E.

Theorem 1.1.3 (Nonlinear alternative of Leray-Schauder fixed point theorem). [31] Let E be a
Banach space, V C E be closed and convex in E, € C 'V be open, 0 € € and let T : € — V be completely
continuous. Then either: (H;) a fixed point is found for T in E, or (Hy;) 3z € 0€ and ¢ € J with
z =(T(z), where J = (0, 1).

Theorem 1.1.4 (Krasnoselskii’s fixed point theorem). [63] Let E be bounded, closed and convex
subset in a Banach space X. If T1, T : E — E are two applications satisfying the following conditions
1) Thve +Toy € E, foreveryxz,y € £

2) T is a contraction .

3) T, is compact and continuous.

then, there exists z € E such that Tz + Thz = 2.

Lemma 1 (Arzela-Ascoli). [25] A set Q@ C C(]a, b)) is relatively compact in C(|a, b]) if the functions in
Q are uniformly bounded and equicontinuous on [a, b]. We recall that a family 2 of continuous functions
is uniformly bounded if there exists M > 0 such that

1fll = max f(@)| <M, feq.

The family € is equicontinuous on [a, b], if Ve > 0,30 > 0 such that Vt,,ty € [a,b] and V[ € §2, we have
th—ta| <= [f(t1) — f(t2)] <e

Lemma 2 (Kolmogorov M. Riesz Fréchet). [25] Let F' be a bounded set in LP(a,b), 1 < p < oo,
and —oo < a < b < 4o00. Assume that limy, o ||70.f — f[|, = O uniformly on F, then F is relatively
compact in LP(a,b), where 7, f(t) = f(t + h).

Theorem 1.1.5. [61] Let 0 < o < 1 and consider the time interval I = [0,T), where T < oc.
Suppose a(t) is a nonnegative function, which is locally integrable on I and b(t) and g(t) are nonnegative,
nondecreasing continuous function defined on I, with both bounded by a positive constant, M. If u(t) is
nonnegative, and locally integrable on I and satisfies

u(t) < a(t) + b(t) /0 u(s)ds + g(t) /0 (t — 5)* Tu(s)ds,

then

n

ut) <a(t)+ )

n=1 i=0

( 7; ) b”_i(t)gi(t)% /0 (t — )=+ 1=m) g (5) ds.

o +n—1

5



1.2 Special Functions

1.2.1 Gamma Function

[37,49] The Gamma function I'(x) is defined by the integral

[(x) = /000 t"te7tdt (x> 0).

This integral is convergent for absolutely all positive values.
The following equation represents the basic equation for the Gamma function

[z+1)=al'(z) (z>0).
And, for n € N, We have
F(n+1) =nl
The gamma function can we be represented also by the limit

nln®
[(z) =1 > 0.
(z) nl—>n<r>lox(ac+1)...(ac+n)7 *

1.2.2 Mittag-Leffler Function
[37,149] The function £, defined by

R: 0). 1.1
;Fak—l—l (@eR; a>0) (L.1)

In particular, when a = 1, we have
El (ZC ) =e”.
The generalized Mittag-leffler function defined by,

R > 0).
;Fak—l—ﬂ (reR, fBa )

Property 1. [30,[7] Let z € R

1—X

1
Eoa(z) < =z7 €, 0<y<2,A>1. (1.2)

1
v
1.3 Fractional Derivatives and Integrals

Definition 4. [37, 63| The fractional integral of order o > 0 of a function f : (a,00) — R is defined
by
1

A0 = s [ =9 s



Property 2. Lett € R
1. ]ngG)\t = t’yEl’,H_l()\t), ()\ > 0,’}/ > O)

2. ﬁ fat(t —s) 7 teMds = e (t — a)TEy 41 (At — a)), (a #0, A>0).
Proof. The first property see [49].
Let t € R, we use the change of variables s = a + (t — a)7, for the second property, in the left

side of the equation, we have

1 /t —1 A\ 1 /1 -1 A —
I t— ) M ds = —— t—a) (1 = ) LeMat(t=a)T) g
Iy ), 0 o) Jy )
1 1
= —(t—a VeA“/ 1 — 7))t g, (1.3)
F(ﬁy)( ) i (1-7)
We use the integration by parts n times, we get
I 1 1 1
N 1— 7—1 )‘(t*a)Td — + At — 4+t )\nfl t— n—1
P(7>/0( e " L(y+1) T(y+2) (t=a) L(y+n) (t—a)
1 n—1
(1—7)" A(t—
+ [ ————\"(t — a) "NV dr (1.4)
/0 I'(y+n) (t=a)
We set
(1— T)'y—i-n—l v
. — X T At —g)" (¢ a)T.
Fulr) = Sp N a)e
It is clear that
At —a)" -
< (t a)
e Ter
then

1 1 )\n(t _ a)n
w(m)dr < / —e”\(t_“)dT,
/0 fal ) o I'(y+n)

A"t — a>ne>\(t—a)
L(y+n) '
1
Therefore / fn(T)dT converge to 0.

0
Finally, by using the integration by parts oo times for equation we find

1 1
o /0 (1= 7y L= gr — By (At — ).

By replacing the last equation in[1.3, we get

1 t
) / (t —s) 7 reMds = (t — a)"eMEy g (Mt — a)).
The proof is now complete.
The first property is a special case of the last property. [

7



Example 1. [37]Let t € R

a 4B F(5+1) a+p8 _
ot _—F(a+ﬁ+1)t+’ (B>-1,a>0).

Definition 5. [37,163] Let o > 0. The standard Riemann-Liouville fractional derivative of order o of a

continuous function f : (a,00) — R is defined by

Dp s = s () = or s

Lemma 3. [37] Assume that f € L*(0,00), with 8 > 0. Then
Dg+jgﬁ+f(t) = f(t)

Lemma 4. [49,52]] Assume that € L'(a,b) and Igjﬁf € AC"([a,b]) with 3 > 0. Then

where n = o] + 1.

I°. D% f(t) = f(t) = Ci(t — )’ = Oyt —a)" % — ... — Ot — a)’™,
for some Cy,Cy, ...,C, € Rwithn =[] + 1.

£ ()

n—p
F3 Ty e fuslt) = L2 F(0),

Remark 1. In the last Lemma, we can take C; =

j=12.,n
Property 3. [37,149] Let o > 0; 3 > 0, b > 0. Then
L (I g (@) = 1577 f(2),  f € LP(0,0), 1<p< oo,
2. (DL IS () =I5 f(x), a>B, feL’(0,b), 1<p<oo
3. If D"Dy. f, and Dy f exist, then (D"Dg, f)(z) = Dy f(z), neN.

x I

4. D§.Dj f(x) = DgtP f(x) = 37, Dy F(0) -

1
n>pf+a, feLY0,b), [77f € AC™([0,b]).
Example 2. [137,149]

C
. DYC=—— > 0).
1. D§.C F(l—a)t , (C#0,aa>0)
L'(B+1) 3
) a 18 B—a — > s
2. Dg.t ~TG-a l)t , (B>-1,a>0)

3. Dy, t*7 =0, (Gj=1,2,....[a]+1).

, n=[a]+1, m=[F]+1,

(1.5)



Definition 6. [37,149] Let n — 1 < a < n, (n € N*) and f € AC"([a,b]). The left sided Caputo
fractional derivative of order o of a function f is given by

“DL IO = ey [ (= s (16)

where n = [a| + 1 and [o] denotes the integer part of the real number c.
Lemma 5. [37] Assume that f € L>(a,b)or f € C([a,b]), with § > 0, co < a < b < cc. Then
DI f(t) = f(1).
Lemma 6. [37] Assume that f € AC™([a,b]), 00 < a < b < oo, with 5 > 0. Then
12.°DP f(t) = f(t) — C1 — Co(t —a) — ... — Cu(t —a)" ™, (1.7)
for some Cy,Cy, ...,C, € Rwithn =[] + 1.
Property 4. [49] Let o > 0, (m = [a] +1). If D" f € AC™([a,b]), then
(€D D" f)(z) = DIof(z), neN.
Remark 2. For 0 < o < 3, we have the equality
DI f(x) = 1777 f(x). (1.8)
Example 3. [37]
1. °D%.C =0,  (a>0).

LB+1)

2. Dytf = ————
T -a+tl)

o=, (B>—-1,a>0).

3. “Dy.t* =0, (k=0,1,...,[a]).



Chapter 2

Existence and uniqueness results for a
nonlinear fractional differential IVP in
Banach Space

2.1 Introduction

Integro-differential equations play an important role in various specialties of engineering sci-
ences. Several authors have worked on this type of equations (see [3, 10, 11, [18] 145} 160, [18, [1,
59,13])). In [46], Momani et al. Studied the local and global existence for the following Cauchy

problem
CDu(t) = f(t,u(t)) —i—/t K(t,s,u(s))ds,

u(0) = wy,

where 0 < o <1, f € C([0,1] x R",R"), K € C(D xR*,R"), where D = {(t,5): 0 < s <t <1},
and © D" is the Caputo fractional operator.

Ahmed and Sivasundaram in [11]], considered the fractional integro-differential equation in
with nonlocal condition u(0) = uy — g(u), where 0 < o < 1, “D* denotes the Caputo
fractional derivative, f : [0, 7] x X — X, K : Dx X — X, where D = {(t,s5): 0< s <t < T},
are continuous functions and g € C([0,77], X) — X where X is a Banach space.

In this chapter we study existence and uniqueness results for the following fractional integro-
differential problem

.

“Dgu(t) = h(u(t)) + f(t, u(t)) +/0 K(t,s,u(s))ds, t€|0,1],

) (2.2)

u(0) = J/U(s)ds, 0<é<,

\ 0

where ¢ is a real constant, 0 < o < 1, CD8‘+ is the Caputo fractional derivative, f : [0,1] x R —
R, K :D xR — R,where D = {(t,s) : 0 < s <t <1}, h: R — R are appropriate functions

10



satisfying some conditions which will be stated later.
Let J = [0, 1] and C(J,R) a space of continuous functions g on .J with the norm
llgll = max{|g(t)| : t € J}. (C(J,R),|.]|) is a Banach space.

2.2 Existence and uniqueness result

Before presenting our main results, we need the following auxiliary lemma

Lemma 7. Let 0 < o < land 0 # % Assume that h, f and K are three continuous functions. If
u € C(J,R) then u is solution of if and only if u satisfies the integral equation

1

u(t) = @) /Ot(t —5)* ! {h(u(s)) + f(s,u(s)) + /OS K(S,T,U(T))d7:| ds

o ¢ N T
+(1_J§)P(a+1)/o (&—7) [h(u(T))+f(T,U(T))+/O K(T,/\,u(/\))d)\]dT.(Z.?))

Proof. Let w € C(J,R) be a solution of (2.2). Firstly, we show that u is solution of integral
equation (2.3). By Lemma|f, we obtain

158 Dgu(t) = u(t) — u(0). (2.4)

In addition, from equation in (2.2) and Definition[d} we have

FCDGatt) = s [ (-9 (o)) + 165, uto)
—|—/0 K(s,T, u(T))dT:| ds. (2.5)
By substituting in with nonlocal condition in problem (2.2), we get
1 ! a—1
W) = g = bl + st
—i—/ K(s,T, u(7’))d7’:| ds + u(0), (2.6)
0

but, we have

w(0) = a/ogu(s

_ (“)/: {/OS(S—T)O‘_I(h(u(T))+f(7',u(7))—I—/OTK(T,)\,U(/\))d)\)dT}dS

(0)

+oéu
3
= ﬁ{ O/Os—To‘lh des+// (s — 1) f(1,u(r))drds

/Os 5 — 7)o 1/ K(r\ u(A))dAdes] + otu(0).

11



Consequently,

w0) = G [/ / o h(u ))des—l—/Og/Os(s—T)a_lf(T,u(T))des
4 /O /0 (S—T)LH /0 K(T,A,u()\))d)\drds].

Using Fubini’s theorem and after some manipulations we obtain:

o ¢ o
u(0) = (1_@“%1)/0 (€ [h( (7)) + f(r,u(r / K(r,\ MA))dA]d
Now, by substituting the last value of u(0) in (2.6) we find (2.3).

Conversely, in view of Lemma El and by applymg the operator D¢, on both sides of (2.3), we
get

CDgu(t) = CDg I h(u(t) + DG I 1 (¢, u(t)) + DG ( | st

= h(u(t)) + f(t,u(t) /Kt,s,u (2.7)

this means that v satisfies the equation in problem (2.2). Furthermore, by substituting ¢ by 0 in
integral equation , we have clearly that the nonlocal condition in (2.2) holds. Therefore, u
is solution of problem (2.2)), which completes the proof. O

We will prove an existence and uniqueness result of the problem in C'(J,R) by using
Banach'’s fixed point theorem. For this fact, we will need some assumptions about the functions
h, f and K previously defined.

(Hy) : |h(u) — h(v)| < kijlu—wv|, Vteld, VYuvelR

(Hy) - |f(t,u) — f(t,0)] < kslu—v|, VteJ, VYuvelR

(Hs) : |K(t,s,u) — K(t,s,v)| < kslu—wv|, VY(t,s)€ D, Vu,veR.

where ki, ko, k3 are three positive real constants and D = {(¢,s): 0<s <t <1}

Theorem 2.2.1. Assume that the assumptions (H,), (Hy) and (Hs) hold. If

k'1—|—]€2 k}3 ’0’|/€1+|0"k’2

504-1—1
MNa+1) T'(a+2) [1-dfl'(a+2)
|O-|k3 o
Toqlars)’ <V @8)

then the fractional integro-differential problem has a unique solution on C'(J,R).
Proof. Firstly, we define an operator P : C(J,R) — C(J,R) by

1

Pu(t) = o) /Ot(t — )t {h(u(s)) + f(s,u(s)) + /OS K(s,, U(’T))d’i’:| ds

o

£ T
+(1—a§)f‘(a+1)/0 €—17) [h(u(f))+f(7,u(7))+/o K(T,/\,u(x\))d/\]dT,
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and we consider the subset B, of C'(J,R) defined by
B, ={ueCULR): |ul <r} (2.9)

where 7 is a strictly positive real number chosen so that

M1+M2 M3 ’0’|M1+|O"M2 €a+1_|_ ’O’|M3 €a+2
MNa+1) Ta+2) [1-dl'(a+2) 11— o&|T'(a + 3)
r> . (2.10)
1— ]{51+k52 B k’g _ |U|k51+|0‘|k’2 §a+1_ |U|/€3 §a+2
MNa+1) TI'(a+2) [1—-0dl'(a+2) 11— o&|T'(a + 3)

with M, = ’h(())’, M,y = sup ‘f(s,())‘, and M3 = sup |K(s,T, O)‘

sedJ (s,7)ED
Now, we show that the operator P has a unique fixed point on B, which represents the unique
solution of the problem (2.2). Our proof is down in two steps.

First step: We have to show that PB, C B,. For each ¢t € J and for any v € B,, we have

|(Pu)(1)]
1 t o1 S
< m/o (t—s) {‘h(u(s))|+‘f(s,u(s))|+/o |K(s,7’,u(7’))|d7’}ds
o] 6 —7)° u(T T, u(T ' T, AU T
e L € 0 [ e+ [l uonia]d
I ol
< m/o(t—s) [h(u(s)) — ()] + 1(0)]] ds
f = s [ s us)) = £, 0)] + [£(5,0)]|ds
['(a) Jo
+ﬁ/0 (t—s)a_l/o |[K (s, 7 u(r)) = K(s,7,0)| + [ K(s,7,0)| | drds
o] ¢ o
st /. € ) = 1)+ 1) Jar
o] ¢ o
st ), €= o) = 0]+ o or
o] ¢ o 7
+|1_0§|F<a+1)/0 (€—7) /0 [‘K(Ta/\au()\))—K(T,A,O)\+\K(T,>\,O)\]d>\d7
_ LBl +nfe el < el e e
- ['a+1) [Na+1) MNa+2) TI'(a+2)
+|0’| [thUH +M1]§a+1 . lo| |:k?2HUH +M2]§a+1 . |0|k3HuH§a+2 || Mago+?
11— €|l (a+2) 11— o&T(a + 2) 1 —c&|T'(a+3) |1—0d&|T'(a+3)
ki + ko ks ok +|olke 0 |o|ks a+2
S TarD Tt " T-oqiatr D T T oflat3)° : ]T
My + M, M3 0| My + |o|My 4y 0| M; a+2
TeiD) T T2 TH-vffar2s T oelard)’
< 7.
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Therefore ||PuH < r, which means that PB, C B,.
Second step: We shall show that P : B, — B, is a contraction.
In view of the assumptions (H,), (H2) and (H3), we have for any u,v € B, and for each ¢t € J

|(Pu)(t) — (Pv)(t)|

< ﬁ/o (t — ) h(u(s)) — h(o(s))|ds
[ (= ) (s uls)) — £s,0(s))|ds
L(a) Jo
+£/ / }K s, T, u(T K(s,7‘,u(7‘))|d7ds
o] — h(v(71))|dT
+\1—ag|r(a+1)/0 7)) = h(o(r)|d
o] 6 — )% f(r,u(T)) — f(r,v(7T))|dT
st [, €l ) — )
o]
|1 el D) / / |K (7, A, u(X) — K (7, A, v(\))|dAdr
< [F kqt® n Fot® n kst } Hu H
(a+1) T(a+1) TI(a+2)
o]k a+l |o|ks atl |o|ks at2 | [l — o
i soias° T Mootlat2)’ ' T=oflatd® ]” |
|:k1+k2 ks o]k1 + |o|ks gotl o]k ga“]Hu—vH
Fla+1) T(a+2) [1—0c&l(a+2) 11— o&|T(a+ 3) '

By exploiting estimation (2.8), it follows that P is a contraction. All assumptions of theorem
are satisfied, then there exists u € C(J,R) such that Pu = « which is the unique solution
of problem 2.2) in C(J,R). This completes the proof of Theorem [2.2.1] O

Example 4. Consider the following nonlocal fractional integro-differential problem

( CD0+u( ) = is.in(u(t)) + _ult) +/0 6:34tu(s)ds, t €10,1],

48 90 + et
: 2.11)
1
u(0) = E/u(s)ds
\ 0
Where o = Lo f = 1 h(u) = ism(u) flt,u) = and K(t,s,u) = S_tu For
“Ty? g T g P T g 64 "
u,v € RTand t € [0 1] we have:
|A(u) = h(v)| < i‘u —v
— 48 7




and .
|K(t,s,u) — K(t,s,v)] < 6—4|u—v‘.

1 1 1
Now, the assumptions (H,), (Hs) and (Hj) are satisfied with ky = L ke = 90 and ks = o1 then after
some computations, we find that:
k?1+]€2 k?3 |0'|k’1—|— |O'|]€2 |O'|k‘3

gotl €22 2 0.0479 < 1.

Ta+1) T(a+2) ' |1—ocfT(a+?2) 11— ofT(a + 3)

Therefore, by applying Theorem the problem has a unique solution on [0, 1].

2.3 Second existence result

In the present section, we will demonstrate an existence result of the fractional integro-differential
problem (2.2). For this fact, we need the following assumptions.
(Hy) h : J — R s continuous and there exists 0 < M < 1 such that

|h(u) — h(v)] < M|u—wvl|, ¥t € J, Yu,v € R. (2.12)
(Hs) f : J x R — R is continuous and there exists ¢ € L>(J,R") such that
lf(t,u) — f(t,v)| < o(t)|u—vl|, Vt € J, Yu,v € R. (2.13)
(Hs) K : D x R — R is continuous on D and there exists p € L'(J,R") such that
|K(t,s,u) — K(t,s,v)| < p(t)|u—v],¥(t,s) € D, Yu,v €R, (2.14)
where D = {(t,s): 0 < s <t <1}
Theorem 2.3.1. Suppose that the assumptions (Hy), (Hs) and (Hg) hold. If

o]
11— oé|T'(a+2)

M 4118l + Nl |+ < 1, (2.15)

Then, the fractional integro-differential problem has at least one solution in C'(J,R) on J.

Proof. First, we transform the problem into a fixed point problem. For this fact we define
the operator P : C(J,R) — C(J,R) by

(1—of)l(a+1

b | (st () + 1(s.ue) + [ K7ty s

Pu(t) =

) /05(5 —7)* {h(U(T)) + f(r,u(r)) + /OT K(r, A,u()\))d)\} dr

Before starting the proof of our theorem, we decompose the operator P into a sum of two
operators F' and GG, where

g

(1—o&l(a+1

Fu(t) = )/05(5—7)0‘[/1(“(7))+f(T7u(T))+/OTK(T, )\aU(A))dA]dT,
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and
féyfﬁ—$WJV((»+fsu /z(STu dﬁd

Now, our existence result will be discussed in several steps:
Step (1):
Let S, = {u € C(J,R) : ||u|| < r}, where r is a real constant positive number such that

S |o.|§a+1 1
"N T = otTat2) TlatD)

Gu(t) =

(n+p+u), (2.16)

andletp= sup |f(s,u)|,n" = sup / |K (s, 7,u(T))|dT and n = sup |h(u)|.
(s,u)eJ XSy (s,7;u)€DXS, JO u€Sy

Foru € S, and t € J, we have

lo

13 T
Pt < ot [ €= e I+ o+ [ )l ar

o] ¢ o
N ey A
X [sup |h(u)|+ sup |f(r,u)|+  sup / | K (T, A\, u ]d)\]

u€Sy (Tyu)eJ XSy (T, A\ u)eD XSy

|ﬂh+u+wlgﬂ

11— &I +2)
Thus,
ol [+ p+ 4]
Full < atl 217
In a similar way, for v € S, and ¢ € J, we find
1 t B s
Gt < s [ 0= D+ s o)+ [ 1 m ot ds
I'(e) Jo 0
1 t 1
< — t—s)*
AR
X {sup |h(v)]|+  sup |f(s,v) sup / |K (s, 7,v) |d7’}
vES, (s,v)€J XSy (s T,0)ED XS,
n+ptp
INa+1)
Therefore,
o
Gl < LA (2.18)

Pla+1)
Consequently, in view of inequalities (2.16)-(2.18), we get
[Fu+ Gol - < [|Full + (|Gl

|0|[77+M+N*} gotl n+ p+ p
11— &l (o + 2) [(a+1)
r.

VAN

IN
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This means that F'u + Gv € S,.

Step (2):

We show that F' is contraction map on S,. From the definition of the operator F and by using
Fubini’s theorem, we can write

g

Fult) = et /05(5—7)0 {h( (1)) + f(ryu(r / K(m\ u()\))d)\}d

g

T (A —o)(a+1) /§<5—7) [h< (7)) + f(r u(r ))}dT

+(1_0§)0Fa+1// £ — 70K (7, A\, u(N))drdA.

Therefore, for u,v € S, and t € J we find

[Fu(t) — Fu()|

o]

g o
I1—o€[T(a+1) /0 (&—1) {\h(u(T)) — h(v(m))| + | f(T,u(T)) — f(T,v(T))q dr

o £ e
+|1_05||F‘(a+1)/0 //\(f—T)a|K(T,/\,u(/\))—K(T,/\,v()\))|d7'd)\

IA

< u_gg’,‘;‘(aﬂ) [ [M|u<7>—v(¢>|+¢<r>||u<f>—v<f>|]d7
|1_U§|Fa+ // € — 1) p(r)[u(A) — v(N)|drd.

< |1_0§',}i'(a+1) [e- >[M|u<> (o) + 8(r)utr) = () ar
\1—a£|F //g N () |u() — v(A)|drd.

e 1 RS [ TR P PR

< [ ol + ol o)

Thus,
I1Fu=Fol < e B [0 ol + ol =

Therefore, by using (2.15) we conclude that F' is a contraction map on S,..

Step (3):

To show that G is a compact operator, we claim that G(S,) is a compact subset of C(.J,R). To
show this, we need only to prove that G(.S,) is uniformly bounded and equicontinuous subset
of C(J,R).

Firstly, it is clear by inequality (2.18), that G/(S,) is uniformly bounded.
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Next, we will prove that G(.S,) is equicontinuous subset of C'(J,R).
For this we have for any v € S, and for each ¢,t, € J where t; <,

IN

IN

b
()

),

(ty—s)* ' = (tg —s)*"

1 " 1 " 1 1
— (to — 8)* 'ds +/ (tg — )" — (t1 — s)*~ ds}
F(Oé) |:/tl 0
X [sup |h(u)|+  sup |f(s,u) sup / |K(s,7,u |d7}
vESy (s,u)€T xSy (s,7u)€DXS;
n+up+p

Aty —t,)° t“—tﬂ,
F(a+1)[(2 U

/:(tz —s)*7! {!h(u(S))\ + [ f(s,uls))| + /OS \K(S,T,u(T))‘dT] ds

)]+ 1G] + [t as

where 7, 11, and p* are the constants defined in step (1). The right hand side of the above in-

equality is independent of v and tends to zero when t, — 1, then ||Gu(t;)

which means that G(S,) is equicontinuous.
Finally, from the continuity of h, f and K, it follows that the operator G : S, — S, is con-
tinuous. So the operator G is compact on S,. Now, all assumptions of theorem are satis-
fied. Therefore, the operator P = F' + G has a fixed point on S,. Then the fractional integro-
differential problem has a solution v € C(J,R). This completes the proof of the theorem

Example 5. Consider the following nonlocal fractional integro-differential problem

1
In this example, we have: o = 30 = ,5— , h(u) = Esmz(u)
2t
ft,u) = 13——2:675’ and K(t,s,u) = : i el Thenfor u,v € Rt and t € J, we have:
|h(u) — h( |§ ‘u—v|
2
t
}f(au) |_13—|—6t| }’
and |
|K(t,s,u) — K(t,s,v)] < ge2t‘u—v|

10 13+e ' J, 5+e

1

18

CD§+U( t) = i81102( (1) + 2ult). +/ th u(s)ds, t € [0, 1],

— Gu(t)]| — 0,

]

(2.19)



2
So, The assumptions (Hy), (Hs) and (Hg) are satisfied with M = 1, ¢(t) = (Epe and p(t) = ¢e*,

1 . )
where ||¢||p~ = = and ||p|| 1 = 15(e* — 1). Now, some elementary computations give us

o]
11— ¢TI+ 2)

[M + 19l + HpHLl]g““ ~0.0299 < 1,

which means that the condition holds. Therefore, by applying theorem we deduce that the
nonlocal fractional integro-differential problem has a solution on [0, 1].
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Chapter 3

Existence and uniqueness of solutions for
R-L initial value problem in a weighted
Banach space

3.1 Introduction

Recently, there are several review where the existence and multiplicity of solutions for bound-
ary and initial value problem of fractional differential equations are deeply studied [15, 8, 12,
17,136, 27]. For example, in [38], Kou et al. studied the global existence of the problem

Di.x(t) = f(t,z(t), t € (0,+00), (3.1)

lim, o+ t172(t) = xo,

where D, denotes the standard Riemann-Liouville fractional derivative of order 0 < v <1, f €
((0,+00) x R,R). They established some new results concerning global existence on the half-
axis for (3.1).

Shen et al. [53], discussed the existence of solution of BVP for a nonlinear multipoint fractional
differential equation

0+IL’ t) = /(

x(t g+1x(t)) , teJ=10,+00),
2(0) = 0, ) = (3.2)

t
?(0)=0, Dy la(+oo) =7 B (&) -

Where2 < 7y <3, f € C(J x R x R,R)and I'(y) — S.7",° 8,6] " # 0.

In this chapter, we consider an important problem from the point of view of application in
sciences and engineering, namely, the existence and uniqueness of solutions for the following
IVP of fractional integro-differential equation:

Dy, x(t) = g(t, x(t )) +fg+_1f(t (1), teJ=][0,+00),
z(0) =0, D0+x ):/\foéxsds

Where ), ¢ are two positive real constants, D, is the standard Riemann-Liouville fractional
derivative of order 1 < v < 2and f,g : J x R — R are two continuous functions. Now,
we define the following weighted Banach space which plays a fundamental role in our next
discussions.

(3.3)

_ . ()]
X = {ZL‘ eC(J): Stg]) (eSO < +oo} :
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provided with the norm:

t
lzllx = sup ()] '
teg (L+771) (14 t272)

Lemma 8. (X, ||.||x) is a Banach space.
Proof. 1t is clear that X is a subspace of the vector space C(J).

Let {z,} be a Cauchy sequence in X.Then, for any given ¢ > 0, there exists a constant N' > 0,
such that for n,m > N,

|Tn — Tmllx < e

We know that

Tp(t) — xm(t
i _‘1_ t/E)l)(l +(752)J2) <|lzp, — x|, foranyte J.
T (1)
1+ 1) (1 + 22-2)
T (t)
(1 -+t (1 +t22-2)
Let ty,t € J, we have got

Therefore, { } be a Cauchy sequence in R, Thus there exists a function z

such that

—z(t)‘—>0, n—ooforte J

|2(t) — z(to)]
T (t0) . (to) Tn(¢)
< |- i | [ - e
+‘ Za(t) —Z(t)‘ — 0, fort— ty, n — oo.

(1 +tA=1)(1 +1222)

Then z is a continuous function.
We put z(t) = (1 + t*1)(1 + t**72)2(¢). It is clear that z is a continuous function, and

() (1+tH (1 +272)2()
(1 +tA—1)(1 +t2A—2) (1 _|_t/\—1)(]_ _I_t2)\—2)
T (t) xn(t)
< t) —
= ‘Z( e ‘(1 F O (1 + 222
< 0.
Therefore,
su I(t) < 0
ey [+ I+ 2| =%
Then X is a Banach space. O

Lemma 9. [26] Let U C X be a bounded set. Then U is relatively compact in X if the following
conditions hold:
For any x € U the function xz(t)/ (1 + ¢t*~1) (1 4 t**~2) is equicontinuous on any compact subinterval
of J. For any € > 0, there exists a constant T' > 0 such that

x (t1)  (to)

— < ti,to >Tand x € U.
(1+ta—1) (1_|_t2a—2) (1+to¢—1) (1+t2a_2> £ forﬂlny 1,02 = ana x
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3.2 Existence and uniqueness result

Lemma 10. If I'(y + 1) # X, Then the fractional initial value problem is equivalent to the
following integral equation:

x(t) :_/0 (t—s)" f(s,2(s))ds + m/o (t =) 2g(s,x(s))ds
¢
6= s stsatoas (34

N Ayt [ 1
Ciy+1) =X [T(y+1

b | €= ot a(o)as].

Proof. Let z be a solution of the fractional initial value problem (3.3) in view of Lemma El , we
get:

a(t) = I3, [t (b)) + )7 gt 2 ()] + cat? ™ + et 2 (3.5)

Then, the first initial condition 2(0) = 0 gives immediately ¢, = 0. Furthermore, by applying
the operator DJ; " on both sides of (3.5) with using number four in property and the second
initial cond1t10n Do+ z(0) = A fo s)ds, it follows that:

3
)\/ x(s)ds = c1T'(7). (3.6)
0
Therefore, from and we obtain:

13 s
w05 | [ = Ut + B (e () aras

13
—l—)\/ c187 s,
0

Using Fubini’s theorem, (3.7) can be written as:

o {F(v) - 3@} - ﬁ /O 5 / E(s — ) [f(ra(r) + 1) g(r,2(7))] dsdr.

Some computations gives us

)\’}/ I 1 —1

(3.7)

Consequently,
o(t) =13, f(t.2(0) + 12 g (¢, (1)

Ayt SR 2y
T e U F(E6a(©) + I g(E ()

1 t -1 t Con
Ry J, = ey [ =t 63)
Aytr—L 1 ¢ .
i Ly +1) = A {F(v +1) /O (€ —8)"f(s,2(s))ds
¢
gy . (€= o x(os).
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Conversely, in view of Lemma [|and by applying the operator Dj, on both sides of (3.4), we
find

Dy.a(t) = D}, {ﬁ =7 s atonas + g [ =9 Rts.ateis

= f(t,2() + I3 gt x(1)).

Now we are substituting ¢ by 0 in integral equation (3.4), we have z(0) = 0.
By applying the operator I, ” on both sides of (3.4), we have

9y Ayt 1 ¢
Iy (t) =3 e +Z) ) [FW gy /O (€ —s)"f(s,2(s))ds
3
+ﬁ/o (€ — s)zw_lg(s,x(s))ds] .
Then, by substituting ¢ by 0, we get
12772(0) = 0. (3.9)

The last step, we are applying the operator DJ; ' on both sides of (3.4), substituting ¢ by 0, and
using the result[3.9) we get

1 . M (7) 1 ¢ &)Y
D320 - e e | (€ o st
&
bra | (€9 s ot
_ A(v+1) [ (¢ (s _Dglll’(O)SH ]gf’m(O)S%,y s
T T(y41) =\ /0 <<> I'(7) T =1 )d]
AC(y+1) [ f¢ D} (0)

Ty +1) - /0 R TerE vl

Then
3
D} 'x(0) = )\/0 x(s)ds.

The proof of Lemma [10]is now complete. O

Our first result concerns the study of the existence and uniqueness of the solution of the
problem by using Banach'’s fixed point theorem [I.1.T} For this fact, we will need some
assumptions about the functions f and g previously defined.

(H1): There exist two nonnegative functions ¢, 1) which satisfy

¢i(t) = (L+07") (L +772) o(t), 41 (1) = (L +771) (L +77%) (1),
with ¢y, € L'(J) such that:

|f(t,[)3)—f(t,y)|S¢(t>|£€—y|, for tGJ, $,yER,

23



and
lg(t,x) — g(t,y)| < Y(t)|z —vy|, for teJaxyekR.

H2): M= [~ ft,o)\dt<oo, fort € J.
(H3): N = ["|g(t,0)dt < oo, forteJ.

Remark 3. For 0 < s <t, t € Jand 1 < v < 2, we have

(t—s)t - (t—s)t 1 1
1+t (1422~ 1+t — 14+t 7

and
(t _ 8)2772 (t _ 8)2’\/72 t2')/72

< <1
1+t (14+t272) = 141272 = 1 422

Theorem 3.2.1. Let I'(y + 1) # X{". Assume that the assumptions (H1), (H2) and (H3) hold. If

1 A§ ) ( 1 Ayt )
+ vyt + vy < L
(e * e ere ) o (v = * e e Ml
then the fractional integro-differential problem (3.3) has a unique solution in X on J.

Proof. Firstly, let use define an operator 7': X — X by

1 t -1 R t e
Ta0) = g 6 s+ iy [t
Ayt 1 ¢ .
+F(’Y +1) = A\ {F(y +1) /0 (€ —8)7f(s,2(s))ds
3
+—F ;7) /0 (€ - s)2v—lg(s,x(8))ds} ;

and consider the subset
B, ={zeX: |z|x<r},

where r is a strictly positive real number chosen so that:

1 AE? 1 Ayt
- (0 * rerr=seae) Mmoo e )

o 1 AyEY 1 )\752 —1 )
(6 s oaeesn) oo + (@ =5 * T erras) Milo)

Now, we show that the operator 7" has a fixed point in B, which represents the unique solution of our
problem (3.3) . So, the proof is down in two steps.
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Step 1: We will show that 7'B, C B,. So, by exploiting Remark@, we get foreacht € Jand x € B, :

Tz(t)]
(14 -1 (1 +2-2)

1 t 1 t
<t | ) = 16 0lds + 55 [ 1o

1 t 1 ;
iy 1y 19065060 — a0 + - [ ot 0
Ay

1 ¢ y i
e < e €9t - f(s. 0

1

76—!988#5—827183?8—88
g €= I 0 + g [ (€= 9P gt a(9) - a(s.0)la

71 ‘ — )2 g(s S
Fry (€ 9P ot 0)lds
M

L t s)||x s 7% ds + ms
< [ 6l (577 () a2

t
o | eOlells (4 (14 as

M- 1)
¢
(o +A1¥ 2 {Fwi ) /0 Eo(s)lllx (L+5771) (1+577%) ds

+\F

&M 1 f - -1 2y—2
Mo i L €Ol (1457 (1 0 ds ¢

é2fy—1N
I'(27) ]

! A&
= [(F(W) TG+ A8 To+ 1)> 1910l 1)

! Ayt
+ (P(QV - 1) + |P(’y + 1) — /\§7| F(ny)) ‘leLl(‘])} T

1 AEY 1 Myt
" (rw) MINCES vy em 1>> M (F(Zv— DACEDE wrm)) N

Therefore | 7X || x < r, which means that T'B, C B,.
Step 2: We will show that 7' : B, — B, is a contraction. From assumptions (H1), (H2), (H3) and
Remark it follows that for any =,y € B, and each t € J :
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[Ta(t) — T(y)|
(1+-1) (1 +21-2)

1 t
<ty 1t = s uteids +
Ay

5 [ st sl s s

1 3
v+ 1) — x| ~ [p(wrl)/o (€ —8)7|f(s,2(s)) — f(s,y(s))|ds

1 t - -
<o [ ol —allx (L4770 (15072 ds

+|F

1 —
—f‘w/ (€& — )27 1|9(S,$(8))—g(s,y(s))|d8:|

" IW/O Y(s)|z —yllx (1+8771) (1+5272)ds

A I 3 B § »
N Agv|x[ H1/¢>(S)Ilw ylx (145771 (14 52772) ds

527 1 _
/¢ Mz —yllx (1+s771) (1+52772) ds

(2y
1 Avé
: [( NORE (’Y+1)—)\§7|1“(7_|_1)> 1611 ()

1 M€ '
+ (1“(27 —1) + Ty +1)— )\gﬂr(%)) H%Hpu)_ |z —y|lx-

From (3.10) , we conclude that T is a contraction. Then by Theorem a unique point z € X exists
such that 7'z = z. It is the unique solution of our IVP (3.3). O

Example 6. Consider the following ordinary initial value problem:

yo (L) (L4 8) +sin(a(t) | (1 1+s+]a(s)]
Ot e e (3.10)
, :
0)=0 "(0) =2 ds.
2(0) =0, (0) =2 [ als)as
The problem is a particular case of withy=X=§=2
(14t (1 +¢?) +sinx R
90 = i are 0 0 8(1+1) (1+2)°
Forte J, x,y¢€ R, wehave:
1 1
a1l < gy aeep "~ U= ae e
lg9(t,z) — g(t,y)| < 8(1+¢)3(1+2) [z =yl ()= 8(1+1)3(1+12)
Then, 1
o1(l) 8 (1+t2) i) = 8(1+ )2’
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with

T 1
||¢1HL1(J) = 1_67 ||w1||L1(J) = g’
. o 1 o 1 Gl
t,0)dt = [ o pmdt < f it =5 <
fo |f( ) >| fO 8(1+t2)2 —f(] 1+t2 9 o0,
t.0)ldt = ——dt = - < 0.
fo |g(, )l fo 8(1+t)2 8 &0

In addition, a simple calculation gives:

(75 + s ) bl
L(y) T +1) = [0y + 1)) D
1 Ayt 10087 + 1200
1 B — 1
* (F(ny —1) * IT(y 4 1) — A&7|T(27) lallzee 6912 =

Therefore, all assumptions of Theorem |3.2.1|are satisfied. consequently, the problem has a unique
solution in X on J.

3.3 Second existence result

This section is devoted to the study of existence of solutions for the problem using Kras-
noselskii’s fixed point theorem. For the continuation of our main results we need some addi-
tional assumptions.

(H4) : T(vy+1) > X

(H5): There exist two nonnegative functions x,n € L*(J) such that forz € Rand ¢t € J

[ F(t o)) < p(@),  [g(t,x) [<n(t)

Theorem 3.3.1. Assume that the assumptions (H1), (H4) and (H5) hold. If

Ay g

¥ 527—1
Ciy+1) =X [T(v+1)

1 1 1, 3.11
I91llsc) + Ty rllen | < G40

then, the fractional integro-differential problem has at least one solution in X on J.

Proof. First, we will transform the problem (3.3)) into a fixed point problem Tx = x, where 7' is
the operator defined above. So, before starting the proof, we decompose 7" into a sum of two
operators P and () where

Pz(t) = ﬁ/o (t —8)" 1 f(s,2(s))ds + ﬁ/o (t —8)*2g(s, x(s))ds, (3.12)
and
= Mt ! 5 —5)7f(s,z(s))ds
Q) 55 [ (€ o o .
c :
Fr [ (€= 9P ot ao)as].

27



Now, our existence result will be discussed in several steps
First step: We define the set

G ={reX: |z <p}
where p is a positive real constant chosen so that

1 AvEY
02 (505 * T e 1) e

L Ayg
" (F(27 - 1) + (F(’y —+ 1) _ /\57) F(Q,Y)) ||77||L1(J)7

and we show that Pz + Qy € Q,. So, for x € , and t € J, we have

P
(1|_|_:r(—))—i(_1th2W 5 <T / | f (s, 2( \ds+ / lg(s,z(s))|ds

1
JrF(7+1) Y { (7+1)/0 (€= s)7[f(s,2(s))|ds

1 ¢ 27—1
Fig €9 |g<s,a:<s>>|ds]
1

t 1 t
<5 | s+ = [ ntsas

)\’y 57 3 527—1 ¢

" Cy+1) = XY {N’Y 1) /0 p(s)ds + T(27) /0 n(s)ds}
(16 e ) bl
T(y) ' ((y +1) = Ae)T(y +1) ) "D
_|_

1 Ay
(F(% —1) i (T(y+1) — A&) F(27)) Imllzr ey

<
<p.

Thus, |Pz + Qy||x < p which means that Pz + Qy € Q

Second step: () is a contraction on €2,. From the definition of operator @), we have for z,y € Q
andt € J

|Qz(t) — Qu(t)]

(14+t-1)(1+t272)

13
St e L € (o) - s o
1 3
+m/0 (5 - 3)2W—1|g(s,1}(8>> — g(s7y<5))|d3:|
M

52 v—1
< .
St [ el + g Wil | o = sl
Hence, from (3.11) it follows that () is a contraction on 2

Third step: P is completely continuous on €2,. Then we show that (P<2,) is uniformly bounded
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(PS,) is equi-continuous and P : Q, — Qp is continuous. For z € Q, and ¢t € J, we have:

|P(t)]
(1+ 1) (1422 §F7 |fSI |d8+ |gsx )|ds
1
< T/ N\ PN 1
< sl + gz = )unuL

Then, (PS2,) is uniformly bounded.
Let I C J be a compactinterval and t,,t, € J with ¢; < t5. Then according to Remarkwe have
forany z € Q, :

Pz (ts) Pz (ty)

(L+637 )@+ (1+7) (1 +677)
! / T oS s a(s)lds

PO oy (L83 (1+8777)
o [ o
+ﬁ /0“ (1+t(’§21; fl):tlt” ) (1+t(1’7t11; 51):#’7 2)] £ (s, x(s))lds
+ﬁ 0“ (1+t(;21; (81)1;” %) B (1+t}1)1(1+t2” 2)] l9(s, 2(s))lds
< o [ el s [l (o
ol (1_+-;§E?;-€fi;127 7 "(1_+-;§i?;_€fiil2v 2)] s wls))ids
(ta —s)"~ (h— )"

+—F(2j_ ¥ / 1 ] l9(s, 2(s))|ds.

Note that for any = € Q,, the functions f(¢, z(t)) and g(¢, z(t)) are bounded on /. Then it is easy
to conclude from the last inequality that (P2,) is equi-continuous.
Letz,,x € Q, (n =1,2,...) with ||z,, — z||y — 0 as n — +o00. Then, we have:

A+ O+ Q0+ (+27?)

Px,(t) Px(t)

| o (e T )

<o [ 1 G = FsaoDlds + i [ o siao) = oo, (60) ds

1
< (F< ol + =5 il ) low =l
So, ||Pz, — Pz|y — 0 as n — +o00. Consequently, P is continuous. Therefore, P is also
relatively compact on €2,. Owing to Arzela-Ascoli’s Lemma (1} it follows that P is compact on
€2,. Then by Krasnoselskii’s fixed point theorem the operator P + () has a fixed point in
€1,. Finally, we deduce that the problem (3.3) has at least one solution in X on J. O
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Example 7. Consider the following IV P of fractional integro-differential equation:

1o (T4 4t%) — 1 +sin(z(1))
Daa(t) = 8(11+ PETESE
(1) —s 2+8—1+sin(z(s)) (3.14)
- f‘)tf ST e
2(0) =0, Dg.x(0) =3 fo
We have: v = 3 X =5, and £ = 1
C (14t)(14#) —1+sinz _ t’4t—1+sinz
st =arrare 0 (ST nar e
ForteJ, x,yeR
1 1
|f(t,£L'> - f(tay)’ < 8(1 —|—t) (1 +t2)2‘x_y‘7 ¢(t) - 8(1 —|—t) (1 +t2)2>
t2) — g(t,y)] < ol U(0) = g
lg(t, ) = g(t,y =R+t 8L+t (1 +12)
Then, ) . )
m
¢i1(t) = ST Pi(t) = S0 1011l 1) = 6 11l 2y = 3’
F(V—l—l)—)\@:F(g) —%:?’\/?T‘%o,
t 1
|f(t,z)] < W = u(t) € L(J) with ||pl| sy = 16’
1 1
lg(t,2)| < SU+2 =n(t) € L'(J) with ||z = 3
Furthermore
Ay " &t _ 3 Vo1
e (o Pl tagolee] = 2= (3 + 1)
~ 0.19<1.

Finally, all assumptions of Theorem[3.3.Tare satisfied. Hence, the problem (3.14) has at least one solution
in X on].

Generally, in this example X and £ are chosen so that the assumption is satisfied. Then by a simple
computation, we get

24/T
48+ V/m)E2 + 3¢2

= (). (3.15)

24
For instance, if £ = 1, we find X < 35 +\i:/_ ~ 1.0106. So A = 3 satisfies (3.15).
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Figure 3.1: The set of points ({;\) € R? satisfying (3.15) is the area of the plane between the
curves A = 7(¢) and the abscissa {-axis A = 0.
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Chapter 4

Some results for initial value problem of
nonlinear fractional equation in Sobolev
space

4.1 Introduction and Preliminaries

In [32] A. Guezanne-Lakoud et al. investigated the existence of positive solutions in a Sobolev
space for the following Riemann-Liouville fractional boundary value problem

Dy x(t) + f (tz(t), D) x(t)) =0, 0<t<1,

t—0

lim ' Cx(t) =0, i =2,..,n, o(1) =Y _ Mg x(n),
k=0

where Df; is the standard Riemann-Liouville fractional derivative of order a, n — 1 < o < n,
n>4,0<~v<1land Ig+ is the standard Riemann-Liouville fractional integral, f : [0,1] x R*? —
R;. In this chapter we concentrate on the existence and uniqueness of the solution for the
following initial value problem

Dy x(t) = f(t,x(t), DS a(t)), t € J,

Dot (0) =z, I27%(0) = a4,

where 79,7, € R, 1 < a < 2, Df, is the Riemann-Liouville fractional derivative of order a and
f:J xR —R.

To make our problem appropriate for the theoretical work, first we transform it to an integral
equation, then by the Banach contraction principle we prove the existence and uniqueness of
solution in special space which is a weighted Sobolev space for J = (0, +00) and finally we use
the Schauder’s fixed point Theorem to establish the existence of solution in a Sobolev space for
J=(0,1).

From [37], we denote by L, ,, the space of functions f with an exponential weight w > 0 on R
by defining the norm as follows:

+oo
Lyo(R) = {f Nl :/0 o (1) dt < oo}.
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From [35], we define the fractional sobolev space as follows:
Wi 0,1) = {f: feL'0,1), D), f € L'(0,1)}, 0<~v<1,
equipped with the norm

£l = 1 1[er = 1DGs Fllzs-

From [37] and [35], we can define the following weighted fractional Sobolev space :

W2 (RY) = {f: feLiu(RY), Dj.feLi (RN}, 0<y<l
Lemma 11. W, (R*) is a Banach space endowed with the norm

1Fhwt, = 1o + 105 flne

Proof. The proof of a above Lemma is obvious, using [37] and [35].

(4.1)

(4.2)

(4.3)

]

Lemma12. Letk > 0, 3 = a— land F(t,x(t), D’z(t)) = f(t,z(t), D0+x( ) — k’Dmx( ). Then z is

a solution of the Cauchy type problem :

{D&ﬂﬂzf@xwiﬁfﬂmiel
D' (0) = o,  IF“x(0) = my,

if and only if x is a solution of the Cauchy type problem

DY a(t) = ekt/o F(s,2(s), Df.x(s))e " ds + zet.
I'P2(0) = ;.

Proof. We have

/ D&, x(s)e *ds = /tf(s,x(s),Do‘_lx(s))e_ksds.
0
Using the integration by parts, we find
Do a(t)e M = /Ot [f(s,2(s), DS a(s)) — kDS a(s)] e *ds + .
Then,
DY a(t) = et /OtF( 2(s), DY, x(s))e " ds + zoe™.

Conversely, we replace t by 0 in (4.5]), then D0+x(0) = .
By (4.5)), we get

t
Dg+x(t)e_kt = / F(s,x(s), D€+$(S))€_k8d8 + xo.
0
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Therefore,

Dfa(t)et = Dfa(0) = [ Fls.als), Dals))eas.

Hence,

0

Then

/ Dgflx e kods = / f(s,z( DO+$( s))e e ds.
We replace 3 by a — 1, we get

Dg.a(t) = f(s,x(s), Dy7'a(t)).

Which completes the proof.

/ l{;D0+m( s)e _k5d8+D0+x() —ht 0+$ / f(s,x( D0+x( s))e Fds.

O

Lemma 13. x is a solution of the problem (4.5) if and only if x a solution of the following fractional

integral equation

(1) :QAu—ﬂWEWH@ﬂ—w»F< 2(s), DP, o(s))ds

T
ot By g (ki) + (;)
Proof. Let x be a solution of the problem (4.5).
We have
I'Pz(0) 5
1. D3at) = 2(t) =

In the other hand, from equation , we have

D) = o [ €=

« [e’” /O " (s, 2(s), Dy a(s))e *ds + e | dr.

By substituting in , we get

() = ﬁ/o (t— 7)Ptehr /OTF( 2(s), D, a(s))e*dsdr

I
+1 +xoekt +
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Using Fubini’s theorem and property [2], we obtain

x(t) = / / (t — 1)P b dr F (s, 2(s), D, x(s))e " ds

1'42(0) 5
r(5)

_ / (t = )’ Bypan (k(t — ) F(s, 2(s), Djyo(s))ds

+aot’ By gy (kt) +

+17° +.7306 "y

IN(E))
Conversely, by @), we have
x(t) = /O(t—S)BEwH(k(t—S))F( z(s), Dy, a(s))ds

X
taot’ By g (kt) + ——t7

o)
— L ' — T ﬁ—lekT " T —ks sdT
= 7 | = [ FGsiats). Dfats)e s
+15 wgekt 4 L 451 (4.10)

L'(5)
In view of Lemmaand by applying the operator D7, on both sides of (4.10), we find

t
D0+x( )= ekt/ F(s,x(s), D0+x( s))e " ds + zoet. (4.11)
0
By applying the operator I; % of (4.10), we get

t
/ / (s,2(s), Dy, x(s))e _ksdsdT—i-/ zoe"Tdr + ).
0

We replace t by 0, we obtain

[éjﬁx(O) = T4,

which completes the proof. O
We introduces the following assumptions :
(H1)
F(.,0,0) € Ly, (Ry). (4.12)
(H>)
(Bt a,2") = F(tyy)| < Ll =yl + 2" =), L>0, (4.13)

fort € J = (0,400), and z,y, z*, y* € R.
(Hs)

F(.,z(.),y(.) € L}0,1). (4.14)
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4.2 Main results

4.2.1 Existence and uniqueness results in a weighted Sobolev space

Theorem 4.2.1. Let k < ky. Assume that the assumptions (H,) and (Hs) hold.
If

L(k® +1
k;ﬁ((kl - k;)) <1 @15)
then the problem (@) has a unique solution on V[/,f1 7,10+ (Ry).

Proof. Firstly, we define an operator 71" : Wlfl ”10+ (Ry) — W,fl ’}0+ (Ry), by

Tx(t) = /0 (t — ) By g1 (k(t — 5))F(s,2(s), Dg+x(5))ds

PE i p—1 4.1
+$0t 17,3_,_1(]{%) -+ F(B>t s ( 6)

and consider the subset
71 .
By ={x € Wi (Ry) : [lallyyor - <7},
1

where r is a strictly positive real number chosen such that

(M + |z )1 +E7) |

1B (ke — ) W,
- L(1+ kP) -
kB (ks — k)
with M = ||F(¢,0,0)]1 -
By (4.11), we have
t
D§+T:L‘(t) = ekt/ F(s,x(s), D€+x(s))efksds + o™ (4.17)
0

Now, we show that the operator 7" has a fixed point on B, which represents the unique solution

of the problem (4.5).
First step: We have to show that T'B, C B,, for each ¢t € R, and for any = € B,.
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Let x € B,, we have

[Ta(t)] < /0(t_5>BE1,B+1(k(t_3))’F<3>x( ), Dyeae(s))|ds

X _
+|20[t? By gy (Kt) + %tﬁ 1

[ =9 Bisia b = ) IP(s.2(5), D) = Fls,0.0)1ds

IN

+ / (t = $)° By i (k(t — )| F(5,0,0)|ds

T _
o[t By gy (Kt) + %tﬁ 1

¢
/ kPRt F (s, x(s), Dg+x(s)) — F(s,0,0)|ds
0

IN

! |24
+/ kP9 F(5,0,0)|ds 4 |xo|k~Pert + 5L,

Then
+oo
/ |Tx(t)|e M dt
0

+o00 t
S/ 6k1t/ kPR t=9)|F (s, x(s), D0+a:( s)) — F(s,0,0)|dsdt
0 0

“+o00 t
+ / e M {k‘ﬁ / k<t—8>\F(s,o,0)yds+ya:o\k—ﬁe’“tJr—F"gg)tﬁ—l dt

+oo e(k )t
/ dt|F(s,z(s), Dg+x(s)) — F(5,0,0)|e"ds

oo ,+00 k kl)t
/ dt|F(s,0,0)|e **ds

/ (k=k1)t gy 4 |57(51|)/ B—Lo—kt gy

< / mrm a(s), Dy a(s)) — F(s,0,0)[e1ds

+
+
|

+/+Oo R, 0,0) e s + Al o]
o KP(ki—k) kP (ki — k) kf

< [ s (1)1 + DGt e

[ g P00 e
. K=k &Y Wk — k) K

< ey + s + e+ 2]

= 5Bk — k) T W — k) T Rk — k) R
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and

Then

Therefore,

Thus, || Tz(t)

|’W15£,10+

DRTalo)] < e [ 1P (sa(s). Do)l ds + ol
< & [ 1PGsa(s).Djua(s) = Pl 0,0 ds

t
—l—ekt/ |F'(s,0,0)|e " ds + |xo|e™.
0

—+o00
|03 ratole

/ olh— kl)t/ |F (s, z( 0+x(8)) — F(370’0)|6_k8d8dt
0
+00 Feo
+/ bkt / |F'(s,0,0)|e ’“dsdt—l—|xo|/ k=Rt
0

<[ x

—+00
+/ 7 F(5,0,0)]e “hisgg 4 170
0 kl

a(s), Dl a(s)) — F(s,0,0)e*17ds

ky —k

< [ (O 105 s + 1,00
>~ . ]{Zl—k o+ kl_k ) 1,k1

|0

s

LA +#%) (M +Jao) (1 + &%) 2]
T 1 < 1
el = otm —mwe ¥ g, g
o LO+F) (M A lw))(1+ K)o
— kP(ky — k:) kP (ki — k) kP
< r
< r which means that 7'(B,.) C B,.

Second step: We have to show that 7' : B, — B, is a contraction.
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In view of the assumption (H;), we have for any z,y € B, and foreach t € R,
+oo
/ | Tx(t) — Ty(t)|e *tdt
: —+o00 t
<[ et [t- 9 Bl - )
0

x|F(s,2(s), D2 a(s)) — F(s,y(s), Dl y(s))|dsdt

! T s — F(s s
Ty / e | F(s, 2(s), D a(s)) — F(s,y(s), D2 y(s))d

<mim e (e w0l 1Dx(s) = Dyt s

<Ly
— || — 1,
- k‘ﬂ(l{il — k) Y Wk/Bl,O'F

and
—+o0
/ |DS Tx(t) — DY, Ty(t)|e "dt
0
< / el / [F(s,(s), DE.x(s)) — F(s,y(s), DE.y(s)) e dsdt
< [T e [ (1) = o)1+ D) — D)) e i
<L oy
=k YWl
Then

L(1 + k%)

|Tx — Twaﬁ,l+ < Wﬂx ?J”W/B'l+

(4.19)

By exploiting [) it follows that 7" is a contraction. By Banach’s fixed point theorem [I.1.1]
there exists x € Wk o+ (R4) such that Tz = x, which is the unique solution of problem . O

4.2.2 Existence and uniqueness results in a Sobolev space

Theorem 4.2.2. Assume that the assumptions (Hy) and (Hs) hold for J = (0, 1), then the problem

has a unique solution in W51(0, 1).
Proof. We define an operator T': W51(0,1) — W#1(0,1), by
t
Talt) = [ (09 Bugaa k(e = ) F(s,(5), Dfy(s))ds
0

T 4
+x0tﬁE175+1(l€t)+Tg>t5 1

Step 1: We will prove that T is continous in W51(0, 1).
Let 2, — x in W51(0,1). Then

1 t
\Ta - Tally < //(t—s)BELBH(k’(t—s))
0 0

X|F (s, zn(s), Dz, (s)) — F(s,x(s), D x(s))|dsdt.
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By Fubini’s theorem, we get
| Tx, — Tx||
1 1
< [ [ =P Bupathie - o)
0 s
X|F(5,a(s), DPa(s)) = F(s,a(s), D?x(s))|ds

< / (1= )" By pealk(L = 8))| (s, 20(s), D’2a(s)) — F(s, a(s), Da(s))|ds
< By pia(k) / [F(s,2a(s), D, (s)) — F(s,2(s), D’a(s))lds

< Bisal®) [ 1 (1a(6) = 2] + D0, (5) — D)) s
< LEy gio(k)||an — x([wsa — 0.
On the other hand we have
| DTz, — DTz
< /1 M /t |F(s,2n(5), DPx,(s)) — F(s,2(s), DPx(s))|e " dsdt.
0 0
By Fubini’s theorem, we get
|DPTx, — D°Tx||

1 16’“ s,2n(5), DPx,(s)) — F(s,2(s), D 2(s))|e *ds
S/O/S dt|F(s, xn(s), D"wn(s)) — F(s,x(s), D x(s))|e™d
§/0 %W(s,xn(s),Dﬁmn(s))—F(s,x(s),Dﬁm(s)ﬂds

g/o T L (Jau(s) — (s)] + |DPaa(s) — DP(s)]) ds

ek —1

L||z, — x|lws1r — 0.

Step 2: We consider the subset
D, = {z € WP0,1) : ||lz||wer <7},
where r is a strictly positive real number chosen such that

ek —1 |21 |

(Buana(h) + <12 ) OF 4 ool + s <o

with M’ = |[F(.,z(.), D?z(.))||:. We will show that TD, C D,, for each t €]0, 1] and for any
x € D,. We have,

Tl < [ [ =5V Bupual(e = )IF(s.(5). Dl s

1 1
8 |21 / B—1
‘|"Ilf0| /0 t E175+1(kt)dt + —F(ﬁ) ; t dt.
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By using Fubini’s theorem, we get
1 1
[Tals < [ [ (6= P Brana(b(t - )t F(s.a(). Da(s))lds
0 Js

1 1
|931|/ _
t°F kt)dt + —— | P dt
+ lool [ B+ |

/0 (1= )" By paa(k(L - )| F(s,2(s), D(s))|ds + 20| Ey g (k)

|1

rg+1)
< By gaa(k)|F (s, 2(s), D"x(s))|| + [xol By pra(k) +

IN

+

|1

Lpg+1)

|l‘1|

< Erpea(R)M' + |0l By pya(K) + TB+1)

On the other hand we have
1 t 1
|D°Tz| < / ekt/ |F(s,2(s), D’x(s))|e **dsdt + |x0|/ et
okt 8 —ks e —1
< dt|F(s,x(s), D x(s))|e™"*ds + |xo|
P ek —1
< —IF( z(s), D x(s))lds + |wo| —

ek —1

IN

e _1/ |F'(s, x( Pa(s))|ds + |xo|

IN

’fﬂO\

k

Therefore,

ek —1 |x1]
T < E N _—
ollwss < (Bupsalh) + 1 ) OV +1el) + s

< (4.21)

Then, || Tx(t)||ws: < r which means that 7D, — D,.
Step 3: We will prove that 7'D, is relatively compact in W#1(0, 1).
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Let x € D,, we have
1
/ Ta(t + h) — Ta(t)|dt
0
1
< / / (t+h — )P By o (k(t+ h — 8))|F(s, 2(s), D%a(s))|dsdt

/ / (4 b= 8) Bupia(k(E + h— ) — (t — ) By g (k(t — 5))
x| F(s,z(s, D?))|dsdt

+ZA [0l (¢ + 1) By paa (k(t + h)) = ()" B (k(t)dt

|21 ! B-1 _ 4B-1|4
+Fw)Ayu+h) 7= dt.
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By Fubini’s theorem, we get
1
/ Ta(t + h) — Ta(t)|dt
0
1 S
< / / (t+h— ) B par (k(t+ h— $))dt| F(s, 2(s), D%a(s))|ds
h s—h
h s
/ / (t+h— )P Ev g (k(t + b — $))dt| F(s, o(s), D?x(s))|ds

/ / ((t+h—8) By g (k(t+h—35))— (t—5)°Ey g1 (k(t — s))|dt
X|F(s,z(s), DPx (s))|ds

—l—/o 20| |(t + 1)’ By gar (k(t + h)) — (1) By g ((t))|dt

)Pt — P at

1
< [ BB s (k) F(s,2(s), D (o) Jds
h

+ / (W71 By ga(kh) — (h = 5 By s (k(h — )] [F(s,2(s), D7a(s))|ds

+/o (L4 =8B ga(k(l+h—s) — (1= 5) " Eyga(k(l - s))

_hﬁ+1E1,B+2(kh>:| |F<S,LE‘(S, Dﬂ)>|d8
+| 2o [(1 + B)PT By pio(k(1 4+ ) — By gia(k) — h”8+1E1,/3+2(kh)}

N
NGRS (A% — (1+h)’ +1]

< WP E gio(kh / |F(s,2(s), D’x(s))|ds
+[A+h = Eigak(l+h =) — (1 - &) T Eiga(k(l —€))

—hPH By oo (kR)] / |F (s, 2(s), DPx(s))|ds

+

+ 2ol [(1+ h)PT Ey gya(k(1+ R)) — By gya(k) — RO By gyo(kh)]
1]

NEESY [A° — (1+h)’ +1]
< BPYYE) gyo(kh)M'
[(1 +h—8E, 6+2< (1+h=8) = (1= Ega(k(1 =€)

B pra(kh] M
+|5Eo| [(1+ h)H By ga(k(1 4 ) — By pya(k) — 7T By gyo(kh)]

|71
m[h —(1+h)’+1].

+

_|_
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Where ¢ € [0, 1] such that
(14 h = O By gia(b(1+ b — 1) — (1= ) By o (k(1 — 1)

sup
te(0,1]
—hP T By g o (k)]
=[(1+h =& Eigak(1+h—¢) — (1 =& By gia(k(1 =€)
—hPT By 5o (kR)]

Thus fol |Tz(t + h) — Tx(t)|dt — 0 when h — 0, By LemmaT is relatively compact on D,. So,

by Theorem [1.1.2] T has a fixed point z in D,, which is the solution of problem ([.5). For the
uniqueness, we suppose that z; (t), z2 (t) are two solutions of problem (4.5) We have

21 (£) — 2 (8)
< / (t — ) Ey s (k(t — )| F (s, 21(s), D2 (s)) = F(s, aa(s), DPs(s))|ds

< LE, (k) / (t = ) (|1(5) — 22(s)| + |DP21(s) — DPals)]) ds,

and
|DPx1(t) — DPms(t)|
< oM /O B (s, 21(5), D1 (5)) — F(s, ma(s), DPa(s)) e~ d
< Lk /Ot (J21(s) — 2a(s)| + |DPa1(s) — DPs(s)]) ds,

thus

|z (t) — 2o ()] + |D5x1 (t) — DPx, (t)|
< LB p1a(h) / (t = )% (Jas(s) — 2a(s)] + |D%21(s) — DPas(s)]) ds

—|—Lek/0 (Jz1(s) — za(s)| + |DPz1(s) — DPxa(s)]) ds.

Using Theorem we get |1 (t) — 22 ()| + | D%z (t) — Dz (t)| = 0. Then the problem (4.5)
has a unique solution in W#1(0, 1). ]

Example 8. Consider the initial value problem of nonlinear fractional equation

t) + 5Dt (t
Dy = LIy s
Dg‘jlx(O) = Xy, 12_0‘:6(0) = T,

3 .
where o = —, taking k = land ky = 3. Forall z,y € Rand t € R, we have

|F(t,z,y) — Ft,2",y")| < L(lz — 2| + |y — y*]).
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1
Then, the assumption (H,), is satisfied with L = T After some computations, we find that

L(k° +1)

W) a5 <1
KB (ke — k) =

and -
M = / te 3t dt < oo.
0

Therefore, by applying Theorem the problem has a unique solution on [0; +ool.
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Chapter 5

Existence and uniqueness results for
nonlinear integro-differential FBVP with
multiple nonlinear terms

5.1 Introduction

In [47] Ntouyas et al. discussed the multiple orders BVIP with a linear combination of fractional
integrals in the BVCs

{Anglx(s) + (1= X\)Dg2x(s) = f(s,z(s)), 0<s<T,
(5.1)

2(0) =0,  MIJz(T)+ (1 = M)IP2(T) = ay,

where D{ stands for the Riemann-Liouville ""-derivative with € {ay, @} provided that 1 <
a1, a9 < 2 and I is the Riemann-Liouville n'*-integral with n € {1, 52}, a0 € R,0 < A\; < 1 and
0 < Ay < 1. Green’s function for this corresponding problem has been investigated and some
existence results have been obtained using fixed point theorems. Xu, Dong and Li [62] turned
to investigating the existence property and Hyers-Ulam stability to fractional multiple order
BVP

{Ang“x(s) + DPx(s) = f(s,x(s)), 0<s<T,
(5.2)

z(0) =0, Mo Dytax(T) + 15%x(s0) = ao,
where D§ and Dg are Riemann-Liouville fractional derivatives, with 1 < o <2and 1 < 8 < «,
D<M <L0< <L, 0<ag<a—0,a>0,a0cR,and 0 < 59 < T.
Inspired by the works cited above and to continue the study of existence theory in the context
of fractional BVPs, we focus on surveying some results regarding solutions of the following
Caputo-Liouville integro-BVP

{ (MEDgE+ (1= M)I2 )als) = f(s,2(s)) + “Dgigls,als),  0<s<T,
(5.3)

2(0) =0,  NCDJa(T)+ (1 — X ) D3 x(T) = ay,

so that D, is the Caputo n'"-derivative with n € {a1,as, 51, 52}, ap € R and I? stands for

the Riemman-Liouville fractional agh-integral such that 1 < aj,a3 < 2,01 > a3,0 < ay <1,

46



0< )\
here J

<X <1,0< 1,68 <o —azand f,g € C(J x R,R) are two given functions,

|| |/\
= -

5.2 Preliminaries

Before establishing our mian results, we need to prove the following essential lemma.

Lemma 14. [et 1 < ap,ag < 2,0(1 >a3,0<ay<1,0< )\1 <1,0< /\2 < 1,and0 < Bl,ﬁg <
ay — as. Then, the integral equation

)\1_1 ° . aj+ag—1
ph e / (s — )mtorla(e) d

1 s a1
+ T /0 (s — O™ 7€) de

1 ° o al—az—1
e ) MO IOL

/\2<)\1 _ 1) ! _ yoataz—p1—1
M (g + ag — fr) /0 (T'=¢) z(§) d€

x(s) =

—I—Hs{ao—
Ao T s
—m/o (T — &)™~ f(g) dg

o )\2 T o a1—az—1
S ¥ /0 (T — &) sg(¢) de

(=) -1
M (o + g — o

g ac

e [ g g a
M (a1 = B2) Jo
1— X /T et }
-2 [ (g de|, 5.4
e | @O (e a 64
with )
Ao 1= }_
II= + : 5.5
R >
is the solution of the linear fractional BVP
{(AICDS& (L= M) )a(s) = fs) + ODgigls),  0<s<T, 56
5.6
2(0) =0,  NDAz(T)+ (1 - ) DEa(T) = ay,
Proof. In view of the first equation of (5.6), we can write
A —1 1 1 ,
“Dgta(s) = T—Ig2a(s) + —f(s) + —“Dgig(s). (5.7)
A A A
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Taking the " FRL-integral on (5.7), we find

(s) = L) 4 I (5) I () s+ das
S rrearl MR R 0L
el R IRRIGL
T [ = O (e di o+ das,
where d;, dy € R. The first boundary condition of gives us d; = 0, then
o) = e [ (O e e
e O e
i | 6O e de s 53)

applying the n'*-Caputo derivative (n € {1, 2}) with 0 < 1 < a; — a3 to (5.8), we obtain
T
n )\1F(O[1 + a9 —

1 ’ a1—n—1
+m/0(5—5) f(§)d¢

]' ° - a1—az—n—1
e | o

s, (5.9)

“D x(s)

= [ = gmrerae ac

Taking n = $; and n = 3, in the expression and applying the second boundary condition
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of (5.6), we get

a1
)\1F(CM1 + g —

A2 ' _ \ar—p1—-1
e /0 (1— &A1 p(e) de

Az ' _ \ar—az—F1-1 daAs
* M (o — g — 1) /o S gie)de+ L2 - p1)

Qo

o5 | e ac

(1—=X) (M — 1)
M (g + o — o

1—X ' _ A\ai—B2—1
APy / (1= &5 f(e) de

n 1— X
)\IF(OQ — 3 —

[ =gt

! _ \ar—az—fB2—1 d2(1 — >‘2)
= -9 sOd+ T3 610)

Therefore,

Ao(A1 — 1)
M (a1 +ap — By
_ A2 ' _ #\ar—p1—-1
s ) USSR (GET
)\1F(041 —az— 3
=MD
M (a1 + g — 55

dgzn[ag— ) /0 (1 — gymtobily(e) de

[ a—gmmnige ac

[ a—grreiaga

1= [ o
el MR R [GEL
1—A 1
Srxmereers D ACEL A Ol (5.11)

By substituting the value of d; in equation we obtain the integral equation (5.4). This ends
the proof. O

5.3 Basic theorems with illustrative examples

Let J = [0, 1] throughout the paper. Consider the Banach space C(J,R) of all continuous func-
tions with the norm of uniform convergence

|| = sup [z(s)].
sed

49



In accordance with Lemma(14} it is obvious that we can transform our BVP (5.3) to the following
fixed point problem x = Pz, where P is an operator P : C'(J,R) — C(J,R) defined as

Pa(s) = —1—1 ) /Os<s—s>al+a2-1x<s>ds

- )\1F(Oél + Qo

1

5 [ O (e ag

1 ’ o1 —a3—
+ )\1F(Of1 _ 043) A (8 - 5) 19(57 l’(f)) d£
o )\2()\1 - 1) ! _ \artas—p1—1
s {Cbo M (o + ag — fr) /0 1= ' w()dt

—L ' a1 —p1—-1 T
T | 1 om et ae

— A2 ' _ \ai—az—B1-1
AT (o — o — ) /0 (19 g(& x(8)) ¢

(1—=X)M—1) [ oo
AT (g + g — B) /0 (1-¢) Ble(e) de

R S U U ARV
e |- om ) ag
_ 1— X 1  ya1—as—pat N
Alf(al—a?,_ﬁz)/o (1-¢) 9(& =(§)) dg | (5.12)

Therefore, the BVP (5.3) admits a solution equivalent to saying that P has a fixed point.

5.3.1 Banach principle and unique solution

First, we apply Banach’s principle of contraction mapping to prove our result of existence and
uniqueness. To have computations with more convenience and clarity, we use these notations:

1—\ Ao(1 = ApI n (1= Ag)(1 = ADII

- , 5.13
n M(ar+aa+1)  M(ar+a—F+1)  M(ar+as—pF2+1) ( )
1 AoIl (1 —X)II
- + + , 5.14
" MIl(ar +1)  MI(oq =B +1)  MD(ar — fa+1) ( )
1 oIl 1-— 11
2 (1= %) (5.15)

= + + .
B M(ar—as+1)  Ml(ar—as—01+1)  Ml(ag —as—FG2+1)

Theorem 5.3.1. Assume that f,g: J x R — R are two continuous functions subject to the following
two conditions

(Hy): |f(s,2) = f(s,9)] < Orlr —yl,
(Hz): |g(s,7) — g(s,9)| < Oalz —y],

50



fors e J, x,y € R, where O, O, are two real positive constants. If

m + O1mg + O2nz < 1, (5.16)
then the supposed BVP admits a unique solution on J.
Proof. By fixing f* = sup,c;|f(s,0)| and g* = sup,., |g(s, 0)| with the choice R; > 0 so that

R [ 2 + g"ns + ag|
1= )
1 - 51 61772 — 92’)73

where II is the positive constant expressed py (5.5), at first, we show that the image of the ball
Bg, by P is included in Bg,, where

By, = {x eC(JR) : |z| < Rl}.

So, for each = € Bg,, we have

Pa(o)| € Ty |, (1= 07 o) ae

1 1 -
Ny / (1= ™ (1£(&2(€) = F(5,0)] + |F(£,0)]) dg

1 ' aj—az—1
*Xﬁzqta5ﬁ<1—® (19(&, 2(£) — 9(€,0)] +1g(&,0)[) dg

Ao(1—X) ! crtan—B—
+ H[|ao| + Moy + ag — Br) /0 (1—=&™* Ha(€)| d¢

# 1 _ g\r—pi—
T N =5 /0<1 &P (|F(€2(€)) — F(E0)] + £(&,0)]) dé

)\2 ' a1—az—pF1—1 ~
T NT(a — a3 — By) / (1= &)™ ==Y (Ja(€, 2(€)) — 9(&,0)| + |g(¢, 0)]) d¢
(1—=2X2)(1—N\p)
M (a1 + ag — Bo

1_—)\2 ! _ a1 —fBy— X
* Alr(al—ﬁz)/o (1= HIS(E 2(8) = f(E0)[ +1£(&,0)]) dé

)[:“”‘Qa”“”&‘ﬂxﬁﬂdf

1— i e
T N (o — a5 — B) /0 (1-¢) B (lg (&, 2(€)) — g€, 0)] + 9(€,0)]) dé

51



< |1z [ 1-X) Ag(1— AT n (1—=X)(1 =AM }
- Mg +as+1) Mg +as—061+1)  MD(ag +ag — B2+ 1)

. o]l L (- }
)\1F(Oél + 1) >\1F(Oél — ﬁl + 1) /\1F(Oél — ﬁg + 1)

1 n A1l
)\1F(C¥1 — Qa3 + 1) )\1F(O&1 — O3 — 61 + 1)

(1 —M)II
Mg —ag — o+ 1)

< Ry(m + G1me + Oang) + 2 + g™ns + Iljag| < Ry.

L@l + y>{

T (@] + y>[

:| +H|CLO|

This implies that || Pz|| < R;. Thus P(Bg,) C Bg,. Next, forall z,y € C(J,R) and each s € J,
we can write

1 - )\1 ' ajtaz—1
Pa(s) = Pylo)| < 1y | (1= 077 () — )] ¢

1 ! ar—1
T / (1= ™| £(& () — FIE y(€))] de

1 ' ar—az—1
e [, (- 97 el a(9) sl ) e

Ao(1—Np)
)\1F(Oé1 —+ g — 61

+H[|ao| n [ g iage - ye)ag

A ' _ gy —p1-1 T —
L e / (1-¢) £(€.2(6)) — F(&y(€))| de

/\2 ' a1—az—p1—1
TN — a5 — By /0 (1-¢) P 7Mg(8 2(€)) — g(& y(€)] def

+ AilF;a?iz(;z_—Aéi) /0 (1 =) etz (6) — y(€)] dE

1 - AQ ! _ al—/ﬁg—l m T —Uu
g [ 1= O (e a(€) — u(€ )] dg
1 — X ! ar—az—pF2—1
+ Mg — ag — Ba) /0 =9 i 968 = oG plede

1—X)\ Ao(1 — A)II
)\1F(C¥1 “+ a9 + 1) )\1F(Oé1 + g — 51 + 1)
(1= X)) (1= X)II }

My +ag — By + 1)

snx—yn[
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vl =l -
Rl W Y P I W Y P
1)

L (- ]

)\1 ( 52+ )

1 )\QH

@ _

+ Ol y||[A1p(a1_a3+1) TN —as— B+ 1)

(1= X)II }
+ =|m+61n+06 x —vyl,
M (ar — g — Go +1) [771 172 2773] I vl

which means that ||Pz — Py|| < [m + ©112 + Oans] ||z — y||. Therefore, from it follows
that P is a contraction. Consequently, the Banach principle of contraction mapping ensures
that P has a fixed point which represents the unique solution of our BVP (5.3). This ends the
argument. O

Example 9. Consider the Caputo-Liouville fractional BVP

) 2u(s)| o1 exp(—s)[r(s)
)7 = G T reemmel O T Te0)

Y

4C % 172
<5 D0++5]0+
(5.17)

z(0) =0, 19D8 x(1) + 3DE x(1) = 5.

4
In the present example, we have oq = g € (1,2], ay = i € (0,1], ag = %l € (1,2, \y = R € (0,1],
1 1 1
Mo=1€01),f=c€(01]f=1;€(0,1]a0=5T =1 and
B 2|z| _exp(—s)|z]
169 = eyt ren@m) 9" i
Then
2|z| 2|y| ‘
s,x)— f(s,y)| = —
1660 = 50| = | T ~ 5 e
o ] y
(5+9)2|1+exp(s)|z] 1+ exp(s)lyl
< 3 T
— 25

exp(—s)z| _ exp(—s)y|
72 4 || 72 4 |y

lg9(s,2) — g(s,y)| =

IN

1
ﬁ‘x_yL
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2 1
ie O = 25 ™ 0.0800 and Oy = — = 0.1013. A simple computation gives us
™

TN 1-X 17
Him—m*nz—m} ’
1 4
1 15 }
= +
t(2-5) ()
6 12
and
1—X\ Ao(1 = AT (1= X)(1 = AT

= Mg +as+1)  Ml(ar+ar—01+1)  Ml(ag+ay—F2+1)

1 4 1 4
14 —(1——>H (1——)(1——)H
5 4 5 4 5
~4_ /5 1 Y1 75 11 Y1 /5 1 1 ’
r(2aeza1) Ir(fes-—Z41) IT(Saec-o 11
5<3+4+> 5<3+4 6+> 5<3+4 12+)
1 )\QH (1 - )\Q)H
M2 = + +
MD(ar +1)  MI(oqg =B +1)  MD(a; — B2+ 1)

1 1
- 1——-|1II
1 4H ( 4)

. 1 n Aoll n (1 — )\2)1_[
= Mg —as+1) Mg —as—pF1+1)  Ml(og—ag—fa+1)
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Table 5.1: Numerical values of 7y, 12, 73 and I1, for \; € (0, 1] in ExampleEl

A1 € (0,1]

A1 I m n2 73 m + O1m2 + O2n3
0.05 0.9607 21.0209 27.1126 43.4734 27.5946
0.10 0.9607  9.9572  13.5563  21.7367 13.2441
0.15 0.9607 6.2694  9.0375  14.4911 8.4606
0.20 0.9607  4.4254  6.7781  10.8684 6.0689
0.25 0.9607  3.3191  5.4225  8.6947 4.6338
0.30 0.9607 2.5815  4.5188  7.2456 3.6771
0.35 0.9607  2.0547  3.8732  6.2105 2.9938
0.40 0.9607  1.6595  3.3891  5.4342 2.4813
0.45 0.9607 1.3522  3.0125  4.8304 2.0826
0.50 0.9607  1.1064  2.7113  4.3473 1.7637
0.55 0.9607  0.9052  2.4648  3.9521 1.5028
0.60 0.9607  0.7376  2.2594  3.6228 1.2854
0.65 0.9607  0.5957  2.0856  3.3441 1.1014
0.70 0.9607 0.4742  1.9366  3.1052 0.9437
0.75 0.9607 0.3688  1.8075  2.8982 0.8070
0.80 0.9607  0.2766  1.6945  2.7171 0.6875
0.85 0.9607  0.1952  1.5949  2.5573 0.5819
0.90 0.9607  0.1229  1.5063  2.4152 0.4881
0.95 0.9607 0.0582  1.4270  2.2881 0.4042

30 T T T T T T T T T 0.6885

By M+ Ouy +Oan < 1

2F q 0.688 -

M+ Oy + Oy < 1

0.6875 [

L L L L L L ! 0.687 L L L L L ' L L L
0 0.1 02 03 04 05 06 07 08 09 1 0 0.1 02 03 04 05 06 07 08 09 1

A A
1 4
(a) A € (O, 1], Ao = Z (b) A = 5, Ao € (O, 1]

Figure 5.1: Graphical representation of 7 + G172 + G213 in ExampleEl

So, IT =~ 0.9607, n; ~ 0.2766, ny ~ 1.6945, n3 ~ 2.7171 which leads to
m + @1772 + @27]3 ~ (0.687H < 1.

Table[5.1)shows these results. These values are plotted in Fig.[b.1l By using the result of Theorem
we conclude that our BVP (5.17) admits only one solution on [0, 1].
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5.3.2 Existence result based on Krasnoselskii’s criterion

Our existence analysis in this part is a consequence of the Krasnoselskii’s criterion (theorem

1.1.4). For this fact we introduce two operators P, and P, defined on the ball
Br, = {z € C(JR) : |al < Ba},
such that, forall s € J

Pya(s) AL ) /Os(s —g)etealy(g) de

- )\1F(Oél —+ Qi

_ HS)\Q()\l — 1) 1 _ a1 tas—fB1—1

M (a1 +az — Br) /o =4 w(e)de

_ HS(l — )\2)()\1 — 1)
M (a1 + az — o)

1
/0 (1 - g)ortesraiy(e) de,

and

Pya(s) = %@) / (s — (€, 2(6)) de
N m /0 (s — &) g(e, 2(6)) de

+ Ils {CLO — # /1(1 o 5)041761—1]0(5 SE(f)) d£
)\1F<Oél — ﬁl) 0 )
AIF(OQ — 3 — 51
— 1_—)\2 ' _ yar1—p2—-1
ML (B _52)/0 (1-¢) f(& x(€)) dg

_ 1— X
)\1F(O¢1 — a3 — By

| / (1 — &) Pilg(e, () de

| /0 (1 — e)mesalg(e () de.

(5.18)

(5.19)

Theorem 5.3.2. Consider the continuous functions f,g : J x R — R which respectively, satisfy the

conditions (Hy) and (Hs) of Theorem Furthermore, suppose that
(H3): [f(s,2)| < hu(s),
(Ha): g(s, 2)| < ha(s),

for (s,x) € J xR, and h; € C(J,R"), j = 1,2. If ;1 < 1 which is defined in Eq. (5.13), then the

supposed BV (5.3)) admits at least one solution defined on J.
Proof. Put ||h;|| = sup,c; |h;(s)], (j = 1,2). We choose R, so that

|21]| B2 + || h2||vs + TT]ag|

>
2 1-5
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In the first place, we prove that P,z + Py € Bg,. So, for all z,y € Bg,, we have:

Pra(s) + Pay(s)] L= | / (1— )+ 2(6) de

Ml (o + az

1 ! ar—1
M / (1 - &)™ £(&.y(€)] e

[T (1 — Ay) !  eitas—pi—1
MI(ar + as — B1) /0 (1-¢) ()] dg

H(l _ >\2)(1 _ Al) ' A\ artaz—pa—1 T
Alr(a1+a2—52)/0 (1-¢) ()] dé

1 ! al—az—1
e / (1-¢) l9(€, y(€))] g

I M N ﬁ / (1= &5 F (€, y(€))] de

A2 ' _ e\a—az—p1-1
+A1F<a1_a3_51)/0 (1-¢) |9, ()] d¢

e R
SN / (1-¢) £(€.y(€))]dé

L= A ' _ \ar—az—f2—1
S ] 19 l9(6,u(©)] d

< ol 3o =M
= MP(ar+ay+1)  MD(on +ap — B +1)

(1—A2)(1 —A)II
+)\111(041 +ay — [y + 1)]

TN p— = e
! )\1F(oz1+1) Ml (e Bl—i_l) Al (e
1 Aoll
h
+H 2“|:)\11—1<041 —063_'_1) + AlF(OCl _OCS_ﬁl—i_l)
1 — )11
+ ( 2) —}—H|CLO|

Mg —ag — P2+ 1)
< Romp + ||hal|mz + || hellns + Hlao| < Rs.

Thus, ||Pix + Py|| < Rs, which means that Pix + P,y € Bg,. Now, we establish that P, is a
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contraction. For z,y € Bg,, we can write

1 — )\1 ' a1taz—1
Puate) = P € ey /(1= 977 €)= w(6) e

I (1 — A\y) ' _ yartas—Bi-1 B
MT (o + s _51)/0 (1-¢) (&) — y(§)[dg

O =) =) [ e B

e [ [2(6) — w(©)] de
1—X)\ Ao(1 — A)II

)\1F(C¥1 + o + 1) )\1F(Oél + g — 61 —+ 1)

(1 =) = )II }
M (ar +ag — 2+ 1)

< ||:v—y||[

=mllz =yl

Then
|Prr — Pry| < mllz —yl|.

From the condition 7, < 1, it follows that P, is a contraction mapping. On the other side, we
know that the continuity of P, occurs immediately from that of the functions f and g. Also, it’s
simple to establish that for x € Bp,,

[1Poz]| < [lhallnz + [ hallns,

in other words, P, is uniformly bounded on Bpg,. In this moment, we need to show that P, is
equicontinuous. Let

fr= sup |f(s,z)|,andg" = sup |g(s,z)|.
(s,x)eJ xR (s,x)eJ xR

This allows us to write, for any (s1, s2) € J x J where (s; < s2) and for all z € Bp, :

1

[Poasa) = Pl = |35 U< O (e a(6) de

S RCRARGEC) df}

1 > a;—az—1 T
i | [ e e sl dg

_ /0 (51— ™ g€, 2(6)) d&} + (s, — 51) {ao

_L ' _ ar—p1—-1 x
ot -9 e s ag

(5.20)

58



- A2 1 _ \ar—az—F1—1
M (a1 — az — B) /O (1-¢) 9(&,2(€)) d¢
—1_—)\2 ' _ a;—fB2—1
e | o) ag
1-— )\2

" NT(or — a5 — ) /01(1 — )M g(€, (€)) d&] ‘

< Alff(*al) [/081 [(32 — )M — (51— f)al_l} dg
+ [Ny dg}

S1

*

g o aj—az—1 o a;—az—1
+A1r<a1—a3>{/o (2 =9) b d) b

+/52<82 B f)al_a?)_l d§:|

S1
)\21/*

1
+H(52 - 81) |:|CL0| + )\1F(O{1 _ 61) A (1 - §>a1_181_1 dg

+ )\29* /1(1 o 5)04170437,8171 dé‘
M (oar —az — B1) Jo

A=) T s
+)\1F(051—52)/0(1 2 d

(1—X)g" !  ai—az—Ba—1
+)\1F(041 —az — [32) /0 =9 d
f'*
= NT(a)

*
g a]—as3

)\1F(C¥1 — Oég) [82
Ao F*
+H($2 — 81) |:|CL()’ + )\11—‘(61/1 Q—fﬁl T 1)
i A2g” (1 =) f
)\1F(O[1 — (k3 — 51 + 1) )\1F((X1 — 52 + ].)

(1—Xa)g" ]
MI(ar —az — Fo+1) ]

[331 _ 3(111} + Oél—a3]

The second side of the last inequality is not dependent on x and goes to 0 when sy —s; — 0. This
means that P, Bg, is equicontinuous. Thus, Arzela-Ascoli theorem ensures that P is compact
on Bp,. Consequently, our BVIP (5.3) possesses at least one solution on .J. The argument is now
over. 0
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Example 10. Consider the following Caputo-Liouville BVIP

( 15 2 ,
2 sin® s |z(s)|
C’D 8 [7 —
(55°0® + 33 0*)3“"( )= e (yx<s)\ 1
3
+cD2 [ 1 ( |z(s)] )} (5.21)
3exp(s) + 1\ w2+ exp(s)|z(s)] /) |
1 1
3o 22
2(0) =0, 5D§m> SCDga(1) = =,
15 2 3 22 2
NOZU,ZUE]’ZE[U@OQ = g € (]_,2],0[2 = ? c (0,1], 3 = 5 € (0,1], )\1 = 2—3 € (0 ].] /\2 = 5 € (0,1],

1

b= e (1) fo= 1t

22
3 46(0,1],QOZ7ER,T:1,Q7’1{1

o) = (5in)r 900 sty (Frmm)

Hence

sin? s ly
(m+5)* \|y[+1

=yl
lz]+1 |y +1

CETE

IN

1
F|x_y|a

B 1 2|
|9(s.2) — g(s,y)| = 3exp(s) + 1 <7r2 + eXp(S)!l"\)

a 3exp(1$) +1 (ﬂz + e|>z</1‘>(8)\y!) ‘

1 f
3exp(s) + 1|72 +exp(s)z] 72+ exp(s)|y|
1 *
S Z‘CB - |7
. 2 1 .
ie., @ = o O, = T and accordingly,
[ X 1— X }1
I = +
I'2-5) T@2-5)

2 2
z 1-2
5

ey
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and

m=

Table 5.2: Numerical values of 71, 12, 73 and II, for A\; € (0,1] in Example

Al E (O, 1]

A1 IT 1 12 n3 N1 + O11m2 + O2n3
0.04 0.9325 20.0781 27.0324  49.0041 37.8071
0.09 0.9325 9.5828 13.5162  24.5020 18.4472
0.13 0.9325 6.0843 9.0108 16.3347 11.9939
0.17 0.9325 4.3351 6.7581 12.2510 8.7673
0.22 0.9325 3.2855 5.4065 9.8008 6.8313
0.26 0.9325 2.5858 4.5054 8.1673 5.5406
0.30 0.9325 2.0860 3.8618 7.0006 4.6187
0.35 0.9325 1.7112 3.3791 6.1255 3.9273
0.39 0.9325 1.4197 3.0036 5.4449 3.3895
0.43 0.9325 1.1864 2.7032 4.9004 2.9593
0.48 0.9325 0.9956 2.4575 4.4549 2.6073
0.52 0.9325 0.8366 2.2527 4.0837 2.3140
0.57 0.9325 0.7020 2.0794 3.7695 2.0658
0.61 0.9325 0.5867 1.9309 3.5003 1.8531
0.65 0.9325 0.4867 1.8022 3.2669 1.6687
0.70 0.9325 0.3993 1.6895 3.0628 1.5073
0.74 0.9325 0.3221 1.5901 2.8826 1.3650
0.78 0.9325 0.2535 1.5018 2.7224 1.2385
0.83 0.9325 0.1921 1.4228 2.5792 1.1252
0.87 0.9325 0.1369 1.3516 2.4502 1.0233
0.91 0.9325 0.0869 1.2873 2.3335 0.9312

% ~ 0.96 0.9325 0.0415 1.2287 2.2275 0.8473
1.00 0.9325 0.0000 1.1753 2.1306 0.7708
- A Ao(1 = AT (1 A)(1 — AN

- +
)\1F(O[1 + o + 1) )\1F(O&1 + g — 61 -+ 1) )\1F(C¥1 + g — 62 + 1)

2 22 2 22
12 —(1——)11 (1—-)(1——)11
53 5 23 5 23

+

= +
22 (15 2 2 (15 2 1 2 (15 2 1 ’
Zr(=2+24+1) Zr(=24+2-241) =Zr(Z24Z2--41
23 (8+7+) 23 (8+7 8+) 23 (8+7 4+)

e =

N3 =

1 Ao 11 (1 —X)II

+ +
Mg +1)  MT(ar —Bi+1)  MI(ag — B2+ 1)

2
gH (1——)H
1 5 5)
+ +

22 15 22 15 1 22 15 1 ’
“r(2 1) Zr(2-C41) Zr(2-c41
23 (8+) 23 (8 8+) 23 <8 4+>
1 n Aol N (1 —X)II
/\1F(a1—a3+1) )\lf(al—ag—ﬁl—i—l) /\1F(041—Oé3—52+1)
) 2
z 1——-|1I
1 5 ( 5)
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40 T T T T T T T T T 25

35

20
30

M+ Oy + Oy < 1

25

20

| 1 | 1 I L . I 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 04 05 0.6 07 0.8 09 1
A A

(@) A1 € (0,1], Ao = % (b) A1 =€ (0,1], Ao = %
Figure 5.2: Graphical representation of n; + @172 + Oan3 and 11 < 1in Example
By some computations, we get 11 ~ 0.9325, n; ~ 0.0415 < 1, o ~ 1.2287, n3 ~ 2.2275 and
M + O1my + Oanz = 0.8473 < 1.
Also, we get

|f(s,2)] = (;ifj)Q (Ix:ﬂ 1)’

sin? s

CEE

|| sin? s

2]+ 17 (7 +5)

A

5 = hi(s),

1 ||
lo(s,2)] = 3exp(s) +1 (71’2 + exp(s)|z|) ‘

1 || 1
3exp(s) + 1|| 72 4+ exp(s)|z|| ~ 3exp(s) +1
Table p.2) shows these results. These numerical data are plotted in Fig.[5.2] Then, Theorem [.3.2) states
that the Caputo-Liouville BVP admits at least one solution on J.

=: ha(s).

5.3.3 Existence result by using nonlinear alternative of Leray-Schauder

Another result of existence criterion is realized by implementing the hypotheses Theorem
The desired criterion is proved below by the next theorem.

Theorem 5.3.3. Assume that f,g : J xR — Rare two continuous functions which satisfy the following
assumption

(Hs): There are two continuous nondecreasing functions o1, ps : [0,+00) — (0, +00) and two func-
tions ¢y, ¢ € C'(J,R) provided that

|f(s.2)| < ou(s)er(ll2]),
|9(s,2)| < da(s)2([|]]),
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forall (s,x) € J x R; moreover the following assumption holds.
(Hg): There exists a positive real constant Rs so that
191ll1 (Ra)nz + || @2l @a(Fs)ns + Mao|
Ry(1 —m) 7

Then, the Caputo-Liouville BVIP has at least one solution on J, where 11,11, m2,ns stand for the
same constants introduced respectively by the expressions (5.5), (6.13), (5.14) and (5.15).

Proof. Consider again the operator P expressed as (5.12). First, we will prove that P maps
bounded sets into bounded sets in C' (J, R). Let

771<1.

B, = {x e C(JR) : |lz]| < r},

be a bounded set in C' (J, ]R), where r is a real positive number ( > 0). For each s € J, we have:

Prio) < s (1= g de
. ”;(a) / (- (e w(©))] de
. / (1 g gl m(©)] de
T ﬁ /0 (1 - e (e 0(6)) e

+ A2
)\1F(041 —az— b

020 [ s
+)‘1F(041+Oé2—52)/0(1_£) el (6)| dg

| /0 (1 — )mesBg ¢, 2(6))] d

1= g s
R el D R ORI

n 1— X
>\1F(O‘1 —ag — By

< llzllny + lowllor (112 + ld2lle2(ll])ns + Maol

< v+ 6uller ()2 + | 62lle2(r) s + Maol,

| / (1 — €)1 g€, w(€)] de

consequently,
[Pzl < v+ [[éuller (r)n2 + | 62llp2 (r)ns + Iaol. (5.22)
The next property that we should prove it, is that P corresponds bounded sets to equicontinu-

ous sets. Let

fr="sup [f(s,z)], andg" = sup [g(s,z)|.
(s,x)eJX By (s,x)eJ X By
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So, for sq, s5 € J with s; < sy and xz € B,, we have

Pa(sn) = Pato)] < s [ [(sa = g7t = (s - e ag

N /52(82 B §)a1+a2_1 df:|

ot A (R S PR I

N /52(82 _ 5)mfl dg]

*

+ / 2(82 — f)alia:ail d§:| + H(SQ — 51) |:|CLO’

)‘2(1 — >\1)T ' _ yoaataz—pi—1
MI(ar + az = B1) /0 (1-4) 4

)\2f* ' _ ¢yar—p1—-1
*Almal—ﬁl)/o (A-gmde

+ )\29* /1(1 o g)al—ag—ﬁl—l dé—
)\1F(041 — Q3 — 51) 0

A=) =) 1 gt
M (o — a3 — B) /0 (1= &

A=) e
" ) / (1— )t g

)\1F(041 — 3
(1 - )\2)9* /1 —a3—B2—1 :|
+ 1 — g)—as—F—-1]
M (ar —as = 52) Jo (1= .
< |:(1 — )\1)(831+a2 — 8?1+a2) H)\Q(l — /\1)(82 — 81)
- >\1F(041 + oo + 1) /\1F(061 + Qg — ﬁl + 1)

H(l — )\2)(1 — >\1)(82 — 51):|
>\1F(Oél — Q3 — /82 + 1)
(55 —st1) I (s2 — s1) IT(1 — A2)(s2 — 1)
)\1F(Oé1 + 1) )\1F(a1 — 61 + 1) AlF(al — ,82 + 1)
(8217 = s ) ITAy(s2 — 1)
+ g |:/\1F(041 — (3 —+ 1) + )\1P(O[1 — 3 — 51 + ]_)
H(l — )\2)(82 — 81)
M (ar —ag — B2 + 1)

o7

+ I|ap|(s2 — s1)-
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Note that the second side of the last inequality is not dependent on = and goes to 0 when
sy — 51 — 0. Hence, by Arzela-Ascoli theorem, it is figured out that P is completely continuous.
At this moment, we have established the boundedness of the set of solutions for the operator
equation x = (Pz where ¢ € J. Let now z be a solution of the BVP (5.3). With the same

arguments used in (5.22), one can find

]| < llzlln + [|o1ller (llz])m2 + llgalle2 ([l ]) ns + Maol,
that we can also write it as

2~ m) .
||¢1||901(||I||)772 + ||¢2||<P2(||$||)773 + Hjag| —

From assumption (Hs), there exists a constant B3 > 0 so that Rs # ||z||. Consider the set

&= {x € C(LR) : |zl < Rg}.

It was proved that P : £ — C(J,R) is a continuous and completely continuous operator. The
selection of the set £ allows us to confirm that there is no x € 9 which satisfies © = (Pz,
for ¢ € J. Hence, the requirements of Theorem m ensures that £ involves a fixed point
z* € & which stands for the solution to our Caputo-Liouville BVP and the proof is now

finished. O
Example 11. Consider the Caputo-Liouville BVP
( 3 & 2 |z (s)[?
17C 2 2712 —
(19 Dy: + 1910+):1:(3) 101(s+1) (|x(s)\ +1 1
17 1 |z (s)[3 52%(s)
¢pr 5.23
A {10(3 exp(s) + 1) (xQ(s) 1 22(s)+3) ] 6-2)
1 1 4
70 =0, FODLa(t)+ $ODLa(1) = -
19 5 17
NOw,ZUEhﬂUBOél = — € (]_,2], Qg = E c (O, 1],043 = — € (1,2], )\1 = 1—9 € (07 1], /\2 = — € (O, ]_],
1 1 4
T=17p= 3 (0,1], B2 = - € (0,1], ap = ?,ﬂ”d
_ 2 |z (s)[”
H0) = o+ 1) (|x(s)| 1)
_ 1 |z () b*(s)
905:%) = B exp(s) 7 1) (xQ(s) 1 25 +3)
and
< =
(5,21 < 70553 (el + 1)
1
l9(s, ) ]| +5)

= 10(3exp(s) + 1)(
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Then,

2
h1(s) = 01(s + 1)’ er(llz]]) = ll=|| + 1,
1
) = g T eallal) =l + 5
On the other side,
Tx 1-X 17
= lre—a fre- @)]
5 _5
_ 11 11
) o 1>] |
r(2—=
8 7

and

B 1— A R L) (1= A)(1— M\
= M (og+a+1)  Ml(an+as—Fi+1)  MD(ag +as— B2+ 1)
R e
19 n 11 19 11 19

~17_/19 5 17_ /19
il ol eI | (=
19 <12+12+> 19 <12+

5 1—1—1 +17F 19+5 1+1 ’
12 8 19 12 12 7

N2 = + +
)\1F(Oz1 + 1) AlF(al — 61 + 1) A F(al 62 + 1
o (-5
_ 1 n 11
17 19 17 19 1 17 1 ’
T 1) —I'(=-—>+1) =T(=-=-+1
19 <12+> 19 <12 8+> 19 (12 7 )
1 oIl (1 =)l
N3 = +
>\1F(O[1 — Q3 + 1) )\1F(Oél — (X3 — 51 + 1) >\1F(OZ1 — 3 — 62 + ].)
1 EH (1 — %) I1
11 +

19 12 12

T (D
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1
Table 5.3: Numerical values of 1, 172, 73 and II, for A\; = 1—; and )\, = 2 in Example

11

A1 IT un 12 n3
0.05 0.9504 18.6505 27.5308  38.8569
0.11 0.9504 8.8072 13.7654  19.4284
0.16 0.9504 5.5261 9.1769  12.9523
0.21 0.9504 3.8855 6.8827 9.7142
0.26 0.9504 2.9012 5.5062 7.7714
0.32 0.9504 2.2450 4.5885 6.4761
0.37 0.9504 1.7762 3.9330 5.5510
0.42 0.9504 1.4247 3.4413 4.8571
0.47 0.9504 1.1513 3.0590 4.3174
0.53 0.9504 0.9325 2.7531 3.8857
0.58 0.9504 0.7536 2.5028 3.5324
0.63 0.9504 0.6044 2.2942 3.2381
0.68 0.9504 0.4782 2.1178 2.9890
0.74 0.9504 0.3700 1.9665 2.7755
0.79 0.9504 0.2763 1.8354 2.5905
0.84 0.9504 0.1943 1.7207 2.4286
1—; ~ (.89 0.9504 0.1219 1.6195 2.2857
0.95 0.9504 0.0576 1.5295 2.1587
1.00 0.9504 0.0000 1.4490 2.0451

A simple computation leads to I1 ~ 0.9504, n, ~ 0.1219, 0y ~ 1.6195 and ns ~ 2.2857. By solving
the inequality

_l@rllor(Rs)ne + || d2l|@2(Rs)ns + |ag]|
Rs(1 — 1)

2 % 1.61 2.2 4

2X L0190 1)+ 22T Ry 5) 4 0.9504 x 2

_ o 10 7.1
(1= 0.1219) Ry !

we get A > 1.1000 > 1. Table[5.4shows these data. These numerical values are plotted in Fig.
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Table 5.4: Numerical results of R3 and A based on Tablefor N1, N2, N3 and I in Example

IT = 0.9504, n; = 0.1219, n2 = 1.6195, n3 = 2.2857
R3 A>1
0.52 0.5357
0.56 0.5720
0.60 0.6076
0.64 0.6426
0.68 0.6770
0.72 0.7109
0.76 0.7442
0.80 0.7769
0.84 0.8091
0.88 0.8408
0.92 0.8720
0.96 0.9027
1.00 0.9329
1.04 0.9626
1.08 0.9919
1.12 1.0207 > 1
1.16 1.0491
1.20 1.0770
1.24 1.1046
1.28 1.1317
1.32 1.1584
1.2 T T T T T
ik J
08 .
=06 1
o'
<
041 1
0.2r b
0 . . . \ . .
0 02 0.4 06 08 1 12 14

R3

Figure 5.3: Graphical representation of A > 1 for s € (0,1) vs R3

Then, the assumption (H6) holds for any Ry > 0.8456. Consequently, from Theorem we
conclude that for the Caputo-Liouville BVIP (5.23)), at least one solution is found on J.
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54 Conclusion
In this work, we proposed a Caputo-Liouville BVP and achieved our main results using three
tixed point theorems due to Banach, Krasnoselskii and Laray-Shauder. Several special cases
can be extracted from the mentioned BVP (5.3). Let us point out them for example: If \; = 1,
then the Caputo-Liouville BVP reduces to the following one
D3 a(s) = f(s,2(s)) + D3 g(s,(s)),s € J,
£(0) =0, XDy f(1) + (1= ) Dgz f(1) = ag.
If Ay = 0, then the Caputo-Liouville BVP becomes
(D5t + (L= r)Ig2 )a(s) = f(s,2(5)) + ODgtgls,a(s)), s €,
2(0) =0,  “DPf(1) = ao.
Consequently, some existence and uniqueness results for this particular case are obtained by

exploiting Theorem Theorem and Theorem For future studies, we aim to
combine these BVPs with non-singular kernels in fractal-fractional operators.
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Conclusion and perspectives

In this thesis , we considered a new fractional class of differential and integro-differential equa-
tions in the context of the standard Caputo and Riemann-Liouville fractional derivatives. The
main goal in the present work is to derive several criteria of the existence and uniqueness of
solutions for mentioned boundary and initial value problems. To acheive our aim, we first
transformed our main problems into equivalent fixed point problems. After that with the help
of the fixed point theorems of Banach, Krasnoselskii, Schauder, and nonlinear alternative of
Leray-Schauder we proved our results of existence and uniqueness of solutions to our prob-
lems in a well-defined Banach spaces. Finally, we have illustrated our theoretical results with
some examples.

In our next work, we will continue to study the stability of solving fractional differential
equations.
We will also study problems in cases where integral equations are not existed. We will also
discuss the study of fractional differential equations in Sobolev spaces and the use of the weak
Riemann-Liouville derivative.
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