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Abstract

The main objective of this thesis concerns some results of existence, unique-
ness and stability of solutions of certain fractional differential problems with
initial, boundary and integral conditions. Our main existence and unique-
ness results are established by applying fixed point theorems and conditions
are provided to ensure some types of stability of the origin systems. Finally,
we have illustrated the theoretical results with various examples.

Key words : Fractional derivative, integral equation, existence and
uniqueness, fixed point, stability.

Résumé

L’objectif principal de cette these porte sur quelques résultats d’existence,
d’unicité et de stabilité de solutions de certains problemes différentiels frac-
tionnaires avec des conditions initiales, aux limites et intégrales. Nos résultats
principaux d’existence et d’unicité sont établis en appliquant des théoremes
de point fixe et des conditions sont fournies pour assurer quelques types de
stabilité des systemes d’origines. Finalement, nous avons illustré les résultats
théoriques par divers exemples .

Mots clés : Dérivée fractionnaire, équation intégrale, existence et unicité,
point fixe, stabilité.
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Chapter 1

Introduction and preliminaries :

1.1 Introduction :

Fractional calculus is the calculus of integrals and derivatives of any arbitrary real or
complex order, it is a main mathematical branch investigates the properties of derivatives
and integrals of non-integer orders were it has gained his importance in the past three
decades. It does indeed involves the concept and methods of solving of fractional derivatives
equations and various other problems involving special functions of mathematical physics.

The history of fractional calculus began almost at the same time when classical calculus
was established. For example in dynamics first derivative is rate or velocity: dz/dt or the
second derivative is acceleration: d?z/dt* but in some cases we see fractional differential
equations such as (d“x/dt*,« € (0,1)). In mathematics there is no problem with this but
in physics, it has meaning.

The concept of fractional calculus is popularly believed to have stemmed from a question
raised in the year 1695 by Marquis de L’Hopital (1661-1704) to Gottfried Wilhelm Leibniz
(1646-1716), which sought the meaning of Leibniz’s (currently popular) notation % for the
derivative of order n € Ng = {0,1,2,.....} when n = % . In his reply, dated 30 September
1695, Leibniz wrote to L’'Hopital as follows: ”... This is an apparent paradox from which,
one day, useful consequences will be drawn. ...”

Subsequent mention of fractional derivatives was made, in some context or the other,
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by (for example) Euler in 1730, Lagrange in 1772, Laplace in 1812, Lacroix in 1819, Fourier
in 1822, Liouville in 1832, Riemann in 1847, Greer in 1859, Holmgren in 1865, Griinwald in
1867, Letnikov in 1868, Sonin in 1869, Laurent in 1884, Nekrassov in 1888, Krug in 1890,
and Weyl in 1917. In fact, in his 700-page textbook, entitled " Traite du Calcul Differentiel
et du Calcul Integral” (Second edition; Courcier, Paris, 1819), S. F. Lacroix devoted two
pages (pp. 409-410) to fractional calculus, showing eventually that

dz 2,/0

dv? 0T ﬁ

In addition, the theories of fractional differential or integro-differential equations (FDEs)

as well as their extensions and generalizations, it has been applied widely in a variety
sciences in : control theory of dynamical systems, electrical networks, biological sciences,
optics and signal processing, viscoelasticity, probability and statistics, optics and signal
processing, rheology, physical economical sciences ..., for more details [7, 25, [35] 38 39 [40],
44, 46, 53, 54).

The theory of fixed point is one of the most powerful tools of modern mathematics.
Theorem concerning the existence and properties of fixed points are known as fixed point
theorem. Fixed point theory is beautiful mixture of analysis, topology and geometry. In
particular, fixed point theorem has been applied in such field as mathematics engineering,
physics, economics, game theory, biology and chemistry etc. Classical and major results
in these areas are: Banach’s fixed point theorem, Schauder’s fixed point theorem and
Krasnoselskii’s fixed point theorem.

The stability of functional equations was originally raised by Ulam , next by Hyers.
Thereafter, this type of stability is called the Ulam-Hyers stability. Rassias provided a
remarkable generalization of the Ulam-Hyers stability of mappings by considering variables.
The concept of stability for a functional equation arises when we replace the functional
equation by an inequality which acts as a perturbation of the equation, (see [12] 2, [13] 24,
20, 27, 291, (30}, 33, 137, [41], 42}, [43, 48, [51], ...).

Nowadays, many researchers have given attention to the existence and uniqueness theory

3
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of nonlinear FDEs of various types, for more information (see[3, 4, 5] 2, 8, 9}, 10} 11|, [14], 15,
16, 20, 21], 24, BT, 34, 43, 47, 50, 49, 52, B3], ...).

The objective of this thesis is study some new FDEs, which is considered by a gener-
alization of some precedent articles [8] [19] 24, [36], 43, 144, 50], 55]. For more details see our
publications [3], 4], 5] [6].

This thesis consists of five chapters. In chapter 1: A history introduction on our
study, essentially an introduction to : Banach space, fixed point theory(Banach, Schauder,
Krasnoselskii, Lerray Schauder alternative ), fractional calculus, stability theory (stability,
asymptotic stability, Ulam stability, generalized Ulam-Hyers-Rassias stability, ...), where
we fixed notations, terminology to be used. It is a survey aimed at recalling some basic
definitions and theory.

In the second chapter, we project the last study on a new fractional integro-differential
equation with integral conditions, by the Krasnoselskii and Banach fixed point theory we
proof the existence and uniqueness with Ulam stability in a weighted Banach space, we
refer to [3].

In chapter three, we proof the existence, uniqueness and Ulam stability of the solution of
neutral fractional integro-differential equation with nonlocal conditions, we use a three fixed
point theory to proof the main results, and we discuss the generalized Ulam-Hyers-Rassias
stability, you can see [5].

In the fourth chapter, we propose a new boundary value problem of fractional differential
equation, then we proof the existence and generalized Ulam-Hyers-Rassias stability result
by Schauder’s fixed point theory, see [6].

Finally in chapter five, we consider a new Caputo nonlinear fractional differential equa-
tion with initial conditions, by a similar proof in F. Ge and C. Kou (see [24]) we use the
Krasnoselskii fixed point theory to proof the existence and the asymptotic stability of our
problem on unbounded domain, see the article [4].

In all our results (chapter 2, 3, 4, 5), we give examples to illustrate our studies.
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1.2 Preliminaries:

1.2.1 Functional analysis

Definition 1.1 [22] A pair (E;d) is a metric space, if E is a set and d : EX E — [0; +00)
such that when u,v,w are in E then

(a) d(u,u) >0, and d(u,v) =0 imply u = v,

(b) d(ua U) = d(”? u)7

(c) du,w) <d(u,v)+ d(v,w).

The metric space is complete if every Cauchy sequence in (F;d) has a limit in that space.
A sequence {u,} C E is a Cauchy sequences if for each € > 0 there exists N such that
n,m > N imply d(u,, u,) < €.

Definition 1.2 [22] A set M in a metric space (E,d) is compact if each sequence {u,} C
M has a subsequence with limit in M.

Definition 1.3 [22] Let {f,} be a sequence of functions with f, : [a,b] — R,

(a) {fn} is uniformly bounded on |a,b] if there exists M > 0 such that |f,(t)| < M for all
n and all t € [a,b].

(b) {fn} is equicontinuous if for any € > 0 there exists 6 > 0 such that t1,t2 € |a,b] and

’tl - tQ‘ <9 Zmply ’fn(tl) o fn(tZ)‘ <§g, fOT’ all n.

The first result gives main method of proving compactness in the spaces in which we are

interested.

Theorem 1.4 [22] [Ascoli-Arzela] If {f.(t)} is a uniformly bounded and equicontinuous
sequence of real functions on an interval |a,b], then there is a subsequence which converges
uniformly on [a,b] to a continuous function.

Let us € be the set of all strictly increasing functions h : RT — [1,400) satisfying the
following assumptions
h(0) =1, tlim h(t) = +o0, and  h(t) > h(t — s)h(s) for all 0 < s <t < 0.

— 00

Remark 1.5 Note that §) is a non-empty set, because the functions hi(t) = e’

and ho(t) = €' belong to .

Lemma 1.6 [I8] Let us define the following space:

E = {u(t)\ u(t) € C[0,400), igg% < —i—oo},

5
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equipped with the norm

ul| = su , heQ.

Then (E, || -1|) is a Banach space.

In particular case, if h(t) = 1 +t°~1 we get the following used Lemma:

Lemma 1.7 [3]] Let us define the following space:

E = {u € C[0,+0) : supu— < +oo},
>0 1

equipped with the norm

_ Ju()]
Jullp = SUD T

Then, the space (E,|| - ||g) s a Banach space.

Lemma 1.8 [18] Let be M be a subset of the Banach space E. Then, M is relatively
compact in E if the following assumptions hold

(z) ZEE; : ( € M} is uniformly bounded,

{ ) - ) € M} is equicontinuous on any compact interval of R,

(141) {h : ) € /\/l} s equiconvergent at infinity i.e. for each given € > 0, there exists

ults)  ult)

T>0 h that € diti ity >T h
such that for any uw € M and ty,ty , we have h(ta) ~ hih)

Lemma 1.9 [3]] Let U C X be a bounded set. Then U is relatively compact in E if the
following conditions hold

(i) For any u € U the function u(t)/(1 +t°~1) is equicontinuous on any compact subin-
terval of R*.

(ii) For any € > 0, there exists a constant T = T(g) > 0 such that

t t
u( 25)_1 _ u( ;)_1 <e, t1,to > T and u € U.
1+t 14+
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1.2.2 Fixed point theory:

Banach fixed point theorem:

For more details, we refer to [22]. Let us consider the following initial value problem
u' = f(t,u), u(ty) = uo. (1.1)

By applying the integral operator, we obtain the equivalent integral equation:

u(t):/t f(s,u(s))ds + up, (1.2)

and let {u,} be a sequence of functions, with

uy(t) = / f(s,up)ds + uy, u(to) = uo, (1.3)
and, in general,
Upt1(t) = / f(s,un(s))ds + ug. (1.4)

This is called Picard’s method of successive approximations .
One can show that converges uniformly on some interval |t —ty| < k to some continuous
function, say wu(t). Taking the limit in the equation defining w,.;(t), we pass the limit

through the integral and have

u@:m+[f@mm@,

so that u(ty) = uo and, upon differentiation, we obtain u'(t) = f(¢,u(t)). Thus, u(t) is a
solution of the initial value problem. Banach realized that this was actually a fixed point
theorem with wide application. Let us define an operator B on a complete metric space

C([to, to + k], R) with the supremum norm || - || by u € C as

t
(Bu)(®) = o+ [ fs.uls)ds,
to
then a fixed point of B, say B¢ = ¢, is a solution of the initial value problem.

7
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Definition 1.10 [22] Let (E, d) be a complete metric space and B : E — E. The operator
B is a contraction if there is a X € [0,1) such that u,v € E imply

d(Bu, Bv) < Ad(u,v).

Theorem 1.11 [22]  [Contraction Mapping Principle] Let (E;d) be a complete metric
space and B : E — E a contraction operator. Then there is a unique u € E with Bu = u.
Furthermore, if v € E and if {v,} is defined inductively by v; = Bv and v, 1 = Buv,, then
v, — u, the unique fized point. In particular, the equation Bu = u has one and only one
solution.

Theorem 1.12 [22] Let (E,d) be a complete metric space and suppose that B : E — E

such that B™ is a contraction for some fixed positive integer m. Then B has a fized point
in b

Theorem 1.13 [22] Let (E;d) be a compact metric space,
B: E — FE and d(Bu, Bv) < d(u,v), foru # v. (1.5)
Then B has a unique fixed point.

Theorem 1.14 [22] If (E,d) is a complete nonempty metric space and B : E — E is a
contraction operator with fived point u, then for any v € E we have:

d(Bwv,
(a)  d(uv) < 4050,

() d(Bro,u) < XA,

Krasnoselskii fixed point theorem:

Definition 1.15 [22, /5] Let M be a subset of a Banach space and let A : M — E
application. If A is continuous and AM is contained in a compact set in E, then we say
that A is a compact application (we also say that A is completely continuous).

Theorem 1.16 [22, [/5] [Schauder] Let M be a convex set in a Banach space E and
A: M — E a compact application. Then A has a fixed point.

In 1955 Krasnoselskii observed that in a good number of problems, the integration of a
perturbed differential operator gives rise to a sum of two applications, a contraction and a

compact application. It declares then,
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Principle : the integration of a perturbed differential operator can produce a sum of
two applications, a contraction and a compact operator.

Krasnoselskii found the solution by combining the two theorems of Banach and that of
Schauder in one hybrid theorem which bears its name. In light, it establishes the following

result.

Theorem 1.17 [32]  [Krasnoselskii] Let M be a nonempty closed convex subset of a
Banach space (E, || -|). Suppose that A and B map M into E such that

(i) Au+ Bv e M for all u,v € M,

(i) A is continuous and AM is contained in a compact set of E,

(i1i) B is a contraction.

Then there is a w € M with Aw + Bw = w.

Note that: if A = 0, the theorem becomes the theorem of Banach. If B = 0, then the

theorem is not other than the theorem of Schauder.

Theorem 1.18 23/  [Nonlinear alternative for single valued maps] Let E be a Banach
space, C' a closed, conver subset of E, M an open subset of C with boundary OM and
0 € M. Suppose that F : M — C is a continuous, compact map (that is, F(M) is a
relatively compact subset of C'). Then either

i) F' has a fized point in M,  or

ii) There is a u € OM and ¢ € [0,1) with u = eF(u).

1.2.3 Fractional calculus:

Here, we state some notations, definitions and auxiliary lemmas concerning fractional cal-

culus, for more details see[T], 146, [57].

Special functions:

Some special functions, important for the fractional calculus, as Gamma and Beta functions,

are summarized in this section.
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The Gamma function:

The Gamma function, denoted by I'(z), is a generalization of the factorial function n!; i.e.,

['(n) = (n —1)! for n € N: For complex arguments with positive real part it is defined as
I'(z) :/ t*“te7'dt, Re(z) > 0.
0

By analytic continuation the function is extended to the whole complex plane except for the
points 0, —1, —2, —3, ... where it has simple poles. Thus, I' : C\{0,—-1,-2,-3,...} — C.
Some of the most properties are

= I'(2) =1,

)

I'z+1) = zI'(2),
)
)

I'(n) = (n—1!, neN,
1
F(é = v,
1
F(n+§) = g(Zn—l)!, n € N.

The Gamma function is studied by many mathematicians. There is a long list of well-known

properties but in this survey formulas are sufficient.
The Beta function:
The Beta function is defined by the integral
B(z,w) = /1 =1 — ) e, Re(z) >0, Re(w) > 0.
0

In addition, B(z,w) is used sometimes for convenience to replace a combination of Gamma

functions. This relation between the Gamma and Beta function,

is used later on.

The above equation provides the analytical continuation of the Beta function to the entire

10
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complex plane via the analytical continuation of the Gamma function. It should also be

mentioned that the Beta function is symmetric, i. e.,
B(z,w) = B(w, z).
Fractional integral according to Riemmann-Liouville:

Cauchy’s formula for repeated integration

ru(t) :/: /:1---/:"1u(s)ds---d32dsl _ ﬁ/@tu(s)(t—s)"_lds,

holds for n € N,a,t € RT ¢t > a. If n is substituted by a positive real number o and (n—1)!
by its generalization I'(«), a formula for fractional integration is obtained.
Definition 1.19 Suppose that « >0, t>a, «,t,a € R then the fractional operator

ou(t) = ﬁ / (t — 5)° " u(s)ds.

is referred to as Riemmann-Liouville fractional integral of order a.

We have the following properties of the Riemmann-Liouville integral operator:

1. The Riemmann-Liouville integral operator I of order « is a linear operator.
I*(ou(t) + vo(t)) = o(Iu(t)) + vI*(v(t)), o,veER, aeR’.
2. Semi-group properties:
I¢(IPu(t)) = 1P (u(t)), o, € RT.
3. Commutative property:
I°(1%u(t)) = I°(I°u(t)),  a,B € RY.
4. Introduce the following causal function (vanishing for ¢ < 0 )

ta—l

2ul) = Fray

a >0,

then, we have that:

11
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(a) Pa(t) * Ps(t) = Pars(t),  «,f€RT,

(b) I*u(t) = @ * ult), a € R, with n = [a] + 1.

The Laplace transform

L{]au@)}::L{¢a@)}L{u@)}:a§ﬂL{u@)}

5. Effect on power functions

Bt

PW%:F L(B+1), a>0and f>—1, t>0.

(B+1+a)

After the introduction of the fractional integration operator it is reasonable to define
also the fractional differentiation operator. There are different definitions, which do not
coincide in general. This survey regards two of them, namely the Riemann-Liouville and
the Caputo fractional operator.

Definition 1.20 Suppose that o >0, t>a, «,t,a € RT, then

1 dr

t
S = s, n—1<a<nen

D%u(t) =
—
dtn
is called the Riemmann-Liouville fractional derivative or the Riemmann-Liouville fractional

(1), a=necN.

differential operator of order «.

Lemma 1.21 Assume that u € C(RT) (| LY(R") with a fractional derivative of
order 8> 0. Then

I2.D0 u(t) = u(t) — Cyt? ™t — Cot? 2 — ... — O tP 7, (1.6)
for some C1,Cs, ..., Cn € R with n =[] + 1.

Definition 1.22 Letn —1 < a <n, (n € N*) and u € C"(R*,R). The Caputo fractional
deriwative of order a of a function u is given by

“Deu = _ t — )" Ly ™ (5)ds
Dhult) = g [ (=) (5)d

n—o d
= [0+ %U(t), t €R+,

where n = o] + 1 and [a] denotes the integer part of the real number c.

12
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Lemma 1.23 For real number o > 0 and appropriate function u(t) € C"71[0,00) and u(t)
exists almost everywhere on any bounded interval of R,

(15+ Dgu)(t) = u(t) —

Here, we mean by I® and “D®, the fractional integral I and fractional derivative CDS‘+
respectively.
In the following subsection we present some definitions and properties of stability study

of the solution, for more informations see[ll, 46, 57].

1.2.4 Stability of solutions:

Consider the following problem:
CDu(t) = f(t, u(t)), teRY, 0<a<l,
u(0) = up.

It is clear that u(t) € C'(R™,R) satisfies the following integral equation:

u(t) = uo + I f(t, u(t)). (1.8)

Stability and Asymptotic stability of the solution:

Definition 1.24 Let f be a continuous function satisfied: f(t,0) = 0.

The trivial solution uw =0 of fractional order system 15 said to be
1) Stable in a Banach space, if for every € > 0, there exists 6 = §(g) such that |ug| < &
implies that the solution u(t) = u(t,uy) exists for all t > 0 and satisfies ||u]| < e.
2)  Asymptotically stable, if it is stable in E and there ezists a number u > 0 such that
lup| < p implies that tEerOO lu(t)| = 0.

Ulam stability:

Let u be a solution of the problem ([1.7]). To discuss the Ulam stability of this problem, and
let define the operator
gU(t) = Da’U(t) - f(tv U(t))7

13
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where: G : R — R is continuous operator.

For each ¢ > 0 and for each solution v of (1.7]), let consider the following inequalities:

IGvl| <e,  teRT (1.9)
IGv[| <m(t), teRT (1.10)
IGv|| <em(t), teRT (1.11)

Definition 1.25 For each € > 0 and for each solution v of the problem satisfing the
inequality (@ The problem is said to be Ulam-Hyers stable if we can find a positive
real number ¢y and a solution u € C(R*,R) of , satisfying the inequality:

|lu— v <ecy. (1.12)

Definition 1.26 Let ¢; € C(RT,R") and ¢;(0) = 0 such that for each solution v of (1.7),
we can find a solution u € C(RT,R) of such that

lu(t) —v(@)]| < cple), teR'. (1.13)
Then the problem , 15 said to be generalized Ulam-Hyers stable.

Definition 1.27 For each € > 0 and for each solution y of , the problem 1S
called Ulam-Hyers-Rassias stable with respect to m € C(RT R*Y) if holds and there
ezist a real number cs,, > 0 and a solution v € C(RT,R) of such that

|u(t) —v(®t)]| <ecpmm(t), teRT, (1.14)

Definition 1.28 For each ¢ > 0 and for each solution v of , the problem E} 18
called generalized Ulam-Hyers-Rassias stable with respect to m € C(RT,RY) if (1.1(}) holds
and there exist a real number ., > 0 and a solution v € C(RT,R) of such that

lu(t) —v(@)| < crmm(t), t e RY, (1.15)
Remark 1.29 [t is clear that
(i) Definitior1.25 = Definition{1.26] ,
(it) Definitiofl.27 = Definitior{1.2§,
(iii) Definition{l.28 = Definitior{1.25,

14



Chapter 2

Existence and stability results of the
solution for nonlinear fractional

differential problem

Many researchers are interesting to study qualitative the solution of fractional integro-
differential problems with different conditions, For example in [36] that, in a real n—dimensional

Euclidean space, the local and global solutions exist for the following Cauchy problem

D u(t) = f(tu(t)) +/t K(t,s,u(s))ds,
’ (2.1)

u(0) = o,

where
0<a<l, feC(0,1]xR"R"), KeC([0,1] x[0,1] x R",R").

Note that in [43], the authors introduced and studied a related problem. Precisely the

15



CHAPTER 2.

authors studied the existence for the following problem

( CDRACDLa(t) + f(2(0)} = g(t.a(t). 1 [0.1]

z(0) = jzlﬁjx(aj)v (2.2)

ba(1) = a/olx(s)dH(s) +§ai /; 2(s)ds.

(
where
O<o;<&G<m<l, 0<pg<l,
Bj, €R, i=1,2,...,n, 7=12..m.

and f, g, are given continuous functions.

This chapter consists a new result of existence, uniqueness and generalized Ulam stabil-
ity of the solution of nonlinear fractional integro-differential system with integral condition.

For t € [0,1],0 < «, 8 < 1, let consider the next problem :

DR ult) = At o) + 15 S + [ K (s
: 2.3
u(0) = b/u(s)ds, 0<n<l,

\ 0

where b is a real constant, 0 < a+ [ < 1, CDS“:“ 7 is the Caputo fractional derivative of

order o + 3, I, denotes the left sided Riemann-Liouville fractional integral of order v and

f,h, K defined as

f o0 xR—R,
ho 0,1 xR —R, (2.4)
K 0,12 xR — R,

are an appropriate functions satisfying some conditions which will be stated later. It is
also interesting to study solution to fractional integro-differential problem with integral

conditions, which will allow a generalized stability.

16



2.1. REFORMULATION OF THE PROBLEM CHAPTER 2.

2.1 Reformulation of the problem

Before presenting our main results, we need the following auxiliary lemma

Lemma 2.1 Let0<a+ <1 and b # % Assume that h, f and K are three continuous

functions. If u € C([0,1],R) then u is solution of if and only if u satisfies the integral

e e K Rl

+ /0 i (;))a : f(au(f))df} s

b7 (n—71)F ’
L /0 T(a+B8+1) {h(T’ wm) + /0 K(noulo))do

i wa(a,u(o))da dr. (2.5)
/0 I'(a)

Proof. Let u € C(]0,1],R) be a solution of (2.3)). Firstly, we show that wu is solution of
integral equation ([2.5). By lemma [1.23] we obtain

equation

I5FPC DeFPu(t) = ult) — u(0). (2.6)
In addition, from the equation in 1} and the definition of [gf f we have

Igf’BCDg‘f’Bu(t) = I“HB (h(t u(t / K(t,s,u(s))ds + I f(t,u(t )))ds

:/J“?a%l{ /K““

(s —7) !

+/ ——————f(7,u(r))dr | ds. (2.7)
0 I'(a)

By substituting (2.7) in (2.6) with nonlocal condition in problem ([2.3), we get the

following integral equation:

- [t [
+/Os%f(ﬂu(7'))d7'] ds + u(0). (2.8)

17



2.1. REFORMULATION OF THE PROBLEM CHAPTER 2.

From integral boundary condition of our problem with using Fubini’s thorem and after

some computations, we get:

u(0) = b/onu(s)ds

_ b/on U:%(MT,U(T)H/OT K(r,0,u(c))do

n /0 (T —(Z))“ ' f(o, u(g))do‘) dT:| ds + bru(0)

= nsw T,u(T))dTds
B bo/o (o + B) i{r,u(r))drd

s (s — p)athl
b/o/or(a—Jfﬁ/KTJU( 0))dodrds

O el
b/o /0 Mo+ ) /0 I'a) flo,u(o))dodrds + bnu(0)

+

_|_

= b On/Tn %dsh(f,u(f))m
+b/0n/j<8(a—):+;l / K(r,0,u(0))dodr

1

’7 77£s () o,u(o))dodr u
+b/0/T I'(a+B) d/o () f(o,u(o))dodr + bnu(0),

_ b M=) ’
u(0) = 1—577/0 ORI [h(T,u(T))+/O K(r,0,u(0))do

N /OT< (‘;))a f(o,u(a))da}dr (2.9)

Finally, by substituting (2.9)) in (2.8) we find (2.5)).
Conversely, by applying the operator CD(‘;+ # on both sides of 1) we find

that is

t
D) = OO o) + [ K(es s + 15 f(e o)
0
+C D8P u(0)
= h(t,u(t)) + 1% f(t, u(t / K(t,s,u(s (2.10)
this means that u satisfies the equation in problem ({2.3).

18



2.2. EXISTENCE AND UNIQUENESS RESULTS CHAPTER 2.

Furthermore, by substituting ¢ by 0 in integral equation (2.5)), we have clearly that the
integral boundary condition in (2.3]) holds. Therefore, u is solution of problem ({2.3]), which

completes the proof. [

2.2 Existence Results

In order to prove the existence and uniqueness for the solution of the problem in
C([0,1],R) by using two fixed point theorems:

Firstly, we transform the system into fixed point problem as u = Tu, where
T:C([0,1],R) — C([0, 1], R) is an operator defined by :

Tu(t) = /Ot@_(;)f;)l{ 5, u /KSTu

+ /OS %f@', u(T))dT] ds

et [ [

+/OT “;(—“y“f(a,u(a))da] dr. (2.11)

a)

In order to simplify the computations, we offer the following notations:

A = el 4 llpalle= |lpolleeBB(a+ 1, a + 5)
Fa+ B+ 1) [(a+ 1 (a+ B)
0] [| oo™ P+ [B] |3 ][ oo O
1 —on|l'(a+ B+ 2)
0] || 2| Lo ®* P BB(a + 1,0 + B+ 1)
1—mla+DN(a+B+1) ’

+

+ (2.12)

and

1b] oAl 2etBHIBB(a 4 1o+ B+ 1)

A= T |Ta+5+2)  Ta+)ia+B+1)

(2.13)
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2.2. EXISTENCE AND UNIQUENESS RESULTS CHAPTER 2.

2.2.1 Existence result via Krasnoselskii’s fixed point

Theorem 2.2 Leth, f:[0,1] xR — R and K : [0,1]> x R — R be continuous functions

satisfying

(H1) The inequalities, for allt € [0,1], s€[0,1] and u,v € R,
|h(t,u) — h(t,v)| < Li|ju — v,
[f(tu) = f(t,0)] < Lafu — v,

|K(ta37u) _K(tvsav” < L3|U—’U|,

hold where Ly, Ly, L3 > 0 with L = max{Ly, Lo, L3},
(H2) There exist three functions py, o, pz € L=([0, 1], RT) such that
h(t,u®)] < m@lu®], 0,1, uek,
(L u®) < m@®lu®], te0,1], uek,
[K(t,s,u(s))] < pa(®)uls)l, (& s) €[0,1] x[0,1], ueR.
If A <1 and LA, < 1, then the problem has at a least one solution on [0, 1].

Proof.
For any function u € C([0,1],R) we define the norm

[ully = max{e"u(t)] - t € [0,1]},
and consider the closed ball

By ={u e C(0,1],R) « [Jully <7}
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2.2. EXISTENCE AND UNIQUENESS RESULTS CHAPTER 2.

Next, let us define the operators 717,75 on B, as follows

Tu(t) = /Ot(t_(aj;;l{ /KSTU
N /0 (s ;(;); : f(T,u(T))dT}ds, (2.14)
and
Tyu(t) = 1_l)bn/0nr((a+50:ﬁ [ /KTUU
_|_/0 (r F(Z) f( ,u(a))da}dr (2.15)

For u,v € B,, t € [0,1] and by the assumption (H2) we find:

_ s)a+ﬁ—1

T + T < [ T s a@s)) + [ |55 u(r)dr
0 F(O‘+5> 0

+/05 - ;(;)) £, U(T))|dr} ds

n a+ﬁ

|1_b77| 0Fa+ﬂ+1 l|h7'v |+/]K7'av( ))|do

+/0 r _(0); F(o, (0 ))|da}d7

[ e [
+/05 o lu (T)Iu(7)|df} ds

[(«)
e+ [ o)l
[ o da|ds

IA

|1—b77| 0 I‘a+ﬂ+1
[(a)
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2.2. EXISTENCE AND UNIQUENESS RESULTS CHAPTER 2.

Therefore,

t<t_5>a+5_1 s s
Tyu(t) + Tov(t)] < /Ow{”MHLmHUHl@ + [ | oo [l 1 (€ — 1)

*(s—r)at }
lpa| oo [ / YT rar|ds
il o

T T {““1”“”“”167 + sl ol = 1)

T(r—o) 0)”‘ o
+HM2HL°°HUH1/O F(a) do|dr.

Consequently,

t (t . S)oz-i—ﬁ—l es (65 . 1)
[Thu+ Tovlly < /0 W{HMHLO@HUW—JFHNSHL%HUHl ;

s s — 7)¢ 1 e’
Hlplo / %—dT]ds

()
e’ (e — 1)
|1—bn|/ a+5+1 {”Mlevaw laall e lfoll -

alo’

T—0
sl ol / %—da]dr
LT

a)
[l e + [[1a]] Lo || 2| oo /1 LAE1
< 1—s)° s%ds
- { MNa+B8+1) L(a+D(a+B) ( )
N B[] [[ oo P 4 [B][| 3| oo

1—ml(a+B+1)
10| p2 || Lo K ath_a
M=o a+ )@+ B+ 1) /0 (n=7)*s ‘”}
_ {HUlHL“’ + sl | lpalleBB(a+ 1,0+ )
Mo+ 6+1) I'(a+ DI (a+f)
0] <||M1||L°°770‘+5+1 + [l sl oo TP
|1 — bn| la+p+2)
+ ol poen®* P BB(a+ 1,00 + B + 1))}
MNa+ 1) (a+p4+1)

+

= rA<r.
This implies that (Tyu + Tyv) € B,.. Here we used the computations:
1
/ (1 — §)**5°ds = BB(a +1,a + B),
0
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2.2. EXISTENCE AND UNIQUENESS RESULTS CHAPTER 2.

7
/ (n —7)Pr%ds = ** P BB(a+ 1,0 + B + 1),
0

e e e
and the estimations: — <1, — <1, — <1, where B(:,") is the Beta function.
e e e

Now, we establish that T is a contraction mapping. For u,v € R and t € [0, 1], we

have:

_ a—i—ﬁ
o)~ Too)] < 0 [ (2T e atn) = hir o)

/|KTO’U )) — K(7,0,v(0))|do

/o T;Z)) |f<‘7’u<‘7))—f(a,v(a))]dg}dT

b /n( L [L I — o] eT+/TLHu vlled
— — o
[L—bnl Jo T(@+p+1)" T '

o)o~ 1
—l—/o r Fa)) LQHu—lee"da]dT

IN

IN

|| (g =)ot ) ]
Tom )y Tlas g [ vhe + L=l =1

a—1
+/ r (U) LHu—lee"do} dr.
0

()

Thus,

n

< (n — [
- U—W|0Fm+ﬁ+
(1 —o)!
+/0 WLHU—UM tdaldr
|b|L [ P aatian +772a+5+15(04+1,a+5+1)]” .
[1— by | D(a+ B +2) Tla+ Dl(a+ B+ 1) o1

e’ em —1
1Ty — Teol Lu =5 + L — o)y

Thus, ||[Tou — Tyv||; < LA||u — v||1, then since LA < 1,75 is a contraction mapping,.
The continuity of the functions h, f and K implies that the operator T is continuous.

Also, T1 B, C B,, for each u € B,, i.e. T} is uniformly bounded on B, as

t(p_ g)oth-1 s
ol < [ U s+ [ 1K a)i

+/OS %Iﬂnu(r))w} ds.
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2.2. EXISTENCE AND UNIQUENESS RESULTS CHAPTER 2.

which implies that

t (t . 8)014—5—1 es (63 - 1)
T < -, oo — o0
[Thull, < /0 T(a+ B) {HMHL ||U||1€t + [l sl oo flul2 ot

S(s—T1)er
il [ 50 Car s
0

I'(a)
T[HMHLOO + llpsll \|M2HL°°53(04+1704+5)}
- Mla+p+1) C(a+ D(a+B)
< rA<r. (2.16)

Finally, we will show that (77B,) is equicontinuous. For this end, we define

= sw sl T= s [fewlL K= sup / K(t,s,u)|dr.
x[0,1]x B, J0

(s,u)€[0,1]x By (s,u)€[0,1]x By (s,7u)€[0,1]

Let for any u € B, and for each t1,t; € [0, 1] with t; < t5, we have:

[(Thu)(t2) — (Thu)(t)]

< m /:(b — )7 {\h(&u(sm + /OS | K (s, 7 u(7))|dr
+ﬁ /0 (s — 1) f u(7))|d¢} ds
br [ [ =9 = = ][I,
+ /0 K (5,7, u(r))|dr + ﬁ /Os(s S, u(T))|dT} s
< m /: (ty — s)*tF ! {E+F+ % /Os(s — T)a—ldf] ds
+m /0 it = s = - sy [ B 4 % /0 (s T)aldf] s
<t /:@2 _ gyt [ﬁ+?+ ﬁ} ds )
+m /0 ! (0 — 571 — (1 — )] {E+K+ ﬁ} ds
— ﬁ [+ K+ ﬁ] [2(ts — )+ + 1577 — 15+

The right hand side of the last inequality is independent of u and tends to zero when
|ty — t;| — 0, this means that |Tyu(ts) — Tyu(t;)] — 0, which implies that T} B, is
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equicontinuous, then 7 is relatively compact on B,.
Hence by Arzela-Ascoli theorem, T} is compact on B,.. Now, all hypothesis of Theorem
hold, therefore the operator 77 + T3 has a fixed point on B,. So the problem (2.3)) has at

least one solution on [0, 1]. This proves the theorem. [ ]

2.2.2 Existence and uniqueness result

Theorem 2.3 Assume that (H1) holds. If LA < 1, then the BVP has a unique

solution on [0, 1].
Proof. Define M = max{Mj, My, M3}, where M, My, M3 are positive numbers such that:

M,y = sup |h(t,0)],
t€(0,1]

My = sup |f(t,0)],
te(0,1]

My = sup  |K(t,s,0)].
(t,5)€[0,1]x[0,1]

We fix r > IJLJLAA and we consider
B, ={ueC(0,1LR): |luly <r}.

Then, in view of the assumption (H1), we have

At u(t)] = [kt u(t)) = h(t,0) + h(t,0)|

IN

At u(t)) — h(t,0)] + [h(t, 0)|

< Lylu(t)] + My,

and
|t u®)] < Lofu()]+ Mz, |K (L, s,u(s))| < Ls|u(t)]| + Ms.
First step: We show that T'B, C B,. For each t € [0, 1] and for any u € B,,
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t(p _ g)ath-l s
o) < [ ET T s as)) + [ 1K ru(r)de
o T(a+p) 0

+/5%m utr)r] o

n

Ot g T
1—bm 0 F<(oz+5: {'h(T»W))H/O K (7, 0,0(0))|do

+ [ L e telas] ar

Then,
|Tully < (Lr+ M)A <r.

Hence, T'B, C B,.
Second step: We shall show that T": B, — B, is a contraction. From the assumption

(H1), we have for any u,v € B, and for each t € [0, 1]

[(Tu)(t) = (T)(?)]

t—(t_S)a+B_1 S, uls)) — S,U(S ) S, T, u\7)) — S, T,U\T T
< [ st = oot + [ 1K Gsmutr)  KGs.m ol
T T ) — FOr (e | ds
+/ o rau(r) = 17 vl
(g —T)ots -
|1_bn| 0 FCY—f-ﬁ—i—l [|h(T,U(T))—h(T,U(T))|+/O |K(T,U,U(O'))—K(T,O‘,v(o')ﬂdo'
+ [ T o uto) - Siovlodoar
Hence,

|1 Tu—Tvly, < LA|u—ov];.

Since LA < 1, it follows that T is a contraction.
All assumptions of Theorem are satisfied, then there exists u € C([0,1],R) such
that 7w = u which is the unique solution of the problem ([2.3)) in C([0, 1], R). u
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2.3 Generalized Ulam-Hyers stabilities

The aim is discuss the Ulam stability for (2.3]), by using the integration

0 = [ ey ot et

+/OS %f(r,v(ﬂ)ch] ds

b [" (n—T1)F ’
+1 — by /0 Fla+p4+1) [h(T’MT)) " /0 K(no,vio))do

T(r—o)!
—i—/o Wf(a,v(a))da} dr. (2.17)

Here v € C(|0, 1], R) possess a fractional derivative of order a + g,

where 0 < a4+ <1 and
fih:[0,1] xR — R,

and

K :[0,1] x [0,1] x R — R,
are continuous functions. Then, we define the nonlinear continuous operator
P:C([0,1,R — C([0,1],R),
as follows
Pu(t) = D Pu(t) — 15 f(t,v(t)) — h(t,v(t)) — /t K(t,s,v(s))ds
0
For each € > 0 and for each solution v of , let consider the following inequalities:

|Pvli <e,  te€]0,1], (2.18)

Theorem 2.4 Under assumption (H1) in Theorem with LA < 1. The problem ,

1 both Ulam-Hyers and generalized Ulam-Hyers stable.
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Proof. Let u € C([0,1],R) be a solution of (2.3), satisfying in the sense of Theorem
. Let v be any solution satisfying . Furthermore, the equivalence in lemma
implies the equivalence between the operators P and T — Id (where Id is the identity
operator) for every solution v € C([0,1],R) of satisfying LA < 1. Therefore, we
deduce by the fixed-point property of the operator T' that:

[o(t) —u(t)] = Jv(t) —To(t
(

then,
Ju —vlly < LA[Ju — [l +¢,

because LA < 1 and € > 0, we find

fu vl < ——
u Vi1 > 1_ LA
Fixing Cypx = ﬁ, we obtain the Ulam-Hyers stability condition. In addition, the
generalized Ulam-Hyers stability follows by taking Cy s x () = +Fx- ]
Example 2.5 Consider the following fractional integro-differential problem
r 2 ‘
D ult) = hlt,ult)) + 15 f(t.ut) + [ K(t,s.u(s)ds, t€ 0.1
0
(2.19)

Where

1
Oé:ﬁ:g’ b:37 77:5

By the above data, we find that A = 0.4602, Ay = 4.3755.
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To illustrate our results: Theorem and Theorem we take for u,v € RT and

t € 10,1] the following continuous functions:

(2 — Hu(t)
h(t,u(t)) =
(t.u() iy
33—t
t,u(t)) = t
fltu(®) = “u(t),
K 6_(5+t)
(t,s,u(s)) = ) u(s).
Note that ﬁdL—lL—lL—lM
ote that we can fin 1= 5y le= g s =g oreover,
2—t 3—t? et
) = —— t) = t) = —.
. 1 1 1
Obviously, ||p L., = 30’ 12l L. = BYE sl Lo = 61
and
L= {Ly, Ly, L3} = L
= max 1, L2, L35 — 18
Then, we get:

LA, =0.2431 < 1, A =0.3229 < 1.

All assumptions of Theorem [2.9 are satisfied. Hence, there exists at least one solution for
the problem on [0,1].

By taking the same functions, we result the assumption: LA = 0.0179 < 1,  then
there exists a unique solution of on [0, 1].

In order to illustrate our stability result, we consider the same above example:
L= L LA; =0.0179
— 187 1 — . .
This implies that the system 1s Ulam-Hyers stable, then it is generalized Ulam-Hyers

stable.
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Chapter 3

Existence and stability results for the
solution of neutral fractional
integro-differential equation with

nonlocal conditions

Many researchers have given attention to the existence and uniqueness theory of
nonlinear FDEs of various types. For example In [§], M. S. Abdo et al. studied the
Cauchy-type problem for a integro-differential equation of fractional order with nonlocal
conditions in Banach space. There are concerned with the existence and uniqueness results

for fractional integro-differential equations of the type

“DP L x(t) = h(x(t) + f(t,z(t)) —1—/0 K(t,s,x(s))ds, t€ la,b],
(3.1)

j=m

z(a) = chm(Tj), 7; € [a,b].

\ Jj=1
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In [43], the authors introduced and studied a related problem. Precisely the

authors studied the existence for the following new problem :

CDp{Cqu(t) + f(t, $(t))} = g(t’ :L‘(t)),

Jj=m 1 i=n 7 (32)
2(0) :Zﬁjx(aj), br(1) —a/o x(s)dH(s)—i—Zozi /g x(s)ds,

where
O<o; <& <<, 0<p,g<1,
ﬂj,OéiER, i:1,2,...,n, j:1,2,...,m,

and f, g are given continuous functions.

In the present chapter, we discuss the existence and uniqueness results by three
fixed point theorems, then we prove the Ulam stability of the solution for the following new

Neutral fractional integro-differential equation :

( CDPLE Dou(t) + f(t,u(t)} = glt,u(t)) + /O K(t, s, u(s))ds,

i . (3.3)
u(0) = Z Bju(oy), u(l) = ZO@U(&),

where
0<o; <& <1, 0<pqg<l, l1<p+q<2,
Bj,a; € R, j=1,2,...m, i=1,2,..,n.

Cpr ¢ D4 are the Caputo fractional derivatives, f, g, K, are given functions with

f.g€C([0,1] xR,R) and K € C(0,1] x [0,1] x R, R).
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3.1 Equivalent integral equation :

Lemma 3.1 Let 0 < q,p < 1. Assume that g, f and K are three continuous functions. If

u € C([0,1],R) then u is solution of if and only if u satisfies the integral equation

u(t) = /Ot wg(s,u(s))ds—i-/o M/ K(s,7,u(r))drds

I'(q+p) I'(q+p)
— s s, u(s))ds — Znoz- —(&_S)ﬁpl s, u(s))ds
[ i rtatms x| o [ S ste o
(& — 5)rHP1
_|_/0 —F(q—l—p / K(s,7,u(r))drds
— 52‘_(5_3)(11 s,u(s))ds | — —(1_8)(1”71 s, u(s))ds
/0 I'(q) s, ())d> /0 I'(q+p) gls,u(s))d
(1 — s)atP 1 1 (1— S)qﬂ
—/0 —F(q—i—p / K(s,7,u(r ))deS—i—/O Q) f(s,u(s))ds
ot | [ (o) - et o)
(0; — 8)q+p 1
_—F(q—I—p / K(s,1,u(t ))dT)d8:| (3.4)
where
N0 = H = F ) M0 = - ) (3.5)
j=m B;0° j=m
p1 Z_:F(QJFU P2 —1+Z_:53> (3.6)
_ —§ Qi :1—§a~ (3.7)
“TTery &I+ ™ £ ‘
and
k = paps — p1ps # 0. (3.8)
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Proof. We apply the operator I? on the first line of (3.3, and using the lemma to

obtain
t
CD%(t) + f(t, u(t)) — cog = IPg(t, u(t)) + Ip/ K(t,s,u(s))ds.
0
By applying the operator I? on both sides of the last equation, we find

u(t) — ey + I0f(t,u(t)) — I%(co) = I7Pg(t, u(t)) + Iq+p/0 K(t,s,u(s))ds.

That is
ut) = —I"f(tu(t) + 17g(t, u(t))
t tq
+1q+7’/ K(t, s, ds+c1+ oy 3.9
K s o+ (3.9
where cg, ¢; are two constants. By the second line of (3.3)) and (3.9)), we get
J=m a
Bio;
Y+a(> B —1) =1, 3.10
]:1 F(q 1 Z J 1 ( )
and
Z k] )+ a1 —iiai) = I,. (3.11)
P(g+1) i=1
By using and (3.7 in (3.10)) and (3.11]), we find
pico + p2c1 = I,
3.12
{ p3co + pac1 = I, ( )
where
S 7 (oj—s5)! (0 — s)*+*!
B-/ (—f s,u(s)) — ———————g(s,u(s
(UJ —3) q+p 1 / )
———— [ K(s,7,u(r))dr |ds, 3.13
R (7) (313)
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and
&i ) q+p 1 (& _ S)q—l
= ozz g(s,u(s)) — ————f(s,u(s
o [ (S o - T st
_ q+p 1
Ez s) / K(s,7,u(r )ds
[(q+p)
(1—s)r! / (1 —s)rtp=t
+ ——f(s,u(s))ds — ———  g(s,u(s))ds
J e L e )
/1(1 Wl/K (r))drd (3.14)
- = (s, 7, u(r))drds. .
o T(g+p)
Solving the system (3.12)) for ¢, c; and k = paps — p1ps # 0, we obtain
o= p2la — I1ps o = p3ly — p1ls
0 k ) 1 kf .

Substituting cg, ¢; in (3.9), we get

u(t) = /Ot %}S—Wg(s,u(s))ds+/o M/ K(s,7,u(r))drds

q+Dp) I'(q+p)

A e O A
s+

_ /Ot “F_(S—W;_lg(s,u(s))dH/O M/ K (s, 7, u(r))drds

q+p I'(q+p)
Pt —s)1 !
— / Wf(s, U(S))dS - )\1@)[2 + )\Q(t)jl
0
By the definition of 77 and 7" we find the solution (3.4)).

Conversely, by lemma and by applying the operator “ D?*P on both sides of (3.9),

we find

Cprtry(t) = ©¢petr { — I9f(t,u(t)) + I7Pg(t, u(t)) + Iq“’/o K(t,s,u(s))ds

tq
4o+ g ——
! OF@+1J

= —“DPf(t,u(t)) + gt,u(t)) + /Kt,s,u

+DIP( ¢ + ¢
(1 OF@+U)

= —ODPF(t u(t)) + g(t,u(t)) +/O K(t,s,u(s))ds
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This means that u satisfies (3.3). Furthermore, by substituting ¢ by 0 then by 1 in (3.4)),
we conclude that the boundary conditions in (3.3) hold. Therefore, u is a solution of the
problem ((3.3)). ]

3.2 Existence and uniqueness results

We are going to prove the existence and uniqueness result of (3.3]) in C([0, 1], R) by fixed
point Theorems. For this end, we transform (3.3]) into fixed point problem as u = Tu,
where the operator

T:C([0,1,R) —s C([0,1],R),

is defined by

Tu(t) = /Ot wy(s,u(s))ds%—/{) M/ K(s,1,u(7))drds

L(qg+p) ['(q+p)

- /Ot %f(s,u(s))ds — A1 (t) [iozi(/o& %9(37 u(s))ds

i=1

+/0£z—(€_3q+p 1/ K(s,7,u(r))drds

I'(qg+p

_/051' Mf(sju@))d(g) _/01 u&iwg(syu(g))ds

I'(q) q+p)

_/Olur(—wl/ K(s,7,u(r ))drds+/01(1;(—8>qlf(s,U(S>>dS

q+p) q)

4axw§j@[/j(iﬁiﬁﬁiﬂau@»—ﬁﬁiiﬁfimau@»

I'(q) I'(q+p)
(Uj _ 3)q+p 1

_—/ K (s, 7 u(r ))dT)ds] (3.15)

I'(qg+p)

We set

1 1 1
A“:A_{rm+1»+r@+p+1Y*mq+p+m}’ (3.16)
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where,

1 1 1

+ +
Ilg+1) Tl+p+1) T(g+p+2)
+A [ + + !
"T(g+1) "T(g+p+1) T(g+p+2)

= ¢ gro grron!

+ Z 1 + 1 _I_ 1

;'O"(rwn NCETESY r<q+p+2>ﬂ

~ j=m Uq Up+q Jp—i-q—i-l

+)\ . J -+ J + J , 3.17
2;‘5f'(r<q+1> Tgrp+D)  Tlgtp+? (8.17)

and

A —L M \ :L |P4|
A1—|k|<|p1!+F(q+1)>, A2 | |(’p3|+—r<q+1))' (3.18)

In the next, we present the main results.

3.2.1 Existence result via Leray-Schauder nonlinear alternative

theorem

Theorem 3.2 Let f,g € C([0,1] x R,R) and K € C([0,1] x [0,1] x R,R) be continuous
functions. Assume that

(H1): There exist functions p1,p2 € C([0,1],RT), p3 € C([0,1] x [0,1],RT), with p =
max{p1, p2, p3} and nondecreasing functions V¥, g, 13 : RY — RY with ¢p = max{y, s, 13}
such that: £ (&, u(®)] < pr(t)a((lull),

gt u(®)] < paW)a(llull), — and  |K(t,s,uls))] < ps(t, s)s([[ul]),

(H2): There exists a constant M > 0 such that m > 1.

Then the problem admits at least one solution on [0, 1].

Proof. For r > 0, let B, = {u € C([0,1],R) : ||u|| < r}, be a bounded set in C([0, 1], R).
We will show that 7" defined by (3.15)) maps bounded sets into bounded sets in C([0, 1], R).

36



3.2. EXISTENCE AND UNIQUENESS RESULTS CHAPTER 3.

Then, by (H1), we have

(Tu)@)] < [Ipal[en(fJull) sup {/t%dﬁlh ( Iazl/

t€(0,1]

[ ) e [ )]

t(t — g)atr—1 s)atp-1
Hllalal) sup | [ %mm (Zm [,

t€[0,1]

L(1 = s)atpt ) ol (o5 =5yt }
+/o T'(q+p) TRt |Z|ﬂj|/ q+p ’
+p—1 s

sl ) s [ug |Z|@| [ [

§)atr-l
+IA( ( ozz/ /des
Al Z' | q+p 0

Then by some calculations, we get

9 1
(Tu)(t)] < Mﬂ%ﬂMDﬁgiF@+ M) <§:MA m+19
jq tq-&-P
ult |zw] e R {m

q+p i=n +
Zi:l | & 1 )]
el |Z|ﬁ] + Tg+p+1) |>\1(t>|(f‘(q+p+1) TT+pt D)

+psl|vs(llull) sup {— (
s s I ”)tem I(g+p+2) Z‘ q+p+2)
fa+p—1 otpl
+ + X
F(q+p+2) Patt |Z|ﬁj q+p+2)}
< |lpll(lIr[)A.

Thus,
[Tul| < [lpll(lulDA < |Iplle(r)A.
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Let t1,t, € [0,1] with ¢, < t; and u € B,, where B, is a bounded set of C([0,1],R).

Then we have

Tu(ty) — Tu(ty)] < \/ (= 5" 1(_)<t2 i \f(s u(s))|ds‘
+ /t1 (t2 —qs+ pp (s, u( ”(t ;(;iq |f(s,u(s))|ds
+ /0 s)*tr” qur;;_S)qup 1|g(S,U(S))|dS‘
+/0 (t; — s)7tP~ 1q+;§_8q+p 1/ K (5,7 u(r ))|deS‘

t — q+p1
+/ L/ |K (s, 7,u(T))|drds
t1

I'(q +p)

() — Mi(f)] [/01 (11“(

q—+p)|g(5 ;u(s))|ds

P(1—s)et —(1_8q+p1 s, T, u(T))|drds
w [ S tstas + [ U [ uto)ard

+Z ] ( / " ‘jiq_l\f(s,ws))rds
+/0 M/ |K (s, 7, u(r ))\dmw/jiM!g(s,u(smds)]

S)q+p 1

Fla+p) I'(g+p)
Uj O — § +p—1
Aa(t2) — Aa(t1) (o5 —8)"" K( drd
+|Aa(t2) — QI‘Z’BJ[/ T(q+p) /\ (s, 7,u(T))|drds
" o — ) / (0, — 5)"
+ ———|g(s,u(s))|ds + —fsu ds
[ st + [ O st
tQ-i—p_tq-i—p +2t —t q+p —tq +2t _ q
< ||p|rw<||r||>{'1 §7 2t —t)™ |~ #] +2(t — 1)
I(g+p+1) T(g+ 1)
|t‘f+p+1 _tg+p+1‘ —i—2(t2 _tl)q+p+1 2t1(t2 _t1>q+p
P4 tq 1) o7

pt+q p+q+1 )

0.7 J
ZWJ ( q+1 TTtrp+D) Tatpt2)

PQ(tq - til)
kF(q +1)

§P+q €p+q+1
+Z|a’ (F (q+1) F(q+p+1) +F(q+p+2))}]'
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If (t —t;) — 0, then the RHS of the above inequality tends to zero independently of
u € B,. That is implies

then 7" maps bounded sets into equi-continuous sets of C'([0, 1], R).

By Arzela-Ascoli theorem, we have T : C([0,1],R) — C([0,1],R) is completely con-
tinuous.

We will apply the Leray-Schauder nonlinear alternative once we establish the bounded-

ness of the set of all solutions to equation
u=¢eTu for ee€(0,1).

Let u be a solution of (3.3]), then we will prove the boundedness of the operator 7.

We have

1 1 1
+ +

Flg+1) T(+p+1) T(g+p+2)

+X{ L + L + L

"\T(g+1) "T(g+p+1) T(g+p+2)

5p+q §p+q+1
+Z| (q+1) F(Q+p+1)+F(CI+p+2))}

() < ||p||¢<||u||>[

Up—i-q O_p+q+1
+A ! + =2
22”]( STt TGt s
< Ipll¥((lul)A,
which implies
Il
— < 1.
[Pl (([ull)A

Then by (H2), there exists M > 0 such that M # ||ul||. Let us define a set
YV ={ued(0,1,R)/ [lul < M},

and then
T:Y — C([0,1],R),
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is completely continuous. From the choice of Y, there is no u € dY such that
u=¢eTu for €€ (0,1).

Then by the nonlinear Leray-Schauder type, we conclude that the operator T has a
fixed point u € Y which is solution of the BVP (3.3). ]

3.2.2 Existence result via Krasnoselskii’s fixed point

Theorem 3.3 Let f,g, K be continuous functions satisfying
(H3) The inequalities
[f(tu) = f(E0)] < Lau— v,
lg(t, u) — g(t, v)| < Laju — vl
and

|K(ta37u) - K(t,S,U)| < L3|u - ’U|,

with L = max{Ly, Ly, L3} and L < Ail, where Ay is given by (3.16]).

(H4) The inequqlities
|f(t,w)] < (),
l9(t, uw)| < pa(t),
[K(t,s,u)| < pa(t,s),
Y(t,s,u) € 0,1] x [0,1] x R, 1, e € C([0,1],RT), us € C([0,1]*, RT),
and
pr = max{ju, fi, p3}-

Then the BVP has at a least one solution on [0, 1].
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Proof. We fix 7 > A||u|| and consider the closed ball
By = {ue Cllull <7}
Next, let us define the operators 17,75 on B; as follows

Tiu(t) = /O%g(s,u(s))ds—/o Mf(s,u(s))ds

q+ I'(q)
t(t q+p 1
—i—/ﬂ —F(q—i—p / K(s,7,u(r))drds,

and
Tou(t) — —Al(t)[ifiai(/ogi %g(s,u(s))ds
+/0£('5F(—W/ K(s, 7 ulr ))des—/o& Mf(s,u(s))ds)

q+p) I'(q)
_/01 %g@,u(s))ds—/o “F_(;—:;N/ K(s,,u(r))drds
+/Ol%f( ds} + ot ZBJ/ j <%(—;)>q_lf(s,U(8))
_%g(s,u(s)) q+q;p 1/ K(s,7,u(r dT)d

For u,v € Br and t € [0, 1], and by the assumption (H4) we find

|Tyu+ Tovl| = sup |Thu(t) + Tev(t)]
t€[0,1]

+ +
I'(¢g+1) T(g+p+1) T(g+p+2)
+X{ L ! + !
"\T(g+1) T(g+p+1) T(g+p+2)
ga—kq €f+q+1 )}
+ ; +
Zla ( q+1 F(q+p+1) L(g+p+2)

B ! af*q O_§)+q+1
+A : + + :
2;'@'(%“) Fetr D Tatred))
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Then, we obtain,

|Thu + Tovl| < [[ul|A < 7.

This implies that (Tyu + Tyv) € Br.
We establish now that T3 is a contraction for u,v € C([0,1],R) and ¢ € [0, 1], we have

|Tou — Tov|| = sup |Thu(t) — Tov(t)|

te[0,1]

_ 1 1 1
Ll{lu —vl|| | A + +
=l ) * D T T

=n é»q €p+q ép-&-q—i-l

+ Z 1 + 1 + 1

Z'“'(nqm NCETESY r<q+p+2>)}
Jp—i-q O_p+q+1

+A J + J

“'Z’B’( D) T Tarpel) r<q+p+2>ﬂ

IN

Then since LA; < 1, T, is a contraction mapping. By the continuity of g, f, K we imply

that T3 is continuous. Also, T} is uniformly bounded on B; as

(B0 = s (T
g (1 syt
< s [ (St o)+ S ot ute) s

+ s /t“F(—Wl/ K (7, 5, u(s))|drds

(t,5)€[0,1]x[0,1] Jo q+p)

1 1 1
< + + .
< M| 55 * T eeD * T )
Finally, by (H3), the compactness of the operator T; is proved, we define

F= sw  ftwl, 9= s lgtwl, K= s |K(tsw)
(t,u)G[O,l}XBF (t,u)e[O,l}xB; (t,S,U)E[O,I]X[O,I]XBF

Then, for 0 < 7 < <1, we obtain

@ o — ) . TP P 2 — 1y)etP
(T~ (T)(m)| < DAy W AN )T,

I'(g+1) Tlg+p+1)
| q+p+1 q+p+1| + 2<7_1 _ 7_2)q+p+1 B
T(g+p+2) ’
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as 1 — 7o — 0, independent of u, thus T} is relatively compact on Bs.
Hence, by the Arzela-Ascoli theorem, T} is compact on Br. Thus the hypothesis of
Theorem hold, that is the problem (3.3)) has at least one solution on [0, 1]. u

3.2.3 Existence and uniqueness result via Banach’s fixed point

Theorem 3.4 Assume that f,g, K are continuous functions satisfy the assumption (H3).

Then the BVP has a unique solutions on [0,1] if LA < 1.

Proof. Define M = max{Mj, My, M3}, where M;, My, M3 are positive numbers such that
sup |f(t70)| = Ml?
te[0,1]

sup |g(t,0)| = My,

te(0,1]
sup |K(t,s,0)] = Ms.
(t,5)€[0,1]x[0,1]
Fixing r > %, we consider

B, ={u € C[lul| <r}.

Then, by (H3), we get

|f(tu@®)] = [f(tu(t) — f(2,0) + f(¢,0)]
|f(tu(t) — f(0)[ + [ (¢, 0)]
Lq||ul| + M,

IN

IN

l9(t, u(?))]

l9(t,u(t)) — g(t,0) + g(t,0)|
lg(t, u(t)) —g(t,0)| + [g(t,0)]
Lo|lul| + Ma,

IN

IN
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and

[K(t,s,uls))] < [K(t s, u(s)) — K(ts,u(0)] + [K(E, s, u(0))]

< Lsllul| + Ms.
We will show that T'B, C B,. For any u € B,, we have

[Tul| = sup [Tu(?)]
te(0,1]

1 1 1 — 1
(L”M){F(qm +r<q+p+1> +r(q+p+2) “1{F<q+1>

IN

+
g

Zr(
F'(g+p+1) Q+P+2 NQ+p+D

€p+q+1 U;H—q 0§+q+1
ICETTS) >} “22'@ ( PV Y PR r<q+p+2>)]

= (Lr+ M)A < 1.

This implies that T'B, C B,.
Now, for u,v € C([0,1],R) and for all ¢ € [0, 1], we have

|ITu — Tv|| = sup |Tu(t) — Tv(t)]
te[0,1]

(t—s) q+p 1
= sup [/ / \K (s, 7,u(T)) — K(s,T,v(7))|dTds

"T(g+p)

N /0 “Hiyg(s,u@))—g(s,v(s))\ds

q+Dp)

+/O Mﬁ(s,u(s)) — f(s,v(s))|ds

+Mgw%ﬁia14 (5"3ﬁp1/‘m737u — K(s,7,0(r))|dr

I'(g +p)
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(1 — )t
[ U o) = s vl

b [ U s uts) ol o) s

q+p)

(1—s)etrt
/ " / |K (s, T,u(T K(s,1,v(r ))|d7ds}
o Tlg+p)

J _ q+p1
WG IZBJ/ (B /|Ksm K (s, 7,0(r)ldr

(0j —s)"!
['(q)

S latsas) ~ gt (o) )
= plel (3.19)

+ [ (s,u(s)) = f(s,u(s))|

For LA < 1, it follows by (3.19) and Banach’s fixed point Theorem that the operator T is

a contraction, then there exists one solution of (3.3)). |

3.3 Generalized Ulam-Hyers stabilities

We will discuss the Ulam stability for (3.3]) by using the folowing integral equation:

o(t) = /Ot wg(s,v(s))ds—i—/ot@r‘(—w/ K(s,7,v(7))drds

Tl +p) q+p)
_/Ot (t;(‘z))q_lf(s,v(s))ds—Al(t){iai(/o %Q(s,v(sws
+/0 %/ K(s,7,0(r ))dms—/j (& ;é;q_lf(s,v(s))ds)
_/01 %g(s,v(s))ds—/o %/ K(s,7,0(r))drds
” 1%ﬂ }w Z@[ / ( ]F<;))q1fw<s))
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Here v € C(|0, 1], R) possesses a fractional derivative of order p + ¢, where 0 < p,q < 1,
f,9:00,1] x R — R,
and
K:[0,1]x[0,1] xR — R,

are continuous functions. Then, we define the nonlinear continuous operator
G:C([0,1],R) — C(]0,1],R),
as follows
Gu(t) = DPT(t) + DPf(t,v(t)) — g(t,v(t)) — /Ot K(t,s,v(s))ds.

Using the Ulam stability definitions, we get the following results: For each ¢ > 0 and for
each solution v of (3.3)), let consider the following inequality:

IGv|| <e,  te]0,1], (3.20)

Theorem 3.5 Under assumption (H3) in Theorem with LA < 1. The problem

s both Ulam-Hyers and generalized Ulam-Hyers stable.

Proof. Let u € C([0,1],R) be a solution of satisfying in the sens of Theorem
Let v be any solution satisfying . Furthermore, the equivalence in lemma
implies the equivalence between the operators G and T — Id (where Id is the identity
operator) for every solution v € C([0,1],R) of satisfying LA < 1.
Therefore, we deduce by the fixed-point property of the operator T' that:
0(t) = u(t)] = |v(t) = Tv(t) + Tv(t) — u(t)]
< |Tw(t) — Tu(t)| + |Tv(t) — v(t)]

= [Tv(t) = Tu(®)| + |Gu(t)],
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using the inequality (3.20)), we get

o —ull < LA[jo —ul| + |G|
< LA|v —ul| +¢,
because LA < 1 and € > 0, we find
lu— o] < ——.
—1—-LA
Fixing Cygx = ﬁ, we obtain the Ulam-Hyers stability condition. In addition, the
generalized Ulam-Hyers stability follows by taking Cyg x(¢) = =75 [

3.4 Example

Let us consider

D DIut) + £(t, u(t)} = g(t, u(t)) + /0 K(t, s, u(s))ds,

(

i s (3.21)
u(0) = Bju(o), u(1) = > au(),

where

The functions f(t,u(t)), g(t,u(t)) and K(¢,s,u(t)) will be fixed later.
We then find that A = 29,0059 and A; = 26.6923.
We are going now to illustrate Theorem [3.2] for this end, we take

cost et
t.u(t)) =

(. u(t) sint |ul n
u = COoSu
g 35+ et \ 1+ |[u]] !

6s—t—l
K(t,s,u(t)) = ol (u—FZe_“').
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Clearly
| cos t] et 1 et
tu(t)) < _
[sint| ([ ||ull
t,u(t 1
s—t—1 s—t—1
K(t, s, u(t < ¢ U 2¢ vl < ¢ U 2
K (e, u(e)] < Sl + 2e7) < S (ul + 2),
with
1 et 1
P R JE— Pl = —
1) =97+ {2 4+ 9det’ 1Pl = 27
1 1
P(t) = —— P = —
es—t—l 1
P3(tvs)_ 64 ||P3||_64a

Drllull) = flull,  Pa(llull) = llull +2, s(ull) = 2+ [lu],
1 1 1 1
P = - — N =
max{m’ 36’ 64} 36’
= maX{HuH, L Jlull, 2+ HUH} =24 [|ul]

By (H2), we find M > ||P||¢(M)A = 8.2935.
Since all the conditions of Theorem are satisfied, there exists at least one solution on
0, 1] for the problem (3.21]) with the functions are given by (3.22).

We illustrate Theorem [3.3] for this end, we take

sin u

—t
f(t,u(t)) = 5 + e 'cost,
es—t
K =
(t,s,u(t)) 3 COS U
|u|
tou(t) = —— 1 6t
9 u) = i T
1 1 1
Note that Ll:E’ L2:£, L3:6—4
Moreover,
7t @) = 22 ot < Lt e cost] = (1)
U T e”|cost| < 5 +e [ cost = pu(?),
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K(t < — =
| ( 787U’< ))| — 48 :u3<8)7
1
64
. 43 385 e
Obviously, [l = 35, lluall = T llnall = g5
and
1
L= Ly, Ly L3} = —
max{Li, Ly, L3} 1
385
[l = maxc{{|pa[], 2l sl } = —,
64
we get,

LAy = 0.6355,  ||ul|A = 174.4886.

Assumptions of Theorem [3.3| are satisfied. Hence, there exists at least one solution for
the problem (3.21)) on [0, 1].
Let take the same functions in the last example of Theorem [3.3 we find:

LA = 0.7069 < 1,

then by Theorem the problem (3.21]) has a unique solution on [0, 1].
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Chapter 4

Existence and generalized
Ulam-Hyers-Rassias stability results
of the solution for nonlinear
fractional differential problem with

boundary conditions

Regarding the existence, we mention the work by Zhao and Ge [55], where the authors
used the Leray Schauder nonlinear alternative theorem to show the existence of positive

solutions to the following fractional order differential equation
{ Dgvu(t) + f(t u(t)) =0, t€[0,+00),
u(0) =0, DS u(+00) = Bu(f).
where

l1<a<?2, f€C(0,4+00) x R, [0, +00)), 0<¢& 8 < +o0.
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G. Wang et al. [50] discussed the existence of the solutions for nonlinear fractional dif-
ferential equations with integral boundary conditions on an unbounded domain. Precisely,
the authors consider the following problem

Dgiu(t) + f(t,u(t)) =0, tel0,+00),
- (4.2)
u(0) =0, Dy u(+o0) = /\/ u(s)ds.
0
where

l<a<?2, feC(0,4+0) x R, R), 0< A\ 7 < +o0.

Shen et al. [44], considered the existence of solution for BVP of nonlinear multi-point
fractional differential equation
DY u(t) = £(t,u(t), Dut)), 1 € [0, +00),

m—2 (43)
u(0) =0, w(0)=0, Djlu(+o0) = Bu(&).

i=1
where

m—2
2<y<3, feCRxRxRR)and T(B)—> B "
=1

In the present chapter, by the Schauder’s fixed theorem we prove the existence and
generalized Ulam-Hyers-Rassias stability for the next boundary value problem of fractional

differential equation on infinite interval:

Dyyu(t) + f(tu(t) +6(t)g(u(t)) =0, ¢ € [0, +00),

w(0) =0, «'(0)=0, DI u(+oo)=bu(€)+ )\/ u(s)ds,
0
where
2< <3, 0<\b<oo, wefix0<E&<o<o0.

The functions f : Rt x R — R, ¢ : R — R are continuous and 6 is a continuous
decreasing positive function such that: 0 < 0(¢) < 1, for all t € [0, 400). Dg+ is the

standard Riemann-Liouville fractional derivative of order .

51



4.1. GREEN’S FUNCTION AND INTEGRAL EQUATION : CHAPTER 4.

4.1 Green’s function and integral equation :

Lemma 4.1 u is a solution of the problem if and only if u satisfies the following

integral equation:

—+00

u(t) = i H(t,s) [f(s, u(s)) + Q(S)g(u(s))} ds, (4.5)
where
B N R S A G .
I'(B) T(8) [r(ﬁ 1) — AP — 555571] <t s<g¢
[T(8+ 1) — 8(¢ — )1 = Ao — )°]
t<s<¢<o,
I'(B) [F(ﬂ +1) — \oB — bﬁgﬂ—l]
(=9 . [F(ﬂ +1) = Mo — 3)6} -1 . )
H(t,s) = L) I'(B) [F(ﬁ +1) — Ao — bﬁfﬁ—l}

[m5+1y—ma—gﬂw4
D(8)[T(8+ 1) = Ao? — bBgr1|

_E=9)t L(5+ ! f<o<s<t

F@) - r@)[r@+1) - r0? —bse]

g
| T(6+ 1) — Ao? — 0B

Proof. Using the last lemma [1.21] we have
u(ty = —1Ij, [f(t, w(t)) + 0(t)g(u(t))| + ert® ™t + ot 4 st 3, (4.6)
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By the first and second conditions we get
c3=0 and ¢ =0.
Consequently,
ult) = =I5, [ (tu(®) + 00 g(u(t))] +ert",
From the third boundary condition, it follows that
Dytult) = —I57 | £t ul) + 6()g(u(t)] +eal(8)
=~ [ [rtsuto) + 0s)gtut)] s + e (s).

On the other hand and by some computations, we find:
bu(§) + )\/O u(s)ds = —b[oﬁ+ [f(g, u(§)) + 9(£)g(u(f))} + ¢ beP 1

—)\/OU Ig+ [f(s, u(s)) + Q(S)Q(U(S))] ds + )\/00 c15°71ds

= I [ (& u(€) + 0(E)g(u(©)] + erbe™
Ao

AL [ flo,u(o)) + e(o—)g(u<o—))] + 5o

Then, we deduce

a = rB+1)— fgﬁ —pBER1 [/0 [f(57 u(s)) + Q(S)Q(U(S))]ds

DI [£(&u(€)) + 9(u(©)] = M [F(0,u(0)) + 0(0)g(u(0))]]

By substituting the values of ¢;,co and c3 in (4.6), we get the following integral equation:

) = - % (£, u(s)) + 0(6)g(u(s))] ds

B—1 +00
T |, ) + o] s
_ bpte~! /g (e
T(B+1)—o? —0BEPT Jy — T(B)
A\GtP1 7 (o —s5)?
CT(B+1) — AP —bBei! /0 T(3+1)

T

[£(s.uts) + 05t ] s
s uts) + 855D s
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Then we get (4.5)).

Conversely, suppose that (4.5]) is satisfied. To get (4.4)), we use the following appropriate

relationships
Dy, 1) | f(t,u(t)) + 9<t>g(u(t))} = f(t,u(t)) +0(t)g(u(t)) and DI Pt =0.

]

The work in this chapter is organized as follows. In section [4.2] we provide the proofs

of the existence of the solution for the problem (4.4)) in the Banach space. The generalized
Ulam-Hyers stable is stated and proved in section [£.3] Finally, an illustrative example are

presented.

4.2 Schauder’s existence result

Let define the following Banach space:

u(t
E = {u € C0, +00) : SUp 7 ’+(t2‘1 < +oo}, (4.7)

equipped with the norm

_ Ju(®)]
Jullz = SUD T

In order to prove the existence of the solution for the problem (4.4} in E, we transform
the problem (4.4} into fixed point problem Pu = u, where P is an operator defined on

B(r)={uvek, |ulp<r}

+oo

Pu(t) = H{t,5)| (s, u(s)) + 0(s)g(u(s)) | ds.

0
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4.2. SCHAUDER’S EXISTENCE RESULT CHAPTER 4.

Theorem 4.2 Let f:[0,400) x R — R and g : R — R are two functions such that:
(A1) T(B+1) > Ao? + 8¢5,

(Ag) There exist a nonnegative measurable function ¢y defined on [0, +00) and a real con-

stant L > 0 such that:
|t u(t) — f(E o) < i@)ful) —o@)],  wveR,

o) — o(w()| < Llu(t) — ()], wv ek,
and
5[ A+ ) + 0] < (5 1)~ 2o — b5
with

o(t) = 0(t)L, for each t € [0, +00).
(A3) Let ¢1(t) = |f(t,0)] and ¢2(t) = 6(t)|g(0)], t € [0, +00) such that:
/0 7 [0r(0) + 0a(0)] e < 40
Then, the problem has at least one solution in E on [0, +00).

Lemma 4.3 If (A1) holds, then the Green’s function H(t,s) satisfies

for all &, 0,s,t € [0,400), we have
H{(t, s) B
< .
1+t~ — T(B+1) — AP — bBEsT
Proof. If s <t, and s < &, we get

Ht,s) _  (t—s)" N [F(ﬂ +1) = 08(§ = 5) 7 = Ao - 3)5] -1
1+ -1 (L+77D0B) - g [F(ﬁ +1)— Aof — 5556—1} (1 + 8-1)
< I(8+ 1)t
- L) [F(ﬁ +1) = Aof — bﬁgﬁfl] (1+ t5-1)
p

= T(E+1) = 0P — bger T’
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All other cases of H(t,s) are simple. This completes the proof of Lemma [ ]
Proof. (Of Theorem We use the Schauder’s fixed point theorem to prove our
existence result, for this end, it is divided into three steps.

Step (1): Let us 7 > 0 such that

B f0+oo [P1(5) + pa2(s)]ds
(B +1) = Ao = bFErt — B [ (1 + 771 [Un(s) + ta(s)lds
It is obvious that, if w is a continuous function on R*, then Pu € C'(R™). To show that

P(B,) C B,, let u € B, and t € RT. Then, We have

ro o>

D = [ R st + tshatute ] as
< e | [+ ol os
= r(B+1)— faﬁ —bpe1
[ (10060 = £, 001+ 065D = 90+ 1050 + 85190 s
© T [ + L) + 61(5) + ()] .
S TEr)- faﬁ —ppeh1 /;OO [‘bl(s) + d2(s) | ds
e [ ) + (o)
Thus,
'1?521 = T(B+1)— faa YT /;OO [¢1(8) + da(s)| ds
Br

+00
+F /0 (14 s" Y[ (s) + ¥a(s)]ds.

(B+1) — Ao? — bper
< 7

Therefore | P||g < r, thus P(B,) € B,.

Step (2): P : B, — B, is continuous. Let {u,} be a sequence which converges to u in
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CHAPTER 4.
B,.. Then, for all t € [0, +00),
‘Punl +t_/3 1 ‘
| [ S (w9 = u(e0) 4009 (st (5D = atuts)) s
< TETTC — o / N \(ﬂs,un(s» — [(s,u(s))) + 0(5) (9(wn(s)) — g(u(s))) |ds
8

= L(B+1)— \of —bBEA-T /0 [’f(s’“n(s)) — f(s,u(s ))’ +0(s)
5||Un _UHE oo .
T(B+1)— Aof — bBEA1 /0 [11(s) + 1a(8)](1 4 7 1)ds

< up — ul|g.

o(10(9) = g(uto))| |

So we conclude that || Pu,, —

Pu||p — 0 as n — 4o00. Hence, P is a continuous operator
on .

Step (3): We have two claims to verify that P(28,) is a relatively compact set :

First claim: Let I C R" be a compact interval, ¢t;,¢, € I and t; < t5. Then for any
u € *B,., we have :

1+t 1440

+oo
/0 14+ 1440

< /+°° H(ty,s)  H(ty,s)

(t27 8) tla

‘f ) +0(s)g |ds

1+e5 1440

[Wl(S) +12()](1+ ")l|ulle + ¢1(s) + da(s) | ds

Since it is continuous on R* x RT, we have that H(t,s)/(1 + t*7!) is a uniformly
continuous function on the compact set I x I. Moreover, for s > ¢, we have that this
function depends only on ¢, consequently it is uniformly continuous on I x (RT\7).

Therefore, we have that, for all s € R™ and ¢,,t, € I, the following property holds:

For all € > 0, there is d(¢) > 0 such that, if |t; — t3] < J, then

H(t,s)  H(h,s)
14+ 144!

<e
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This property, together with (4.8)) and the fact that

/0 h [(1 + 87D [ (8) + a(8)]r + i (s) + ¢2($):| ds < o0, (4.8)

means that Pu(t)/(1 + t°~1) is equicontinuous on I.

Second claim: To verify condition (i7) in lemma we use the following property:

H(t,s) 1

im T =
t—stoo 1 + P~ F(B) [F(ﬁ + 1) —\oB — bﬁgﬁ—l]

.

)\[0’8—(0—8)5}+b5[5571—(f—s)f8’1], s<t, s<E&,
P(B+1) =bB(E =) = Mo —s)”, t<s<&¢<o,
)\[O"B—(O‘—S)B}—i—bﬁfﬁ_l, ¢ <s<o,
X (4.9)
N(B+1)— Ao —s)?, £ <t s<o,
Ao’ 4 bBE", {<o<s<t,
( BL(B), s>o,8s>t.

From (4.9)), it is easy to verify that, for any £ > 0 given, there exists a constant 7' = T'(¢) > 0

such that
H(tQ,S) H(tl,S)

1+ 144!
Now, from (4.8)) and (4.8)), we have that the same property holds for Pu(t)/(1 + t°~1),

<e, ti,to > T and s € RT,

uniformly for u € 9B, . Hence, P(*8,) is equiconvergent at oco.

Consequently, lemma [1.9) implies that P(B,) is relatively compact.

Therefore the operator P has a fixed point on B,. Then from Schauder’s fixed point
theorem, we conclude that the problem has at least one solution in F. [
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4.3 Generalized Ulam-Hyers-Rassias stability :

Before stating and proving our main stability results, let us consider the following integra-
tion formula

—+00

o(t) = H(t,s) [f(s,v(s)) + H(S)g(v(s))] ds. (4.10)

0

Here, we suppose that v € C([0,400), E) has a fractional derivative of order /3, where
E is define , 2<8<3, f:]0,+00) x E — R and g : E — R are two continuous

functions and let define the following nonlinear continuous operator

F : R—R,

Fuot) = Dyo(t)+ f(t,0(t) +0(t)g(v(t)),
For each € > 0 and for each solution v of (4.4]), let consider the following inequality:

| Folle <e, teR". (4.11)

Theorem 4.4 If the assumptions (Ay) and (As) hold, then the problem (4.4)) is generalized

Ulam-Hyers stable.

Proof. By the equivalence between the operators (Id — P) and F and the assumptions
(A1)7 (AQ) we find:

[o(t) —u(®)] < |u(t) = Po()] + [Po(t) — u(t)]
= |(Id - P)o(t)| + |Pu(t) — Pu(t)]
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Then, we conclude:

“+o00

o(t) —u(t)] < |[Folt)]+ fﬂtS)UK&vhﬁ)—fT&UQﬂﬂdS

0
“+oo

— [ H(99()[9(0(5)) — glu(s))]ds

0

+oo

< AR+ [ )16 00) ~ Fls,u(s)]ds

0

+\ / " H(t, 906 [g(0(9) — glu(s)] s

That is,
Pllv = ulle
o= ulls < IFole+ oo e
+oo
/ [1/)1(8) + ¢2(s)} (1+s')ds
0
Bllv = ulle
= YT 1) hef —bper1
+oo
/ [¢1(s) + tha(s)] (1 + s'7P)ds,
0
consequently,

lv —ullg
[(B+1)— \o? —bBeP1 .
P(B+1) = Ao? =B = B " [un(s) + wa(s)] (1 + 87 1)ds
thus, we get the Ulam-Hyers stability of (4.4]). Then, if we take Cf(e) equal to the right
hand side of (4.12)) we obtain the generalized Ulam-Hyers stability of (4.4). |

(4.12)

Theorem 4.5 Assume that the hypotheses (A1) and (Az) hold. If in addition the following
hypotheses hold.

(Ay) there ezist two positive constants p and q such that:

o) < —L ), and a(t) < —L (). (4.13)

~ v —ulle ~ v —ulle
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(As) There ezists a positive real number Cg such that for each t € [0, +00) we have:

d(t) < /00(1 + 57N ®(s)ds < Cpd(t). (4.14)

Then, the problem (4.4) is generalized Ulam-Hyers-Rassias stable.
Proof. By exploiting the assumptions (As), (A3), (A4) and (As) then we get:

[o(t) —u(®)] < |o(t) = Pu()] + [Po(t) — u(t)]
< |Fo(t)] + |Po(t) — Pu(t)|

+o0
< VPOl +| [ HE)[S5,00) = Flsu(s)]ds
+ [ G986 0(s) - gtute)] s
Then,
fu—vlls < 1P+ | [ L s, u(s) — (5, u(s)] ds

[ ) 09 o)~ ot s

< W0+ e | M) — fls s
TEE D - faﬂ —bpEh /O h 0(s)|g(v(s)) — g(u(s))|ds

< /000(1 + s Hd(s)ds
T+ - faﬂ — bBER-T /;OO |f(s,0(s)) = f(s,u(s))|ds
T - faﬂ —ppes-1 /;Oo 0(s)|g(v(s)) — g(u(s))|ds

< Co®(t) + g7 1)/3_(19;5)_ T /Omu + 5)1 8D (s)ds

<

B(p+q)
(1 TTET D) - hed - bﬁg,@—l)cq’q)(t)
= Cra®(1).
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Hence, the problem (4.4) is generalized Ulam-Hyers-Rassias stable. [ ]
Example 4.6
(3 -t ' t 1 i t
DE.u(t) e '+ sin(u(t)) + sin(u(t)) € [0, +00),

T 100(1+ 2)(1 4 £3)  100(1 + 0)2(1 + ¢3)
(4.15)

3

u(0) =0, ' (0)=0, gou(+o0) = bu(l) + )\/0 u(s)ds.

In this example, we have

Fltu(t)) = — s

T 100(1 + £2)(1 + £3)
]
6.0 = £, < o) =009,
1
o00(0) = 90| € o) = (0] =1, 600) = foor—
and
(1) ! h(t) :

©100(1 + £2)(1 4 ¢2)] ©100(1 4+ £)2(1 + ¢3)
e Since, & and o are fized, then \ and b are chosen so that the hypothesis (A1) is satisfied.

So, we have

( L(B+1)—\o?
b < e ,

_ LB+1)

\ O'B

In our example, we have: = g, ¢E=1, o=2. Then,

( 2T (L) —
b < (FG) —4v2) ~ (.19,
5
(L
A (2) ~ 0.58.
\ 44/2
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1
So, we can choose \ = 3 and b =

E.
e By simple computation, we get
+o0 51 +o0 dt
1+t t t]dt =
s [Casen o raele = o [T 2 [Tt
+oo

= —[ arctan(t ]
200 C14tho
5

= —(=+1) = 0.06,
()

and

L(B+1)—No® —bpeP~ ~ 0.25.

Thus, (As) is satisfied.

e Now, it remains to verify (As). We have

/0+°° (1) O] dh < /0+°° <(1it2)+(1it)2>dt

— g+ 1 < +o0. (4.16)

All hypotheses of Theorem are satisfied, therefore the boundary value problem (4.4) has

at least one solution in RT.
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Chapter 5

Existence and stability results of the
solution for nonlinear fractional
differential problem with initial

conditions

Recently, there are a number of general mathematical approaches that make it possible to
construct solutions and to treat the stability, one of which is Krasnoselskii’s fixed point
theory.

In [24], Ge and Kou investigated the stability of the solutions of the following nonlinear

Caputo fractional differential equation

CD§+x(t> = f(tvx(t))v t=>0,

z(0) = o, Z'(0) =z,

where 1 < 8 < 2, (z9,71) € R?, f : RT x R — R is continuous function with f(¢,0) = 0.
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In [19], the authors discuss the standard approaches to the problem of stability and

asymptotic stability of the zero solution to the delay fractional differential equations
“Dgea(t) = f(t,x(t),z(t — 7(t) + “Detg(t, x(t — 7(t))), t>0,

z(t) = o(t), t € [my,0], 2'(0) = xq,

where l<a<?2, ¢g(t0)=f(t,o,0)=0, x; €R.

By converting the nonlinear delay fractional differential equation to an ordinary delay
differential equation with a fractional integral perturbation. The main results of existence
and stability are obtained via the Krasnoselskii’s fixed point theorem in a weighted Banach
space.

In this chapter, we use the Krasnoselskii’s fixed point theory and a weighted Banach
space to prove the existence and asymptotic stability of the solution on unbounded domain
for the next initial value problem of fractional differential equation :

D ult) = gt u(t)) + DI f(tu(t),  t e [0,+00),
(5.3)

where

1<p<2, (upu) €R?* f,g:R"xR—R

f, g are continuous functions with f(¢,0) = ¢(¢,0) = 0.

5.1 Equivalent integral equation :

Lemma 5.1 Let g(t,u(t)) € C[0,400) and f(t,u(t)) € C*[0,+0).
Then u(t) € C[0,+00) is a solution of if and only if u(t) is a solution of the following
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Cauchy system:

u6) = 37 (ot ul0) + CDE 0o ) s, 220

(5.4)
u(0) = uyg,
Proof. To begin the proof, note that for any 0 < o < 1, if ¢ € C[0, +00), then
(1§ ¢)(0) = 0. Indeed
1 ¢ )
I$io(t)| = — t—s)* d
o) = g [ - e
Mt” — 0, ast — 0. (5.5)
I'a+1) ’

To simplify calculations, we use the notation
m(t) = g(t, ult)) + “DE £t u(t)),
(1) let u(t) € C[0,+00) be a solution of (5.3)), we get
DB u(t) = (DI Dhu)(t) = (CDL)(E) = m(d).
Then from lemma [1.23] we obtain
W (t) = IPYODE N (1) = o/ (0) + I ' m(t) = I m(t) + i

Therefore u(t) is a solution of ((5.4)).
(2)  Conversely, let u(t) be a solution of the problem (5.4]). Then we have

CDP u(t) = ODE N () = (CDPTIE Y m) () + € DE uy = mi().

Since m(t) € C(R"), then we find (I27'm)(0) = 0, this implies /(0) = (17 'm)(0)+u; = u;.
Thus, u(t) is a solution of the problem (j5.3]). n
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Lemma 5.2 The problem s equivalent to the problem
u'(t) = —pu(t) + G(t, ul(t /wt—s
(5.6)
u(0) = wy,

where: P(t —s) = (t}iif)il +p, VpeR, 0<s<t<+oo,

and:  G(t,u(t)) = Ig:l (g(t,u(t)) — u(t)) + f(t,u(t)) — f(0,up) + uy.

Proof.

() = I

= G(tult) + I ult)
~ G, <>>+D[15+ (©) + Iy pult)] = putt)
(t—

= u ) uls)as — pu
= Gl + 5 [ =+ putsids - put)

- dt/wt—s s)ds — pu(t).

Lemma 5.3 u(t) is a solution of the problem (5.6)) if and only if u(t) satisfies the following

integral equation:

(1—e ")

u(t) = e ug+

<ul ~ (0, uo>> +p / e " u(x)dx (5.7)
—l—/ot P9 £ (s u(s ds—l—//t e S—xp2d3 g(x,u(x))dx.
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Proof. Using the variation of constants method to the first order nonlinear equation in

(5.6) with integration by parts, we find:

w(t) = e lug+ /0 Cert9) g {G / (s — )u ]ds
_ u0+/ o= s{ /ws—x u(z )dx]ds+/o =G, u(s))ds
_ e rhug + {e‘p(t_s) /0 @/J(s—x)u(x)dx} ::;—p /0 e htts) /0 " (s — 2)u(x)dzds
b [ e [ g ato) = B ats) 4 o) = 00 + s
= u0+/wt—s s)ds — //ept%s—x)dsu( )dx

+/0 e /0 —(;&9‘?1) oz, ule ))dxds—/o o= s>/0 % (2)drds

t

t
+/ e_"(t_s)f(s,u(s))ds—/ e =9 £(0, uo)ds+/ =)y, ds
0

— ety + /0 "t — syu(s)ds — p /0 t / Do) (s — w)dsu(z)de
+ﬁ /0 t / e (s — 2 g, ule))do — _;_pt (u1 - f(O,uo))
+ /0 e £(s u(s))ds — /0 t / t ep(ts)st u(s)dz
= e Py + / tw(t—s)u(s)ds—p / t / t e =) (s — x)dsu(x)dx
o1 / / =) (s — )P 2ds g(x, u(x))dx
1_6 " <u1 f(O,u0)> +/O P [ (s, u(s))ds

p
Y e

then we get ((5.7)).

+
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Conversely, suppose that (5.7)) is satisfied, then we have u(0) = g and :

(eptu(t))/ = petu(t) + e/ (t)

et —

— {uo + (ul — f(O,uo)) + p/ot e u(x)dx

t ¢ /
+/ e P f(s,u(s))ds +/ e " IP g(x, u(a:))dx}
0 0
= = 0.00) + pult) + £t 0l0) + 0,
= e’ {Igjlg(t, u(t)) + I TCDE F(tu(t)) + ul] + peu(t).
Thus,
u'(t) = I g (b u(t)) + 15 O DR f(t ult)) 4 ua.
n
Based on lemma 5.1}, lemma [5.2] and lemma we conclude that the problem ({5.3) is
equivalent to the integral equation (5.7).

Section[5.2] provide the proofs of the existence of solution to the problem (5.3) in Banach
space. Finally, a stability result and an illustrative example is presented in Section .

5.2 Existence result on a weighted Banach space:

Let © be the set of all strictly increasing functions h : R — [1,+00) satisfying the
following assumptions

(Hy) h(0) =1,

(H:) Jmh() = +oc,

(H3) h(t) > h(t — s)h(s) for all 0 < s <t < 0.

Remark 5.4 Note that §) is a non-empty set, because the functions hi(t) = e'

and hy(t) = € belong to Q.
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Let us denote by E the following weighted Banach space :

E= {u(t) € C0,+00), Sﬁ?% < oo},

equipped with the norm
|u()]
up ——=.
>0 h(t)
In addition, we define ||¢||; = max{|¢(s)|,0 < s < t} for all ¢ > 0, all given function
¢ € C(RT), and let

[ull = s

B(e) = {u:ueE,llul <e},

be a non-empty closed convex subset of E, for each € > 0.

In order to prove the existence of the solution for the problem in . We transform
the problem into fixed point problem Pu = u where P is an operator defined on B(¢)
by

Pu(t) = e ug+ “_—pept) (u1 — £(0, u0)> +p /0 t ety (z)dx (5.8)

—i—/o e_p(t_s)f(s,u(s))ds%—ﬁ/o / e =) (s — )P 2ds g(x,u(x))dz.

We decompose the operator P into two operators P; and P (i.e. P = P, + P,) defined on
B(e), as follows:

Puu(t) = e ug+ %(ul — f(0, uo)) +p/t Py () de,
Pu(t) = / =) f (s, u( ds+/ / e s_$) st g(w,u(z))dz

_ /0 —Plt=9) £, ())ds+/o k(t — x)g(z, u(x))dz,

t —p(t—$8) (e _ 1 \P—2
/ ¢ (s =) ds, t—x >0,

0, t—x <0.

where :  k(t —z) =
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Theorem 5.5 Suppose that there are strictly positive constants v, 9, cy, co, c3 where
c1Fegtcs <1, |ugl+ Jur| +1£(0,u0)| < 0 and the functions f,g: RT x (0,¢] — R are

continuous and nondecreasing in v for fized t with f,g € L'[0,4+00) in t for fized r, such

that
s < gte o, N < Fo o, (5.9
hold for allt >0, 0 < |v| < ¢ and
Stlzlg) /Ot Zg : g g(t’ T>dx <cy<1l—c —cs, (5.10)
B

hold for every 0 <r < .

Then there ezists at least one fixed point of the operator P in B(e).

—pt

Proof. Suppose that there exists constant ¢4 > 0 such that % < ¢4 and
—e_pt BCI0, +o00 L0, +00 0 _e—PSd 5.12
S + + < .
h(t) [ ) ) [ ) )7 | |/0 h(S) § = Cy, ( )

where: BC|0,+00) is the space of all continuous and bounded funcions on [0, 4+00). Let
[1 — (Cl + Co + 03)] |p|(€

C4|p| + 1+ Cy .
Firstly, we will show that: P;%8(e) C E, P,8B(¢) C E, and P, is a contraction mapping.

0<6< (5.13)

It is clear that for u € B(e), P; and P, are continuous functions on R*. Moreover, for all

u € B(e) and each t > 0, we have

]Plu(t)| _ 1 —pt (1 — e—pt) . ! —p(t—z
h) W‘e uo—i——p (u1 f(O,uo)) —i—p/o e Ju(x)dx
e Ft (1—e") bemrlt=2) y(x)
< gt + 2 (170w ) 4 [ e
< el + 0 (ol + 170w ) + 122
< +o0,

71



5.2. EXISTENCE RESULT ON A WEIGHTED BANACH SPACE: CHAPTER 5.

which means that PB(¢) C E.

Similarly, for any u € B(e), we have

|Pou®)] 1 te Pt=5) (5. u(s))ds — z)g(x,u(z))dr
TR h<t>/o Flvul s + [ K0 pta o

)|f s,u(s)) K(t—x) ’g ))|
/0 h(t—s)  h(s d8+/ h(t — ) (a:) de
5)

(s)
p(t u(s t —x u(z
/0 h(t—s)f< Es d8+ 0 lfj((tt—a: 7|hEx;|>d:€

csl[ul] + collull

IN

IA

(Cg + 02)5

A

+00,

which implies that P»*B(e) C E. For any u,v € B(e), we have

Pru(t) Plv(t)’ t g—plt—z ]u(x) v(x)|
— < d
W Tw - h) | S Sl 0 g
L emrt=2) [u(z) — v(z)|
< d
swlol | e hw @
ol [ sl o]
< Sllu )
= 171 J5 h(s)

< allu—w.

Since ¢; < 1, hence P; is a contraction.

Secondly, for every u,v € B(e), we have

| Pyu(t) + Pro(t)] 1
£>0 h(t) ~ e {W

+p /Ot e =2y (z)dx + /Ot e P79 f(s,u(s))ds
+/0tK(t ~ 2)g(w, u(z))da }

e_ptuo +

ur = £(0,u0))

(1—e )
(e
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IN

s { g+ 1 (s ) (1 + VO0.0)
., / b P il AT

h(t — z) h(z) h(t —s)  h(s)
fK(t—as ) g, u(@))|
e dm}
< el ol 10,0 )

+er vl + esllull + ca|ull
calp) + 14 ¢4

7 d+ (c1+c3+ e)e

< e

Thus, P, + P, € B(e).

Poult t
From the assumption | Ii?t()ﬂ < 400, we find that the set {% cou(t) € ‘B(s)} is
uniformly bounded in E. Furthermore, the convolution product of two functions where the

first one is of L' and the other tends to zero also tends to zero. Therefore, for t — x > 0,

we have:
k(t —x)
0 <
t—rto0 h(t — )
1 p(t s)( )P 2
< 1 d
= e T — 1)/,,0 h(t— $)h(s — )
t —p(t—x—s) p—2
= lim L / © (8) ds =0,
t—too N(p—1) Jy h(t—x—s) h(s)
P2
because, m—>0ast—>—|—oo for 1 <p<2.

In addition, by the continuity of the functions k() and h(t), it follows that there exists
k(t —x)
h(t — )

a positive constant cs such that < ¢; and for any u € B(e) and for all ¢,y €
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[0,T*], T* € RT, t; < to, we have:

PQU(tQ) PQu(tl)
h(ts) — h(t)

e Y
. / Kt ;;Zih(””) K _é))h( 7) §<x, %;') dz 4 / :g :i§_|g(x];l;()x))|d:c
. /Otl e—p(:(—:)h(s) e p(;:)h( 5) (s \ZEZI) et /: ;;:tz_—:)_!f(sé(?;(;))\ds
[ M [
) /Otl e_p(:(_;))h(s) _ 6_”(;:(_:)’1(‘9) T(s,e)ds + ¢4 : f(s,e)ds

P2u(t2) _ P2U<t1>
h(t2) h(t1)
{% : u(t) € B(e) ¢ is equicontinuous on any compact of R*.

Thus

— 0, as to — t1, which means that

Y

Now, based on lemma to show that Py (e) is relatively compact it suffices to prove

that {“D . u(t) € B(e)} is equiconvergent at infinity. Indeed, for any €* > 0, there exists
h(t) -

M > 0 such that

400 o 4oo o
05/ g(z,e)dr < 5 04/ f(s,e)ds < 5

M M
Then there exists T' > M such that for all ¢1,t; > T, we get

sup ’k(tg —x)h(z) k(i —z)h(z) sup ‘k‘(tz — ) + sup ‘ t; —x)
2€[0,M] h(ts) h(ty) = e | Pt — )| scion | R(E — )
8*
< — 5.14
sup — < - s
s€[0,M)] h(ts) h(ty) sefom] | P(t2 — 8) | sepoan | A(E — )
E*
—— 5.15
< = (5,19
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where
+oo +oo
A= / g(z,e)dz, B = / f(s,e)ds.
0 0
Then, we have

Pyu(ty)  Pou(ty)
h(ts) — h(t1)

/M e—plt2—s)  o—p(ti—s)
<
0

t2 e_p(tQ_s)

f(s,u(s))ds

fls.uts)ds+ [

ht)  h(t) o h(t2)

o[l H i [

- /OM ef’f@j)h(s) ~ e”%?)h(s) F(s,u(s))ds + /A; 2 %7(8,%8))%
A /OM bt ~ () _ K h, oy 5 /[ (. ulo)de
+ /A; 1 %mwwdﬁ /A; 1 Hﬁ(as,u(w))dw-

That is,
T | S § et T st
Lt L

Finally, from Krasnoselskii’s fixed point Theorem, we conclude that the problem (/5.3]) has

at least one solution. ]

5.3 Stability and asymptotic stability results :

By using the definitions of stability and asymptotic stability mentioned in the first chapter,

we obtain the following results:

Theorem 5.6 Assume that all assumptions of Theorem 5.5 hold such that |ug| > | f(0, uo)|.

Then the trivial solution uw = 0 of the system 18 stable in the Banach space E.
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Proof. Let for any € > 0

{1-(c1+c +03)}|p|€‘

0<d <
b= calp|l + 1+ ¢4

(5.16)
From the assumption |ug| + |u1| + | f(0,uo| < 0 it follows that

[uo| + [ur| <6 —[f(0,u| = &1 > 0.

Then, we get
et 1—e#t Pemo)
el = sup gy * —pngy (v~ /0 w0)) ’)jg w1
tompli=s) Lk(t — x)
_|_/ f(s,u(s d8+/ 9(z,u(z))dx
, TR it | (e u@)
ot 14 ert L) Ju(x))|
< ——|uo| + ——— + [ (0, + d
. S;;E{h ol + S 150w + 1 [ e g
L) (s uls))] Ykt =) |g(x,u(@))|
+Aim-s) h(s) d“ﬁéh@—x> h(z) M}
1+c¢y
gcmﬁ-m|&+qMWmﬂw+®Ww
Hence,
lJul| < M& <e,

14

therefore, the trivial solution v = 0 of the problem (5.3)) is stable in the Banach space E. m

Theorem 5.7 Suppose that all assumptions of Theorem [5.5| are satisfied with

lim & 17
Ay =0 (5.17)

and for any r > 0 there exist two strictly positive functions p,(t),¥,(t) € L'[0,+00) such

that |u| < r implies

}w)g¢¢%‘ﬁ%m§%@,mmtem+my (5.18)

Then the trivial solution uw = 0 of the system 18 asymptotically stable in E.
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Proof. From Theorem it follows that the trivial solution u = 0 of problem (5.3) is
stable in the Banach space E. So, it suffices to show that u = 0 is attractive. For this fact,

we define for any r > 0

B — i 4O
B(r) ={ueB(r): tBeroo ) 0}.

We only show that Pyu+ Pyv € B(r) for any u,v € B(r), in other words,

t—+o00 h(t) =0

For all u,v € B(r), we have:

| Pru(t) + Pro(t)]
h(t)

_ p—pt t
0 e Plug + %(m — f(O,Uo)) _|_p/0 e—p(t—x)v(x)dl_

+/0 e P79 f (s, u(s))ds —I—/ K(t — z)g(z,u(z))dz

1

e~ Pt 1 1 e Pt 7 Ju(a)]
e L
t o—p(t—s | (s) K t—x)|g(x,u(z))]
+/0 h(t —s) d ! Wit —x)  hlz) "

IN

t o=p(t=2) (g
WWO‘ + |/1)| <h(1t )) <‘U1] +1£(0 u0)|) +p/0 =) ’hﬁxildl’
+/0 ;(_tp( Yr(s)ds / (=2 (2)de.

From ((5.12)) and (5.17)), we have:

t o—p(t—z)
/ ¢ |U(I)|dm — 0, as t— o0,
0

Wt =) hiz)

and -
k’(t—i)_ 1 t o—plt—z R N N
h(t—l‘)_r(p_l)/o h(t—fL‘)< ) d — 0, t — +o00.

Together with the hypotheses @, (t),%,(t) € L*[0, +00), we find

Kt—:p

=) (x)de — 0, as t — +o0,
— )
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and

t g=p(t—s)
/0 mwr(S)dS — 0, as t— +o0.

Moreover, since h(t) — 400 as t — 400, we conclude that

Pyu(t) + Pyo(t)
h(t)

— 0, ast— +o0.

Therefore, Pyu + Piv € %(r) which implies that the trivial solution u = 0 of problem |)

is asymptotically stable. ]
Example 5.8
( D3 ult) = %wl)é((lﬁf—iwmt), t e [0, +00),
(5.19)
\ u(0) = uo, u'(0) = uy,
where o > 0. Suppose 0 < |p| < Z. Let h(t) = eV and ¢; = U+|’1’|+p.

Then, holds i.e.,

~ et Y
e Pt /h(t) = o = € ~lptotlt ¢ BO(RY) N LY (RY),

and :

+oo e~ P8 +oo (prot1)s ’p’
(o2 < [ L S —
ol [ s =lol [ e < L

The Banach space s

Ey = {u(t) € C(R") : sup [u(®)l < oo},

>0 6(0'+1)t

equipped with the norm

|u(®)]

Jul = SUP m-
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Let
373 — ri
G(t,r) = — tor) = —
attn =0 T =

we get : f(t,r),g(t,r) € LY(R*) int for fized r.

After some computations, we find

. t i _g t—x -2 L
klt — ) < ! / (s —x) ds = 1 / T ar < (o +1)3,
) x ) 0 € T

h(t—z) = T(3 elo+)(s—z) 7 r(i (o+1)
t o—p(t—s) f t —p(t—s) 1
/ ¢ f(sjr>d8 = / ¢ " 4d8 S Cs,
o h(t—s) r o h(t—s)1+t

and

PE(t —2)g(a,r) PE(t — o) t3r?
/0 i) - d‘”:/o Wi —a) o TS

Therefore, all assumptions of Theorem are satisfied, then the trivial solution of
18 stable in the Banach space E;.

Let o, 1, € L'(RT) where

ol

33 r
or(t) = elo+2)t” Ur(t) = W’

satisfy the following inequalities

g(t, )| < ont), [f(t,7)] < (),

and
e Pt

lim —
oo B(1)
Then, from Theorem we conclude that the trivial solution of 15 asymptotically

= 0.

stable.
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Conclusion

The aim of this thesis is to give a qualitative study of the existence and uniqueness
for some fractional differential equations under different conditions, then we discuss the
stability results of the solution reached for each problem.

Our work included four main outcomes:

1. We derive the equivalent integral equation of our problems using the properties of
fractional calculus.
2. We use some fixed point theorems (Krasnoselskii, Schauder, and nonlinear alternative
of Leray-Schauder) to prove the existence of the solution.
3. We rely on past results to prove the stability of each solution.
4. We have illustrated our theoretical results with some examples.
In the future, as a perspective, we will try to:
a- Show some existence and stability results for some new FDEs.
b- Prove some new results of existence for a new fractional problem on a Sobolev space .

c- Prove some numerical results of one of our studies.
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