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Introduction

Since differential equations are often difficult to find their solution, scientists have de-

veloped many methods that enable us to solving an approximate solution to differential

equations, including Euler’s method, Milsten method, and first-order exponential inte-

grateion method .... So what is the stochastic process, the stochastic differential equation

and the Euler apprximation for stochastic differential equations driven by Brownian mo-

tion.

4



0.1 Notation

N : the set of natural numbers

R : the set of real numbers

Rn : R R ... R (n once)

∞ : the infinity

P : the probability

E[x] : the expectation of X

µ : the mean

B(u): the smallest σ-algebra containing all open sets of the topological space U

∈ : belong

∪ : the union of tow sets ore more

∩ : the intersection of tow sets ore more

Ω : the set of all subsets

−→ : from an ensomble of begining to enother ensemble

(.,.,...)T : the translate vector

∀ : what ever been

ε : a small positive nember∫ b
a

: the integral in the intervale [a,b]∑n
i=1 Ai : the sum of elaments Ai ; A1 + A2 + ... + An

: the ordinary proddect
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0.2 Basic concepts :

0.2.1 σ-algebra:

Difinition:

The σ -algebra on a set X is a collection of subsets of X in which:

• σ-algabra contains X as an element.

• σ-algebra is closed under complementation i.e ;

if a set A is an element in σ-algebra then its complement X\ A is also an element in

σ-algebra.

• σ-algebra is closed under contable unions,i.e;

if A1, A2, A3... are elements of σ-algebra so the union
⋃

Ai = A1

⋃
A2

⋃
A3... for all i

≥ 1 is also an element in σ-algebra.

0.2.2 measure :

Definition :

Let X is a set, Σ a σ-algebra on X and α a real function, we called that α is a measure if

it satisfies the following properties:

• Null empty set: α(φ) = 0.

• Countable additivity: For all countable collections {EK}∞K=1 of pairwise disjoint sets

in Σ the following equality is hold

α(
⊔∞
K=1 EK) =

∑∞
K=1 α(EK).

0.2.3 measure space:

Definition:

the measure space is a triple (X,A,α) where:

• X is a set.

• A is a σ-algebra on X.

• α is a measure on (X,A).
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0.2.4 probability measure:

Definition:

A probability measure on a measurable space (Ω,F) is a measure from Ω to [0,1] such

that P (Ω) = 1.

0.2.5 probability space:

Definition:

A triple (Ω,F ,P) is called a probability space if

• Ω is a sample space wich is a collection of all samples

• F is a σ-algebra on Ω

• P is a probability measure on (Ω,F).

0.2.6 Random variable:

Definition:

Let (Ω, F , P) is a complet probabilty space. A random variable X is a measurable function

from Ω to Rn.

We denote by capital letters such as X ,Y,Z,... to random variabels.

Discret random variable:

When the image of X is contable, the random variable is colled discret random variable.

continuous random variable:

If the image of X is incontably infinite (an interval) then it colled continuous random

variable.
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The expectatio):

Definition:

Let X is random variable with a finite number of finite outcomes x1 ,x2 ,..., xk accurring

with probabilities p1 ,p2,...,pk, respectively. the expectation ( or mean) of X is defined as

E[X] = Σk
i=1xipi (1)

since p1 +p2 +...+pk + 0 .

the variance:

Definition:

The variance of random variable X is the exeptation of the squared deviation from the

mean of X, i.e. if µ = E[X] then:

V ar(X) = E[(X − µ)2] (2)

.
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Chapter 1

Stochastic process

1.1 Definition:

1.1.1 stochatic process:

Definition:

The stochastic processes is a collection of random variabels X = {Xt;0 ≤ t < ∞} on a

probability space (Ω,F , P).

Remark: Let consider X and Y two stochastic processes defined on (Ω, F , P) we say

that X and Y are equvalant if and anly if Xt () = Yt () for all t ≥ 0 and all ∈ Ω .

1.1.2 stochastic process with independent increments:

Definition:

The stochastic process {Xt}t≥0 has independent increments if and only if for all m ∈ N

and any choise t0 , t1 ,t2 ,... ,tm−1 ,tm ∈ N with t0 ≤ t1 ≤ t2 ≤ ... ≤ tm ; the random

variables (Xt1 - Xt0 ),(Xt2 - Xt1 ) ,...,(Xtm - Xtm−1 ) are stochastically independent .
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1.1.3 trajectory:

Definition:

For a fixed sample point ∈ Ω, the function t 7−→ Xt (), t ≥ 0 is the sample trajectory or

path of the process X associated with .

Remark: The trajectory enable to observe the result of random experement at any time.

1.1.4 modification of stochastic process:

Definition:

Let consider X and Y two stochastic process defined in (Ω, F ,P), we say that Y is a

modification of X if for all t ≥ 0 and all ∈ Ω we have

P[Xt() = Yt()] = 1. (1.1)

1.1.5 ft-measurable:

Definition:

If (Ω, F f, P) is a given probability space then a function Y : Ω −→ Rn is colled ft-

measurable if Y −1(U)= { ∈ Ω | Y( )∈ U} ∈ f holds for all open Borel sets U ∈ Rn

.

1.1.6 measurable stochastic process:

Definition:

The stochastic process {Xt}t≥0 is colled measurable if for all set A ∈ B(Rd), the set

{{t,},Xt()∈ A} belongs to product Bt ([0,∞))⊗ ft in other word, if the mapping (t,) 7−→

Xt():([0,∞] Ω, B( [0 , ∞) ⊗ ft)−→ (Rd , B(Rd)) is measurable.
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1.1.7 filtration:

Definition:

On a probability space (Ω, F , P), a filtration (Fi)0≤i≤n refers to an increasing sequence

of σ-algebra:

F0 ⊆ F1 ⊆ F2 ⊆ ... ⊆ Fn ⊆ ... ⊆ F . (1.2)

A natural filtration is the smallest σ-algebra that contains information of X.

1.1.8 adapted process:

Definition:

The stochastic process {Xt}t≥0 is colled adapted to the filtration {ft} if for all t ≥ 0 , Xt

is an ft-measurable random variable .

1.1.9 the progresevly measurable process:

Definition:

The stochastic process {Xt}t≥0 is colled progressively measurable with respect to the

filtration {ft} if for all t≥ 0 and a set A ∈ B(Rd) the set {(s,) ;0≤ s ≤ t , ∈ Ω , Xs() ∈ A}

belongs to prduct σ-fied B ([0,t))⊗ f in other word ,if the mapping (s,) 7−→ Xs ():([0,t]

Ω ,B( [0 , t] ⊗ ft)−→ (Rd, B(Rd)) is measurable .

1.2 Continuity of stochastic process

Let (Ω ,f,p) is a probability space ,let T :[0,∞[ is some interval of time ,and let X : T Ω

−→ S is a stochastic process . we will take the state space S = R and t , s ≥ 0 .
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1.2.1 allmost surely continuity:

X is said to be allmost surely continuius if :

E(|Xs −Xt|β) ≤ C|t− s|1+α (1.3)

in which the constantes β ,α ¿ 0 ,C ≥ 0 .

1.2.2 continuous in probability:

X is said to be continuous in probability at time t if for all ε ¿ 0

limE[
|Xs −Xt|

(1 + |Xs −Xt|)
] = 0ass −→ t. (1.4)

1.3 Gaussian process

1.3.1 Gaussian random vector :

Definition:

A Rn-valued random vector X=(X1,X2,...,Xn)T is a n-variate Gaussian distrubution with

mean µ and covariance matrix
∑

if X = µ + AZ where the matrix A is of size nm such

that
∑

= AAT and Z=(Z1,Z2,...,Zn)T is a vector whith independent standard Gaussian

components .

1.3.2 Gaussian random process:

Definition:

A stochastic process in continuous time Xt,t ∈ T =[0,∞[ is Gaussian if and only if for

every finite set of indices t1 ,...,tk in the index set T

Xt1,...,tk = (Xt1 ,...,Xtk) is multivariate random variable .
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A Gaussian process is colled a centered Gaussian process if the mean function

µ(t) = E[X(t)] = 0, forallt ∈ T. (1.5)

1.4 Brownian motion

1.4.1 Definition(Brownian motion ):

A stochastic process W(t) is a standard Brownian motion if :

• W(t) is almost surly continuous in t .

• W(t) has independent increments .

• W(t) - W(s) obeys the normal distribution with mean zero and variance t- s .

• W(0) = 0 .

1.4.2 Properties :

For all time s,t ¿ 0

• Time homogeneity : W(t+s)-W(s) is a Brownian motion .

• Brownian scalling : for all constance c ¿ 0 c W(
t

c2
) is a Brownian motion .

• Brownian motion is a markov process .

• Brownian motion is martingal .
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Chapter 2

Stochastic integral with respect to

brownian motion:

2.1 Riemann-stieltjes sum:

Definition(Riemann-Stieltjes sum):

Let f: [a,b] −→ R a function and P = {[x0,x1 ],[x1,x2 ],...,[xn−1,xn ]} is the partition of

the interval [a,b] where a = x0 ¡ x1 ¡ ... ¡ xn = b

The Riemann-Stieltjes sum S is defined as S =
∑n

i=1 f(ti) 4xi where 4xi = xi - xi−1 and

ti ∈ [ xi−1, xi] .

Definition (Riemann-Stieltjes integral):

Let f : [a,b] −→ R a function defined on [a,b] and P = {[x0, x1 ] , [x1,x2 ] ,...,[xn−1,xn

]} his partition ; The Riemann-Stieltjes integral is the limit of the Riemann sum s if the

following condition holds : For all ε ¿ 0

—(
∑n−1

i=0 f (ti)(xi+1- xi) ) - s — ¡ ε .

The Riemann integral defined as
∫ b
a

f (t) dt .
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2.2 Stochstic integral with respect to Brawnian mo-

tion:

Definition(Ito integral):

The Ito stochastic integral with respect to Brownian motion is an integral in wich dWt

plays the role of dt in Riemann-Stieltjes integral Yt =
∫ b
a

Xs dWs; where Wt is a Brownian

motion.

Properties:

• Let the stochastic process Y definined for all t > 0 by Yt =
∫ t
0

Xs dWs; is a martingale

.(his expectation is constant. )

• theisometric property: E ( Y2
t ) =

∫ t
0

E (X2
s) .

• Associativity : Let J, K be predictable processes, and K be X-integrable. Then, J is

K · X integrable if and only if JK is X integrable, in which case

J.(K.X) = (JK).X .
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Chapter 3

Stochastic differential equations:

3.1 Differential equation in deterministic case:

Let (Ω ,F,(Ft)t≥0,P) is a filtred probability space,let W a Brownian motion, T = [0,∞).

Definition:

The differential equation is an equation that relates one ore more functions and their

derivatives.

Examples:

1) dy
dx

= f (x).

2) dy
dx

= f (x ,y ).

3) x1
dy
dx1

+ x2
dy
dx2

= y.

3.2 Stochastic differential equations

3.2.1 Definition:

A stochastic differential equation is a differential equation in which one or more terms is

a stochastic process resulting a solution which is also a stochastic process .

16



The SDE form is :

d Xt = f(t, Xt )dt + σ (t,Xt)dWt.

with X0 = 0

where f,σ:([0,T],R) two mesurable functions; Wt is a standard Brownian motion .

3.2.2 Examples:

• Ormstien uhlenbeck process:

dXt = c ( b - Xt)dt + α dWt with X0=0 ;

where c,b ¿ 0 and α ∈ R .

• Brownian Geometrique:

dXt=αt Xt dt+ σtXt dWt with X0=0 ;

where αt,σt are two adapted and borned process .

3.3 Solutions of stochastic differential equations

3.3.1 strong solution:

Theorem:

Let {Xt}t>0 a stochastic process.

we say that Xt is a strong solution of the stochastic differential equation if :

• Xt is measurable and adapted to ft = σ(Bs,s 6 t) the natural filtration of W.

• X is contonuous and P (
∫
T
0 σ

2 (s,Xs)ds¡∞)=1

P (
∫
T
0 | f (s,Xs)| ds ¡ ∞) = 1

• Xt check the stochastic differential equation Xt= x+
∫
t
0 f(s,Xs)ds+

∫
t
0 σ(s,Xs)dWs for

all t ∈ [0,T].

• WE say that there is a unic strong slotion for the equation if ; for all solutions Xt X’t

we have P (Xt=X’t ,∀ t ∈ [0,T])=1 .

17



3.3.2 weak solution:

Theorem:

The weak solution of stochastic differential equation is the triplet

• (Ω,f,(ft)t≥0 ,P) a probability filtre space .

• W a brownian motion .

•X a stochastic process .

The process X and W are difined in the same space and check P(
∫ T
0
σ2(s,Xs) ds ¡ ∞)

= P(
∫ T
0

f(s,Xs) ds ¡ ∞) = 1 and (X,W)check Xt= x+
∫
t
0 f(s,Xs)ds +

∫
t
0 σ(s,Xs)dWs and

(W,X)checke the stochastic differential equation .

3.4 Theorem (Existance and unicqueness)

Let{Xt}t≥0 a stochastic process ; if X0 is f0-measurable and E [X2
0] ¡∞ ; the cefficients a

,σ satisfy the following conditions :

• (Lipschitz condition) a and σ are Lipschitz continuous, i.e ,there is a constant K ¿ 0

such that |a(x,t)-a(y,t)| | σ r(x,t)-σr(y,t)| ≤ K |x - y| t≥0.

•(Linear growth) a and σ grow at most linearly i.e., there is a C ¿ 0 such that

| a(x,t)| + | σ(x,t)| ≤ C(1+ |x|),t≥ 0,

The stochastic differential equation has a unique strong solution and the solution has the

following properties :

• X(t) is adapted to the filtration generated by X0 and W(s) (s ≤ t).

• E[
∫

t
0 X2(s) ds] ¡ ∞.

Some examples where the conditions in the theorem are satisfied.

• (Geometric Brownian motion) For a,b ∈ R, dX(t) = aX(t) dt +b X(t)dW(t), X0

= x.

• (Sine process) For σ ∈ R, dX(t) = sin(X(t)) dt + σ dW(t), X0 = x.

• (modified Cox-Ingersoll-Ross process) For θ1, θ2 ∈ R, dX(t) = - θ1 X(t)dt + θ2 (1

+ X(t)2)

1

2 dW(t), X0 = x. θ1 + (
θ22
2

) ¿ 0.
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Chapter 4

Euler approximation for stochastic

differential equation

As explicit solution to stochastic differential equations are usualy hard to fine, the Euler

scheme is one of the simple approximation of an process X = {Xt , t0 ≤ t ≤ T }.

satisfying the stochastic differential equation .

dXt = a(t,Xt)dt+ σ(t,Xt)dWt, t0 ≤ t ≤ T. (4.1)

with initial value Xt0 = X0.

4.1 Descreption of the Euler scheme

We consider the stochastic differential equation over [t0, T ] :

dXt = a(t,X(t))dt+ σ(t,X(t))dWt, t0 ≤ t ≤ T. (4.2)

Where t0 ≤ t1 ≤... ≤... tn ≤... ≤ tN = T the discretizatin of the intervale [t0,T ], σ is a

stochastic process and Wt is a Brownian motion.

In the Euler scheme approximate:∫ t+h
t

a(s,X(s)) ds by a(t,X(t))h.
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and∫ t+h
r=1

σr (s,X(s)) dWr by σr (t,X(t)) (Wr(t+h) - Wr(t)).

Then we obtain the forward Euler scheme (also known as Euler-Maruyama scheme):)

Xk+1 = Xk + a(tk, Xk)h+ σl(tk, Xk)4k Wr, Xt0 = X0. (4.3)

Where h is the step length, tk = t0 + kh , k = 0, . . . , N. X0 = x0 and 4kW = W(tk+1)

- W(tk).

4.2 Convergence of the scheme

For numerical methods for stochastic differential equations , the key issues are whether a

numerical method converges and in what sense and whether it is stable in some sense, as

well as how fast it converges.

Teoreme(strong convergence):

A scheme is said to have a strong convergence order γ in Lp if there exists a constant K

¿ 0 independent of h such that

E[—Xk - X(tk)—
p] ≤ Khpγ

for any k = 0, 1, . . .,N and h =
T

N
and sufficiently small h .

A strong convergence refers to convergence in the mean-square sense, i.e., p = 2.

If the coefficients of (4,1), satisfy the conditions in Theorem of existance and unicness

(3.4) the Euler scheme converge with half-order γ =
1

2
i,e

max E[—X(tk) - Xk—
2] ≤ Kh whene 1 ≤ k ≤ N , where K is positive constant indepen-

dent of h .

20



4.3 The rate of convergence

The order γ and the rate of convergence of a convergent sequence are a quantities that

represent how quickly the sequence approaches its limit.

A sequence X that converges to X(t) has order of convergence γ ≥ 1 and rate of conver-

gence β:

β = lim
|Xk+1 −X(tk + 1)|
|Xk −Xtk|γ

, n −→∞. (4.4)
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Sammary:

The Euler method is a numerical procedure for solving stochastique differential equations

with a given initial value. It is the most basic explicit method for numerical integration

of ordinary differential equations

The Euler method is one of the best approximation thats because it had a strong conver-

gence to the real solotion of the stochastic differentiel equation.

Key words:

Stochastic differential equations, Brownian motion, Tto integral, Euler approximation.

Resume:

La methode de Euler est une procedure numerique pour resoudre par approximation des

equations differentielles stochastique avec une condition initiale. C est la plus simple des

methodes de resolution numerique des equations differentielles stochastique.

La methode Euler est l’une des meilleures approximations car elle flatte une tres forte

convergence de la solution reelle a l’equation differentielle stochastigue.

mots clis:

equations differentielles Stochastiques, Mouvment Brownian, Tto integral, approximation

de Euler.
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