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General Introduction 

The oldest synthetic, human-made materials are ceramics, copper, iron, and glasses. For 

more than 6,000 years, glass objects have been known and widely used. In the last two centuries, 

vitreous materials have been extensively explored; searches of the Scopus database and the 

Derwent Innovation Index reveal that over half a million scientific publications have been 

published, with a similar number of patents registered on vitreous materials. Over 400,000 

inorganic glass compositions have previously been disclosed, according to the SciGlass 

database, whereas many others are still hidden in industrial laboratories. [1] 

Optical fibers, ionic conducting materials, optically functional formulations, bioactive 

compositions, and mechanically robust glasses and glass-ceramics have all advanced 

significantly from domestic use to an expanding variety of high-tech applications. Glasses 

become so important to humanity that some authors coined the term "glass age" to describe the 

current period. [1] 

By far, the majority of these hundreds of glass-making formulae were developed by 

empirical trial-and-error experimental methods guided mostly by experience and acquired 

knowledge. The glass community, however, is shifting to data analytic-based methodologies as 

a result of the introduction of computer simulation tools. Profiting from the abundance of 

accessible composition property datasets for data-driven modeling used Artificial Intelligence, 

namely machine learning (ML) techniques, would be one of the most efficient ways. The ML-

based techniques' ultimate purpose is to describe a list of desirable attributes and discover 

suitable compositions. However, before this operation can be completed, ML algorithms must 

first create prediction models by extracting rich and innovative knowledge from thousands of 

glass composition-property values. [1] 

Since Dreyfus pioneering work in 2003 to forecast the liquidus temperature for oxide 

glass-forming liquids, ML algorithms with reasonably big datasets have been applied in the 

context of oxide glasses, which is not a “glass property”, but critical for glass making.[1]  

The exact and comprehensive physical understanding of the glass transition and glass 

natures is considered to be one of the most challenging problems in condensed matter physics 

and material science. Due to the random disordered structure, the characterization of the glasses 

are very difficult, and this leads to problems for understanding the formation, deformation, 

fracture, nature, and the structure–properties relationship of the glasses.[2] 
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Metallic glass, which is a newcomer in glassy family (discovered in 1959) and at the 

cutting edge of current metallic materials research, is of current interest and significance in 

condensed matter physics, materials science and engineering because of its unique structural 

features and outstanding mechanical, many novel, applicable physical and chemical 

properties.[2] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

Chapter 1: 

Glasses 

and 

Theory of elasticity



Chapter 01: Glasses and Theory of elasticity 

 

4 
 

1. Introduction: 

Glass is one of the oldest synthetic materials used by man and knowledge about the 

working and use of glass has been acquired over several centuries. The scientific study of 

glasses began at the beginning of the 19th century and is developing rapidly today, either with 

regard to the synthesis of new materials with specific properties or for the application of new 

techniques capable of improving our understanding. of the glass structure. 

Glass is an isotropic and amorphous substance, theoretically presents an unlimited number 

of compositional possibilities [1]. That is why its properties are also very diverse, which has 

opened up many areas of use for it. As an example, glass is a hard and flexible material, when 

it subject to a mechanical stress it breaks, which leads us to study the content of the theory of 

elasticity. 

In this chapter, we will present some basic notions about glass and its properties as well as 

briefly address the theory of elasticity in glass. 

2. States of matter: 

Matter is found in nature in three forms: gas, liquid and solid. The essential differences 

between the states of matter are shown in Figure (I-1). 

 

 

 

 

Fig 1.1: The atomic arrangements in (a) a gas; (b) an amorphous solid;  

and (c) a crystalline solid 

What distinguishes them is the arrangement of their constituent motifs: 

• Gases (disorder): The particles forming matter, atoms, molecules, ions, have positions 

independent of the positions of neighboring particles (figure: I-1 (a)). 

 

(a) (b) (c) 
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• Molten liquids or solids (short-range order): The position of a particle depends on the 

position of neighboring particles but not on that of more distant particles (figure: I-1(b)). 

• Crystals (long-range order): The position of a particle depends on the positions of all 

the particles which surround it (figure: I-1(c)). 

a. Crystal solid: 

A crystal, also known as a crystalline solid, is a solid substance in which the components 

(such as atoms, molecules, or ions) are organized in a highly ordered microscopic structure to 

create a crystal lattice that extends in all directions. The word crystal comes from the Ancient 

Greek word “κρύσταλλος” (krustallos), which means both "ice" and "rock". 

The most preferred (lowest potential energy) places occur at regular intervals in space in a 

solid composed of similar chemical units. If all of these positions are filled, the solid is known 

as a perfect crystal. A crystalline solid is defined by the fact that its structure is made up of 

repeated unit cells, each of which contains a tiny number of molecular units that have a definite 

geometric relationship to one another. The resulting long-range order forms a three-dimensional 

geometric structure known as a lattice. [2] 

 

Fig 1.2: Crystal solid [3] 

b. Non-crystalic solide: 

An amorphous (from the Greek, a = "without" + morphe = "shape, form") or non-

crystalline solid is a solid that lacks the long-range organization that characterizes crystals. 

Some earlier papers and books used the phrase synonymously with glass. Today, however, 

"glassy solid" or "amorphous solid" is regarded as the overarching idea, with glass seen as a 

specific case: glass is an amorphous solid kept below its glass transition temperature [4]. 
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Fig I.3: Non-crystalic solide [3] 

 

3. The Glassy State 

3.1. Definition of glass  

      Glasses and other non-crystalline solids form a large family of non-crystalline materials that 

are typically produced by rapidly cooling a metastable liquid below its melting point or also via 

a wide range of other metastable synthesis routes [5]. During these routes, these materials 

acquire the properties of a solid without presenting a crystalline order at long distance and 

without periodicity in the arrangement of the atoms. In nature there are other non-crystalline 

solids obtained by freezing a liquid, but are not glasses, such as gels (for example). So, to 

determine the exact definition of glass, it is necessary to introduce the notion of transition 

vitreous, which characterizes the vitreous state [1]. 

   The vitreous transition is a characteristic transformation observed on cooling, during the 

transition from a supercooled liquid phase to a vitreous phase, or, conversely, when the glass 

heats up to supercooled. 

3.2. Formation of glass: 

During cooling, such liquids crystallize on passing through fusion. Nevertheless, there are 

certain substances which, on melting, produce liquids endowed with high viscosity. If these 

liquids are cooled rapidly from a temperature above the melting point, crystallization can be 

avoided. The viscosity gradually increases as the temperature drops until it reaches a sufficient 

value which gives the liquid a solid character. When a liquid freezes without crystallizing, we 

say that it forms a glass, that it vitrifies or that it passes to the vitreous state. The glass transition 
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is the term given to the physical phenomena which appear in a range of physical leads which 

appear in a range of viscosity between 1210 and 1410 poises, which corresponds to the glass 

transition temperature Tg [1, 6]. 

The formation of glass is best understood by looking at the most well-known diagram in 

glass science (Figure I-4), which plots the volume (or enthalpy) of a given mass of material vis 

temperature. The liquids only exist above the melting point (Tm). The liquid is in 

thermodynamic equilibrium and never crystallizes. Supercooled liquids exist between Tm and 

the glass transition temperature (Tg). They eventually crystallize (line BC) after a certain time. 

If the liquid is cooled quickly enough to avoid crystallization, the atoms do not have sufficient 

time to rearrange to the metastable equilibrium state (line BE). This cooling of the system 

occurs continuously and results in a non-equilibrium material known as “glass” [6]. The 

temperature at the intersection between the supercooled liquid line (BE) and glass line is the 

characteristic value of the Tg. 

 

Fig 1.4: Volume change as a function of temperature during glass formation. 

 

3.3.  Types of glass 

 

2.3.1. Oxide glass 

The main oxides forming oxide glasses are SiO2 , B2O3 , GeO2 and P2O5 . They all come 

from a particular region of the periodic table (columns 13, 14 and 15): oxides of elements with 

intermediate electronegativity whose bonds with oxygen have an iono-covalent character. The 
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resulting structures can be viewed as three-dimensional polymeric structures. These oxides can 

vitrify alone. 

Heavy oxide glasses such as GeO2 , As2O3 , Sb2O3 , TeO2 have remarkable properties. 

They have high refractive indices and wide transmission in the infrared down to 6-7 µm. They 

are used as a waveguide for signal transmission. When doped with rare earths, these oxides are 

used as a laser source or as an optical amplifier [1]. 

2.3.2. Halide glass 

The term "halide glass" refers to glasses, in which the anions are among the elements of 

group VIIA of the periodic table, namely, F, Cl, Br and I. Although halide glasses on beryllium 

fluoride (BeF2) and zinc chloride (ZnCl2) are well known, the glass-forming ability of ZrF4, 

AlF3, HfF4, and PbF2 have also been demonstrated. Halide are multicomponent (multi-

component: halogens such as fluorine, in combination with heavy metals, such as zirconium, 

barium, or hafnium). Practical interest in halide glasses has been generated almost entirely by 

their optical properties, which cannot be reproduced in conventional oxide glass. The obstacles 

to the practical implementation of halide glasses have their origin in the properties of the 

materials in which they can be significantly inferior to metal halide glasses. oxides, for example, 

mechanical strength, resistance of the melt to crystallization, chemical durability, etc. [8]. 

2.3.3. Chalcogenide glasses 

Chalcogen elements S, Se, and Te are used to make chalcogenide glasses. Other elements 

such as Ge, As, Sb, Ga, and others are used to create these glasses. They are low-phonon-energy 

materials that are usually transparent from visible to infrared wavelengths. Because 

chalcogenide glasses may be doped with rare-earth elements like Er, Nd, Pr, and so on, several 

applications of active optical devices have been proposed. [9]. Chalcogenide glasses have been 

used as optical materials. They have a wide transparency range, minimal optical losses within 

a 2–12 μm range, and are resistant to ambient moisture. Using chalcogenide glass fibers, a 

variety of technical challenges in optics and optoelectronics may be efficiently handled. [10] 

3.4. Properties of glasses 

There are different types of glass that have distinct properties. Choosing the best type of 

glass for a particular application requires knowing the different physical features that each form 

of glass has. 
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There are 5 main properties of glass to be considered: Optical properties, Thermal properties, 

Chemical resistance, Electrical properties and Mechanical properties. 

 

3.4.1. Optical properties 

Glass, a homogeneous and isotropic material, has unique intrinsic properties in the field 

of optics. These properties are based on the interaction of medium with the energy of 

electromagnetic waves. 

3.4.1.1. Refractive index 

Light travels in a straight line in dielectric media (glass) at a given speed. This speed, 

characteristic of the medium crossed, determines the refractive index ( )n at a given 

wavelength and defined by the ratio of the speed c of light in vacuum to that v the speed in the 

material: 

( )
v

c
n =                                                                                                                  (1.1) 

To characterize the glasses, we use the refractive indices corresponding to three determined 

wavelengths [1]: 

      cn For ( H hydrogen line) 

      Dn For 


A5893= (yellow sodium stripe) 

      Fn For 


A4861= ( H hydrogen line) 

Sometimes instead of Dn  we use dn which corresponds to the yellow line of hydrogen 3D for 



A5876= . The difference ( )cF nn − is called dispersion average and the ratio 










−

−

1D

cF

n

nn
is 

called relative dispersion[1]. 

The inverse of the relative dispersion constitutes the Abbe number, which is frequently 

used to characterize optical glasses: 

cF

D

nn

n

−

−
=

1
                                                                                                               (1.2) 

A6563=
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3.4.1.2. Optical transmission 

Optical transmission is one of the essential and best-known properties of glasses. It 

depends entirely on the chemical composition and the elements present in the glass. The 

transmission range of a material is limited to short wavelengths by the ultraviolet-visible barrier 

and to long wavelengths by the infrared barrier.  Figure (1.5) show the transmission spectra of 

some types of glasses [11] . 

 

Fig 1.5: Transmission spectra for several glasses (thickness of about 2-3 mm) [11]  

The optical transmission of glasses defined by BERR-LAMBERT's law: 

( )x
I

I
−= exp

0

                                                                                                         (1.3) 

0I : Incident intensity entering the glass of thickness x. 

I : Intensity of light transmitted 

 x : Glass thickness in cm. 

 : Absorption coefficient. 

3.4.2. Thermal properties 

The thermal properties are very important for the solidification and heat treatment of 

glass. among these properties, we can cite viscosity and thermal expansion. 
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• Viscosity 

Viscosity is not only an essential property for the production and manufacture of glasses, 

it also is closely connected with the nature and structure of the glass melt. Viscosity is the 

industrially most important property for shaping glass objects. Viscosity evolves continuously 

from stable liquid to glass at room temperature. Figure (1.6) shows the variation of viscosity 

with temperature [12]. 

 

Fig 1.6: Variation of the viscosity of a glass as a function of temperature [12]. 

Viscosity variation as a function of temperature can be given by the Vogel-Fulcher-

Tammann (VFT) relationship [13]. 










−
=

0

0

0 exp
TT

TD f
                                                                                                    (1.4) 

Where η0 is the pre-exponential constant, Df the fragility parameter, and T0 is the VFT 

temperature. 

• Thermal expansion 

 During glass melting, viscosity is one of the decisive properties. In the production 

process, annealing follows melting and forming. There another property becomes important 

which has already been involved in determining the transformation temperature: thermal 

expansion. Thermal expansion is produced by the increase in temperature which increases the 
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distance between two atoms bound by (non-harmonic) forces. Each particle of a substance 

vibrates, as a result of the ever - present thermal energy. With increasing temperature, the 

thermal energy becomes greater, which results in an increase in the vibration amplitude. That 

is, as the temperature increases an expansion takes place [14,15]. 

The evolution of the dilation according to the temperature is represented in the figure 

(1.7) [16], it is seen that the point of inflection of the curve corresponds to the glass 

transformation temperature
gT . 

 

Fig 1.6: Evolution of thermal expansion as a function of temperature [16] 

The value of the slope is called the coefficient of expansion, and can be expressed by: 

T

l

l 


=

0

1
                                                                                                               (1.5) 

  
0l

l
 : Relative elongation of a sample of initial length 0l . 

 T : Temperature interval considered. 

 

3.4.3. Chemical resistance 

  In addition to the transparency to light, glass is also distinguished, among other 

properties, by its great resistance with respect to almost all chemicals at usual temperatures. 

Without this property, the wide range of applications of glass would be unthinkable.  
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Chemical durability is the expression of the material's resistance to an environment. For 

a glass, it expresses its resistance to degradation in aqueous solutions. This quantity is generally 

related to the unit area of matter per unit time. Of the better-known reagents, it is only 

hydrofluoric acid which makes an immediately noticeable attack on glass; it brings the chief 

components of glass into solution [1,16,17].  

3.4.4. Electrical properties 

The many and various areas of application of glass also include electronics. To base 

temperature, glass is insulating. When heated enough, it becomes a conductor of electricity. 

The mobility of divalent and higher valence ions is generally very low compared to that of 

alkali ions. So, the conductivity of the glass increases with the increase in alkaline content [1,17] 

(figure (1.7)) 

 

Fig 1.7: Partial replacement effect of 2SiO by OK2 and ONa2 on electrical conductivity [1] 

3.4.5. Mechanical properties 

Glasses are fragile materials. However, the quantity as well as the variety of glasses 

available are constantly growing. At each period of the life of the glass, specific mechanical 

properties are sought. These properties must allow the development and shaping by industrial 

processes and guarantee good performance in service [18]. In the mechanical properties of glass 

emphasis is placed on its strength, hardness and elasticity: 
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• Strength: 

The strength of materials is associated with the influence of forces and the interpretation 

of the deformations caused by such forces [19].In the use of glass, its resistance to breakage is 

very important. For a long time, attempts have been made to understand better the causes of its 

proverbial susceptibility to breakage in order to be able to produce stronger glasses in a more 

systematic way [20]. 

• Hardness: 

  In glass technology, the concept of hardness has several meanings. Hardness is the 

ability of a body to resist permanent deformation [21]. 

• Elasticity: 

 Glass is an elastic solid material, which means that when subjected to mechanical stress, 

it will break completely. The mechanics of solids represents the content of the theory of 

elasticity, which is known as the response of materials to stresses applied to them, which 

describes the method of solid deformations when external stresses are applied. A solid body 

undergoes a strain through a deforming force. If after the removal of the force this strain 

completely reverses, the body is called ideally elastic. 

4. Theory of elasticity 

4.1.Theory of elastic properties of solids: 

The mechanical properties are not determined by the energies of the interatomic bonds 

alone, but depend on the coordination, the degree of interconnection (or polymerization), and 

the topology of piling (rings, chains, sheets) at a supramolecular scale where small domains 

could be observed [18]. The theory of elasticity treats the relationship between forces applied 

to an object and the resulting deformations. In practice, the analysis of the elastic behavior of a 

material is reduced to the study of simple deformations and the determination of the 

corresponding elastic constants [22]. 

The macroscopic behavior of a solid material is described by the continuous field theory, 

which is the theory of elasticity, which describes the process of solid deformations when 

external stresses are applied, and the ability of the material to restore its original shape after 

removing the deforming force. Under the action of applied stress, solid body exhibits shape and 
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volume changes to some extent, and every point in the solid body is in general displaced. Let 

the position vector before the deformation be r, and after the deformation has a value r’ with 

component xi. The displacement of this point due to deformation then given by the displacement 

vector 𝑢 = 𝑟 − 𝑟′or𝑢𝑖 = 𝑥𝐼
′ − 𝑥𝑖. If 𝑢𝑖𝑗(𝑥1, 𝑥2, 𝑥3) is the jth component of the displacement at 

point(𝑥1, 𝑥2, 𝑥3), the strain tensor for small deformations is [23,24]: 

𝑢𝑖𝑗 =  
1

2
(

𝜕𝑢𝑖

𝜕𝑋𝑗
+

𝜕𝑢𝑖

𝜕𝑋𝑖
)                                                                                                               (1.6) 

  

When deformation occurs, the body will not be in its original state of equilibrium, and 

therefore forces called internal stresses arise that tend to return the body to its state of 

equilibrium. If the deformation of the body is rather small, it returns to its original state when 

the influence of external forces ceases, and these deformations are known as elastic 

deformations. As for major deformations, when external forces are removed, the body cannot 

return to its full shape after deformation, and these deformations are plastic. There are different 

types of moduli, where the type of modulus depends on the type of deformation that the material 

is subjected to, such as elongation, bending, and others. All coefficients are represented by 

finding the stress-strain ratio within the limits of elasticity [25].  

Stress is a quantity that describes the magnitude of forces that cause deformation. It is  

defined as force per unit area (unit Newton/m2). Stress types including [26]: 

• Tensile stress: resulting in an increase in length, when forces pull on an object 

and cause its elongation, like the stretching of an elastic band. 

• Compressive stress: results in a decrease in length or a change in  volume, when 

forces cause a compression of an object. 

• Shear stress (tangential stress): change in the shape of the  geometric body, when 

an object is being squeezed from all sides. 

Strain is defined as the deformation of material. It is also defined as the relative change 

caused by stress to the dimensions, shape or size of the body. 

4.2. Elastic moduli [23,27]: 

A solid deforms under the action of a deforming force. If by removing this force, the 

deformation disappears, the body is said to be: elastic or fragile. 

Hooke's law expresses that the deformation D is proportional to the stress σ applied: 
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σ = M D                                                                                                                              (1.7) 

The proportionality constant M is called the elastic modulus. Depending on the type of 

deformation, there are different moduli (E, G, K or µ). 

• Young's modulus E 

Under tensile stress, an elongation appears which is characterized by the modulus of 

elasticity E (or Young's modulus), this modulus defines the resistance of the material before 

rupture. 

• Shear modulus G and K 

A shear stress leads to a shear process characterized by the shear modulus G . In the 

case of a pressure exerted on all the faces, the modulus of compression K is used. 

• Poisson's ratio ν 

During dilation, a transverse contraction occurs in the direction perpendicular to the 

elongation. If we take the relative elongation Δd/l and the relative transverse contraction Δd/d 

we then define the fish coefficient µ by the ratio: 








 








 

=

d

d

l

d

                                                                                                                            (1.8) 

The measurement of the moduli of elasticity E, G, K and the Poisson's ratio ν is carried 

out by ultrasonic echography. The principle of the method is based on the measurement of the 

longitudinal vL and transverse vT propagation velocity of the ultrasonic wave generated from a 

potential difference in a piezoelectric transducer. The latter, which plays the role of transmitter 

and receiver at the same time, transmits a mechanical impulse through a gel. The wave 

propagating in the glass is reflected on the opposite side of the sample. The speed of propagation 

of the wave directly depends on the rigidity of the bonds of the material. The time interval 

between two successive echoes is measured and allows us to calculate the propagation speed of 

the longitudinal and transverse waves (figure 1.8) 
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Fig 1.8: Dchematic illustrations for ultrasonic method. 

 

Wave is independent of its frequency and the dimension of the material. In isotropic and 

homogeneous solids such as glassy materials, the one-dimensional acoustic wave equations 

are expressed as [12]: 

𝑑2𝑢

𝑑𝑡2 =
𝐿𝑑2𝑢

𝜌𝑑𝑥2   (Longitudinal mode or compressional wave)                                         (1.9) 

𝑑2𝑢

𝑑𝑡2 =
𝐺𝑑2𝑢

𝜌𝑑𝑥2   (Shear mode or transverse mode)                                                          (1.10) 

Where u is displacement, L is longitudinal modulus. From above equations, one obtains: 

𝐺 = 𝜌𝑣𝑠
2                                                                                                                                      (1.11) 

𝐿 = 𝜌𝑣𝑙
2                                                                                                                                       (1.12) 

Where 𝑣𝑙and 𝑣𝑠are longitudinal and transverse sound velocities, respectively.  

Based on the E, K, and 𝑣 of the isotropic solids such as glasses can be given in terms of 𝑣𝑙, 𝑣𝑠 

and density as: 

𝐾 = 𝜌(𝑣𝑙
2 −

4

3
𝑣𝑠

2)                                                                                                                                                                                               (1.13) 

𝑣 =
𝑣𝑙

2−𝑣𝑠
2

2(𝑣𝑙
2−𝑣𝑠

2)
                                                                                                                                         (1.14) 

𝐸 = 𝜌𝑣𝑠
2 3𝑣𝑙

2−4𝑣𝑠
2

𝑣𝑙
2−𝑣𝑠

2                                                                                                                                                                                                    (1.15) 
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5. Conclusion 

In this chapter we have covered two parts: 

The first part revolves around the history of glass and some of its concepts. We also find 

that glass is an amorphous body and there are different types of it, including oxide, halogen, 

and chalcogenic. We find that the different types of glass lead to a difference in its composition, 

and we also mentioned the properties of glass, which are optical, thermal, chemical, electrical, 

and mechanical. 

As for the second part, we have explained the theory of elasticity and described the elastic 

properties of the solid, and we also learned about the elastic coefficients, which are the 

longitudinal modulus, bulk modulus, shear modulus, Young's modulus, and Poisson’s ratio. 
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1. Introduction: 

In context of solving problems, a major difference between human and computer is that 

the first can automatically improve his way of solving a problem, humans learn from their 

previous mistakes and try to solve them by correcting them or look for a new approach to tackle 

the problem, whereas traditional computer programs cannot learn from their outcome and hence 

they are unable of improving their performance. The field of machine learning addresses this 

problem to simulate humans and tries to create computer programs that are able to learn and 

therefore improve their performance by collecting data and try to make inferences. 

Machine learning is defined as a sub-domain of artificial intelligence focuses on the 

development of models capable of representing certain characteristics, learn and detect some 

statistical pattern from data in order to accomplish various tasks, there are many techniques in 

machine learning we will discuss some of them in the below sections [1]. 

2. Unsupervised learning: 

Unsupervised Learning (UL) is an elusive branch of Machine Learning (ML), including 

problems such as clustering and manifold learning, which seeks to identify structure among 

unlabeled data. UL is notoriously hard to evaluate and inherently indefinable.  

The term “unsupervised learning” is generically associated with the idea of using a 

collection of observation X1. . ., Xn sampled from a distribution p(X)to describe properties of 

p(X) [2]. 

 

Fig 2.1: Unsupervised learning process. 
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3. Supervised learning: 

Supervised learning refers to the problem where the data is on the form 
1

,
n

i i i
x y

=
, 

where 𝑥𝑖denotes inputs and 𝑦𝑖denotes outputs. In other words,in supervised learning we have 

labeled data in the sense that each data point has an input 𝑥𝑖and anoutput 𝑦𝑖which explicitly  

explains “what we see in the data” [3]. 

Supervised learning is categorized into two type classification and regression depending 

on whether the output of a problem is quantitative or qualitative; in this chapter we will cover 

regression since classification is beyond the scope our work. 

 

Fig2.2 : Difference between classification and regression [4] 

3.1.Regression: 

Regression is to map an input data to a numerical value. In another words for an 

input 𝑋𝑖 ∈ ℝ𝑑  that represents d dimensional features vector and continues output 

space𝑌 ⊂ ℝ, the learning algorithm is asked to produce a function 𝑓 ∶  ℝ𝑑 → ℝ𝑛 that 

maps any given input 𝑋𝑖 to a corresponding value  𝑦 ∈ 𝑌 . Examples Neural Networks, 

Support Vector Regression, Linear Regression, Polynomial Regression .. [1] 

• Linear regression: 

The simple linear regression model for n observations can be written as: 

0 1i i iy e = +  +
                                                                                                

(2.1) 
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The designation simple indicates that there is only one predictor variable 𝑥, and linear 

means that the model is linear in 𝛽0and𝛽1 . The intercept 𝛽0and the slope 𝛽1are unknown 

constants, they are both called regression coefficients; ei’sare random errors. 

To estimate 𝛽and 𝛽1we use the method of least squares, it consists of calculating the 

difference between the observations 𝑦𝑖 and the regression line and minimize the following 

expression [4]: 

( )
2

0 1

1

n

i i

i

y  
=

− − 
                                                                                                             

(2.2) 

And the solution is:  

1 1 1
1 2

2

1 1

1

1

n n n

i i i i

i i i

n m

i i

i i

x y x y
n

x x
n

 = = =

= =

+

=
 

−  
 

  

 
                                                                                              

(2.3) 

0 1y x = −                                                                                                                      (2.4) 

 

Fig 2.3:  A linear regression problem, with a training set consisting of ten data points. 
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• Nonlinear regression: 

The nonlinear regression model is a generalization of the linear regression model which 

does not depend only on a weighted sum of vector as mentioned in the previous subsection. 

The nonlinear model is of the form: 

( ),i i iY f x e= +
                                                                                                          (2.5) 

Where f is a nonlinear function of the parameters γ and 

1 0

1 1

1

,

i

i i
q p

iq p

x

x

x






 

−

   
   

= =   
   
                                                                                                         (2.6) 

In both the linear and nonlinear cases, the error terms 𝜀𝑖  are often (but not always) 

independent normal random variables with constant variance [5].  

4. Support vector machine : 

One of the most influential approaches to supervised learning is the support vector 

machine (Boser et al., 1992; Cortes and Vapnik, 1995). This model is similar to logistic 

regression in that it is driven by a linear function wTx + b. Unlike logistic regression, the support 

vector machine does not provide probabilities, but only outputs a class identity. The SVM 

predicts that the positive class is present when. 

WTx + b is positive. Likewise, it predicts that the negative class is present when. 

WTx + b is negative.   

One key innovation associated with support vector machines is the kernelrick. The 

kernel trick consists of observing that many machine learning algorithms can be written 

exclusively in terms of dot products between examples. For example it can be shown that the 

linear function used by the support vector machine can be re-written as: 

( )

1

m
iT T

i

i

x b b x x 
=

+ = +                                                                                                (2.7) 



                                                                                                  Chapter 02 : Machine Learning 

 
 

25 
 

This function is nonlinear with respect to x, but the relationship between φ(x) and f (x) 

is linear. Also, the relationship between α and f(x) is linear [6]. 

• SVM kernels: 

The kernel-based function is exactly equivalent to preprocessing the data by 

applyingφ(x) to all inputs, then learning a linear model in the new transformed space. The kernel 

trick is powerful for two reasons. First, it allows us to learn models that are nonlinear as a 

function of x using convex optimization techniques that are guaranteed to converge efficiently.  

The most commonly used kernel is the Gaussian kernel. 

( ) ( )2, ;0,k u v N u v I= −                                                                                         (2.8) 

Where N(x; µ, Σ) is the standard normal density. This kernel is also known as the radial 

basis function (RBF) kernel, because its value decreases along lines in v space radiating 

outward from u. The Gaussian kernel corresponds to a dot product in an infinite-dimensional 

space[24]. 

In the following table we give other kernel functions [7]: 

 

No Kernel function Formulas 

 

1 Linear k(𝑥𝑖, 𝑥)=𝑥𝑗
𝑇𝑥 

 

2 Polynomial k(𝑥𝑖, 𝑥)=(𝑥𝑗
𝑇𝑥 + 1)

𝑑
 d=1,2,…. 

 

3 Gaussian   radial     basis 

function 
k(𝑥𝑖, 𝑥)=exp(-𝛾‖𝑥 − 𝑥𝑖‖)2 

k(𝑥𝑖, 𝑥)=exp(-
1

2𝛿2
‖𝑥 − 𝑥𝑖

𝑇‖)2 

4 Splines k(𝑥𝑖, 𝑥)=∏ 𝑘𝑚(𝑥𝑚,𝑛
𝑚=1 𝑥𝑖𝑚) 

 
 

 

Table 1: SVM kernels. 
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5. Support vector regression: 

The SVR method purpose is to improve generalized performance by selecting the 

appropriate use of kernel functions. Therefore, the kernels election is very important for a 

particular application. SVR was first introduced and developed from the concept of SVM 

theory. 

SVM can approach the regression function by using the ε-insensitive loss function concept. The 

concept of ε-insensitive loss function is used to evaluate how well the regression function is 

used. The application of SVM in regression cases is called SVR-Regression. 

The basic objective of the SVR is to find the function f (x) which has the most ɛ deviation from 

the actual target obtained from all training data, and at the same time the function must be as 

flat as possible. In other words, the error does not matter, as long as the error is less than epsilon 

ɛ. In SVR it is known as support vector, support vector is training data used in testing. 

𝑓(𝑥) = 𝑤𝑇𝜑(𝑥) + 𝑏                                                                                                             (2.9) 

Φ(x) is the mapping result of the T function in the input space, w is weighting vector 

dimension 1andb is bias or deviate. The w and b coefficients are estimated by minimizing the 

risk function defined in the previous equation. 

The coefficients w, b minimizes the risk function of the following equation: 

R=min
1

2
‖𝑤‖2 + 𝑐

1

𝑙
(∑ (𝐿𝜀(𝑦𝑖), 𝑓(𝑥𝑖))𝑙

𝑖=1 )                                                                         (2.10) 

SVR will find a function f(𝑥𝑖) which has the greatest deviation ε from the actual target 

𝑦𝑖for alltraining data. Then with SVR, when ε is equal to 0, a perfect regression will be obtained. 

Conversely, a high ε value is associated with a small slack variable value and low accuracy. 

The addition of this slack variable is to solve the problem of infeasible margin limiter in the 

optimization problem [8] 
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Fig2.4: Support Vector.[23] 

6. Training process: 

The central challenge in machine learning is that we must perform well on new, 

previously unseen inputs, not just those on which our model was trained. The ability to perform 

well on previously unobserved inputs is called generalization. Typically, when training a 

machine learning model, we have access to a training set, we can compute some error measure 

on the training set called the training error, and we reduce this training error 

For example in a linear model we train the model by minimizing the following error  

( )
( ) ( )

2

2

1 train train

train
x y

m
 −

                                        (2.11) 

• Underfitting: Is when a machine learning model can not properly learn from the 

training data (have low accuracy). Some of the reasons why underfitting happens in 

neural networks is to have a small model or using a linear model with none linear 

dataset (features in the dataset are complex). Another reason is the noisy data 

(containing wrong labels) [1]. 

• Over-fitting:  is when a machine learning model gives a high prediction accuracy on 

the training data, but the prediction accuracy gets low if the model tested on previously 

unseen data (a data that was not present during the training),another term for describing 

overfitting is “high generalization error”. Overfitting occurs when the model gets 

closely fit to the training data, this is because the training data is not all the possibilities 

of input data. A good model should have a good accuracy on the training data and the 

other. In other word, (it should be able to generalize) [1]. 
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Fig2.5: The difference between overfitting, underfitting [1]. 

 

7. Conclusion: 

In this chapter we have discussed several technique we need to construct our SVR 

predictive model, the way to incorporate the data set to train the machine learning model, In the 

next chapter we will present the different experiments we done in this framework and discuss 

the obtained results as well. 
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Result and discussion: 

In this chapter we will begin by presenting the data-set and data prepossessing we 

proceeded after that we are going to present the SVR model we established to predict our shear  

modulus and poison ratio {G, υ}, finally we will discuss the result we obtained. 

1. Method:  

➢ The data has been collected from the articale of W.H.Wang et al (The elastic properties, 

elastic perspectives of metallic glasses. 

➢ It consist of more than 150 glass samples with their corresponding elastic properties.  

➢ In our work we will focalize on predicting shear modulus and poisson ratio using 

support vector regression model.  

2. Data analysis: 

The data consist of 150 × 52 matrix, 150 glasses sample, the first 45 features are the 

glasses compositions percentage, and the rest are glasses physical properties however in this 

work we will focus on glasses elastic properties. 

 

Fig 3.1: Dataset head. 

Furthermore, we observe a problem with the data, namely the design matrix of inputs is very 

sparse (many zeros) as shown in the following figure. 
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Fig 3.2: Data heat map. 

Next we investigated the density distribution of our parameter of interest, and we observe that 

the distribution of G is skewed (left or right side), asymmetric and discontinued between [60-

80], whereas for the distribution of υ is less asymmetric with no discontinuity. 

 

Fig 3.3: Density distribution of G. 
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Fig 3.4: Density distribution of υ. 

 

The below figure depicts the correlation matrix of the glass compositions in the design matrix. 

White indicates a positive correlation of p-value 1(strong statistical evidence of correlation), 

and violet indicates a negative correlation of p-value -0.4. The closer to 1, the more evidence 

there is of correlation. We observe that there are many instances of positively or negatively 

correlated features 

 

Fig 3.5: The correlation matrix between the target and input features. 
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3. Data preprocessing: 

As discussed above, sparsity of the input matrix is problematic for several reasons and the SVR 

model may not be robust to solve our task of interest, as a result we have applied sparse principle 

component analysis (PCA) for better data representation.  

The sparse PCA was conducted using predefined function from SKlearn package in python 

with 33 principle component and as default for the other sparsepca parameters in details: 

1) Controlling parameter of 1 (default),  

2) Ridge shrinkage parameter of 0.01 (default),  

3) Max iterations of 1000(default) 

4) Tolerance of 108 (default).  

Moreover we scaled the element of the input matrix using standard scaler which follows the 

next formula: 

𝑧 =  (𝑥 −  𝑢) / 𝑠                                                                                                                              (3.1) 

Where u is the mean of the training samples or zero if with_mean=False, and s is the standard 

deviation of the training samples or one if with_std=False. 

4. Result: 

After doing data cleaning and preprocessing, we have applied our support vector regression 

model using python SVR function from SKlearn package with radial basis function as kernel 

function. 

Moreover, we followed leave one out as cross-validation procedure, where the number of folds 

equals the number of instances in the data set. Thus, the learning algorithm is applied once for 

each instance, using all other instances as a training set and using the selected instance as a 

single-item test set. 
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We introduce in the table below some of our result of predicting shear modulus G and poison 

ratio υ : 

 G υ 

Glasses samples Predicted 

values 

Actual values Predicted 

values 

Actual values 

41Zr14Ti12.5Cu10Ni22.5Be 37.52912821 

 

37.4 

 

0.35225629 

 

0.352 

 

53Zr5Ti20Cu12Ni10Al 31.09800532 

 

31.3 

 

0.37052505 

 

0.37 

 

45Zr13Cu4Ni22Be8Fe8Nb 35.34571098 

 

35.1 

 

0.35484361 

 

0.361 

 

14.3Cu5.7Ni25Al55Pr 26.1724204 

 

26.19 

 

0.31782908 

 

0.319 

 

24Al20Y36Gd20Co 26.73940947 

 

26.58 

 

0.32111764 

 

0.317 

 

25Al10Y20Co45Tm 27.76600377 

 

27.3 

 

0.30681106 

 

0.309 

 

25Al20Co55Tm 30.12648252 

 

30.6 

 

0.31367097 

 

0.307 

 

57Zr15.4Cu12.6Ni10Al5Nb 31.65590991 

 

32 

 

0.36986171 

 

0.365 

 

60Zr14Cu13Ni10Al3Nb 31.65590991 

 

32 0.36986171 

 

0.365 

 

 

5. Discussion: 

In this work, we proposed an alternative framework to predict glasses elastic properties namely 

shear modulus G and poisson's ratio using the bulk composition of a given material. Based on 

SVM regression, it is clear that the relationship between the bulk composition and the 

corresponding parameters of interest of a sample does in fact exist, with significant low root 

mean squared error (RMSE) of poisson's ratio around 0.01 and a relatively high RMSE of 1.67 

for the shear modulus, for the reason that the distribution of the shear modulus in the collected 

data is skewed and discontinued as we pointed before. However, we have demonstrated that 

having the bulk composition and the corresponding elastic parameters of a relatively small 

number of materials is enough to estimate the elastic properties of similar compositions with a 

reasonable bound on the error. 

6. Conclusion: 

The estimation of the elastic parameters within the traditional paradigm is mathematically and 

experimentally involved, which certainly poses a substantial barrier for subsequent innovation, 
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for these reasons we have tested an alternative framework to directly predict glasses elastic 

properties using bulk composition in order to reduce the computation, physical and time cost. 

Our SVR model is at first effective in detecting the correlation between quantity of interest (G, 

υ) and glasses compositions, nevertheless, it can be more tested with more data and more 

physical properties included thus we can say that this result is not final and can be further 

improved. 
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General Conclusion 

 

In this work, we investigated the predictive performance of a machine learning 

algorithm, SVM, for two glass elastic properties: shear modulus G and poisson's ratio υ, using 

the bulk composition. For such, we used a dataset of about 150 metallic glasses.  

Based on SVM regression, relationship between the bulk composition and the 

corresponding parameters of interest of a sample does exist. A significant low root mean 

squared error (RMSE) of poisson's ratio was founed to be around 0.01. Nevertheless, a 

relatively high RMSE of 1.67 for the shear modulus, this can be interpreted according to the 

skewed and discontinued of the distribution of the shear modulus in the collected data. We have 

demonstrated that having the bulk composition and the corresponding elastic parameters of a 

relatively small number of materials is enough to estimate the elastic properties of similar 

compositions with a reasonable bound on the error.  

These results can be further improved to help bulk compositional tuning and computer 

- aided inverse design of glasses. 

 

 

 

 

 

 

 

 

 

 

 



 

 

Abstract:  

In this work, we proposed an alternative framework to predict two glasses elastic 

properties: shear modulus G and poisson's ratio using the bulk composition. Based on SVM 

regression, relationship between the bulk composition and the corresponding parameters of 

interest of a sample does exist. A significant low root mean squared error (RMSE) of Poisson's 

ratio was obtained to be around 0.01. However, the RMSE of the shear modulus is relatively 

high and is about 1.67, this can be interpreted according to the skewed and discontinued of the 

distribution of the shear modulus in the collected data. We have demonstrated that having the 

bulk composition and the corresponding elastic parameters of a relatively small number of 

glasses is enough to estimate the elastic properties with a reasonable bound on the error. These 

results can be further improved to help bulk compositional adjustment and computer aided 

inverse design of glasses.  

Keywords: Glass, Machine Learning, SVM regression, Shear modulus, Poisson's ratio. 

 الملخص: 

بديلاً للتنبؤ بخاصيتين مرونيتين للزجاج : معامل القص ونسبة بواسون وذلك   إطارافي هذا العمل ، اقترحنا 

.  ي والمعاملات الموافقة له للعينةعلاقة بين التركيب الكتل  فإنه توجد، SVM باستخدام التركيب الكتلي . استنادا إلى انحدار

   RMSE  ، فإن. ومع ذلك0.01حوالي منخفض لنسبة بواسون ليكون ( RMSEثم الحصول على خطأ تربيعي متوسط )

، ويمكن تفسير ذلك وفقا لانحراف وتقطع توزيع معامل القص في البيانات المجمعة . 1.67امل القص مرتفع نسبيا ويبلغ  لمع

لقد أوضحنا أن وجود التركيب الكتلي ومعاملات المرونة المقابلة لعدد صغير نسبيا من التركيبات الزجاجية كاف لتقدير 

ص المرونية بحد معقول للخطا . يمكن تحسين هذه النتائج بشكل أكبر للمساعدة في الضبط التركيبي والتصميم الخصائ

 العكسي للزجاج بمساعدة الكمبيوتر . 

.، نسبة بواسونمعامل القص، SVM  الزحاج ، تعلم الآلة انحدار :الكلمات المفتاحية  

Résumé:  

Dans ce travail, nous avons proposé un cadre alternatif pour prédire deux propriétés 

élastiques des verres le module de cisaillement G et le coefficient de Poisson en utilisant la 

composition massique. Sur la base de la régression SVM, il existe une relation entre la 

composition et les paramètres d'intérêt correspondants d'un échantillon. Une faible erreur 

quadratique moyenne significative (RMSE) du coefficient de poisson a été obtenue à environ 

0,01. Cependant, le RMSE du module de cisaillement est relativement élevé et est d'environ 

1,67, cela peut être interprété en fonction de la distribution asymétrique et discontinue du 

module de cisaillement dans les données collectées. Nous avons démontré qu'il suffit d'avoir la 

composition massique et les paramètres élastiques correspondants d'un nombre relativement 

petit de verres pour estimer les propriétés élastiques avec une borne raisonnable sur l'erreur. 

Ces résultats peuvent être encore améliorés pour faciliter l'ajustement de la composition en 

masse et la conception inverse assistée par ordinateur des verres.  

Mots-clés: Verre, Apprentissage automatique, régression SVM, module de cisaillement, 

coefficient de poisson. 


