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Notations and Conventions

� R : the set of real numbers.

� (M,d) : metric space.

� d(., .) : distance application.

� C([a, b]) : the space of continuous functions.

� Ω : a bounded open set.

� Ω = Ω + ∂Ω: this is the closure of Ω.

� U : an open set.

� C
K
(., .) : the space of functions with valeurs in R, K times differentiable in Ω.

� deg : topological degree.

� degB : Brouwer topological degree.

� degLS : Leray-Schauder topological degree.

� B : the closed unit ball.

� dim : dimension.

� Kp : the linear operator.

� N : L-compact on Ω.
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Introduction

Multi-point boundary value problems associated with its third-order differential equa-

tions Wide applications in various fields of science such as mechanics, physics, biology, etc.

Recently, this type of problem has attracted the attention of many authors and since the

appearance of many articles. We can mention for example done by Il’in and Moiseev [1] ,[2]

.And Since then, many researchers have studied nonlinear second-order multi-point bound-

ary value problems under various conditions of nonlinearity. In particular, there have been

many papers concerned with the existence of one or multiple positive solutions to boundary

value problems on the half-line, which arise quite naturally in the study of radially sym-

metric solutions of nonlinear elliptic equations and models of gas pressure in a semi-infinite

porous medium (see [8], [18]).

We organized this dissertation as follows. In the first chapter we present a review

of some fixed point theorems in particular the principle of contraction of Banach, the non-

linear Leray-Schauder alternative,in the secend chapter . we introduced the corresponding

operator of problem (P ) and well-known facts and lemmas are presented .

In the third chapter , we give main results such as iterative schemes and the existence of

positive solutions to problem (P ) as following

(φp(u
′(t)))

′
+ h(t)f(t, u(t)) = 0, a.e.t ∈ (0,∞) (P )

with boundary conditions :

u(0) =
m−2∑
i=1

aiu(ξi), u′(∞) = c∞ ≥ 0.
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where φp(s) = |s|p−2 , p > 1 , ξi ∈ (0,∞) with 0 < ξ1 < ξ2 < ... < ξm−2 < ∞ ,ai ∈[0,1)

with 0 ≤
∑m−2

i=1 ai ≤ 1,and f a given function.

By the way, we propose to establish the existence, the uniqueness and the existence

of the positive solution of the problem (P) via Banach’s contraction principle. the nonlinear

alternative of Leray Schauder the properties of the Guo-Krasnosel’skii theorem in a cone is

to give the existence and iteration of positive solutions for the Problem (P).
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Chapter 1

Reminders and fundamental notions

In this chapter, we study some fixed point indicator theorems and Topological degree.

We’ll start with the fixed point theorems: By the simplest and most famous: Banach’s fixed-

point theorem for contract applications. We will then see Brouwer’s fixed point theorem

(valid in the finite dimension), then Schuder’s fixed point theorem (which is the ”general-

ization” in the infinite dimension).

Then we move on to the study of Topological fixed point theorem.

1.1 Fixed point theorem

In this section, we present some theories and characteristics of the fixed point of

Banach, and also fixed point for the application is not a contraction on the whole metric

space, together with studying the principles of continuity.

1.1.1 Banach’s fixed point theorem

Banach’s fixed point theorem (also known as contract application theorem) is a simple

proof theorem that guarantees a unique fixed point for any contractual maps , is applicable

to whole spaces and has many applications. These maps include theories of the existence

of the solution to differential equations or integrative equations and the study of the con-

vergence of some numerical methods.
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Definition 1.1 (Fixed point) Let T : X −→ X an application. We call fixed point all

point x ∈ X such that T (x) = x.

Definition 1.2 (Lipschitz application) Let (M,d) a whole metric space and Maps T :

M −→ M , we say that T is a Lipschitz application if there is a coil a positive constant

k ≥ 0 so that, for any pair of elements x, y for M, we have the inequality:

d(T (x), T (y)) ≤ k(d(x, y)),∀x, y ∈ M (1.1)

If k ≤ 1, the map T is called non-expansive.

If k < 1, the map T is called contraction

Theorem 1.1 [19] (Banach’s fixed point theorem ) Let (M,d) be a space complete

metric and let T : M −→ M a contracting map with the constant of contraction k,

then T has a unique fixed point x ∈ M .. Moreover we have:

If x0 ∈ M and xn = T (xn−1),limn−→∞ xn = x and

d(xn, x) ≤ kn(1− k)−1d(x1, x0) n ≥ 1, (1.2)

x is the fixed point of T.

Proof.

1. We first show uniqueness:

We assume that there is x, y ∈ M avec x = T (x) and y = T (y) so

d(x, y) = d(T (x), T (y) ≤ kd(x, y).

because 0 < k < 1 then the last inequality implies that d(x, y) = 0 =⇒ x = y, so

∃!x ∈ M such as T (x) = x.
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2. To prove existence:

select x ∈ M .We first prove that xn is a Cauchy sequence.

Remark for n ∈ {0, 1, ...}

d(xn, xn+1) = d(T (xn−1), T (xn)) ≤ kd(xn−1, xn) ≤ k2d(xn−2, xn−1) ≤ ....... ≤ knd(x0, x1)

Si m > n où n ∈ {0, 1, ...}

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ......+ (xm−1, xm)

≤ knd(x0, x1) + kn+1d(x0, x1) + ......+ km−1d(x0, x1)

≤ knd(x0, x1)
[
1 + k + k2 + .......

]
≤ kn

1− k
d(x0, x1)

For m > n, n ∈ {0, 1, ...} we have

d(xn, xm) ≤
kn

1− k
d(x0, x1) (1.3)

so xn is a Cauchy sequence in the complete space X in sequence then there exists

x ∈ M with

lim
n−→+∞

xn = x

Moreover by the continuity of T

x = lim
n−→∞

xn+1 = lim
n−→∞

T (xn) = T (x)

So x is a fixed point of T.

finally , m −→ ∞ in (1.3), we obtain

d(xn, x) ≤
kn

1− k
d(x0, x1)

Remark 1.1 The conditions of this theorem are necessary, consider the following examples

.
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Example 1.1 (Closing Condition) T :]0, 1] −→]0, 1] , T (x) = x
2
, is contracting and

verifies T (]0, 1]) ⊂]0, 1] but does not admit a fixed point. The problem is that ]0, 1] is not

closed: : limxn = 0 is not contained in ]0, 1] .

Example 1.2 T : [0, 1] −→ R, T (x) = x
2
+2, is contractive but doesn’t admit a fixed point.

The problem is that T ([0, 1]) ⊈ [0, 1] and we can’t iterate: x0 = 0, x1 = 1, x2 = 1.5, but x3

is not defined.

Example 1.3 (Contraction condition) T : R → R , T (x) = x+ 1
1+ex

verified

|T (x)− T (y)| < |x− y| for all x ̸= y, but does not admit a fixed point. The problem is that

T is not contractive, and for all x0 ∈ R we obtain xn −→ +∞.

1.1.2 Fixed point theorems for the application is not a contrac-
tion on the whole metric space

Let (M,d) be a complete metric space, functions defined only on a subset of M will

not necessarily have a fixed point. Additional conditions will be necessary, to ensure this.

Theorem 1.2 Let K be a closed set in M and T : K −→ M a k-contraction. Suppose there

is x0 ∈ K and r > 0 such as

B(x0, r) ⊂ K et d(x0, T (x0)) < (1− k)r

then T has a unique fixed point x∗ ∈ B(x0, r).

Theorem 1.3 Let (M,d) be a complete metric space, T : M −→ M a Lipschitz application

(not necessarily a contraction) but one of these iterates T p is a contraction, then T has a

single fixed point x∗ ∈ M .

Proof. as T p is a contraction, it follows from the theorem 1.2 that T p has a unique fixed

point, so x∗ = T px∗. Then T p(T (x∗)) = T (T p(x∗)) = T (x∗), then T (x∗) is a fixed point of

T p . But T p admits a unique fixed point, hence T (x∗) = x∗. So T has a unique fixed point

(x∗), and it is unique because every fixed point of T is also a fixed point of T p

7



1.1.3 Principles of continuation

Another way to obtain the existence of a fixed point for an undefined map over all

space is obtained via a continuation process. This one consists in deforming our application

into another simpler one for which we know the existence of a fixed point. It goes without

saying that this deformation known as will have to satisfy certain conditions see [5].

Definition 1.3 (homotopic applications) Let X and Y be two topological spaces. Two

continuous f, g : X −→ Y are said to be homotopic when there is a continuous application

H : X × [0, 1] −→ Y

such that: H(x, 0) = f(x) and H(x, 1) = g(x). We denote f ≃ g.

Remark : In other words, for this definition, there exists a family of applications from X

to Y, namely x −→ H(x, t) for 0 ≤ t ≤ 1, which starts from f to arrive to g, and varies

continuously.

Example 1.4 Let f : Rn → Rn be the constant map f(x) = 0, and g : Rn → Rn the

application g(x) = x. Let us show that f and g are homotopic. He just take:

H : Rn × [0, 1] → Rn

H(x, t) = tx.

Then H(x, 0) = 0 ∗ x = 0 = f(x) and H(x, 1) = x ∗ 1 = g(x).

Example 1.5 Let X = Y = Rn − {0}, this time we consider f(x) =
x

∥x∥
and g(x) = x.

We see that f and g are homotopic by taking:

H : (Rn − {0})× [0, 1] −→ Rn − {0}

such that: H(x, t) = (1− t)i(x) + tp(x), we have

H(x, 0) = (1− 0)× x+ 0× x

∥x∥
= x
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and

H(x, 1) = (1− 1)× x+ 1× x

∥x∥
=

x

∥x∥

then H(x, t) = (1− t)x+ t
x

∥x∥
and H(x, 0) = g(x) and H(x, 1) = f(x).

Let (X, d) be a complete metric space, and U an open subset of X.

Definition 1.4 (The homotopy properties) We consider F : U −→ X and G : U −→

two contractions, we say that F and G are homotopic if there exists H : U × [0, 1] −→ X

verifying the following properties:

(1) H(., 0) = G and H(., 1) = F .

(2) H(x, t) ̸= x for all x ∈ ∂U and t ∈ [0, 1].

(3) There exists α ∈ [0, 1) such that d(H(x, t);H(y, t) ≤ αd(x, y) for all x, y ∈ U , and

t ∈ [0, 1].

(4) There exists M ≥ 0 such that d(H(x, t), H(x, s) ≤ M |t − s| for all x ∈ U ,and t, s ∈

[0, 1].

Theorem 1.4 Let F : U −→ X and G : U −→ X two homotopically contractive maps and

G has a fixed point in U. Then, F admits a fixed point in U .

Proof. Let the set Q = {λ ∈ [0, 1] : x = H(x, λ)} for some x ∈ U and H is a homotopy

between F and G a described in the definition (1.3) Note that Q is nonempty since G has

a fixed point and 0 ∈ Q.

We show that Q is both open and closed in [0,1] then show Q = [0, 1]. Therefore F has a

fixed point.

(i) show that Q is a closed set in [0,1]:

let {λn}n∈N be a sequence in Q such that limn−→∞ λn = λ, then we have to show that

9



λ ∈ Q. As λn ∈ Q for n = 1, 2...., there is xn ∈ U where xn = H(xn, λn). We have for

n,m ∈ {1, 2, ....}

d(xn, xm) = d(H(xn, λn)H(xm, λm)

≤ d(H(xn, λn)H(xm, λm)) + d(H(xn, λm), H(xm, λm)

≤ M |λn − λm|+αd(xn, xm)

So,

d(xn, xm) ≤
M

1− α
|λn − λm|

So {xn} is a Cauchy sequence of X (because {λn} is too) and, since X is complete, there is

x ∈ U such that limx−→∞ xn = x.

By the continuity of H,

x = lim
n−→∞

xn = limn−→∞H(xn, λn) = H(x, λ)

So λ ∈ Q and Q is closed in [0, 1].

(ii )show that Q is an open set in [0,1]:

Let λ0 ∈ Q, Then there is x0 ∈ U with x0 = H(x0, λ0). Since, by hypothesis, x0 ∈ U , we

can find r > 0 such that the open ball B(x0, r) = {x ∈ X : (x, x0) < r} ⊆ U . Choose ϵ > 0

such that ϵ ≤ (1−α)r
M

where r ≤ dist(x0, ∂U), and dist((x0, ∂U)) = inf{(x0, x) : x ∈ ∂U}.

Let’s set λ ∈ (λ0 − ϵ, λ0 + ϵ). then, for x0 ∈ B(x0, r)

d(x0, H(x, λ)) ≤ d(H(x0, λ0)H(x, λ0)) + d(H(x, λ0), H(x, λ)

≤ αd(x0, x) +M |λ, λ0|

≤ αr + (1− α)r = r

Then for all fixed λ ∈ (λ0 − ϵ, λ0 + ϵ)

H(., λ) : B(x0, r) −→ B(x0, r)

By theorem (1.1), (1.2), we deduce that H(., λ) is a fixed point in U. Then, λ ∈ Q for all

λ ∈ (λ0 − ϵ, λ0 + ϵ). And therefore Q is open in [0, 1].

10



So Q=[0, 1].

Remark :From the previous theorem, we deduce the following result.

Theorem 1.5 [5] (Leray-Schauder non-linear alternative) Let U ⊂ E be an open

set of a Banach space E such that 0 ∈ U , and let F : U −→ E a contraction such that F (U)

is bounded. Then one of the following two statements holds:

(a) F has a fixed point in (U).

(b) there are λ ∈ (0, 1) and x ∈ ∂U such that x = λF (x).

Proof. Suppose that (b) does not hold and that F has no fixed point on ∂U i.e. x ̸= λF (x)

for all x ∈ ∂U and λ ∈ [0, 1].

Let H : U × [0, 1] −→ E given by H(x, λ) = λF (x), and let G be the map zero (G(x)=0).

Note that G has a fixed point in U (namely (G(0) = 0) and that F and G are two homotopi-

cally contractive applications. By the theorem (1.4)F also has a fixed point and therefore

statement (a) holds.

1.2 Topological degree

In this section, we give a brief overview of the notion of topological degree whether

in finite or infinite dimension. The degree, deg(f,Ω, y) of f in Ω with respect to y gives

information on the number of solutions of the equation f(x) = y in a set open Ω ⊂ X,

where f : X −→ X is continuous, y /∈ f(∂Ω) and X is a metric topological space most of

the time. See [11] [3] [9] [24].

1.2.1 Brouwer topological degree

Let Ω be a bounded open set and Rn with boundary ∂Ω and closure Ω.C
k
(Ω,Rn) the

space of functions with value in Rn, k times differentiable in Ω which are continuous on Ω.

This space will be equipped with its usual topology.

11



Definition 1.5 (Jacobian) Let x0 ∈ Ω, if f is differentiable at x0, we denote by Jf (x0) =

detf ′(x0) the Jacobian from f to x0.

Definition 1.6 (The critical point) Let f be a function of class C1 on Ω. Let Jf (x0)

denote the Jacobian of f at a point x0 of Ω . The point x0 is said to be a critical point if

Jf (x0) = 0. otherwise, x0 is called a regular point.

We set Sf (Ω) the set of critical points. That is to say:

Sf (Ω) = {x ∈ Ω, Jf (x) = 0}

Definition 1.7 (Topological degree) Let f ∈ C
1
(Ω,Rn) and y ∈ Rn\f(∂ Ω) a regular

value of f. We call topological degree of f in Ω with respect to y the whole number

deg(f,Ω, y) =
∑

x∈f−1(y)

Sgn Jf (x)

where Sgn Jf(x) Represents the sign of Jf (x), defined by

sgn(t) =

{
1 ift > 0

−1 ift < 0

With the addition of these two notes

1) if f−1(y) = ∅, deg(f,Ω, y) = 0.

2) f−1(y) contains a finite number of items

In the case where f−1(y) ∩ Sf (Ω) ̸= 0, We pass to the following lemma:

Lemma 1.1 (Sard’s lemma) Let f ∈ C1(Ω,Rn) be a function. Then the set f(Sf ) of

critical values of f has measure zero.

We will now see that we can extend the notion of degree to the case where the function

f is only continuous.

12



Definition 1.8 Let Ω ⊂ Rn be a bounded open set, f ∈ C(Ω,Rn) and y ∈ Rn such that

y /∈ f(∂Ω). We define the topological degree of f in Ω with respect to y by

deg(f,Ω, y) = [ lim
n→∞

deg(fn,Ω, y)]

where {fn}n∈N∗ is a sequence of functions C1(Ω,Rn) which uniformly converges to f in Ω.

Theorem 1.6 [11](Some important properties of Brouwer’s topological degree)

Let Ω ⊂ Rn be a bounded open set, and let A(Ω) = {f ∈ C(Ω,Rn) : y /∈ f(∂Ω))} .The map

deg(f,Ω, y) : A(Ω) → Z satisfies the following properties

1. (Normalization) deg(I; Ω, y) = 1 if y ∈ Ω and deg(IΩ, y) = 0 if y ∈ Rn\Ω where I

denotes the identity application on Ω.

2. (Solvency) If deg(f,Ω, y) ̸= 0, then f(x) = y admits at least one solution in Ω.

3. (Invariance by homotopy) For all h : [0, 1]×Ω → Rn and all y : [0, 1] → Rn continuous

such that y(t) /∈ h(t, ∂Ω) for all t ∈ [0, 1], deg(h(t, .),Ω, y(t)) is independent of t.

4. ( Additivity) Suppose that Ω1 and Ω2 are two disjoint and open subsets of Ω and

y /∈ f(Ω⧹(Ω1

⋃
Ω2)) . So

deg(f,Ω, y) = deg(f,Ω1, y) + deg(f,Ω2, y)

5. deg(f,Ω, y) is constant on any connected component of Rn⧹f(∂Ω)

6. deg(f,Ω, y) = deg(f − y,Ω, 0).

7. Let g : Ω → Fm a continuous application where Fm is a subspace of Rn, dimFm = m,

1 ≤ m ≤ n: Suppose that y is such that y /∈ (I − g)∂Ω . So

deg(f,Ω, y) = deg((I − g)Ω∩Fm
,Ω ∩ Fm, y)

13



Remark 1.2 In order to demonstrate the existence of solutions of nonlinear equations in

Rn, property (2) of the above theorem is often completed by the invariance property by degree

homotopy. The main interest of this notion resides in the fact that if two applications are

homotopic, they have the same degree.

Example 1.6 Let Ω = (−1; 1) and consider

h : (t;x) ∈ [0, 1]× Ω → h(t, x) = (1− t)x+ t(x2 + 1)ex

So,

1. h is continuous on [0; 1]× Ω.

2. h(0;x) = (1− 0)x+ 0 ∗ (x2 + 1)ex = x = I(x).

3. h(1;x) = (1− 1)x+ 1 ∗ (x2 + 1)ex = (x2 + 1)ex = f(x).

4. For all t ∈ [0; 1] , the functions I and f are homotopic , So deg(f, (−1, 1), 0) =

deg(I, (−1, 1), 0) = 1.

1.2.2 Leray-Schauder topological degree

Let X be a normed vector space of infinite dimension, Ω ⊂ X an open and bounded

set, f : Ω̄ → X a continuous function and y ∈ X such that y /∈ f(∂Ω) . In the previous

section, we saw that in finite dimension, C(Ω̄, X) is a suitable class of functions for which

there exists a unique degree function, the Brouwer degree, satisfying properties 1,2 and 3

of theorem . Unfortunately, in infinite dimension, C(Ω̄, X) is not. Indeed, an example from

Leray shows that it is necessary to restrict the class of functions for which there is existence

and uniqueness of a Leray-Schauder degree function, to a set strictly contained in C(Ω̄, X).

Definition 1.9 [9] Let X be a Banach space and Ω a closed subset of X. If T : Ω → X is

a continuous operator, we say that T is compact if for any bounded subset B of Ω, T (B) is

relatively compact in X.
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Remark 1.3 Note in particular that if T is compact, then T is bounded on the bounded

subsets of X.

Definition 1.10 Let X be a Banach space and Ω a part of X. We say that the map

T : Ω → X is of finite rank if dim(Im(T )) < ∞, in other words, if Im(T ) is a subspace of

dimension over X.

Lemma 1.2 Let X be a Banach space, Ω ⊂ X. A bounded open set and T : Ω̄ → X a

compact application. Then, for all ϵ > 0, there exists a finite dimensional space denoted by

F and a continuous map Tϵ : Ω̄ → F such that

Tϵx− Tx < ϵ ∀ x ∈ Ω̄.

Definition 1.11 Let X be a Banach space, Ω ⊂ X. A bounded open set and T : Ω̄ → X

a compact application. Now suppose that 0 /∈ (I − T )(∂Ω). There exists ϵ0 > 0 such that

for ϵ ∈ (0, ϵ0), the Brouwer degree deg(I − Tϵ,Ω ∩ Fϵ, 0) is well defined as in lemma 1.2.

Therefore we define the Leray-Schauder degree by

deg(I − T,Ω, 0) = deg(I − Tϵ,Ω ∩ Fϵ, 0).

This definition only depends on T and Ω. If Y ∈ X is such that y /∈ (I − T )(∂Ω), the

degree of I − T in Ω with respect to y is defined as

deg(I − T,Ω, y) = deg(I − T − y,Ω, 0).

Theorem 1.7 [11](Some important properties of the Leray-Schauder topological

degree) Let X be a Banach space and

A =
{
(I − T,Ω, 0) ,Ω a bounded open of X,T : Ω → X compact , 0 /∈ (I − T ) (∂Ω)

}
then, there is a unique application deg(f,Ω, y) : A → Z calls the Leray-Schauder

topological degree such that:

15



1. (Normality) If 0 ∈ Ω then deg(I,Ω, 0) = 1.

2. (Solvency) If deg(I − T,Ω, 0) ̸= 0, then exists x ∈ Ω such that (I − T )x = 0.

3. (Invariance by homotopy) Let H : [0, 1]Ω̄ be a compact homotopy, such that 0 /∈

(I −H(t, .))(∂Ω). Then deg(I −H(t, .),Ω, 0) does not depend on t ∈ [0, 1].

4. (Additivity) Let Ω1 and Ω2 be two open disjoint subsets of Ω and

0 /∈ (I − T )(Ω̄ \ (Ω1 ∪ Ω2)).

So,

deg(I − T,Ω, 0) = deg(I − T,Ω1, 0) + deg(I − T,Ω2, 0).

Remark 1.4 The Leray-Schauder degree retains all the basic properties of the Brower de-

gree.

As a consequence of this notion of degree we will prove some topological fixed point

theorems in particular the nonlinear Leray-Schauder alternative.

1.3 Topological fixed point theorem

Theorem 1.8 (Brouwer) Let B̄ be the closed unit ball of Rn and f : B̄ → B̄ continue.

Then f has a fixed point: there exists x ∈ B̄ such that f(x) = x.

Proof. If there is a x ∈ ∂B, then there is nothing to prove. Otherwise consider the

continuous application h(t, x) = x− tf(x). Then,

h(0, x) = x − 0 ∗ f(x) = x and h(1, x) = x − 1 ∗ f(x) = x − f(x). If we suppose that

h(t, x0) = 0 like x0 ∈ ∂B, then we get x0 = tf(x0) which implies as 0 ⩽ t ⩽ 1, as

f(x0) ∈ ∂B, contradiction. As is an admissible homotopy between I − f and I. So

deg(I − f,Ω, 0) = deg(I,Ω, 0) = 1.

In conclusion, ∃x ∈ B, such that x− tf(x) = 0 i.e. f(x) = x.
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Theorem 1.9 (Schauder) Let B̄ be the closed unit ball of a Banach E and f : B̄ → B̄

compact. Then f has a fixed point: there exists x ∈ B̄ such that f(x) = x.

Proof. Let h(t, x) = tf(x) be a compact function on [0, 1] × B̄. If, for t ∈ [0, 1] and a

x in∂B, we have x − h(t, x) = 0, then tf(x) = x as |x| = 1 and |f(x)| ≤ 1, this imposes

t = 1 and x = f(x) therefore a fixed point on ∂B situation that we have excluded. One can

thus apply the properties of normalization and invariance by homotopy of the degree gives

1 = deg(I, B, 0) = deg(I − f,B, 0)

since h(0, .) = 0 and h(1, 0) = f therefore the existence of a fixed point .

Theorem 1.10 [7] (Leray-Schauder nonlinear alternative) Let Ω ⊂ X be a bounded

open subset of a Banach space X such that 0 inΩ, and let T : Ω → X be a compact operator.

Then one of the following two statements holds:

(1) T has a fixed point in Ω.

(2) there exists λ > 1 and x ∈ ∂Ω such that Tx = λx.

Proof. If (2) is true then we have nothing to prove. Otherwise, we define the homotopy

H(t, x) = tTx ∀ t ∈ [0, 1].

Thus definedH(t, x) is compact, H(0, x) = 0 andH(1, x) = Tx. Suppose thatH(t, x0) = x0

for some t ∈ [0, 1] and x0 ∈ ∂Ω. Then we have tTx0 = x0. If t = 0 or t = 1 we have (1)

Otherwise

Tx0 =
1

t
x0 for some some t ∈ (0, 1),

and then we have (2). Otherwise, we have deg(I − T,Ω, 0) = deg(I,Ω, 0) = 1 and then T

has a fixed point in Ω.

Theorem 1.11 (Brouwer) Let M be a convex, compact, non-empty subset of a finite-

dimensional normed space (X, ∥.∥) and let A : M rightarrowM a continuous map, then A

admits a fixed point .
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Theorem 1.12 (Schauder) Let M be a bounded, closed, convex and non-empty subset of

a Banach space X and let A : M → M be a compact map, then A admits a fixed point.

Now consider X = C([a, b]) endowed with the norm ∥u∥ = max
a⩽t⩽b

|u(t)|, with −∞ < a <

b < +∞. If M is a subset of X .

Definition 1.12 (Bounded set) M is bounded, so

∥u∥ ⩽ r, ∀u ∈ M and r > 0 a fixed number.

Definition 1.13 (Equicontinuous set) M is equicontinuous, then

∀ϵ > 0, ∃δ > 0, tq |t1 − t2| < δ and ∀u ∈ M ⇒ |u(t1)− u(t2)| < ϵ.

Theorem 1.13 (Ascoli-Arzela) if M is bounded and equicontinuous then M is relatively

compact.

Theorem 1.14 Let Ω be an open set of Rn and (fn)n∈N a sequence of Lp(Ω) such that

1. fn(x) → f(x) almost everywhere on Ω.

2. |fn(x)| ⩽ g(x) almost everywhere on Ω, ∀n with g ∈ Lp(Ω). So,

f ∈ Lp(Ω) and ∥fn − f∥Lp → 0.
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Chapter 2

Krasnoselskii’s cone fixed point
theorem

In this chapter,we present Krasnoselskii cone fixed point theorem ,But before making

the more detailed presentation of the theorem .Let us briefly review the state the Fixed

points of cone expansion and compression , as well as the main concepts related related to

this theorem. On the other hand, as we will see later, we give main results such as iterative

schemes and the existence of positive solutions to problem (P), so we devote another section

to them.
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2.1 Krasnoselskii’s theorem

In this section we state a simplified version of Krasnoselskii’s theorem and discuss

several generalizations, especially the Krasnoselskii 1960 theorem.

Let 0 < a < b be two given numbers. We are interested in conditions which guarantee

that T has a fixed point in the annular region K(a, b) = x ∈ K : a ≤ ∥x∥ ≤ b . Note that

K(a, b) is in general not convex, even though K is. We denote by Ka = x ∈ K : ∥x∥ = a

and Kb = x ∈ K : ∥x∥ = b the inner and outer boundaries, respectively, of K(a, b). We

can extend the notation to define K(0, a) and K(b,∞) in the obvious way. Theorem 2.1

is a simplified version of Krasnoselskii’s original theorem. An illustration of this result in

dimension 2 is depicted in Figs 2.1 and 2.2.

Theorem 2.1 (Krasnoselskii 1960 [6]) Let K(a, b),T ,Ka, and Kb be as defined above.

� 1. (Compressive Form) T has a fixed point in K(a, b) if :

∥T (x)∥ ≥ ∥x∥ forall x ∈ Ka, (2.1)

and

∥T (x)∥ ≤ ∥x∥ forall x ∈ Kb, (2.2)

� 2.(Expansive Form) T has a fixed point in K(a, b) if :

∥T (x)∥ ≤ ∥x∥ forall x ∈ Ka, (2.3)

and

∥T (x)∥ ≥ ∥x∥ forall x ∈ Kb, (2.4)

Note that conditions (2.1)-(2.4) are imposed only on points on the two curved boundaries

of K(a, b). Interior points and points on the sides of the cone can be moved in any direction

(as long as the image remains inside K). Also it is not stipulated that any particular image

point T (x) must lie inside K(a, b).

20



Figure 2.1: Compressive form.
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Figure 2.2: Expansive form.

2.1.1 Fixed Point Index.

Let X be a real Banach space. A subset K ⊂ X is called a retract of X if there

exists a continuous mapping T : X −→ K, and a retraction, when T (x) = x,x ∈ K. every

nonempty closed convex subset of X is a retract of X. In particular, every cone of X is a

retract of X.

Theorem 2.2 [18] Let K be a retract of real Banach space X. Then, for every relatively

bounded open subset O of K and every completely continuous operator A : Ō −→ K

which has no fixed points on ∂O, there exists an integer i(A,O, K) satisfying the following

conditions:

� (i). Normality : i(A,O,K) =1 if Ax = y0 ∈ O for any x ∈ Ō.

� (ii).Additivity : i(A,O, K) = i(A,O1, K) + i(A,O2, K) whenever O1 and O2 are

disjoint open subsets of O such that A has no fixed points on Ō\(O1 ∪ O2).
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� (iii).Homotopy invariance: i(H(t, .),O, K) is independent of t(0 ≤ t ≤ l) whenever

H : [0, 1] × Ō −→ X is completely continuous and H(t, x) ̸= x for any (t, x) ∈

[0, 1]× ∂O.

� (iv).Permanence : i(A,O, K) = i(A,O∩ Y, Y ) if Y is a retract of K and A(Ō) ⊂ Y .

Moreover, let

M={(A,O, K)|K retract of X, O bounded in K , A : Ō −→ K completely continuous

and Ax ̸= x on ∂O}

and let z be the set of integers. Then there exists exactly one function d : M −→ z

satisfying (i)− (iv). In other words, i(A,O, K) is uniquely defined. i(A,O, k) is called the

fixed point index of A on O with respect to K.

Theorem 2.3 Bedised (i)-(iv), the fixed point index has the following properties:

� (v) Excision property: i(A,O, K) = i(.A,O0, K) whenever U0 is an open subset of O

such that A has no fixed points in Ō\O0.

� (vi) Solution property: if i(A,O, K) ̸= 0, then A has at least one fixed point in O.

Proof. Let O1 = O and O2 = ϕ in additivity property (ii); we get i(A,O, K) = 0 . From

this and setting O0 = O1 and O2 = ϕ in (ii), we obtain i(A,O, K) = i(A,O0, K). Thus,

(v) is proved.

If A has no fixed points in O, letting O0 = ϕ in (v), we get

i(A,O, X) = i(A, ϕ,X) = 0, and hence (vi) is proved.

2.1.2 Fixed Point Theorems of Cone Expansion and Compres-
sion.

In the following, let P be a cone of real Banach space X. Hence, P is a retract of X,
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and also P is a starred convex closed set. Let Ω be a bounded open set of X, then P ∩ Ω

is a bounded open set of P and ∂(P ∩ Ω) = P ∩ ∂Ω , P ∩ Ω = P ∩ Ω̄.

Lemma 2.1 Let θ ∈ Ω and A : P ∩ Ω̄ −→ P be condensing. Suppose that

A : x ̸= µx, ∀x ∈ P ∩ ∂Ω, µ ≥ 1. (2.5)

then i(A,P ∩ Ω, P ) = 1.

Lemma 2.2 ([15],p73) For q ∈ (0,∞) , put dq = max{1, 2q−1}. Then

|α− β|q ≤ dq(|α|q + |β|q)

for arbitrary complex numbers α and β.

Note that for any bounded subset Σ of K, C(u) is uniformly bounded on σ. In fact, by the

condition (F ), there exists N > 0 such that f(t, u(t)) < N for u ∈ σ , t ∈ [0,∞). Thus,

|C(u)| ≤ A−1ξm−2d 1
p−1

[
c∞ + φ−1

p (N)

∫ ∞

0

φ−1
p

(∫ ∞

s

h(τ)dτ

)
ds

]
< ∞.

Here , d 1
p−1

is the constant in Lemma 2.2 with q = 1
p−1

.

Remark 2.1 Assume (F ) and (H) . Then it is easy to see that if u is a positive solution

of (P ), then it is bounded if c∞ = 0 and unbounded if c∞ > 0.

To show the complete continuity of T , we use the following lemma.

Lemma 2.3 [4] .Let W be a bounded subset of K .Then W is relatively compact in X if

{W (t)/(1 + t)} are equicontinuous on any finite subinterval of [0,∞) and for any ϵ > 0

there exists N > 0 such that ∣∣∣∣∣ x(t1)1 + t1
− x(t2)

1 + t2

∣∣∣∣∣ < ϵ

uniformly with respect to x ∈ W as t1, t2 ≥ N , where W (t) = {x(t) : x ∈ W}, t ∈ [0,∞).
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Lemma 2.4 T is completely continuous on K.

Proof. We first show that T is compact. Let Σ be bounded in K, i.e., there exists M > 0

such that ∥u∥ ≤ M for all u ∈ σ. By (F ), there exists N1 > 0 such that f(t, u(t)) ≤ N1 for

all t ∈ [0, 1], u ∈ σ. Then, we can easily show that T (σ) is bounded.

Indeed, ∣∣∣∣∣(Tu)(t)1 + t

∣∣∣∣∣ = A−1

m−2∑
i=1

ai

∫ ξi

0

d 1
p−1

[
c∞ + φ−1

p

(
N1

∫ ∞

s

h(τ)dτ

)]
ds

+ d 1
p−1

[
c∞t

1 + t
+

∫ t

0

φ−1
p

(
N1

∫ ∞

s

h(τ)dτ

)]
ds

≤ A−1d 1
p−1

[
c∞ξm−2 + φ−1

p (N1)

∫ ∞

0

φ−1
p

(∫ ∞

s

h(τ)dτ

)]
ds

+ d 1
p−1

[
c∞ + φ−1

p (N1)

∫ ∞

0

φ−1
p

(∫ ∞

s

h(τ)dτ

)]
ds < ∞.

Thus,T (σ) is bounded.

For any R > 0 and t1, t2 ∈ [0, R] with t1 < t2, we have∣∣∣∣∣Tu(t1)1 + t1
− Tu(t2)

1 + t2

∣∣∣∣∣ =
∣∣∣∣∣c(u) +

∫ t1
0

K(u)(s)ds

1 + t1
−

c(u) +
∫ t2
0

K(u)(s)ds

1 + t2

∣∣∣∣∣
≤ c(u)

∣∣∣∣∣ 1

1 + t1
− 1

1 + t2

∣∣∣∣∣+
∣∣∣∣∣(1 + t2)

∫ t1
0

K(u)(s)ds− (1 + t1)
∫ t2
0

K(u)(s)ds

(1 + t1)(1 + t2)

∣∣∣∣∣
≤ c(u)∥t1 − t2∥+ (1 + t1)

∫ t2

t1

K(u)(s)ds+ (t2 − t1)

∫ t1

0

K(u)(s)ds

≤ c(u)∥t1 − t2∥+ (1 +R)

∫ t2

t1

K(u)(s)ds+ (t2 − t1)

∫ R

0

K(u)(s)ds

which yields, by the conditions (F ) and (H), that TΣ is noncontinuous on any finite sub-

interval of [0,∞). For u ∈ Σ by L’Hospital’s rule, we have

lim
t−→∞

Tu(t)

1 + t
= lim

t−→∞

C(u) +
∫ t

0
K(u)(s)ds

1 + t

= φ−1
p

[
φp(c∞) + lim

t−→∞

∫ ∞

t

h(τ)f(τ, u)dτ

]
.
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Note that since h ∈ A, h ∈ L1(a,∞) for all a > 0. It follows from the conditions (F ) and

(H) that
Tu(t)

1 + t
−→ c∞ as t −→ ∞, uniformly on Σ. Thus, we can easily show that for any

ϵ > 0, there exists sufficiently large L0 > 0 such that

∣∣∣∣∣Tu(t1)1 + t1
− Tu(t2)

1 + t2

∣∣∣∣∣ < ϵ, forall t1, t2 ≥ L0, u ∈ Σ.

By Lemma 2.3 , we can conclude that T is compact on K. We finally show that T is

continuous. Let un be a sequence with un converges to u0 in K.

Note that for any t ∈ [0,∞), un(t) −→ u0(t) as n −→ ∞. Since un is bounded in K, there

exists N2 > 0 such that f(t, un(t)) ≤ N2 for all t ∈ [0,∞), and by the compactness of T ,

there exists a sub-sequence, say again,un such that Tun converges to V in X.

Since it follows from Lebesgue dominated convergence theorem that Tun(t) −→ Tu0(t),

t ∈ [0,∞), we have V ≡ Tu0.

So far we have shown that if a sequence un converges to u0 in K , then there exists a

sub-sequence, say unj such that

Tunj −→ Tu0 inX.

By the standard argument, we can easily show that the original sequence also satisfies

Tun −→ Tu0 inX.

Thus the proof is complete.

Lemma 2.5 For all u ∈ K, u(t) ≥ min{t, 1}∥u∥ for t ∈ [0,∞).

Proof. Let δ = inf

{
ξ ∈ [0,∞] : ∥u∥ = limt−→ξ

|u(t)|
1 + t

}
. Note that δ may be ∞ if

c∞ > 0. We have two cases : either (i) t < δ or (ii) t ≥ δ. First, let us assume that t < δ.

Then, by concavity of u , we have

u(t)− u(0)

t
≥ u(s)− u(0)

s
, t < s < δ,
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i.e.
u(t)

t
≥ u(s)

s
− u(0)

s
+

u(0)

t
≥ u(s)

1 + s
.

Thus, letting s −→ δ, we have u(t) ≥ t∥u∥. For t ≥ δ, since u is non-decreasing, we have

u(t) ≥ u(δ) = (1 + δ)∥u∥ ≥ ∥u∥.

and this completes the proof.
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Some Notations and Conventions

For convenience, we use the following notations.

� κr = u ∈ κ|∥u∥ < r,

� ∂κr = {u ∈ κ|∥u∥ = r},

� Ωr =

{
u ∈ κ|mint∈[1/K,K]

u(t)

1 + t
< γkr

}
,

� fγkR,R = min

{
f(t, (1 + t)v)

φp(R)
|t ∈ [k−1, k], v ∈ [γkR,R]

}
,

�

∫ 0,r
= sup

{
f(t, (1 + t)v)

φp(R)
|t ∈ [0,∞), v ∈ [0, r]

}
,

� M =
(
A−1

∑m−2
i=1 aiξi + 1

)
d 1

p−1
c∞,

� N =

(
2d 1

p−1

[
A−1

∑m−2
i=1 ai

∫ ξi
0
φ−1
p

( ∫∞
s

h(τ)dτ
)
ds+

∫∞
0

φ−1
p

( ∫∞
s

h(τ)dτ
)
ds

])−1

� L = (1 + k)

[ ∫ 1/k

0
φ−1
p

(∫ k

1/k
h(τ)dτ

)
ds

]−1

where k is a fixed constant satisfying 0 < 1/k < ξ1 < ξm−2 < k < ∞ and γk = [k(k+1)]−1.

Remark 2.2 By using the Lemma 2.5 we can see the following facts .

1. For any u ∈ K,

γk∥u∥ ≤ u(t)

1 + t
, t ∈

[ 1
K

,K
]

2. By (1) , one has

Ωr =

{
u ∈ K|γk∥u∥ ≤ min

t∈[1/K,K]

u(t)

1 + t
< γkr

}
.
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The set Ωr is defined as follows

Ωr = {x ∈ K : q(x) < γkr} = {x ∈ P : γk∥x∥ ≤ q(x) < γkr}

where

q(x) = min
t∈[1/K,K]

u(t)

1 + t

Lemma 2.6 [10] . Ωr has the following properties.

1. Ωr is open relative to K.

2. Kγkr ⊆ Ωr ⊆ Kr.

3. u ∈ ∂Ωr if and only if q(x) = γkr.

4. If u ∈ ∂Ωr, then γkr ≤
u(t)

1 + t
≤ r for t ∈ [1/k, k].

Proof. (1) holds since q is continuous. (3) is clear. Let x ∈ Kγkr .Then γk∥x∥ ≤ q(x) ≤

∥x∥ < γkr and x ∈ Ωr. If x ∈ Ωr , then γk∥x∥ ≤ q(x) < γkr .This implies that ∥x∥ < r

and x ∈ Kr , where Kr = {x ∈ k : ∥x∥ < r}. Hence, (2) holds. If x ∈ ∂Ωr, by (3) we have

γk∥x∥ ≤ q(x) = γkr ≤ x(t) for all t ∈ [a, b], so (4) holds.

Lemma 2.7 Assume that there exists r > 0 such that

(Hr
1)r ≥ 2M and f 0,r ≤ φp(N),

then ∥Tu∥ ≤ ∥u∥ for u ∈ ∂Kr. Furthermore, if

(Hr
1)

∗r ≥ 2M and f 0,r < φp(N)

is assumed instead of (Hr
1), then i(T,Kr, K) = 1.
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Proof.

Assume (Hr
1). For u ∈ ∂Kr, we have u(t) ≤ (1+ t)r and f(t, u(t)) ≤ φp(Nr), t ∈ [0,∞).

Then,

∣∣∣∣∣Tu(t)1 + t

∣∣∣∣∣ ≤ A−1

m−2∑
i=1

ai

∫ ξi

0

d 1
p−1

[
c∞ +Nrφ−1

p

(∫ ∞

s

h(τ)dτ

)]
ds+

∫ t

0
d p

p−1
[c∞Nrφ−1

p (
∫∞
s

h(τ)dτ)]ds

1 + t

=

(
A−1

m−2∑
i=1

aiξi + 1

)
d 1

p−1
c∞ + d 1

p−1
Nr

[
A−1

m−2∑
i=1

ai

∫ ξi

0

φ−1
p

(∫ ∞

s

h(τ)dτ

)
ds

+

∫ ∞

0

φ−1
p

(∫ ∞

s

h(τ)dτ

)
ds

]
≤ r = ∥u∥.

Assume (Hr
1)

∗. Then, ∥Tu∥ < ∥u∥ for u ∈ ∂kr by similar calculation,

and thus i(T,Kr, K) = 1 in view of (i) of Theorem 2.5.

Lemma 2.8 Assume that there exists R > 0 such that

(HR
2 )fγkR,R ≥ φp(L),

then ∥Tu∥ ≥ ∥u∥ for u ∈ ΩR. Furthermore, if

(HR
2 )

∗fγkR,R > φpL

is assumed instead of (HR
2 ), then i(T,ΩR, K) = 0.

Proof. Assume (HR
2 ). Then for u ∈ ∂ΩR,, we have

γkR ≤ u(t)

1 + t
≤ R, t ∈

[
1

k
, k

]

and ∥u∥ ≤ R by Lemma 2.6. It follows from (HR
2 ) that

f(t, u(t)) ≥ φp(LR), t ∈ [1/k, k].
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This implies, for u ∈ ∂ΩR and t ∈ [1/K, k],

∥Tu∥ ≥ Tu(t)

1 + t

≥
∫ t

0
φ−1
p [
∫∞
s

h(τ)f(τ, u)dτ ]ds

1 + t

≥
RL
[ ∫ 1

k

0
φ−1
p

( ∫ k
1
k
h(τ)dτ

)
ds
]

1 + k

≥ R ≥ ∥u∥.

Assume (HR
2 )

∗. Then, it follows that ∥Tu∥ > ∥u∥ for u ∈ ∂ΩR Thus i(T,ΩR, K) = 0 in

view of (ii) of Theorem 2.5 .

2.2 Fixed point theorem of cone expansion and com-

pression of norm type

Theorem 2.4 (Fixed point theorem of cone expansion and compression of norm type).

Let Ω1 and Ω2 be two bounded open sets in X such that θ ∈ Ω1 ,and Ω̄1 ⊂ Ω2. Let operator

A : P ∩ (Ω̄2\Ω1) −→ P be completely continuous. Suppose that one of the two conditions

(H1) ∥Ax∥ ≤ ∥x∥, ∀x ∈ P ∩ ∂Ω1 and ∥Ax∥ ≥ ∥x∥, ∀x ∈ P ∩ ∂Ω2.

and

(H2) ∥Ax∥ ≥ ∥x∥, ∀x ∈ P ∩ ∂Ω1 and ∥Ax∥ ≤ ∥x∥, ∀x ∈ P ∩ ∂Ω2

is satisfied. Then A has at least one fixed point in P ∩ (Ω̄2\Ω1).

To obtain positive solutions of (P) the following fixed-point theorem in cones is fundamental.

Theorem 2.5 [12] .Let X be Banach space ,K a cone in X and O bounded and open in

X.Let 0 ∈ O and T : K ∩ O −→ k be completely continuous such that Tx ̸= x for all

x ∈ K ∩ ∂O. then the following results hold.

� (i) If ∥Tx∥ ≤ ∥x∥, then i(T,K ∩ O) = 1.
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� (ii) If ∥Tx∥ ≥ ∥x∥, then i(T,K ∩ O) = 0.

Let X = {u ∈ C[0,∞)| sup0≤t<∞
|u(t)|
1 + t

< ∞} .

Then X is a Banach space with norm ∥u∥ = sup0≤t<∞
|u(t)|
1 + t

.

Put K = {u ∈ X|u is a nonnegative , nondecreasing, and concave function on [0,∞]satisfying

u(0) =
∑m−2

i=1 aiu(ξi)}. Then, K is a cone in X.

By a positive solution of problem (P), we mean a function u ∈ X ∩ C1(0,∞) satisfies

(P ) and u > 0 in (0,∞).

Throughout , let us assume the following assumption for nonlinearity f unless otherwise

stated.

(F) f ∈ C([0,∞) × [0,∞), [0,∞)) and for each w > 0, there exists Mw > 0 such that

f(t, (1 + t)v) ≤ Mw for (t, v) ∈ [0,∞)× [0, w].

Define T : K −→ X by

(Tu)(t) = C(u) +

∫ t

0

K(u)(s)ds, 0 ≤ t < ∞.

where

C(u) = A−1

m−2∑
i=1

ai

∫ ξi

0

φi
p

[
φp(C∞) +

∫ ∞

s

h(τ)f(τ, u(τ))dτ

]
ds.

K(u)(s) = φi
p

[
φp(C∞)

∫ ∞

s

h(τ)f(τ, u(τ))dτ

]
ds.

and

A = 1−
m−2∑
i=1

ai

Since (F ) and (H) are assumed, T is well defined and Tu ∈ K for all u ∈ K. Further-

more, we can easily know that problem (P ) has a positive solution u if and only if T has a

fixed point u in K \ {0}.
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Chapter 3

Application of Guo-Krasnoselskii
theorem

This chapter is to study iterative schemes and the existence of positive solutions to the

following multi-point boundary value problem

(φp(u
′(t)))

′
+ h(t)f(t, u(t)) = 0, a.e.t ∈ (0,∞) (P )

with boundary conditions :

u(0) =
m−2∑
i=1

aiu(ξi), u′(∞) = c∞ ≥ 0.

where φp(s) = |s|p−2 , p > 1 , ξi ∈ (0,∞) with 0 < ξ1 < ξ2 < ... < ξm−2 < ∞ ,ai ∈[0,1)

with 0 ≤
∑m−2

i=1 ai ≤ 1. is a non-negative measurable function on (0,∞), and f ∈ C([0,∞)

× (0,∞), R). Here, h may be singular at t = 0, and f may be singular at u = 0. Let us

assume the following assumption for weight function h

3.1 The Existence and iterative of positive solutions

In this section we give our results for the existence of positive solutions of problem (P).

3.1.1 The existence of positive solutions

Theorem 3.1 Assume that there exist constants r, R > 0 with 0 < R < r(or 0 < r <γk

R) such that conditions (Hr
1) and (HR

2 ) hold. Then problem (P) has a positive solution u
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such that γkR ≤ ∥u∥ ≤ r (or r ≤ ∥u∥ ≤ R), respectively.

Proof. We only prove the case R < r since the other case is similar. If there exists

u ∈ ∂Kr ∪ ∂ΩR such that Tu = u, the proof is done. Otherwise, by Theorem 2.5 , Lemmas

2.7 and 2.8, i(T,Kr, K) = 1 and i(T,ΩR, K) = 0, and it follows from the additivity property

that i(T,Kr\ΩR, K) = −1. Then there exists u ∈ Kr\ΩR such that Tu = u by the solution

property. Thus, the proof is complete in view of (2) of Lemma 2.6. The following

corollary is follows from Lemmas 2.7 and 2.8.

Corollary 3.1 Assume that there exist constants r, R > 0 with 0 < R < r (or 0 <

r <γk R) such that conditions(Hr
1)

∗ and (HR
2 )

∗ hold. Then problem (P ) has a positive

solution u such that γkR ≤ ∥u∥ < r (or r < ∥u∥ ≤ R), respectively.

Remark 3.1 One can easily obtain the result that problem (P ) has arbitrarily many positive

solutions by combining conditions (Hri
1 )

∗, (HRi
2 )∗(i = 1, 2, . . .) properly (For example see

Theorem 2.11 in [10]).

3.1.2 The iterative schemes for approximating a positive solution

Now in this section we give the monotone iterative schemes for approximating a positive

solution to problem (P).

Theorem 3.2 Assume that there exists r > 0 such that the condition(Hr
1) holds. Assume,

in addition,

� (F1) f(t, (1 + t)v1) ≤ f(t, (1 + t)v2) for t ∈ [0,∞), 0 ≤ v1 ≤ v2 ≤ r,

� (F2) either f(t, 0) ̸≡ 0 for t ∈ [0,∞) or c∞ > 0.

Then problem (P ) has a positive solution z∗ such that 0 < ∥z∗∥ ≤ r, and lim
n→∞

zn =

lim
n→∞

T nz0 = z∗, where z0 ≡ 0.
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Proof. Let z0(t) = 0, t ∈ [0,∞) and zn = Tzn−1(n = 1, 2, . . .). Then, by the same

argument as in the proof of Lemma 2.7, ∥zn∥ ≤ r for all n. It follows from the compactness

of T that {zn} is a sequentially compact set. Clearly, z1 ≥ 0 ≡ z0. By (F1) and induction,

we get zn ≥ zn−1(n = 1, 2, . . .), which implies zn −→ z∗ in K and ∥z∗∥ ≤ r . It follows from

the continuity of T that Tz∗ = z∗, and thus z∗ is a positive solution of (P ) in view of (F2).

Thus the proof is complete.

Remark 3.2 Note that the condition (F1) is equivalent to the condition

(F ′
1)f(t, u1) ≤ f(t, u2) for 0 ≤ u1 ≤ u2 ≤ r(1 + t), t ∈ [0,∞.)

Thus if (F1) is assumed, one can easily see that T is nondecreasing for u ∈ kr , i.e.

Tu1 ≤ Tu2 for any u1, u2 ∈ kr with u1 ≤ u2.

Theorem 3.3 Assume that f ∈ C([0,∞) × (0,∞), R) and there exist r, R > 0 such that

0 < R < r, r ≥ 2M and the condition (HR
2 ) holds. Assume, in addition,

� (F3) 0 ≤ f(t, (1 + t)v) ≤ φp(Nr) for (t, v) ∈ ([0, 1/k]× [0, r])∪ ([1/k, k]× [γkR, r])∪

([k,∞)× [0, r]),

� (F4) f(t, (1+ t)v1) ≤ f(t, (1+ t)v2) for (t, v1), (t, v2) ∈ ([0, 1/k]× [0, r])∪ ([1/k, k]×

[γkR, r]) ∪ ([k,∞)× [0, r]) and v1 ≤ v2.

Then problem (P ) has a positive solution w∗ such that R ≤ ∥w∗∥ ≤ r, and lim
n→∞

wn =

lim
n→∞

T
n
w0 = w∗ , where w0(t) = r(1 + t), t ∈ [0,∞) and T is the corresponding operator to

the modified problem (P ) below.

Proof. Consider the following modified problem
(φp(u

′(t)))′ + h(t)f̄(t, u), a.e.t ∈ (0,∞)

u(0) =
∑m−2

i=1 aiu(ξi). u′(∞) = c∞

(P )

where f is defined by
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f(t, u) =


f(t, r(1 + t)) for(t, u) ∈ [0,∞)× [r(1 + t),∞),

f(t, u) for(t, u) ∈ (([0, 1/k] ∪ [k,∞))× [0, r(1 + t))) ∪ ((1/k, k)× [γkR(1 + t), r(1 + t))),
f(k, u)− f(1/k, u)

(k − 1/k)
(t− 1/k) + f(1/k, u) for(t, u) ∈ (1/k, k)× [0,γk R(1 + t)).

By (F3) and (F4),f satisfies (F ) and (F1), and T : K −→ K is completely continuous and

nondecreasing for u ∈ Kr. Moreover, it follows from (F3) and (HR
2 ) that f

0,r ≤ φp(N) and

fγkR,R ≥ φp(L). From these facts, if R ≤ ∥u∥ ≤ r, then we have

f(t, u(t)) ≤ f(t, r(1 + t)) ≤ φp(Nr), t ∈ [0,∞)

and

f(t, u(t)) ≥ f(t,γk R(1 + t)) ≥ φp(LR), t ∈ [1/k, k],

which R ≤ ∥Tu∥ ≤ r by the similar arguments as in the proofs of Lemmas 2.7 and 2.8.

Let w0(t) = r(1+ t) for t ∈ [0,∞), and wn = Twn−1(n = 1, 2, . . .). Then, R ≤ ∥wn∥ ≤

r(n = 0, 1, 2, . . .). It follows from the compactness of T that {wn} is a sequentially compact

set. Since ∥w1∥ ≤ r, we have w1(t) ≤ r(1 + t) = w0(t), t ∈ [0,∞). By induction, we get

wn ≤ wn−1(n = 1, 2, . . .). By the standard argument, we can conclude that there exists a

positive solution w∗ of (P ) such that R ≤ ∥w∗∥ ≤ r, and lim
n→∞

wn = lim
n→∞

T
n
w0 = w∗ . Since

R ≤ ∥w∗∥ ≤ r, we have f(t, w∗(t)) = f(t, w∗(t)), t ∈ [0,∞). Thus w∗ is a positive solution

of (P), Thus the proof is complete.

Remark 3.3 The iterative schemes in Theorems 3.2 and 3.3 start off with the known zero

function and simple linear function, respectively. Thus the iterative schemes are convenient

and feasible.
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3.2 Example

In this section, we give examples to illustrate our results obtained in Section 3.1.

Consider the following three-point boundary value problem


(|u′(t)|u′(t))′ + h(t)f(t, u(t)) = 0, t ∈ (0,∞),

u(0) =
1

2
u(1). u′(∞) = 1.

(3.1)

where

h(t) =

{
t−4, t ≥ 1,

t2, 0 < t ≤ 1.

Note that h ∈ A for p = 3, but h /∈ L1(0,∞). Choose k = 2. One can easily know that

γk = 1/6,M = 2, N ≥ 1/12, and L < 6.

1. Let us define f by

f(t, u) =
1

2
|sint|+ 1

29

( u

1 + t

)2
, (t, u) ∈ [0,∞)× [0, inf)

Choose r = 24 . Then by direct calculation one can know that all conditions of

Theorem 3.2 are satisfied. Thus problem 3.1 has a positive solution z∗ such that

0 < ∥z∗∥ ≤ 24, and lim
n→∞

zn = lim
n→∞

T nz0 = z∗, where z0 ≡ 0.

2. Let us define f by

f(t, u) =



36, (t, u) ∈

([
0,

1

2

]
∪ [2,∞)

)
×

[
0,

1 + t

6

]
,

g(t, u), (t, u) ∈

(
1

2
, 2

)
×

[
0,

1 + t

6

]
,

u

1 + t
− 1

6
+ 36, (t, u) ∈ [0,∞)×

(
1 + t

6
, 1 + t

]
,

5

6
+ 36, (t, u) ∈ [0,∞)× (1 + t,∞),

where g is defined as an appropriate way which enables f to be continuous. Note that

g may have negative values and be singular at u = 0. Choose R = 1 and r = 112. Clearly,
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(F4) holds. For v ∈ [1/6, 1], f(t, (1 + t)v) = v − 1/6 + 36 ≥ 36 ≥ φ3(L) = φ3(LR), which

implies (HR
2 ) holds. Finally, (F3) holds since f(t, (1 + t)v) ≤ 5/6 + 36 ≤ φ3(112N) =

φ3(Nr) for (t, v) ∈ ([0, 1/2] × [0, 112]) × ([1/2, 2] × [1/6, 112]) ∪ ([2,∞) × [0, 112]) . Thus

all conditions of Theorem 3.3 are satisfied, and problem 3.1 has a positive solution w∗ such

that 1 ≤ ∥w∗∥ ≤ 112 and lim
n→∞

wn = lim
n→∞

T
n
w0 = w∗, where w0(t) = 112(1 + t), t ∈ [0,∞).
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Conclusion

In this dissertation we discuss different applications of this principle as well as some of its

extensions and generalizations which are involved in the resolution of non-local boundary

value problems. We demonstrate the existence of solutions using the Banach contraction

principle and the Leray-Schauder nonlinear alternative, we study the positivity of the so-

lution via the krasnoselskii theorem of the fixed point on a cone.
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P�l�

Ty�A�§³� �wl��� C�rk�¤  w�w� TF�C An�d� , r�@m�� £@¡ ¨�

T§r\� �ybW� �®� �� , �yqts� �O� Yl� ªAqn��  d`t� Tmyq�� �®kKm�

����  w�¤ �Ab�³ ª¤rK�� �yq�� �®� �� ��Ð¤ ,¨kslyFwnF�r�

.d�Asm�� �A§r\n�� ��d�tFA� , £C�rk�¤

Ty�A�§� �wl� , ªAqn��  d`t� T§ ¤d��� Tmyq�� �®kK� : Tysy¶r�� �Amlk��

. Tt�A��� TWqn�� �A§r\� ,

Résumé

Dans cette mémoire, nous avons présenté une étude de l’existence et de
l’itération de solutions positives pour des problèmes aux limites multipoints
sur une demi-droite, en appliquant la théorie de Krasnoselskii. théorème,
et qu’en réalisant des conditions pour prouver l’existence et l’itŕation d’une
solution, par l’utilisation de théorèmes auxiliaires .

Mots clés :problème de valeur aux limites á m points, solution positive,
théorèmes de point fixe .

Abstract

On this dissertation,we have presented a study of the existence and it-
eration of positive solutions for multi-point boundary value Problems on a
half-line, by applying Krasnoselskii’s theorem, and that by realizing condi-
tions to prove the existence and the iteration of a solution, by the use of
theorems auxiliary .

Key words :m-point boundary value problem , Positive solution , fixed point
theorems .

II


	Dedication
	Acknowledgement
	Notations and Conventions
	Introduction
	Reminders and fundamental notions
	Fixed point theorem
	Banach's fixed point theorem
	Fixed point theorems for the application is not a contraction on the whole metric space
	 Principles of continuation

	Topological degree
	Brouwer topological degree
	Leray-Schauder topological degree

	Topological fixed point theorem

	Krasnoselskii's cone fixed point theorem
	Krasnoselskii's theorem 
	Fixed Point Index.
	Fixed Point Theorems of Cone Expansion and Compression.

	Fixed point theorem of cone expansion and compression of norm type

	Application of Guo-Krasnoselskii theorem
	The Existence and iterative of positive solutions
	The existence of positive solutions
	The iterative schemes for approximating a positive solution

	Example

	Conclusion
	Bibliography

