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Abstract

Title: Study on the extension of some fixed point theorems.
The objective of this thesis is to study some fixed points results for single and multi-valued
contraction maps by using the idea of the b-metric space. Particularly, we proved some
common fixed point theorems for conditions of rational contraction type (combination
between certain types of contractions) in the context of the b-metric space. Our result
generalizes some known results in fixed point theory (Theorems 2 and 3 of [59]).
In addition, we have proved non unique common fixed point theorem for multi-valued
mapping in complete b-metric space. This study was done on multi-valued map occupied
on CB(X) space and using δ-distance. This work generalizes Theorem 1 of [57].
We have also constructed some examples which show that our generalizations are genuine.
Keywords: b-metric space, Common fixed point, Multi-valued, Rational contractive type
conditions, CB(X), δ-distance.



Résumé

Titre: Étude sur l’extension de quelques théorèmes du point fixe.
L’objectif de cette thèse est d’étudier certains résultats du point fixe pour les applications
contractions univoques et multivoques en utilisant l’idée des espaces b-métriques. En par-
ticulier, nous avons prouvé quelques théorèmes du point fixe pour les conditions de type
contractions rationnel (combinaison entre certains types de contractions) dans le contexte
de l’espace b-métrique. Notre résultat généralise certains résultats connus en théorie du
point fixe (théorèmes 2 et 3 de [59]).
En plus, nous avons prouvé le théorème du point fixe commun non unique pour un’ ap-
plication multivoque dans un espace b-métrique complet. Cette étude a été réalisée sur
des applications multivoque occupées sur l’espace CB(X) et utilisant la distance δ. Ce
travail généralise le théorème 1 de [57].
Nous avons également construit quelques exemples qui montrent que notre généralisations
sont valables.
Mots Clés: Espace b-métrique, Point fixe commun, Multivoque, Conditions de type con-
tractive rationnel, CB(X), La distance δ.



  ملخص 
  .قطة الثابتةالنُ  بعض نظریاتْ لِ ة یوسعتَ  دِراسة: العنوان

 الصورْ  الصورة و متعددةُ  وحیدةُ  للتطبیقات المقلصة بعض نتائج النقاط الثابتة ھو دراسةھذه الأطروحة  الھدف من

ِ - bباستخدام فكرة الفضاء  ة في  وحیدة الصوروعلى وجھ الخصوص، أثبتنا نتائج النقطة الثابتة المشتركة  . المتري

مزوج بین بعض أنواع ( لكسريا التقلیصْ نظریة النقطة الثابتة لشروط النوع  لقد أثبتنا أیضًا.  التامةُ  المتریّةُ -b اتفضاءال

 3و  2 النظریتان( النتائج المعروفة في نظریة النقطة الثابتةُ  بعضْ  نا تعممْ جائنت.المتري -bفي سیاق الفضاء  ) التقلصات

 ]).59[من 

ِ - bفي فضاء  متعدد الصورْ  لتطبیقْ  وحیدةُ  لقد أثبتنا نظریة النقطة الثابتة المشتركة الغیرْ  ضافة،بالإ تم إجراء . تامْ  المتري

 1ھذا العمل النظریة  یعممْ . δ  وباستخدام المسافة CB(X)على الفضاء  المشغولةُ  الصورْ  الدراسة على تطبیق متعددْ  ھذهِ 

 ]. 57[من 

 .أن تعمیماتنا صحیحةُ  بعض الأمثلة التي تظھرْ  ببناءْ ا كما قمنَ 

  ، CB(X)، الفضاء الصورْ  متعددْ  تطبیقْ   الثابتة المشتركة، المتري، النقطةُ - bالفضاء   :الكلمات المفتاحیة

  .δ  المسافة 
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Notations

ä d(., .): Distance on metric spaces .

ä db(., .): Distance on b-metric spaces.

ä s: Coefficient of b-metric spaces.

ä Lp([a, b]): Lebesgue spaces .

ä N: The set of natural numbers.

ä R,R+: The set of all real numbers, the set of non negative real numbers .

ä ‖f‖Lp([0,1]): Norm in Lp([a, b]) .

ä {xn}: Sequence of elements .

ä ε : Designates a parameter that is > 0 and approaches zero .

ä −→ : Strong convergence.

ä T, f : X → X: Self map on X.

1



CONTENTS CONTENTS

ä F (T ) or Fix(T ): The set of all fixed points of T .

ä xn = Txn−1 = T nx0, n = 1, 2, . . . : The Picard iteration starting at x0.

ä k(t, τ, x(τ)): The kernel of the integral equation .

ä C[a, b]: The set of all real valued continuous functions on [a, b] .

ä sec(t) = 1
cos(t) .

ä CB(X): The set of nonempty closed bounded subsets of X .

ä δ(., .)-distance .

ä H(., .): Pompieu-Hausdorff distance .

ä CB(X): The set of nonempty closed bounded subsets of X .

ä T : X → CB(X): Multi-valued map .

ä dn = d(xn, xn+1).
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Introduction

Historical notes

The theory of fixed point provides very productive and constructive tools in present-time

mathematics and may also assessed as a key topic of nonlinear analysis. In the last 50

years, the theory of fixed point has become the most growing and interesting field of re-

search for almost every mathematicians. The origination of this theory, which date to the

later part of the 19th century, rest in the use of unbroken and sequential estimation to

built the uniqueness as well as existence of results, especially to the differential equations.

Historically, the starting line in this field was well-defined by the creation of Banach’s fixed

point theorem, formulated and proved in the Ph.D. dissertation of Banach in 1920, which

was published in 1922 [7], is one of the most important theorems in classical functional

analysis. It is widely considered as the source of metric fixed point theory. After that

more results involving fixed point with different contractive mappings in metric spaces

came into view (see [14, 19, 35, 39, 52, 56]).

The fixed point theory for multi-valued mappings has been largely motivated by the game

theory when Neumann [53] opted for the extension of the fixed point theorem of Brouwer

to such mappings.

The theory of multi-valued maps has applications in control theory, convex optimization,

differential inclusions and economics.

3
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Nadler [52] started development of the theory of the fixed point for multi-valued contract-

ing mappings using the Pompieu-Hausdorff distance [31, 54] which is defined on CB(X).

Moreover, Nadler [52] has proved the existence of the multi-valued fixed point in com-

plete metric spaces, we can say then that he extended the Banach contraction principle of

unambiguous applications multi-valued applications. After Nadler’s work, many authors

have studied the existence and uniqueness of strict fixed points for multi-valued mappings

in metric spaces (see, for example, [27, 38, 42, 57] and references therein).

On the other hand, in 1989, Backhtin [6] introduced the concept of b-metric space. In

1993, Czerwik [17] first presented a generalization of Banach fixed point theorem in b-

metric spaces. Using this idea many researcher presented generalization of the renowned

Banach fixed point theorem in the b-metric space. Mehmet Kir [44], Boriceanu [9], Czer-

wik [17], Bota [12] extended the fixed point theorem in b-metric space. For some results

of fixed and common fixed point in the setting of b-metric spaces, see [5, 9, 19, 25, 33, 64].

In this thesis, we obtained b-metric variant of fixed point results for single value and

multi-valued rational contractions mappings.

Our work is prolonging and extending in two typical directions:

1. By expanding and developing of contraction conditions on a pair mappings (common

fixed point).

2. By spreading the structure of the spaces and change the distance on which the maps

are defined ( the contraction conditions conserved the true changes).

In above first quoted way, we reviewed the results presented in [59] in b-metric space. We

then extended these results for a pair mappings in the setting of b-metric spaces.

In above second quoted way, we will generalize Rhoades [57] results by changing the ax-

ioms of metric such as b-metric space and also, we change the distance of Hausdorff by the

δ distance. Particularly, we obtain some common fixed point theorem for multi-valued

maps on complete b-metric space by changing the axioms of metric.

Structure of the thesis

4
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The objective of this thesis is to study some new types of fixed point theorems in the col-

lection for single-valued (Chapter 3) and multi-valued (Chapter 4) mappings in complete

b-metric spaces.

The thesis contains four chapters organized as follows:

In Chapter 1, we throw light on basic definitions and introductory concepts. This chap-

ter also includes many interesting results related to the b-metric spaces, some examples

which satisfy the properties of above spaces, convergence, Cauchy sequence, completeness

and the classifications of integral equations are essentially an introduction to the fixed

point theory and applications.

In Chapter 2, we reviewed comprehensively some fixed point results like Ciric, Dass-

Gupta, Jaggi and generalized contraction in b-metric spaces presented in [33, 40, 55] is

developed in Chapter 3. Also constructed some theorems based on previous work.

Our treatment of the main subject in the thesis begins in Chapter 3. In this chapter,

we state some fixed point and common fixed point theorems for single-valued mappings

b-metric space. In addition, we give some examples which show that our generalizations

are genuine. This work published in [46], https://doi.org/10.2478/mjpaa-2021-0023

Finally in Chapter 4, we consider the problem of existence (not necessarily unique)

fixed points for multi-valued mappings, we established new fixed point theorems by ex-

tending the results of Nadler type theorem in b-metric space. This work published in [47].

The thesis concludes with a useful general conclusion.

Realized works

Publications:

1. S. Merdaci, T. Hamaizia, Some fixed point theorems of rational type contraction in

b-metric spaces, Moroccan J. of Pure and Appl. Anal, 7, (3), 350-363, (2021).

2. S. Merdaci, T. Hamaizia, A. Aliouche, Some generalization of non-unique fixed

point theorem for multi-valued mappings in b-metric spaces, U.P.B. Sci. Bull,

Series A, 83, (4), (2021), 55-62.
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Chapter 1

Preliminaries

In this chapter, we will review the most important concepts used while throughout this

thesis.

1.1 Definition and examples of b-metric space

First, we are going to recall the notion of metric space.

Definition 1.1 [34](Metric space)

Let X be a non-empty set and let d : X×X → R+ be a function satisfying the conditions,
d(1) d(x, y) = 0 if and only ifx = y;
d(2) d(x, y) = d(y, x) for all x, y ∈ X;
d(3) d(x, y) ≤ [d(x, z) + d(z, y)], for all x, y, z ∈ X.

Then d it is called metric on X and the pair (X, d) is called metric space.

Definition 1.2 (Lipschitzian mapping)

Let (X, d) be a metric space and T is a mapping from X to X. The mapping T is called

a Lipschitz mapping if there exists a constant k ≥ 0 such that

d(Tx, Ty) ≤ kd(x, y),

6



1.1. DEFINITION AND EXAMPLES OF B-METRIC
SPACE CHAPTER 1. PRELIMINARIES

for all x, y ∈ X. Where k is called the Lipschitz constant.

Example 1.1 Consider X = [1, 2] and d : X × X → R+ defined by d(x, y) =| x − y |.

Define T : X → X by T (x) = x2.

Since x2 − y2 = (x+ y)(x− y). It follows that

d(T (x), T (y)) = |T (x)− T (y)|R+

=
∣∣∣x2 − y2

∣∣∣
≤ |x+ y||x− y|

≤ (|x|+ |y|)|x− y|

≤ (2 + 2)|x− y|

= 4d(x, y),

for all x, y ∈ R. This shows that T is a Lipschitz mapping, with Lipschitz constant

k = 4 ≥ 0.

Definition 1.3 (Contraction mapping)

Let (X, d) be a metric space, a mapping T : X → X is called contraction if there exists

k < 1 such that for any x, y ∈ X

d(Tx, Ty) ≤ kd(x, y).

This contraction is also known as Banach1 contraction.

Example 1.2 Let X = [0, 1] and d : X ×X → R+ defined by d(x, y) =| x− y |.

Clearly (X, d) is metric space. The function T : X → X where T (x) = ln(1 + x

4 ) is a

contraction.

In the following definition we will recall the concept of b-metric space (introduced by

Backhtin in 1989).
1Stefan Banach (30 March 1892 – 31 August 1945) was a Polish mathematician who is generally

considered one of the world’s most important and influential 20th-century mathematicians.

7



1.1. DEFINITION AND EXAMPLES OF B-METRIC
SPACE CHAPTER 1. PRELIMINARIES

Definition 1.4 [6](b-Metric space)

Let X be a nonempty set. A function db : X×X → R+ is called a b-metric with coefficient

s ≥ 1 if:

b(1) db(x, y) = 0 if and only ifx = y;
b(2) db(x, y) = db(y, x) for all x, y ∈ X;
b(3) db(x, y) ≤ s[db(x, z) + db(z, y)], for all x, y, z ∈ X (b-triangular inequality).

Then db it is called b-metric on X and the pair (X, db) is called a b-metric space.

We give next some examples of b-metric spaces.

Example 1.3 [9] Let Lp([0, 1]) =
{
f : [0, 1] −→ R : ‖f‖pLp([0,1]) <∞

}
, (0 < p < 1) and

‖f‖Lp([0,1]) =
(∫ 1

0
|f(x)|pdx

) 1
p

.

Denote X = Lp([0, 1]), define a mapping db : X ×X → R+ by

db(f, g) =
(∫ 1

0
|f(x)− g(x)|pdx

) 1
p

, (1.1)

for all f, g ∈ X. Then (X, db) is a b-metric space with coefficient s = 2
1
p
−1.

Remark 1.1 It is clear from the definition of b-metric that every metric space is b-metric

for s = 1, but the converse is not true as clear from the following example.

Example 1.4 Let X = {−3
2 , 0,

1
2} and

db

(−3
2 , 0

)
= db

(
0, −3

2

)
= 2,

db

(−3
2 ,

1
2

)
= db

(1
2 ,
−3
2

)
= 7, db

(
0, 1

2

)
= db

(1
2 , 0

)
= 3,

db

(−3
2 ,
−3
2

)
= db (0, 0) = db

(1
2 ,

1
2

)
= 0.

It is clear that

db(x, z) ≤
7
5[db(x, y) + db(y, z)] for all x, y, z ∈ X,

8



1.2. CONVERGENCE, CAUCHY SEQUENCES AND CONTINUITY IN B-METRIC
SPACE CHAPTER 1. PRELIMINARIES

then (X, db) is a b-metric space (s = 7
5), but (X, db) is not a metric space because it lacks

the triangular property:

7 = db

(−3
2 ,

1
2

)
> db

(−3
2 , 0

)
+ db

(
0, 1

2

)
= 2 + 3 = 5.

For some details on subject see [8, 16, 32].

1.2 Convergence, Cauchy sequences and continuity in b-metric
space

In this section, we recall a few more technical definitions and basic properties of b-metric

space with respect to Cauchy sequence, convergence sequence, completeness of the metric

b-space and continuity.

Definition 1.5 [9, 10](Cauchy sequence)

A sequence {xn} in b-metric space (X, db) is called Cauchy sequence if for ε > 0 there

exist a positive integer N such that for m,n ≥ N we have db (xm, xn) < ε.

Definition 1.6 [9, 10](Convergence sequence)

A sequence {xn} is called convergent in b-metric space (X, db) if for ε > 0 and n ≥ N we

have db (xn, x) < ε where x is called the limit point of the sequence {xn}.

Definition 1.7 [11](Complete b-metric space)

A b-metric space (X, db) is said to be complete if every Cauchy sequence in X converge

to a point of X.

Proposition 1.8 [11] In a b-metric space (X, db), the following assertions hold:

(i) A convergent sequence has a unique limit.

(ii) Every convergent sequence is a Cauchy sequence.

9



1.2. CONVERGENCE, CAUCHY SEQUENCES AND CONTINUITY IN B-METRIC
SPACE CHAPTER 1. PRELIMINARIES

Proof.

(i) By contradiction.

We hope to prove ”For all convergent sequences the limit is unique”. The negation of

this is ”There exists at least one convergent sequence which does not have a unique

limit”.

This is what we assume. On the basis of this assumption let {xn} denote a sequence

with more than one limit, two of which are labelled as u1 and u2 with u1 6= u2.

Choose ε = 1
3sdb(u1, u2) which is greater than zero since u1 6= u2. Since u1 is a limit

of {xn} we can apply the definition of limit with our choice of ε to find N1 ∈ N such

that

db(xn, u1) < ε, for all n ≥ N1.

Similarly, as u2 is a limit of {xn}n∈N we can apply the definition of limit with our

choice of ε to find N2 ∈ N such that

db(xn, u2) < ε, for all n ≥ N2.

There is no reason to assume that in the two uses of the definition of limit we should

find the same N ∈ N for the different u1 and u2. Choose any m0 > max (N1, N2),

then db(xm0 , u1) < ε and db(xm0 , u2) < ε. Using the b-triangle inequality, we have

db(u1, u2) ≤ s [db(u1, xm0) + db(xm0 , u2)] b-triangle inequality

< sε+ sε by the choice of m0

= 2sε

= 2s
3sdb(u1, u2) by the definition of ε

= 2
3db(u1, u2).

So we find that db(u1, u2), which is not zero, satisfies db(u1, u2) < 2
3db(u1, u2), which

is a contradiction.

Hence our assumption must be false, that is, there does not exists a sequence with

more than one limit. Hence for all convergent sequences the limit is unique.

10



1.2. CONVERGENCE, CAUCHY SEQUENCES AND CONTINUITY IN B-METRIC
SPACE CHAPTER 1. PRELIMINARIES

(ii) Suppose {xn} is a convergent sequence with limit u. For ε > 0 there is N ∈ N

such that db(xn, u) < ε/2. We introduce xm by db(xn, xm) and use the b-triangle

inequality:
db(xn, xm) ≤ s [db(xn, u) + db(u, xm)]

<
sε

2 + sε

2
= sε

= ε′.

whenever n,m ≥ N .

Thus the convergent {xn} is Cauchy.

Remark 1.2 We observe that the notions of convergent sequence, Cauchy sequence, and

complete space are defined as in metric spaces.

We now consider the continuity of a mapping with respect to a b-metric defined as

follows.

Definition 1.9 [60](Continuity)

Let (X, db) and (X ′, d′b) be two b-metric spaces with coefficient s and s′, respectively. A

mapping T : X → X ′ is called continuous if each sequence {xn} in X, which converges to

x ∈ X with respect to db, then Txn converges to Tx with respect to d′b.

Remark 1.3 In the general case, a b-metric is not continuous.

The following example shows that a b-metric need not be continuous (see Boriceanu [10]).

Example 1.5 [10] Let X = N∪{∞}. We define a mapping db : X×X −→ R+ as follows:

db(m,n) =


0 if m = n;
| 1
m
− 1

n
| if one of m,n is even and the other is even or ∞;

5 if one of m,n is odd and the other is odd (and m 6= n) or ∞;
2 otherwise.

11



1.2. CONVERGENCE, CAUCHY SEQUENCES AND CONTINUITY IN B-METRIC
SPACE CHAPTER 1. PRELIMINARIES

Then (X, db) is a b-metric space with coefficient s = 5
2 . However, let xn = 2n for each

n ∈ N. Then limn→∞ db(2n,∞) = limn→∞
1

2n = 0, that is, xn →∞, but

lim
n→∞

db (xn, 1) = lim
n→∞

db (2n, 1) = 2 6= db( lim
n→∞

xn, 1) = db(∞, 1) = 5.

In the case of b-metric discontinuity, the following Theorem have been used frequently by

many authors to overcome this problem.

Theorem 1.10 [1] Let (X, db) be a b-metric space with coefficient s ≥ 1 and let {xn}

and {yn} be convergent to points x, y ∈ X, respectively. Then we have

1
s2db(x, y) ≤ lim inf

n→∞
db (xn, yn) ≤ lim sup

n→∞
db (xn, yn) ≤ s2db(x, y).

In particular, if x = y, then we have limn→∞ db (xn, yn) = 0. Moreover, for each z ∈ X,

we have
1
s
db(x, z) ≤ lim inf

n→∞
db (xn, z) ≤ lim sup

n→∞
db (xn, z) ≤ sdb(x, z).

Definition 1.11 [8](Fixed point)

Let X be a nonempty set and T : X → X a self map. We say that x ∈ X is a fixed point

of T if T (x) = x and denote by F (T ) or Fix(T ) the set of all fixed points of T .

Let X be any set and T : X → X a self map. For any given x ∈ X, we define T n(x)

inductively by T 0(x) = x and T n+1(x) = T (T n(x)) , we recall Tn(x) the nth iterative of x

under T . For any x0 ∈ X, the sequence {xn}n≥0 ⊂ X given by

xn = Txn−1 = T nx0, n = 1, 2, . . .

is called the sequence of successive approximations with the initial value x0. It is also

known as the Picard iteration starting at x0.

Definition 1.12 [62] Let (X, db) be a b-metric space, {xn} be a sequence in X and let A

be a subset of X

(i) A is said to be closed if for any convergent sequence in A, its limit belongs to A.

(ii) A is said to be bounded if sup{db(x, y) : x, y ∈ A} <∞ holds.
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1.3 Basic inequality

Lemma 1.1 Let (X, db) be a b-metric space. For n ∈ N and (x0, . . . , xn) ∈ Xn+1

db (x0, xn) ≤
n−2∑
j=0

sj+1db (xj, xj+1) + sn−1db (xn−1, xn) ,

holds.

Proof. Let n ∈ N, using b-triangular inequality (db(3)), we have

db (x0, xn) ≤ s [db (x0, x1) + db (x1, xn)]

≤ sdb (x0, x1) + s2 [db (x1, x2) + db (x2, xn)]

≤ sdb (x0, x1) + s2db (x1, x2) + s3db (x2, x3) + . . .

+ sn−1 [db (xn−2, xn−1) + db (xn−1, xn)]

=
n−2∑
j=0

sj+1db (xj, xj+1) + sn−1db (xn−1, xn) .

The following lemma states perhaps the most important feature of Cauchy sequence in

complete b-metric space. This lemma useful for the results we presented in this thesis.

Lemma 1.2 [50] Let (X, db) be a complete b-metric space and let {xn} be a sequence in

X such that

db (xn+1, xn+2) ≤ βdb (xn, xn+1) , for all n = 0, 1, 2, . . . (1.2)

where 0 ≤ β < 1. Then {xn} is a Cauchy sequence in X.

Proof. Let x0 ∈ X and xn+1 = Txn for all n ∈ N. It have the following three cases to be

considered.

Case 1. β ∈
[
0, 1

s

)
(s > 1). By (1.2) we have

db (xn, xn+1) ≤ βdb (xn−1, xn)

≤ β2db (xn−2, xn−1)
...

≤ βndb (x0, x1) .

13
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Thus, for any n > m and n,m ∈ N, we have

db (xm, xn) ≤ s [db (xm, xm+1) + db (xm+1, xn)]

≤ sdb (xm, xm+1) + s2 [db (xm+1, xm+2) + db (xm+2, xn)]

≤ sdb (xm, xm+1) + s2db (xm+1, xm+2) + s3 [db (xm+2, xm+3) + db (xm+3, xn)]

≤ sdb (xm, xm+1) + s2db (xm+1, xm+2) + s3db (xm+2, xm+3)

+ · · ·+ sn−m−1db (xn−2, xn−1) + sn−m−1db (xn−1, xn)

≤ sβmdb (x0, x1) + s2βm+1db (x0, x1) + s3βm+2db (x0, x1)

+ · · ·+ sn−m−1βn−2db (x0, x1) + sn−m−1βn−1db (x0, x1)

≤ sβm
(
1 + sβ + s2β2 + · · ·+ sn−m−2βn−m−2 + sn−m−1βn−m−1

)
db (x0, x1)

≤ sβm
[ ∞∑
i=0

(sβ)i
]
db (x0, x1)

= sβm

1− sβ db (x0, x1) −→ 0 (m −→∞),

which implies that {xn} is a Cauchy sequence. In other words, {T nx0} is a Cauchy

sequence.

Case 2. Let β ∈
[

1
s
, 1
)

(s > 1). In this case, we have βn → 0 as n → ∞, so there is

n0 ∈ N such that βn◦ < 1
s
. Thus, by Case 1 , we claim that

{(T n0)n x0}∞n=0 := {xn0 , xn0+1, xn0+2, . . . , xn0+n, . . .} ,

so that, for any n > m > n0 and n,m ∈ N, we have

db (xn0+m, xn0+n) ≤ sdb (xn0+m, xn0+m+1) + s2db (xn0+m+1, xn0+m+2) + s3db (xn0+m+2, xm+3)

+ · · ·+ sn−m−1db (xn0+n−2, xn0+n−1) + sn−m−1db (xn0+n−1, xn0+n)

≤ sβmdb (xn0 , xn0+1) + s2βm+1db (xn0 , xn0+1) + s3βm+2db (xn0 , xn0+1)

+ · · ·+ sn−m−1βn−2db (xn0 , xn0+1) + sn−m−1βn−1db (xn0 , xn0+1)

≤ sβm
(
1 + sβ + s2β2 + · · ·+ sn−m−2βn−m−2 + sn−m−1βn−m−1

)
db (xn0 , xn0+1)

≤ sβm
[ ∞∑
i=0

(sβ)i
]
db (xn0 , xn0+1)

= sβm

1− sβ db (xn0 , xn0+1) −→ 0 (m −→∞),

14
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thus {(T n0)n x0} is a Cauchy sequence. Then

{xn}∞n=0 = {x0, x1, x2, . . . , xn0−1} ∪ {xn0 , xn0+1, xn0+2, . . . , xn0+n, . . .} ,

is a Cauchy sequence in X.

Case 3. s = 1. Similar to the process of Case 1, the claim holds.

Holder inequality

Let p, q ∈ (1;∞) such that 1
p

+ 1
q

= 1. Then Holder inequality for sums states that

n∑
i=1
|aibi| ≤

(
n∑
i=1
|ai|p

) 1
p
(

n∑
i=1
|bi|q

) 1
q

. (1.3)

If p = q = 2, this becomes Cauchy-Schwarz inequality:

n∑
i=1
|aibi| ≤

(
n∑
i=1
|ai|2

) 1
2
(

n∑
i=1
|bi|2

) 1
2

. (1.4)

1.4 Integral equations

The objective of this section is to familiarize the reader with the concept of integral

equation, as we presented a classification for linear and nonlinear integral equations, first

and second kinds, homogeneous and nonhomogeneous, we have given examples of these

equations. Moreover, the results in this section may be found in [41, 43, 55, 63]

1.4.1 Generality

The ordinary form of a nonlinear integral equation is given by

α(t)x(t) = g(t) + λ
∫
k(t, τ, x(τ))dτ, (1.5)

where α(t), g(t) and k(t, τ, x(τ)) are given functions, the function x(t) inside and outside

the integral sign is the unknown to be determined, λ is a real parameter where complex
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different from zero. The function k(t, τ, x(τ)) is called the kernel of the integral equation.

1.4.2 Classification of integral equations

The classification of integral equations it depends on many characteristics, can be classified

as a linear or nonlinear integral equation and also homogeneous or nonhomogeneous.

i) If k(t, τ, x(τ)) is linear with respect to the third variable i.e.

k(t, τ, x(τ)) = k(t, τ)x(τ),

the integral equation is called linear equation

ii) If k(t, τ, x(τ)) is nonlinear with respect to the third variable i.e if the equation contains

nonlinear functions of x(τ) the integral equation is called nonlinear equation.

iii) If α(t) = 0, the equation is written

g(t) + λ
∫
k(t, τ, x(τ))dτ = 0, (1.6)

and it is said to be of the first kind

iv) If α(x) = 1, the equation is written

x(t) = g(t) + λ
∫
k(t, τ, x(τ))dτ, (1.7)

and it is said to be of the second kind.

iiv) If α(t) is continuous and vanishes at some points, it is said to be of the third kind.

iiiv) If g(x) = 0, the equation is written

x(t) = λ
∫
k(t, τ, x(τ))dτ, (1.8)

and it is said to be homogeneous.
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1.4.3 Type of integral equations

In this section, we will present another classification, where terms of integration are used

as a different method of characterize integral equations. In particular, the two types

namely Fredholm 2 and Volterra 3 integral equations.

We will learn about these equations using the definitions and basic properties of each

type.

Fredholm integral equations

An equation of the form (1.5) whose integration bounds are fixed is called a Fredholm

integral equation given in the form:

x(t) = g(t) + λ

b∫
a

k(t, τ, x(τ))dτ, (1.9)

where a and b are constants.

Volterra integral equations

An equation of the form (1.5) whose at least one of the limits of integration is a variable.

The equation is called a Volterra integral equation given in the form:

x(t) = g(t) + λ

t∫
a

k(t, τ, x(τ))dτ, (1.10)

where a is constant.
2Erik Ivar Fredholm, (7 April 1866 – 17 August 1927) was a Swedish mathematician whose work on

integral equations and operator theory foreshadowed the theory of Hilbert spaces.
3Vito Volterra, (3 May 1860 – 11 October 1940) was an Italian mathematician and physicist, known

for his contributions to mathematical biology and integral equations.

17
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1.4.4 Further examples of integral equations

In this section, we will recall several examples of Fredholm and Volterra integral equations
4 (of all kinds and classifications).

Example 1.6 1. Fredholm linear integral equations of the second kind

x(t) = 2 +
1∫

0

(t− τ + 1)x(τ)dτ.

2. Fredholm nonlinear integral equations of the second kind

x(t) = 1 +
1∫

0

(t− τ)x2(τ)dτ.

3. Fredholm linear integral equations of the first kind

exp(t)− t+
1∫

0

t(exp(τ)− 1)x(τ)dτ = 0.

4. Homogeneous Fredholm linear integral equations

x(t) =
π∫

0

(t− τ + 1)x(τ)dτ.

Example 1.7 1. Volterra linear integral equations of the second kind

x(t) = x2 + 1 +
t∫

0

(t2 − τ)x(τ)dτ.

2. Volterra linear integral equations of the first kind
t∫

0

(t2 − τ)x(τ)dτ = 0.

3. Homogeneous Volterra linear integral equations

x(t) = −
t∫

0

exp(t− τ)x(τ)dτ.

4. Volterra nonlinear integral equations of the second kind

x(t) = sin2(t) + 1− 3
t∫

0

sin(t− τ)x2(τ)dτ.

4Volterra integral equations find application in demography, the study of viscoelastic materials, and
in actuarial science through the renewal equation.

18
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1.4.5 Application of Banach principle in b-metric space to non-
linear integral equations

Fixed point theory is one of the most efficient tools in nonlinear functional analysis to

solve the nonlinear integral equations. The existence of a solution of integral equations

turns into the existence of a (common) fixed point of the operators which are obtained

after suitable substitutions and elementary calculations.

In this section, we apply the principle of contraction of Banach in b-metric spaces to study

the existence and uniqueness of a solution of nonlinear Fredholm and Volterra integral

equations .

In the following, we recollect the extension of Banach contraction principle in case of

b-metric spaces.

Theorem 1.13 [44] Let (X, bb) be a complete b-metric space with s ≥ 1 and let T :

X −→ X be a contraction with β ∈ [0, 1) and sβ < 1 then T has a unique fixed point

in X.

Remark 1.4 Lemma 1.2 expands the range of Theorem 1.13 from β ∈ [0, 1
s
) to β ∈ [0, 1[.

Clearly, this is a sharp generalization.

Existence of solutions for nonlinear Fredholm integral equations

Let X = C[a, b] be a set of all real valued continuous functions on [a, b], where [a, b] is a

closed and bounded interval in R. For p > 1 a real number, define db : X ×X → R+ by:

db(x, y) = max
t∈[a,b]

|x(t)− y(t)|p ,

for all x, y ∈ X. Therefore, (X, d, s = 2p−1) is a complete b-metric space. Consider

nonlinear integral equation of the second kind of Fredholm type defined by:

x(t) = g(t) + λ

b∫
a

k(t, τ, x(τ))dτ, (1.11)
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where x ∈ C[a, b] is the unknown function, λ ∈ R, t, τ ∈ [a, b], k : [a, b] × [a, b] × R → R

and g : [a, b]→ R are given continuous functions.

Theorem 1.14 We will assume the following:

(i) There exists a continuous function ψ : [a, b]×[a, b]→ R+ such that for all x, y ∈ X,

λ ∈ R and t, τ ∈ [a, b], we get

|k(t, τ, x)− k(t, τ, y)|p ≤ ψ(t, τ) |x(t)− y(t)|p ,

(ii)

max
t∈[a,b]

b∫
a

ψ(t, τ)dτ ≤ c

(b− a)p−1 , c ≥ 0,

(iii) |λ|p c < 1.

Then, the integral equation (1.11) has a solution x ∈ C[a, b].

Proof. Suppose that T is a mapping from X to X. Rewrite the nonlinear integral

equation of the second kind in the form

Tx(t) = x(t),

with

Tx(t) = g(t) + λ

b∫
a

k(t, τ, x(τ))dτ,

for all t ∈ [a, b]. So, the existence of a solution of (1.11) is equivalent to the existence and

uniqueness of fixed point of T . Let q ∈ R such that 1
p

+ 1
q

= 1.
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Using the Holder inequality (1.3), (i), (ii) and (iii), we have

db(Tx, Ty) = max
t∈[a,b]

|Tx(t)− Ty(t)|p

≤ |λ|p max
t∈[a,b]

 b∫
a

|(k(t, τ, x(τ))− k(t, τ, y(τ)))| dτ
p

≤ |λ|p max
t∈[a,b]


 b∫
a

1qdτ


1
q
 b∫
a

|(k(t, τ, x(τ))− k(t, τ, y(τ)))|p dτ


1
p


p

≤ |λ|p (b− a)
p
q max
t∈[a,b]

 b∫
a

|(k(t, τ, x(τ))− k(t, τ, y(τ)))|p dτ


≤ |λ|p (b− a)p−1 max
t∈[a,b]

 b∫
a

ψ(t, τ)dτdb(x, y)


≤ |λ|p (b− a)p−1 max
t∈[a,b]

 b∫
a

ψ(t, τ)dτ
 db(x, y)

≤ |λ|p cdb(x, y).

Thus

db(Tx, Ty) ≤ βdb(x, y),

where β = |λ|p c < 1. Hence, all the conditions of Theorem 1.13 hold. Consequently, the

integral equation (1.11) has a solution x ∈ C[a, b].

Existence of solutions for nonlinear Volterra integral equations

Let [a, b] ⊂ R bounded and closed subset and X = C[a, b] be a set of all real valued

continuous functions on [a, b]. Define db : X ×X → R+ by:

db(x, y) = max
t∈[a,b]

|x(t)− y(t)|2 ,

for all x, y ∈ X. Therefore, (X, d, s = 2) is a complete b-metric space.

Consider nonlinear integral equation of the second kind of Fredholm type defined by:

x(t) = g(t) + λ

t∫
a

k(t, τ, x(τ))dτ, t ≤ b, (1.12)
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where k : [a, b] × [a, b] × R → R and g : [a, b] → R are given continuous functions,

x ∈ C[a, b] is the unknown function, λ ∈ R, t, τ ∈ [a, b],

Theorem 1.15 We will assume the following:

(i) There exists a continuous function ψ : [a, b]×[a, b]→ R+ such that for all x, y ∈ X,

λ ∈ R and a ≤ τ ≤ t ≤ b, we get

|k(t, τ, x)− k(t, τ, y)|2 ≤ ψ(t, τ) |x(t)− y(t)|2 , τ ∈ [a, t], t ≤ b;

(ii)

max
t∈[a,b]

t∫
a

ψ(t, τ)dτ ≤ c

(b− a) , c ≥ 0;

(iii) |λ|2 c < 1.

Then, the integral equation (1.12) has a unique solution x ∈ C[a, b].

Proof. Suppose that T is a mapping from X to X. Rewrite the nonlinear integral

equation of the second kind in the form

Tx(t) = x(t),

with

Tx(t) = g(t) + λ

t∫
a

k(t, τ, x(τ))dτ,

for all t ∈ [a, b]. So, the existence of a solution of (1.11) is equivalent to the existence and

uniqueness of fixed point of T .
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Using the Cauchy-Schwartz inequality (1.4), (i), (ii) and (iii), we have

db(Tx, Ty) = max
t∈[a,b]

|Tx(t)− Ty(t)|2

≤ |λ|2 max
t∈[a,b]

 t∫
a

|(k(t, τ, x(τ))− k(t, τ, y(τ)))| dτ
2

≤ |λ|2 max
t∈[a,b]


 t∫
a

12dτ


1
2
 t∫
a

|(k(t, τ, x(τ))− k(t, τ, y(τ)))|2 dτ


1
2


2

≤ |λ|2 (b− a) max
t∈[a,b]

 b∫
a

|(k(t, τ, x(τ))− k(t, τ, y(τ)))|2 dτ


≤ |λ|2 (b− a) max
t∈[a,b]

 b∫
a

ψ(t, τ)dτdb(x, y)


≤ |λ|2 (b− a) max
t∈[a,b]

 b∫
a

ψ(t, τ)dτ
 db(x, y)

≤ |λ|2 cdb(x, y).

Thus

db(Tx, Ty) ≤ βdb(x, y),

where β = |λ|2 c < 1. Hence, all the conditions of Theorem 1.13 hold. Consequently, the

integral equation (1.12) has a solution x ∈ C[a, b].
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Chapter 2

Rational type contractions and fixed
point theory

Firstly, we present the definition of fixed point as well as various types of contractions in

standard metric space. Secondly, we give some fixed point theorems for rational contrac-

tive condition in complete metric space. Thirdly, we deduce some common fixed point

results of rational type contractions in metric space. Finally, we give some fixed point

theorems for a single maps using the concept of rational type contraction in the context

of b-metric space.

In addition, throughout this section, some examples and applications of integral equation

( we verify the existence and uniqueness of solution to such integral equation) is given

here to illustrate the validity of the results.

2.1 Some formulations for contractive type conditions

In this paragraph, we give some formulations for contractive type conditions are the

following:
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Definition 2.1 Let (X, d) be a metric space, a mapping T : X −→ X is called:

1. Banach contraction (1922) there exists, k < 1 such that for any x, y ∈ X,

d(Tx, Ty) ≤ αd(x, y).

2. Reich contraction if and only if for every x, y ∈ X there exist α, β, µ ∈ [0, 1),

such that α + β + µ < 1

d(Tx, Ty) ≤ αd(x, Tx) + βd(y, Ty) + µd(x, y).

3. Kannan type contraction (1968) if there exist 0 < λ < 1 such that, for all

x, y ∈ X, the following inequality is satisfied

d(Tx, Ty) ≤ λ

2 [d(x, Tx) + d(y, Ty)].

4. Chatterjea type contraction (1978) if there exist 0 < λ < 1 such that, for all

x, y ∈ X, the following inequality is satisfied

d(Tx, Ty) ≤ λ

2 [d(x, Ty) + d(y, Tx)].

5. Cric’s type contraction (1974) if and only if for all x, y ∈ X, there exist h < 1

and

d(Tx, Ty) ≤ hmax
{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty) + d(y, Tx)

2

}
.

6. Quasi contraction if and only if for all x, y ∈ X, there exist h < 1 and

d(Tx, Ty) ≤ hmax {d(x, y), d(x, Tx), d(y, Ty), d(x, Ty) + d(y, Tx)} .

7. Weak contraction

d(Tx, Ty) ≤ αd(x, y) + βd(y, Tx),

for all x, y ∈ X. Due to the symmetry of distance, it includes the following

d(Tx, Ty) ≤ αd(x, y) + βd(x, Ty),

for all x, y ∈ X .
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8. Hardy-Roger type contraction (1973) if and only if for every x, y ∈ X there

exist α, β, γ, µ ∈ [0, 1) such that α + β + γ + µ < 1

d(Tx, Ty) ≤ αd(x, y) + βd(x, Tx) + γd(y, Ty) + µ[d(x, Ty) + d(y, Tx)].

9. Dass-Gupta type contraction (1975) if and only if for every x, y ∈ X there

exist α, β ∈ [0, 1) such that α + β < 1

d(Tx, Ty) ≤ αd(x, y) + β
d(y, Ty)[1 + d(x, Tx)]

1 + d(x, y) .

10. Jaggi type contraction (1977) if and only if for every x, y ∈ X, with x 6= y there

exist α, β ∈ [0, 1) such that α + β < 1

d(Tx, Ty) ≤ a1d(x, y) + a2
d(y, Ty)d(x, Tx)

d(x, y) .

2.2 Rational type contractions for a single maps in metric space

The Ciri´c fixed point theorem is given by the following theorem.

Theorem 2.2 [56] Let (X, d) be a complete metric space and T : X −→ X be a self

mapping satisfying the condition

d(Tx, Ty) ≤ hmax
{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty) + d(y, Tx)

2

}
,

foe all x, y ∈ X, where 0 ≤ h < 1. Then T has a unique fixed point in X.

In 1975, Dass and Gupta proved the following fixed point result using contractive condi-

tions involving rational expressions in a complete metric space.

Theorem 2.3 (Dass-Gupta)[19] Let (X, d) be a complete metric space and T : X −→ X

be a self mapping. If

d(Tx, Ty) ≤ a1d(x, y) + a2
d(y, Ty)[1 + d(x, Tx)]

1 + d(x, y) , (2.1)

holds for such x, y ∈ X, and a1, a2 ≥ 0 with a1 + a2 < 1. Then the mapping T has a

unique fixed point in X.
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Again, Theorem 2.3 was generalized by Jaggi [35] in 1977 and proved the following:

Theorem 2.4 (Jaggi)[35] Let (X, d) be a complete metric space. A self map T on X

such that

d(Tx, Ty) ≤ a1d(x, y) + a2
d(y, Ty)d(x, Tx)

d(x, y) , (2.2)

for all x, y ∈ X, with x 6= y, where a1, a2 ∈ [0, 1[ with a1 + a2 < 1. Then T has a unique

fixed point in X.

Theorem 2.5 ( See [33] Corollary 2.4 )

Let (X, d) be a complete metric space and T : X → X be a mapping such that

d(Tx, Ty) ≤λ1d(x, y) + λ2
d(x, Tx)d(y, Ty)

1 + d(x, y) + λ3
d(x, Ty)d(y, Tx)

1 + d(x, y)

+ λ4
d(x, Tx)d(x, Ty)

1 + d(x, y) + λ5
d(y, Ty)d(y, Tx)

1 + d(x, y) ,

(2.3)

where λ1, λ2, λ3, λ4 and λ5 are nonnegative constants with λ1 +λ2 +λ2 λ4 +λ5 < 1. Then T

has a unique fixed point in X. Moreover, for x ∈ X, the iterative sequence {T nx} (n ∈ N)

converges to the fixed point.

On the other hand, in 1976 Khan [40] proved the following fixed point result for

complete metric spaces.

Theorem 2.6 [40] Let (X, d) be a complete metric space and T : X −→ X be a self

mapping. If

d(Tx, Ty) ≤ a2
d(x, Tx)d(x, Ty) + d(y, Ty)d(y, Tx)

d(x, Ty) + d(y, Tx) , (2.4)

holds for such x, y ∈ X, and a2 ≥ 0, d(x, Ty) + d(y, Tx) 6= 0 with a2 < 1. Then the

mapping T has a unique fixed point in X.

After examining some works of [7, 40], we can construct the following theorem :

Theorem 2.7 Let (X, d) be a complete metric space and T : X −→ X be a self mapping

such that

αd(Tx, Ty) ≤ d(x, y) + d(x, Tx)d(x, Ty)
d(x, Ty) + d(y, Tx) + 1 , (2.5)

holds for such x, y ∈ X, and α > 1. Then the mapping T has a unique fixed point in X.
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Proof. Let x0 be arbitrary in X, and construct a Picard iterative sequence {xn} in X by

xn+1 = Txn, for all n ∈ N. (2.6)

If there exists n0 ∈ N such that xn0 = xn0+1, then xn0 = xn0+1 = Txn0 , i.e., xn0 is a

fixed point of T . Next, without loss of generality, let xn 6= xn+1 for all n ∈ N. From the

condition (2.5), with x = xn−1 and y = xn, we have

αd (xn, xn+1) = α (Txn−1, Txn)

≤ d (xn−1, xn) + d (xn−1, Txn−1) d (xn−1, Txn)
d (xn−1, Txn) + d (xn, Txn−1) + 1

= d (xn−1, xn) + d (xn−1, xn) d (xn−1, xn+1)
d (xn−1, xn+1) + d (xn, xn) + 1

≤ d (xn−1, xn) + d (xn−1, xn) d (xn−1, xn+1)
d (xn−1, xn+1)

= d (xn−1, xn) .

It follows that

d (xn, xn+1) ≤ 1
α
d (xn−1, xn) . (2.7)

Again by (2.5) with x = xn and y = xn−1, we have

αd (xn, xn+1) = α (Txn, Txn−1)

≤ d (xn, xn−1) + d (xn, Txn) d (xn, Txn−1)
d (xn, Txn−1) + d (xn−1, Txn) + 1

= d (xn, xn−1) + d (xn, xn+1) d (xn, xn)
d (xn, xn) + d (xn−1, xn+1) + 1

= d (xn, xn−1) .

It follows that

d (xn, xn+1) ≤ 1
α
d (xn, xn−1) . (2.8)

From (2.7) and (2.8), we have for all n ∈ N

d (xn, xn+1) ≤ 1
α
d (xn−1, xn) .

Since 1
α
< 1. Thus, by Lemma 1.2 (Chap 1 ) {xn} is a Cauchy sequence in X. But (X, d)

is complete, so there exists u ∈ X such that xn → u as n→∞.
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By (2.5), it is easy to see that
αd (xn+1, Tu) = d (Txn, Tu)

≤ d(xn, u) + d(xn, Txn)d(xn, Tu)
d(xn, Tu) + d(u, Tu) + 1

= d(xn, u) + d(xn, xn+1)d(xn, Tu)
d(xn, Tu) + d(u, Tu) + 1 .

(2.9)

Then passing to the limit as n→∞ from both sides of (2.9), we get limn→∞ αd (xn+1, Tu) =

0. That is, xn → Tu(n→∞). Hence, by the uniqueness of limit of convergent sequence,

it gives that Tu = u. In other words, u is a fixed point of T .

Finally, we will prove that T is a unique fixed point.

Suppose now that u and v are different fixed points of T , then by (2.5),
αd (u, v) = αd (Tu, Tv)

≤ d(u, v) + d(u, Tu)d(u, Tv)
d(u, Tv) + d(v, Tu) + 1

= d(u, v).

(2.10)

Because α > 2, we conclude from (2.10) that d (u, v) = 0, i.e., u = v.

Example 2.1 Let X = [0, 1] and d : X ×X → R+defined by

d(x, y) = |x− y|.

Define T : X → X by Tx = x
3 .

To check condition (ii), we get

d(Tx, Ty) = |Tx− Ty| =
∣∣∣∣x3 − y

3

∣∣∣∣
≤ 1

3 |x− y|+
1
3

∣∣∣x− x
3

∣∣∣ ∣∣∣x− y
3

∣∣∣
|x− y

3 |+ |y −
x
3 |+ 1

= 1
3

(
d(x, y) + d(x, Tx)d(x, Ty)

d(x, Ty) + d(y, Tx) + 1

)
,

is equivalent to

3d(Tx, Ty) ≤
(
d(x, y) + d(x, Tx)d(x, Ty)

d(x, Ty) + d(y, Tx) + 1

)
.

It is easily and clearly verified that the mapping T satisfies contractive condition (2.5) of

Theorem 2.7 with α = 3. Observe that the point 0 ∈ X is a unique fixed point of T .
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2.3 Rational type contractions for a pair maps in metric space

After examining some works of [39, 59, 64], we can construct some theorems as follows:

Theorem 2.8 Let (X, d) be a complete metric space and T, S : X → X be two mappings

on X. Suppose that a1, a2 are nonnegative reals with a1 + a2 < 1 such that the inequality

d(Tx, Sy) ≤ a1
d(x, Tx)d(y, Sy)
1 + d(Tx, Sy) + a2

d(x, y)d(y, Sy) [1 + d(x, Tx)]
[1 + d(Tx, Sy)] [1 + d(x, y)] , (2.11)

holds for all x, y ∈ X. Then T and S have a unique common fixed point.

Proof. Let x0 ∈ X and construct a sequence {xn} by the rule

x2n+1 = Tx2n and x2n+2 = Sx2n+1 forall n = 0, 1, 2, . . . (2.12)

First, we show that {xn} is a Cauchy sequence in X. For this, consider two cases:

Case 1. if n = 2k + 1, k ∈ N.

Using (2.11) with x = x2k and y = x2k+1, we obtain

d(x2k+1, x2k+2) = d(Tx2k, Sx2k+1)

≤ a1
d(x2k, Tx2k)d(x2k+1, Sx2k+1)

1 + d(Tx2k, Sx2k+1)

+ a2
d(x2k, x2k+1)d(x2k+1, Sx2k+1) [1 + d(x2k, Tx2k)]

[1 + d(Tx2k, Sx2k+1)] [1 + d(x2k, x2k+1)]

≤ a1
d(x2k, x2k+1)d(x2k+1, x2k+2)

1 + d(x2k+1, x2k+2)

+ a2
d(x2k, x2k+1)d(x2k+1, x2k+2) [1 + d(x2k, x2k+1)]

[1 + d(x2k+1, x2k+2)] [1 + d(x2k, x2k+1)]

≤ a1
d(x2k, x2k+1)d(x2k+1, x2k+2)

d(x2k+1, x2k+2) + a2
d(x2k, x2k+1)d(x2k+1, x2k+2)

d(x2k+1, x2k+2)
≤ a1d(x2k, x2k+1) + a2d(x2k, x2k+1),

then

d(x2k+1, x2k+2) ≤ (a1 + a2)d(x2k, x2k+1). (2.13)
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Case 2. if n = 2k, k ∈ N.

Using (2.11) with x = x2k−2 and y = x2k−1, we obtain

d(x2k−1, x2k) = d(Tx2k−2, Sx2k−1)

≤ a1
d(x2k−2, Tx2k−2)d(x2k−1, Sx2k−1)

1 + d(Tx2k−2, Sx2k−1)

+ a2
d(x2k−2, x2k−1)d(x2k−1, Sx2k−1) [1 + d(x2k−2, Tx2k−2)]

[1 + d(Tx2k−2, Sx2k−1)] [1 + d(x2k−2, x2k−1)]

≤ a1
d(x2k−2, x2k−1)d(x2k−1, x2k)

1 + d(x2k−1, x2k)

+ a2
d(x2k−2, x2k−1)d(x2k−1, x2k) [1 + d(x2k−2, x2k−1)]

[1 + d(x2k−1, x2k)] [1 + d(x2k−2, x2k−1)]

≤ a1
d(x2k−2, x2k−1)d(x2k−1, x2k)

d(x2k−1, x2k)
+ a2

d(x2k−2, x2k−1)d(x2k−1, x2k)
d(x2k−1, x2k)

≤ a1d(x2k−2, x2k−1) + a2d(x2k−2, x2k−1),

then

d(x2k−1, x2k) ≤ (a1 + a2)d(x2k−2, x2k−1). (2.14)

Now, from equation (2.13)and (2.14), we obtain

d(xn+1, xn) ≤ (a1 + a2)d(xn, xn−1) for all n ∈ N. (2.15)

So by using Lemma 1.2 (Chap 1) {xn} is a Cauchy sequence in (X, d). Since (X, d) is a

complete metric space, then {xn} converges to some u ∈ X as n −→ +∞.

Next, we show that u is a fixed point of S.

From (2.11) with x = x2n and y = u, we get

d(u, Su) ≤ [d(u, x2n+1) + d(x2n+1, Su)]

≤ d(u, x2n+1) + d(Tx2n, Su)

≤ d(u, x2n+1) + a1
d(x2n, Tx2n)d(u, Su)

1 + d(Tx2n, Su) + a2
d(x2n, u)d(u, Su) [1 + d(x2n, Tx2n)]

[1 + d(Tx2n, Su)] [1 + d(x2n, u)]

≤ d(u, x2n+1) + a1
d(x2n, x2k+1)d(u, Su)

1 + d(x2k+1, Su) + sa2
d(x2n, u)d(u, Su) [1 + d(x2n, Tx2n)]

[1 + d(x2k+1, Su)] [1 + d(x2n, u)] .

Taking the limit as n −→∞, we obtain that

d(u, Su) ≤ 0,
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which is a contradiction so d(u, Su) = 0. Hence, Su = u.

Similarly, we show that u is a fixed point of T .

From (2.11) with x = u and y = x2n+1, we get

d(Tu, u) ≤ [d(Tu, x2n+2) + d(x2n+2, u)]

≤ d(x2n+2, u) + d(Tu, Sx2n+1)

≤ d(x2n+2, u) + a1
d(u, Tu)d(x2n+1, Sx2n+1)

1 + d(Tu, Sx2n+1)

+ a2
d(u, x2n+1)d(x2n+1, Sx2n+1) [1 + d(u, Tu)]

[1 + d(Tu, Sx2n+1)] [1 + d(u, x2n+1)]

= d(x2n+2, u) + a1
d(u, Tu)d(x2n+1, x2n+2)

1 + d(Tu, x2n+2)

+ a2
d(u, x2n+1)d(x2n+1, x2n+2) [1 + d(u, Tu)]

[1 + d(Tu, x2n+2)] [1 + d(u, x2n+1)] .

Taking the limit as n −→∞, we obtain that

d(Tu, u) ≤ 0,

which is a contradiction so d(Tu, u) = 0. Hence, Tu = u.

Thus, u is a common fixed point of T and S.

Finally, we will show that T and S have a unique common fixed point.

Indeed, if there is another fixed point v, then by (2.11), we obtain

d(u, v) = d(Tu, Sv) ≤ a1
d(u, Tu)d(v, Sv)
1 + d(Tu, Sv) + a2

d(u, v)d(v, Sv) [1 + d(u, Tu)]
[1 + d(Tu, Sv)] [1 + d(u, v)]

= a1
d(u, u)d(v, v)
1 + d(u, v) + a2

d(u, v)d(v, v) [1 + d(u, u)]
[1 + d(u, v)] [1 + d(u, v)]

= 0.

Hence u = v.

Therefore,u is a unique common fixed point of T and S.

Example 2.2 Let X = {1, 1
2 , 7}, and d : X ×X → [0,+∞) define by :

d(x, y) = |x− y|, for all x, y ∈ X.

32



2.3. RATIONAL TYPE CONTRACTIONS FOR A PAIR MAPS IN METRIC
SPACE CHAPTER 2. RTC & FPT

Then, (X, d) is a complete metric space. Consider mappings T, S : X → X, define by

T (1) = 1, T
(1

2

)
= 1, T (7) = 1,

S (1) = 1, S
(1

2

)
= 1, S (7) = 1

2 .

Let a1 = 1
2 , a2 = 1

4 , clearly, a1 + a2 = 3
4 < 1. Next, we will verify the condition (2.11 ). It

have the following cases to be considered.

Case 1. d(Tx, Sy) = 0, the inequality (2.11 ) holds.

Case 2. d(Tx, Sy) 6= 0, we have the following three cases to be considered.

Case 2.1. x = 1, y = 7, we can get d(Tx, Sy) = 1
2 , then

1
2 ≤

13
14

= 1
2 × 0 + 1

4 ×
26
7

= a1
d(x, Tx)d(y, Sy)
1 + d(Tx, Sy) + a2

d(x, y)d(y, Sy) [1 + d(x, Tx)]
[1 + d(Tx, Sy)] [1 + d(x, y)] ,

thus, the inequality (2.11 ) holds.

Case 2.2. x = 1
2 , y = 7, we can get d(Tx, Sy) = 1

2 , then

1
2 ≤

299
120

= 1
2 ×

13
6 + 1

4 ×
169
30

= a1
d(x, Tx)d(y, Sy)
1 + d(Tx, Sy) + a2

d(x, y)d(y, Sy) [1 + d(x, Tx)]
[1 + d(Tx, Sy)] [1 + d(x, y)] ,

thus, the inequality (2.11 ) holds.

Case 2.3. x = 7, y = 7, we can get d(Tx, Sy) = 1
2 , then

1
2 ≤ 13

= 1
2 × 26 + 1

4 × 0

= a1
d(x, Tx)d(y, Sy)
1 + d(Tx, Sy) + a2

d(x, y)d(y, Sy) [1 + d(x, Tx)]
[1 + d(Tx, Sy)] [1 + d(x, y)] ,

thus, the inequality (2.11 ) holds.

Therefore, we showed that the condition (2.11 ) is satisfied in all cases. Thus we can

apply theorem 2.8, then T and S have a unique common fixed point x = 1.
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Theorem 2.9 Let (X, d) be a complete metric space and T, S : X → X be two mappings

on X satisfying the condition

d(Tx, Sy) ≤ d(x, Tx)d(x, Sy) + d(y, Sy)d(y, Tx)
1 + d(x, Sy) + d(y, Tx)

d(x, y)
d(x, Tx) + 1 , (2.16)

for all, x, y ∈ X. Then T and S have a unique common fixed point.

Proof. The proof is similar to that of Theorem 2.8.

2.4 Rational type contractions for a single maps in b-metric
space

Let us briefly recall some of the results obtained in [33, 64, 65] concerning fixed point

theorems in b-metric space with rational type contractions for a single maps.

Theorem 2.10 [33] Let (X, db) be a complete b-metric space with coefficient s ≥ 1 and

T : X → X be a mapping such that

db(Tx, Ty) ≤λ1db(x, y) + λ2
db(x, Tx)db(y, Ty)

1 + db(x, y) + λ3
db(x, Ty)db(y, Tx)

1 + db(x, y)

+ λ4
db(x, Tx)db(x, Ty)

1 + db(x, y) + λ5
db(y, Ty)db(y, Tx)

1 + db(x, y) ,

(2.17)

where λ1, λ2, λ3, λ4 and λ5 are nonnegative constants with λ1+λ2+λ3+sλ4+sλ5 < 1. Then

T has a unique fixed point in X.Moreover, for x ∈ X, the iterative sequence {T nx} (n ∈ N)

converges to the fixed point.

Example 2.3 Let X = C[0, 1] be a set of all real valued continuous functions on [0, 1].

Define db : X ×X → R+ by:

db(x, y) = max
t∈[0,1]

|x(t)− y(t)|2 ,

for all x, y ∈ X. Therefore, (X, db, s = 2) is a complete b-metric space.

The following problem :

x(t) = 1 + 1
2

∫ π
4

0
sec2(t)x(τ)dτ. (2.18)
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The exact solution of integral equation (2.18) is

x(t) = 1 + π

4 sec2(t).

Customize k(t, τ, x) = sec2(t)x(τ), g(t) = 1 and λ = 1
2 in Theorem 1.14 (Chap 1). Not

that:

1. k and g are continuous functions. For τ ∈ [0, π4 ], we have

|k(t, τ, x)− k(t, τ, y)|2 =
∣∣∣sec2(t)x(τ)− sec2(t)y(τ)

∣∣∣2
= sec4(t) |x(τ)− y(τ)|2

≤ sec4(t) max
τ∈[0,π4 ]

|x(τ)− y(τ)|2

= ψ(t, τ)db(x, y),

with ψ(t, τ) = sec4 t and

M(x, y) =λ1db(x, y) + λ2
db(x, Tx)db(y, Ty)

1 + db(x, y) + λ3
db(x, Ty)db(y, Tx)

1 + db(x, y)

+ λ4
db(x, Tx)db(x, Ty)

1 + db(x, y) + λ5
db(y, Ty)db(y, Tx)

1 + db(x, y) ,

where λ1 = 7
8 , λ2 + λ3 + λ4 + λ5 = 0, it means that λ1 + λ2 + λ3 + 2λ4 + 2λ5 < 1.

2. ψ(t, τ) = sec4(t), there exists c = 7
2 ≥ 0, such that

max
t∈[0,π4 ]

∫ π
4

0
ψ(t, τ)dτ = max

t∈[0,π4 ]

∫ π
4

0
sec4(t)dτ

= max
t∈[0,π4 ]

sec4(t)π4
= π

< 14π = c
π
4
.

3. |λ|2c = 1
4 ×

7
2 < 1.

Therefore, the conditions of Theorem 2.10 are justified, hence the mapping T has a unique

fixed point in C[0, 1], with is the unique solution of problem (2.18) .
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Theorem 2.11 (See [64] Corollary 3.2)

Let (X, d) be a complete b-metric space with a constant s ≥ 1 and T : X → X be a

mappings on X. Suppose that a1, a2 are nonnegative reals with a1 <
1
s
, a1 + a2 ≤ 2

2+s such

that the inequality

sdb(Tx, Ty) ≤ a1db(x, y) + a2
db(x, Tx)db(y, Ty)

1 + db(Tx, Ty) , (2.19)

holds for each x, y ∈ X. Then T has a unique fixed point.

The following results appeared in [65].

Lemma 2.1 [65] Let (X, db) be a complete b-metric space and T : X → X. Tet x0 ∈ X

and define the sequence {xn} by

Txn = xn+1 ∀ n = 0, 1, 2, . . .

Let there exists a mapping λ : X×X → [0, 1) satisfying λ(Tx, y) ≤ λ(x, y) and λ(x, Ty) ≤

λ(x, y), for all x, y ∈ X. Then λ (xn, y) ≤ λ (x0, y) and λ (x, xn+1) ≤ λ (x, x1) for all

x, y ∈ X and n = 0, 1, 2, . . .

Theorem 2.12 [65] Let (X, db) be a complete b-metric space and λi : X×X → [0, 1), i =

1, 2, . . . , 6. If T : X → X be a self-map such that for all x, y ∈ X the following conditions

are satisfied:

(i) λi(Tx, y) ≤ λi(x, y) and λi(x, Ty) ≤ λi(x, y)

(ii)

db(Tx, Ty) ≤ λ1(x, y)db(x, y) + λ2(x, y) [db(x, Ty) + db(y, Tx)]
s

+ λ3(x, y)[db(x, Tx) + db(y, Ty)] + λ4(x, y)db(y, Ty)[1 + db(x, Tx)]
1 + db(x, y)

+ λ5(x, y)db(x, Ty)db(x, Tx)
s[1 + db(x, y)] + λ6(x, y) db(x, Ty)db(y, Tx)

s[1 + db(x, y)db(y, Tx)] ,

where λ2(x, y) +λ3(x, y) +λ5(x, y) + s
∑6
i=1 λi(x, y) < 1, with 0 ≤ ∑6

i=1 λi(x, y) < 1.
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Then the mapping T has a unique fixed point in X.

Theorem 2.13 [65] Let (X, db) be a complete b-metric space with s ≥ 1 and λi : X×X →

[0, 1), i = 1, 2, . . . , 5. If T : X → X be a self-map such that for all x, y ∈ X the following

conditions are satisfied:

(i) λi(Tx, y) ≤ λi(x, y) and λi(x, Ty) ≤ λi(x, y);

(ii)

db(Tx, Ty) ≤λ1(x, y)db(x, y) + λ2(x, y)db(x, Tx)[db(x, Ty) + db(y, Ty)]
s[1 + db(x, y)]

+ λ3(x, y)db(y, Tx)[db(x, Ty) + db(y, Ty)]
s[1 + db(x, y)]

+ λ4(x, y)db(y, Ty)[db(x, Tx) + db(y, Tx)]
s[1 + db(x, y)]

+ λ5(x, y)db(x, Ty)[db(x, Tx) + db(y, Tx)]
s[1 + db(x, y)] ;

where ∑5
i=2 λi(x, y) + s

∑5
i=1 λi(x, y) + 1

s
[λ2(x, y) + λ4(x, y)] < 1, with 0 ≤ ∑5

i=1 λi(x, y) <

1. Then the mapping T has a unique fixed point in X.

Remark 2.1 :

(1) In Theorem 2.11, if s = 1 and λi = 0, for i = 2, 3, 4, 5, we get the Banach Theorem

[7].

(2) In Theorem 2.10, if s = 1 and λi = 0, for i = 2, 3, 4, 5, we get the Banach Theorem

[7].

(4) In Theorem 2.12, if s = 1 and λi(., .) = 0, for i = 2, 3, 5, 6, λj(., .) = λ for j = 1, 4,

we get the Theorem 2.3 (result of Dass and Gupta [19]).

(5) In Theorem 2.12, if s = 1 and λi(., .) = 0, for i = 1, 3, 4, 5, 6, λ2(., .) = λ, we get

the Chatterjia Theorem [14].

(6) In Theorem 2.12, if s = 1 and λi(., .) = 0, for i = 1, 2, 4, 5, 6, λ3(., .) = λ, we get

the Kannan Theorem [39].
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Chapter 3

Some fixed point theorems of
rational type contraction in b-metric

spaces

In this chapter, we make it a generalization of some common fixed point theorems in

b-metric space for a pair of self-maps. This work was published in [46].

3.1 Rational type contractions for a pair maps in b-metric space

Xie et all [64] have shown that, the common fixed point in b-metric space written as:

Theorem 3.1 [64] Let (X, d) be a complete b-metric space with a constant s ≥ 1 and

T, S : X → X be two mappings on X. Suppose that a1, a2 are nonnegative reals with

a1 <
1
s
, a1 + a2 ≤ 2

2+s such that the inequality

sdb(T nx, Smy) ≤ a1db(x, y) + a2
db(x, T nx)db(y, Smy)

1 + db(T nx, Smy) , (3.1)
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holds for each x, y ∈ X. Suppose that T or S is continuous. Then T and S have a unique

common fixed point.

Now, we get the special cases of Theorem 3.1 as following:

Theorem 3.2 [64] Let (X, db) be a complete b-metric space with a constant s ≥ 1 and

T, S : X → X be two mappings on X. Suppose that a1, a2 are nonnegative reals with

a1 <
1
s
, a1 + a2 ≤ 2

2+s such that the inequality

sdb(Tx, Sy) ≤ a1db(x, y) + a2
db(x, Tx)db(y, Sy)

1 + db(Tx, Sy) , (3.2)

holds for each x, y ∈ X. Then T and S have a unique common fixed point.

Remark 3.1 In Theorem 3.2, if S = T , we get the Theorem 2.11.

We now give our work, the first result published in [46] as following:

Theorem 3.3 Let (X, db) be a complete b-metric space with a coefficient s ≥ 1, and

T, S : X → X be two mappings on X satisfying the condition

db(Tx, Sy) ≤ a1db(x, y) + a2
db(x, Tx)db(x, Sy) + db(y, Sy)db(y, Tx)

db(x, Sy) + db(y, Tx) , (3.3)

for all x , y in X and a1, a2 ≥ 0, db(x, Sy) + db(y, Tx) 6= 0 with a1 + a2 < 1. Then T

and S have a unique common fixed point.

Proof. For any arbitrary point, x0 ∈ X. Define sequence {xn} in X such that

x2n+1 = Tx2n, x2n+2 = Sx2n+1, for all n ∈ N. (3.4)

Suppose that there is some n ∈ N such that xn = xn+1, we have the following cases to be

considered.
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Case 1. if n = 2k, then x2k = x2k+1 and from the condition (3.3) with x = x2k and

y = x2k+1, we have

db (x2k+1, x2k+2) = db (Tx2k, Sx2k+1)

≤ a1db (x2k, x2k+1) + a2
db (x2k, Tx2k) db (x2k, Sx2k+1) + db (x2k+1, Sx2k+1) db (x2k+1, Tx2k)

db (x2k, Sx2k+1) + db (x2k+1, Tx2k)

= a1db (x2k, x2k+1) + a2
db (x2k, x2k+1) db (x2k, x2k+2) + db (x2k+1, x2k+2) db (x2k+1, x2k+1)

db (x2k, x2k+2) + db (x2k+1, x2k+1)
= 0.

We know that db (x2k+1, x2k+2) = 0, imply that x2k+1 = x2k+2. Thus, we have x2k =

x2k+1 = x2k+2. By (3.4), it means x2k = Tx2k = Sx2k, that is, x2k is a common fixed point

of T and S.

Case 2. if n = 2k + 1, then x2k+1 = x2k+2 and from the condition (3.3) with x = x2k+1

and y = x2k+2, we have

db (x2k+2, x2k+3) = db (Tx2k+1, Sx2k+2)

≤ a1db (x2k+1, x2k+2) + a2
db (x2k+1, Tx2k+1) db (x2k+1, Sx2k+2) + db (x2k+2, Sx2k+2) db (x2k+2, Tx2k+1)

db (x2k+1, Sx2k+2) + db (x2k+2, Tx2k+1)

= a1db (x2k+1, x2k+2) + a2
db (x2k+1, x2k+2) db (x2k+1, x2k+3) + db (x2k+2, x2k+3) db (x2k+2, x2k+2)

db (x2k+1, x2k+3) + db (x2k+2, x2k+2)
= 0.

We have db (x2k+2, x2k+3) = 0. Hence x2k+2 = x2k+3. Thus, we have x2k+1 = x2k+2 = x2k+3.

By (3.4), it means x2k+1 = Tx2k+1 = Sx2k+1, that is, x2k+1 is a common fixed point of T

and S.

From now on, we suppose that xn 6= xn+1 for all n ∈ N.

The proof has been divided in 3 steps.

Step 1: We will show that

db (xn, xn+1) ≤ (a1 + a2)db (xn−1, xn) , for all n ∈ N. (3.5)

There are two cases which we have to consider.

Case 1. n = 2k + 1, k ∈ N.
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From the condition (3.3) with x = x2k and y = x2k+1, we have

db (x2k+1, x2k+2) = db (Tx2k, Sx2k+1)

≤ a1db (x2k, x2k+1) + a2
db (x2k, Tx2k) db (x2k, Sx2k+1) + db (x2k+1, Sx2k+1) db (x2k+1, Tx2k)

db (x2k, Sx2k+1) + db (x2k+1, Tx2k)

≤ a1.db (x2k, x2k+1) + a2
db (x2k, x2k+1) db (x2k, x2k+2) + db (x2k+1, x2k+2) db (x2k+1, x2k+1)

db (x2k, x2k+2) + db (x2k+1, x2k+1)

= a1db (x2k, x2k+1) + a2
db (x2k, x2k+1) db (x2k, x2k+2)

db (x2k, x2k+2)
= (a1 + a2)db (x2k, x2k+1) .

Thus we obtain that

db (xn, xn+1) ≤ (a1 + a2)db (xn−1, xn) , n = 2k + 1, k ∈ N. (3.6)

Case 2. n = 2k, k ∈ N. From the condition (3.3) with x = x2k−1 and y = x2k, we have

db (x2k, x2k+1) = db (Tx2k−1, Sx2k)

≤ a1db (x2k−1, x2k) + a2
db (x2k−1, Tx2k) db (x2k−1, Sx2k) + db (x2k, Sx2k) db (x2k, Tx2k−1)

db (x2k−1, Sx2k) + db (x2k, Tx2k−1)

≤ a1db (x2k−1, x2k) + a2
db (x2k−1, x2k) db (x2k−1, x2k+1) + db (x2k, x2k+1) db (x2k, x2k)

db (x2k−1, x2k+1) + db (x2k, x2k)

= a1db (x2k−1, x2k) + a2
db (x2k−1, x2k) db (x2k−1, x2k+1)

db (x2k−1, x2k+1)
= (a1 + a2)db (x2k−1, x2k) .

Thus we obtain that

db (xn, xn+1) ≤ (a1 + a2)db (xn−1, xn) , n = 2k, k ∈ N. (3.7)

From (3.6) and (3.7), we can conclude that

db (xn, xn+1) ≤ (a1 + a2)db (xn−1, xn) , for all n ∈ N. (3.8)

Thus we obtain that (3.5) holds.

Since a1 + a2 < 1, and it follows from Lemma 1.2 (Chap 1), we can say that {xn} is a

Cauchy sequence in (X, db). Since (X, db) is a complete b-metric space, {xn} converges to

some u ∈ X as n −→ +∞.

Step 2: We will prove that Tu = Su = u.
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Using the triangular inequality and (3.3), we get

db(u, Tu) ≤ s[db(u, x2n+2) + db(x2n+2, Tu)]

= sdb(u, x2n+2) + sdb(Tu, Sx2n+1)

≤ sdb(u, x2n+2) + sa1db(u, x2n+2)

+ sa2
db (u, Tu) db (u, Sx2n+1) + db (x2n+1, Sx2k+1) db (x2n+1, Tu)

db (u, Sx2n+1) + db (x2n+1, Tu)
= sdb(u, x2n+2) + sa1db(u, x2n+2)

+ sa2
db (u, Tu) db (u, x2n+2) + db (x2n+1, x2n+2) db (x2n+1, Tu)

db (u, x2n+2) + db (x2n+1, Tu) .

Then passing to the limit as n→ +∞, we obtain that

db(u, Tu) ≤ 0,

hence db(u, Tu) = 0 implies that Tu = u.

Similarly, by the b-triangular inequality and (3.3), we have

db(u, Su) ≤ s[db(u, x2n+1) + db(x2n+1, Su)]

= sdb(u, x2n+1) + sdb(Tx2n, Su)

≤ sdb(u, x2n+1) + sa1db(u, x2n)

+ sa2
db (x2n, Tx2n) db (x2n, Su) + db (u, Su) db (u, Tx2n)

db (x2n, Su) + db (u, Tx2n)
= sdb(u, x2n+1) + sa1db(u, x2n)

+ sa2
db (x2n, x2n+1) db (x2n, Su) + db (u, Su) db (u, x2n+1)

db (x2n, Su) + db (u, x2n+1) .

Taking the limit as n→ +∞, we obtain

db(u, Su) ≤ 0,

hence Su = u, thus u is a common fixed point of T and S.

Step 3: We will prove that T and S have a unique common fixed point.

Suppose now that u and v are different common fixed points of T and S, then from (3.3),

we have
db(u, v) = db(Tu, Sv)

≤ a1db(u, v) + a2
db(u, Tu).db(u, Sv) + db(v, Sv)db(v, Tu)

db(u, Sv) + db(v, Tu)
= a1db(u, v).
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Since a1 < 1, we have db(u, v) = 0.

Thus, we proved that T and S have a unique common fixed point in X.

Our second result published in [46] is the following.

Theorem 3.4 Let (X, db) be a complete b-metric space with a coefficient s ≥ 1, and

T, S : X → X be two mappings on X satisfying the condition

db(Tx, Sy) ≤ a1db(x, y) + a2
db(y, Sy)[1 + db(x, Tx)]

1 + db(x, y)

+ a3
db(y, Sy) + db(y, Tx)
1 + db(y, Sy)db(y, Tx) ,

(3.9)

for all x, y ∈ X, where a1, a2, a3 ≥ 0, and s(a1 + a2 + a3) < 1. Then T and S have a

unique common fixed point.

Proof. Let x0 be arbitrary in X, we define a sequence {xn} in X such that

x2n+1 = Tx2n, x2n+2 = Sx2n+1, for all n ∈ N. (3.10)

Suppose that there is some n ∈ N such that xn = xn+1.

There are tow cases which we have to consider.

Case 1. if n = 2k, then x2k = x2k+1 and from the condition (3.9) with x = x2k and

y = x2k+1, we have

db (x2k+1, x2k+2) = db (Tx2k, Sx2k+1)

≤ a1db(x2k, x2k+1) + a2
db(x2k+1, Sx2k+1)[1 + db(x2k, Tx2k)]

1 + db(x2k, x2k+1)

+ a3
db(x2k+1, Sx2k+1) + db(x2k+1, Tx2k)
1 + db(x2k+1, Sx2k+1)db(x2k+1, Tx2k)

= a1db(x2k, x2k+1) + a2
db(x2k+1, x2k+2)[1 + db(x2k, x2k+1)]

1 + db(x2k, x2k+1)

+ a3
db(x2k+1, x2k+2) + db(x2k+1, x2k+1)
1 + db(x2k+1, x2k+2)db(x2k+1, x2k+1) ,

then

(1− (a2 + a3))db (x2k+1, x2k+2) ≤ 0.
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Since 0 ≤ a2 + a3 < 1, we have db (x2k+1, x2k+2) = 0. Hence x2k+1 = x2k+2. Thus we have

x2k = x2k+1 = x2k+2. By (3.10), it means x2k = Tx2k = Sx2k, that is, x2k is a common

fixed point of T and S.

Case 2. if n = 2k + 1, then x2k+1 = x2k+2 and from the condition (3.9) with x = x2k+1

and y = x2k+2, we have

db (x2k+2, x2k+3) = db (Tx2k+1, Sx2k+2)

≤ a1db(x2k+1, x2k+2) + a2
db(x2k+2, Sx2k+2)[1 + db(x2k+1, Tx2k+1)]

1 + db(x2k+1, x2k+2)

+ a3
db(x2k+2, Sx2k+2) + db(x2k+2, Tx2k+1)
1 + db(x2k+2, Sx2k+2)db(x2k+2, Tx2k+1)

= a1db(x2k+1, x2k+2) + a2
db(x2k+2, x2k+3)[1 + db(x2k+1, x2k+2)]

1 + db(x2k+1, x2k+2)

+ a3
db(x2k+2, x2k+3) + db(x2k+2, x2k+2)
1 + db(x2k+2, x2k+3)db(x2k+2, x2k+2) ,

then

(1− (a2 + a3))db (x2k+2, x2k+3) ≤ 0.

Then, because 0 ≤ a2 + a3 < 1, we have db (x2k+2, x2k+3) = 0. Hence x2k+2 = x2k+3. Thus

we have x2k+1 = x2k+2 = x2k+3. By (3.10), it means x2k+1 = Tx2k+1 = Sx2k+1, that is,

x2k+1 is a common fixed point of T and S.

From now on, we suppose that xn 6= xn+1 for all n ∈ N.

Step 1: We will show that

db (xn, xn+1) ≤ a1

1− (a2 + a3)db (xn−1, xn) , for all n ∈ N. (3.11)

There are two cases which we have to consider.

Case1. n = 2k + 1, k ∈ N.
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From the condition (3.9) with x = x2k and y = x2k+1, we have

db (x2k+1, x2k+2) = db (Tx2k, Sx2k+1)

≤ a1db(x2k, x2k+1) + a2
db(x2k+1, Sx2k+1)[1 + db(x2k, Tx2k)]

1 + db(x2k, x2k+1)

+ a3
db(x2k+1, Sx2k+1) + db(x2k+1, Tx2k)

1 + db(x2k+1, Sx2k+1).db(x2k+1, Tx2k)

= a1db(x2k, x2k+1) + a2
db(x2k+1, x2k+2)[1 + db(x2k, x2k+1)]

1 + db(x2k, x2k+1)

+ a3
db(x2k+1, x2k+2) + db(x2k+1, x2k+1)
1 + db(x2k+1, x2k+2)db(x2k+1, x2k+1)

= a1

1− (a2 + a3)db(x2k, x2k+1).

Thus we obtain that

db (xn, xn+1) ≤ a1

1− (a2 + a3)db (xn−1, xn) , n = 2k + 1, k ∈ N. (3.12)

Case 2. n = 2k, k ∈ N.

From the condition (3.9) with x = x2k−1 and y = x2k, we get

db (x2k, x2k+1) = db (Tx2k−1, Sx2k)

≤ a1db(x2k−1, x2k) + a2
db(x2k, Sx2k)[1 + db(x2k−1, Tx2k−1)]

1 + db(x2k−1, x2k)

+ a3
db(x2k, Sx2k) + db(x2k, Tx2k−1)
1 + db(x2k, Sx2k)db(x2k, Tx2k−1)

= a1db(x2k−1, x2k) + a2
db(x2k, x2k+1)[1 + db(x2k−1, x2k)]

1 + db(x2k−1, x2k)

+ a3
db(x2k, x2k+1) + db(x2k, x2k)
1 + db(x2k, x2k+1)db(x2k, x2k)

= a1

1− (a2 + a3)db(x2k−1, x2k).

Thus we obtain that

db (xn, xn+1) ≤ a1

1− (a2 + a3)db (xn−1, xn) , n = 2k, k ∈ N. (3.13)

From (3.12) and (3.13) it follows that

db (xn, xn+1) ≤ a1

1− (a2 + a3)db (xn−1, xn) , for all n ∈ N, (3.14)
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where h = a1
1−(a2+a3) with h < 1, because s(a1 + a2 + a3) < 1.

Thus we proved that (3.11) holds.

Then applying Lemma 1.2 (Chap 1), we deduce that {xn} is a Cauchy sequence in (X, db).

Since (X, db) is a complete b-metric space, {xn} converges to some u ∈ X as n −→ +∞.

Step 2: We will prove that Tu = Su = u.

By using the b-triangular inequality and (3.9), we have

db(u, Tu) ≤ s[db(u, x2n+2) + db(x2n+2, Tu)]

= sdb(u, x2n+2) + sdb(Tu, Sx2n+1)

≤ sdb(u, x2n+2) + sa1db(u, x2n+1) + sa2
db(x2n+1, Sx2n+1)[1 + db(u, Tu)]

1 + db(u, x2n+1)

+ sa3
db(x2n+1, Sx2n+1) + db(x2n+1, Tu)
1 + db(x2n+1, Sx2n+1)db(x2n+1, Tu) .

Then passing to the limit as n→ +∞, we obtain that

db(u, Tu) ≤ sa3db(u, Tu).

Since sa3 < 1, hence db(u, Tu) = 0, thus Tu = u.

Similarly, By using the b-triangular inequality and (3.9), we have

db(u, Su) ≤ s[db(u, x2n+1) + db(x2n+1, Su)]

= sdb(u, x2n+1) + sdb(Tx2n, Su)

≤ sdb(u, x2n+1) + sa1db(x2n, u) + sa2
db(u, Su)[1 + db(x2n, Tx2n)]

1 + db(x2n, u)

+ sa3
db(u, Su) + db(u, Tx2n)
1 + db(u, Su)db(u, Tx2n) .

Next passing to the limit as n→ +∞, we obtain that

db(u, Su) ≤ s(a2 + a3)db(u, Su).

Then, because s(a2 + a3) < 1, we obtain

db(u, Su) = 0,

consequently Su = u.

Thus u is a common fixed point of T andS.
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Step 3: We will prove that T and S have a unique common fixed point.

Suppose now that u and v are different common fixed points of T and S, by the condition

(3.9), we write
db(u, v) = db(Tu, Sv)

≤ a1db(u, v) + a2
db(v, Sv)[1 + db(u, Tu)]

1 + db(u, v) + a3
db(v, Sv) + db(v, Tu)
1 + db(v, Sv)db(v, Tu)

= (a1 + a3)db(u, v).

Since 0 < a1 + a3 < 1, we have db(u, v) = 0.

Thus, we proved that T and S have a unique common fixed point in X.

For the validity of Theorem 3.4, we construct the following example.

Example 3.1 Let X = {0, 1, 2} and let db : X ×X → [0,+∞) be a mapping satisfies the

following condition for all x, y ∈ X :

1. db(x, y) = 0, where x = y.

2. db(0, 1) = db(1, 0) = 1
4 , db(0, 2) = db(2, 0) = 1

8 , db(1, 2) = db(2, 1) = 1
2 .

Then, (X, db) is a complete b-metric space with coefficient s = 4
3 > 1. Consider mappings

T, S : X → X, define by
T (0) = 0, T (1) = 0, T (2) = 0,

S(0) = 0, S (1) = 2, S (2) = 0.
Let a1 = 1

2 , a2 = 1
16 and a3 = 1

8 clearly, a1 + a2 + a3 = 11
16 < 1. Next, we will verify the

condition (3.9 ). It have the following cases to be considered.

Case 1. db(Tx, Sy) = 0, the inequality (3.9 ) holds.

Case 2. db(Tx, Sy) 6= 0, we have the following three cases to be considered.

Case 2.1. x = 0, y = 1, we can get db(Tx, Sy) = 1
8 , then

1
8 ≤

7
30

= 1
2 ×

1
4 + 1

16 ×
2
5 + 1

8 ×
2
3

= a1db(x, y) + a2
db(y, Sy)[1 + db(x, Tx)]

1 + db(x, y)

+ a3
db(y, Sy) + db(y, Tx)
1 + db(y, Sy)db(y, Tx) ,
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thus, the inequality (3.9 ) holds.

Case 2.2. x = 1, y = 1, we can get db(Tx, Sy) = 1
8 , then

1
8 ≤

37
128 = 1

2 × 0 + 1
16 ×

5
8 + 1

8 ×
2
3

= a1db(x, y) + a2
db(y, Sy)[1 + db(x, Tx)]

1 + db(x, y)

+ a3
db(y, Sy) + db(y, Tx)
1 + db(y, Sy)db(y, Tx) ,

thus, the inequality (3.9 ) holds.

Case 2.3. x = 2, y = 1, we can get db(Tx, Sy) = 1
8 , then

1
8 = 137

384 ≤
1
2 ×

1
2 + 1

16 ×
3
8 + 1

8 ×
2
3

= a1db(x, y) + a2
db(y, Sy)[1 + db(x, Tx)]

1 + db(x, y)

+ a3
db(y, Sy) + db(y, Tx)
1 + db(y, Sy)db(y, Tx) ,

thus, the inequality (3.9 ) holds.

Therefore, we showed that the condition (3.9 ) is satisfied in all cases. Thus we can apply

our theorem 3.4, then T and S have a unique common fixed point x = 0.

Next, we will present our third and final result1 in this section, which is to find a fixed

point for rational contractive type condition of a single map in b-metric space as follows:

Theorem 3.5 Let (X, db) be a complete b-metric space with a constant s ≥ 1 and

f : X → X be a mapping on X. Suppose that a1, a2, a3 are nonnegative reals with

a1 + a3 < 1, a1 + a2

s− a3
< 1 such that the inequality

sdb(fx, fy) ≤ a1db(x, y) + a2
db(x, fx)db(y, fy)

1 + db(fx, fy) + a3db(fx, fy), (3.15)

holds for each x, y ∈ X. Then f has a unique fixed point.

1This result published in [46]
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Proof. Starting from an arbitrary point x0 ∈ X, we define a sequence {xn} in X such

that

xn+1 = fxn, for all n ∈ N. (3.16)

From the condition (3.15) with x = xn and y = xn−1, Therefore

sdb (xn+1, xn) = sdb (fxn, fxn−1)

≤ a1db (xn, xn−1) + a2
db (xn, fxn) db (xn−1, fxn−1)

1 + db (fxn, fxn−1) + a3db (fxn, fxn−1)

= a1db (xn, xn−1) + a2
db (xn, xn+1) db (xn−1, xn)

1 + db (xn+1, xn) + a3db (xn+1, xn)

≤ a1db (xn, xn−1) + a2
db (xn, xn+1) db (xn−1, xn)

db (xn+1, xn) + a3db (xn+1, xn)

then

db (xn+1, xn) ≤ (a1 + a2)
s− a3

db (xn−1, xn) , for all n ∈ N.

Applying the Lemma 1.2 we can say that {xn} is a Cauchy sequence in (X, db). Since

(X, db) is a complete b-metric space, then {xn} converges to some u ∈ X as n −→ +∞.

We will prove that fu = u.

Again by triangle inequality and (3.15) , we have

db(u, fu)≤ s [db (u, xn+1) + db (xn+1, fu)]

= s [db (u, xn+1) + db (fu, fxn)]

≤ sdb (u, xn+1) + a1db (u, xn) + a2
db(xn, fxn)db (u, fu)

1 + db (fxn, fu) + a3db (fu, fxn) .

Passing to the limit as n −→ +∞, we get

(1− a3)db(u, fu) ≤ 0,

since 0 < a3 < 1, then

db(u, fu) ≤ 0,

which is a contradiction, so db(u, fu) = 0. Hence, fu = u, thus u is fixed point of f .

We will prove that f have a unique fixed point.
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Suppose now that u and v are different fixed points of f , then from (3.15), it follows that

sdb(u, v) = sdb(fu, fv) ≤ a1db(u, v) + a2
db(u, fu)db(v, fv)

1 + db(fu, fv) + a3db(fu, fv)

= a1db(u, v) + a2
db(u, u)db(v, v)

1 + db(u, v) + a3db(u, v)

= (a1 + a3)db(u, v).

Then, because a1 + a3 is nonnegative reals with a1 + a3 < 1, then we have db(u, v) = 0.

Thus, we proved that f have a unique fixed point in X.

Example 3.2 Let X = {α, β, γ}, where α 6= β 6= γ are reals numbers and let db :

X ×X → [0,+∞) be a mapping satisfies the following condition for all x, y ∈ X :

1. db(x, y) = 0, where x = y,

2. db(α, β) = db(β, α) = 1, db(α, γ) = db(γ, α) = 10, db(β, γ) = db(γ, β) = 8.

It is easy to check that db is a b-metric with s = 10
9 . Consider mapping f : X → X, by

f(α) = f(β) = α, f(γ) = β.

Let a1 = 1
2 , a2 = 1

20 , a3 = 1
4 , clearly, a1 + a3 = 3

4 < 1 and a1 + a2

s− a3
= 396

620 < 1. Next, we

will verify the condition (3.15 ). It have the following cases to be considered.

Case 1. db(fx, fy) = 0, the inequality (3.15 ) holds.

Case 2. db(fx, fy) = 1, that is fx = α, fy = β or fx = β, fy = α.

When fx = α, fy = β, we have the following two cases to considered.

Case 2.1. x = α, y = γ, we can get db(x, y) = 10, then

9
10 × 1 < 5

= 1
2 × 10 = a1db(x, y)

≤ a1db(x, y) + a2
db(x, fx)db(y, fy)

1 + db(fx, fy) + a3db(fx, fy),
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thus, the inequality (3.15 ) holds.

Case 2.2. x = β, y = γ, we can get db(x, y) = 8, then
10
9 × 1 < 4

= 1
2 × 8 = a1db(x, y)

≤ a1db(x, y) + a2
db(x, fx)db(y, fy)

1 + db(fx, fy) + a3db(fx, fy),

thus, the inequality (3.15 ) holds.

When fx = β, fy = α, we have the following two cases to considered

Case 2.3. x = γ, y = α, we can get db(x, y) = 10, then
10
9 × 1 < 5

= 1
2 × 10 = a1db(x, y)

≤ a1db(x, y) + a2
db(x, fx)db(y, fy)

1 + db(fx, fy) + a3db(fx, fy),

thus, the inequality (3.15 ) holds.

Case 2.4. x = γ, y = β, we can get db(x, y) = 8, then
10
9 × 1 < 4

= 1
2 × 8 = a1db(x, y)

≤ a1db(x, y) + a2
db(x, fx)db(y, fy)

1 + db(fx, fy) + a3db(fx, fy),

thus, the inequality (3.15 ) holds.

Therefore, we showed that the condition (3.15 ) is satisfied in all cases. Thus we can

apply our theorem (3.5) and f has a unique fixed point x = α .

Example 3.3 Let X = [0, 1] be equipped with the b-metric db(x, y) = |x − y|2 for all

x, y ∈ X.

Then (X, db) is a b-metric space with parameter s = 2 and it is complete.

Let f : X −→ X be defined as

f(x) = x

η
, x ∈ [0, 1], η > 3.
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Then for x, y ∈ X ,

2db(fx, fy) = 2db
(
x

5 ,
y

5

)
= 2
η2 |x− y|

2

≤ 2
η2db(x, y) + 4

η2
db(x, fx)db(y, fy)

1 + db(fx, fy) + 2
η
db(fx, fy).

Clearly, a1 + a3 = 2
η2 + 2

η
< 1 and a1 + a2 + a3 = 2

η2 + 4
η2 + 2

η
< 2 = s.

We conclude that inequality (3.15) remains valid by an application of theorem 3.5, f has

a unique fixed point. It is seen that 0 is the unique fixed point of f .

Remark 3.2 By choosing :

1. T = S in Theorem 3.3, we get Theorem 3.2 of Sarwar and Rahman [59].

2. T = S in Theorem 3.4, we deduce Theorem 3.3 of Sarwar and Rahman [59].

3. T = S, a2 = 0 and s = 1, in Theorem 3.3 is the result of Banach [7].

4. T = S, a3 = 0 and s = 1, in Theorem 3.4, we get Theorem 2.3 (result of Dass and

Gupta).

5. a3 = 0, in Theorem 3.5, we get Corollary 3.2 of [64].

3.2 Application to nonlinear integral equations

The solutions of integral equations have a major role in the fields of science and engineer-

ing, therefore, many applications and methods have been developed for solving some of

them (see [13], [48], [49]).

Let X = C[a, b] be a set of all real valued continuous functions on [a, b], where [a, b] is

a closed and bounded interval in R. For p > 1 a real number, define d : X ×X → R+ by:

db(x, y) = max
t∈[a,b]

|x(t)− y(t)|p ,
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for all x, y ∈ X. Therefore, (X, d, s = 2p−1) is a complete b-metric space. In this section,

we apply theorem 3.5 to establish the existence uniqueness of solution of nonlinear integral

equation of Fredholm type defined by:

x(t) = g(t) + λ

b∫
a

k(t, τ, x(τ))dτ, (3.17)

where x ∈ C[a, b] is the unknown function, λ ∈ R, t, τ ∈ [a, b], k : [a, b]× [a, b]×R→ R

and g : [a, b]→ R are given continuous functions.

Theorem 3.6 We will make the following assumptions:

(i) There exists a continuous function ψ : [a, b]×[a, b]→ R+ such that for all x, y ∈ X,

λ ∈ R and t, τ ∈ [a, b], we get

|k(t, τ, x)− k(t, τ, y)|p ≤ ψ(t, τ)M(x, y),

where

M(x, y) = a1db(x, y) + a2
db(x, fx)db(y, fy)

1 + db(fx, fy) + a3db(fx, fy).

(ii) |λ| ≤ 1,

(iii)

max
t∈[a,b]

b∫
a

ψ(t, τ)dτ ≤ 1
s(b− a)p−1 .

Then, the integral equation (3.17) has a solution z ∈ C[a, b].

Proof. Define a mapping f : X → X by:

fx(t) = g(t) + λ

b∫
a

k(t, τ, x)dτ,

for all t ∈ [a, b]. So, the existence of a solution of (3.17) is equivalent to the existence and

uniqueness of fixed point of f . Let q ∈ R such that 1
p

+ 1
q

= 1.
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Using the Holder2 inequality (1.3), (i), (ii) and (iii), we have

db(fx, fy) = max
t∈[a,b]

|fx(t)− fy(t)|p

≤ |λ|p max
t∈[a,b]

 b∫
a

|(k(t, τ, x(τ))− k(t, τ, y(τ)))| dτ
p

≤ max
t∈[a,b]


 b∫
a

1qdτ


1
q
 b∫
a

|(k(t, τ, x(τ))− k(t, τ, y(τ)))|p dτ


1
p


p

≤ (b− a)
p
q max
t∈[a,b]

 b∫
a

|(k(t, τ, x(τ))− k(t, τ, y(τ)))|p dτ


≤ (b− a)p−1 max
t∈[a,b]

 b∫
a

ψ(t, τ)dτM(x, y)


≤ (b− a)p−1 max
t∈[a,b]

 b∫
a

ψ(t, τ)dτ
M(x, y)

≤ 1
s
M(x, y).

Thus

sdb(fx, fy) ≤ a1db(x, y) + a2
db(x, fx)db(y, fy)

1 + db(fx, fy) + a3db(fx, fy).

Hence, all the conditions of theorem 3.5 hold. Consequently, the integral equation

(3.17) has a solution z ∈ C[a, b].

Example 3.4 Let X = C[0, 1] be a set of all real valued continuous functions on [0, 1].

Define db : X ×X → R+ by:

db(x, y) = max
t∈[0,1]

|x(t)− y(t)|2 ,

for all x, y ∈ X. Therefore, (X, db, s = 2) is a complete b-metric space.

The following problem :

x(t) = exp(t)− t

4 + 1
2

∫ 1

0

tτ

2 x(τ)dτ. (3.18)

2Otto Ludwig Holder (December 22, 1859 – August 29, 1937) was a German mathematician born in
Stuttgart.
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Firstly, the solution of integral equation (3.18) is

x(t) = exp(t),

this solution can be verified easily.

Customize k(t, τ, x) = tτ
2 x(τ), g(t) = − t

4 and λ = 1
2 in Theorem 3.6. Not that:

1. k and g are continuous functions.

2. |λ|= |12 |< 1.

3. ψ(t, τ) = (tτ)2, then

max
t∈[0,1]

∫ 1

0
ψ(t, τ)dτ = max

t∈[0,1]

∫ 1

0
(tτ)2dτ

= 1
3 max
t∈[0,1]

t2

= 1
3

<
1
2 = 1

s
.

4. For τ ∈ [0, 1], we have

|k(t, τ, x)− k(t, τ, y)|2 =
∣∣∣∣tτ2 x(τ)− tτ

2 y(τ)
∣∣∣∣2

= 1
4(tτ)2 |x(τ)− y(τ)|2

≤ 1
4(tτ)2 max

τ∈[0,1]
|x(τ)− y(τ)|2

= 1
4ψ(t, τ)db(x, y),

with ψ(t, τ) = (tτ)2 and

M(x, y) = a1db(x, y) + a2
db(x, fx)db(y, fy)

1 + db(fx, fy) + a3db(fx, fy),

where a1 = 1
4 , a2 = a3 = 0, it means that a1 + a2

2− a3
< 1.

Therefore, the conditions of Theorem 3.5 are justified, hence the mapping T has a

unique fixed point in C[0, 1], with is the unique solution of problem (3.18) .
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Chapter 4

Fixed point theorems for
multi-valued mappings

This chapter is concerned with the fixed points for multi-valued mappings, we reviewed

the results presented in [42], [52] and [57] in the setting of metric space, We then extended

these results in the setting of b-metric space.

4.1 Basic definitions and proprieties

The aim of this section is to introduce the basic concepts, notations, and elementary

results for multi-valued mappings that are used throughout the chapter. Moreover, the

results in this section may be found in [2, 23, 25, 38, 42, 52].

Definition 4.1 Let CB(X) denote the set of nonempty closed bounded subsets of X.

More precisely

CB(X) = {A : A is a nonempty closed and bounded subset of X}.
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Let (X, d) be a metric space, x ∈ X and A,B be a tow subset of X. We defined the

following distances:

1. The distance between x and A, denoted by d(x,A) is defined as the smallest distance

from x to elements of A, written as:

d(x,A) = inf{d(x, a) : a ∈ A}.

By convention, d(x, ∅) = +∞. If on the contrary, A is not empty, then for all ε > 0,

there exists an element a ∈ A such that d(x, a) ≤ d(x,A) + ε.

2. The distance from A to B denoted D(A,B) is defined by:

D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.

Example 4.1 Let X = R, A = [2, 4] and B = [5, 6]. Then

D(A,B) = D([2, 4], [5, 6]) = inf{d(a, b) : a ∈ [2, 4], b ∈ [5, 6]} = d(4, 5) = 1.

4.1.1 δ Distance

Now, we will look at the δ distance, witch using in section 4.3.

Definition 4.2 Let (X, d) be a metric space and A,B ∈ CB(X), we define the δ distance

from A to B as follows:

δ(A,B) = sup{d(a,B) : a ∈ A}.

By convention, δ(∅, ∅) = +∞ and if B 6= ∅, we have δ(∅, B) = 0.

Example 4.2 Let X = R, A = [0, 5
2 ] and B = [3, 4]. Then

δ(A,B) = δ([0, 5
2], [3, 4]) = sup{d(a, [3, 4]) : a ∈ ([0, 5

2]} = d(0, 3) = 3,

δ(B,A) = δ([3, 4], [0, 5
2]) = sup{d(b, [0, 5

2]) : b ∈ ([3, 4]} = d(4, 5
2) = 3

2 .

Remark 4.1 We observe that, δ(A,B) 6= δ(B,A), imply that the δ distance is not sym-

metrical, so it is not a metric.
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4.1.2 Pompeiu–Hausdorff distance

The other notion of distance we will need is Hausdorff’s. Pompeiu1–Hausdorff 2 distance

between two sets A and B corresponds to the maximum between δ(A,B) and δ(B,A).

Definition 4.3 Let (X, d) be a metric space. Pompeiu–Hausdorff distance between two

sets A,B ∈ CB(X) is defined by:

H(A,B) = max{δ(A,B), δ(B,A)}. (4.1)

Note that (4.1) can be rewritten as follows:

H(A,B) = max{sup
a∈A

D(a,B), sup
b∈B

D(b, A)}. (4.2)

The metric H defined on CB(X) is called the Hausdorff distance, or Hausdorff metric,

also called Pompeiu–Hausdorff distance, in CB(X).

Example 4.3 Let X = R, A = [1
2 , 3] and B = [4, 5]. Then

δ(A,B) = δ([12 , 3], [4, 5]) = sup{d(a, [4, 5]) : a ∈ ([12 , 3]} = d(1
2 , 4) = 7

2 ,

δ(B,A) = δ([4, 5], [12 , 3]) = sup{d(b, [12 , 3]) : b ∈ ([4, 5]} = d(5, 3) = 2.

Hence

H(A,B) = H([12 , 3], [4, 5]) = max{δ([12 , 3], [4, 5]), δ([4, 5], [12 , 3])} = 2.

Remark 4.2 If A = {a} and B = {b}, then H(A,B) = d(a, b).

The metric H depends on the metric d. It is easy to see that the completeness of (X, d)

implies the completeness of (CB(X), H), for more detail see([61]).

Let us recall in the following proposition (from [17, 25, 20] ) some properties of D, δ

and H distances in b-metric space.
1Dimitrie D. Pompeiu (Romanian: 4 October [O.S. 22 September] 1873 – 8 October 1954) was a

Romanian mathematician, professor at the University of Bucharest, titular member of the Romanian
Academy, and President of the Chamber of Deputies.

2Felix Hausdorff (November 8, 1868 – January 26, 1942) was a German mathematician who is con-
sidered to be one of the founders of modern topology and who contributed significantly to set theory,
descriptive set theory, measure theory, and functional analysis.
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Proposition 4.4 Let (X, db) be a b-metric space. For any A,B,C ∈ CB(X) and any

x, y ∈ X, Then we have the following:

(1) db(x,B) ≤ db(x, b), for any b ∈ B,

(2) D(A,B) ≤ s [D(A,C) +D(C,B)],

(3) db(x,A) ≤ s[db(x, y) + db(y, A)],

(4) δ(A,B) = 0⇔ A ⊂ B,

(5) B ⊂ C ⇒ δ(A,C) ≤ δ(A,B),

(6) δ(A ∪B,C) = max{δ(A,C), δ(B,C)},

(7) δ(A,B) ≤ s [δ(A,C) + δ(C,B)],

(8) db(a,B) ≤ H(A,B), for any a ∈ A,

(9) H(A,C) ≤ s[H(A,B) +H(B,C)],

(10) δ(A,B) ≤ H(A,B),

(11) D(A,B) ≤ δ(A,B).

Proof.

(1) Let x ∈ X by the definition of db(x,B), we know that

db(x,B) = inf
b∈B

db(x, b) ≤ db(x, b), for any b ∈ B.

(2) Let a ∈ A, b ∈ B and c ∈ C, then

db(a, b) ≤ s [db(a, c) + db(c, b)] , for any c ∈ C,

passing to the infa∈A,b∈B, we have

inf
a∈A,b∈B

db(a, b) ≤ s
[
inf
a∈A

db(a, c) + inf
b∈B

db(c, b)
]

≤ s
[

inf
a∈A,c∈C

db(a, c) + inf
c∈C,b∈B

db(c, b)
]
, because c ∈ C is arbitrary.

59



4.1. BASIC DEFINITIONS AND PROPRIETIES CHAPTER 4. FPT & MVM

(3) Let x, y ∈ X, by b-triangular inequality can be written

db(x,A) ≤ db(x, a) ≤ s [db(x, y) + db(y, a)] , for any a ∈ A, y ∈ X

≤ s
[
db(x, y) + inf

a∈A
db(y, a)

]
= s[db(x, y) + db(y, A)].

(4) By the definition of δ, we have

δ(A,B) = 0⇔ sup
x∈A

db(x,B) = 0

⇔ db(x,B) = 0 for all x ∈ A.

Because B is closed in X,

db(x,B) = 0⇔ x ∈ B,

thus,

δ(A,B) = 0⇔ A ⊂ B.

(5) Observe that

B ⊂ C ⇒ db(x,C) ≤ db(x,B) for all x ∈ X.

(6) We know that

δ(A ∪B,C) = sup
x∈A∪B

db(x,C) = max
{

sup
x∈A

db(x,C), sup
x∈B

db(x,C)
}
.

(7) By the definition of δ, can be written

δ(A,B) = sup
a∈A

db(a,B)

≤ sup
a∈A

s [db(a, c) + db(c, B)] , for all c ∈ C, using (3)

≤ sup
a∈A

s

[
inf
c∈C

db(a, c) + sup
c∈C

db(c, B)
]
. Because c ∈ C is arbitrary

≤ s

[
sup
a∈A

db(a, C) + sup
c∈C

db(c, B)
]

= s [δ(A,C) + δ(C,B)] .

(8) Let a ∈ A
db(a,B) ≤ sup

a∈A
db(a,B), becauce b ∈ B is arbitrary

= δ(A,B)

≤ H(A,B), by number (10).
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(9) By the definition of H and using number (7), we obtain

H(A,B) = max{δ(A,B), δ(B,A)}

≤ max{s [δ(A,C) + δ(C,B)] , s [δ(B,C) + δ(C,A)]}

≤ max{s [δ(A,C), δ(C,A)]}+ max{s [δ(B,C), δ(C,B)]}

= s [H(A,C) +H(C,B)] .

(10) By the definition of δ, we know that

δ(A,B) = sup
a∈A

db(a,B)

≤
{

sup
a∈A

db(a,B), sup
b∈B

db(b, A)
}

= H(A,B).

(11) Directly from the definition of D, we get

D(A,B) = inf
a∈A

db(a,B)

≤ db(a,B), for all a ∈ A

≤ sup
a∈A

db(a,B)

= δ(A,B).

Lemma 4.1 [16] Let (X, db) be a b-metric space. Let A,B ∈ CB(X), Then, for each

ε > 0 and for all a ∈ A, there exists a b(a) ∈ B such that

db(a, b) ≤ H(A,B) + ε. (4.3)

Proof. Let ε > 0 and b ∈ B. Suppose that for every a ∈ A we have db(a, b) > H(A,B)+ε.

By the definition ofH and the above inequality, we haveH(A,B) ≥ db(a, b) > H(A,B)+ε,

which is a contradiction.
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Lemma 4.2 [16] Let (X, d)b be a b-metric space. Let A,B ∈ CB(X), Then, for each

k > 0 and for all a ∈ A, there exists a b(a) ∈ B such that

db(a, b) ≤ kH(A,B). (4.4)

Proof. Note that if H(A,B) = 0 then A = B and a ∈ B on the conclusion that the

inequality (4.4) is performed for b = a.

On the other hand, if H(A,B) > 0 in this case we choose ε for any k > 1 as follows:

ε = (k − 1)H(A,B) > 0. (4.5)

Applying Lemma 4.1 it becomes that for each (k− 1)H(A,B) > 0 it exists b(a) ∈ B such

that
db(a, b) ≤ H(A,B) + (k − 1)H(A,B)

= kH(A,B).
(4.6)

Lemma 4.3 [36] Let (X, db, s) be a b-metric space. For A ∈ CB(X) and x ∈ X, we have

d(x,A) = 0⇐⇒ x ∈ Ā = A,

where Ā denotes the closure of the set A.

Proposition 4.5 Let (X, db) be a b-metric space, then the function

H : CB(X)× CB(X) −→ R+ = [0,+∞),

is a b-metric on CB(X).

Proof. By the definition of H, we known that H(A,B) ≥ 0.

Observe that
H(A,B) = 0⇔ max{δ(A,B), δ(B,A)} = 0

⇔ δ(A,B) = 0 and δ(B,A) = 0

⇔ A ⊂ B and B ⊂ A

⇔ A = B.
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It is clearly that max{δ(A,B), δ(B,A)} = max{δ(B,A), δ(A,B)}, we conclude that

H(A,B) = H(B,A).

Furthermore, using Proposition 4.4 number (7), for every A,B,C ∈ CB(X), may be

written as
H(A,B) = max{δ(A,B), δ(B,A)}

≤ max{s [δ(A,C) + δ(C,B)] , s [δ(B,C) + δ(C,A)]}

≤ smax{δ(A,C), δ(C,A)}+ smax{δ(B,C), δ(C,B)}

= s [H(A,C) +H(C,B)] .

Proposition 4.6 Let (X, db) be a b-metric space, then D is a b-metric on CB(X).

Proof. It follows immediately from the definition of D that:

1.

D(A,B) ≥ 0.

2.
D(A,B) = 0⇔ inf

a∈A,b∈B
db(a, b) = 0

⇔ a = b,∀a ∈ A, b ∈ B becauce db is b-metric

⇔ A = B.

It is clearly that inf{db(a, b), a ∈ A, b ∈ B} = inf{db(b, a), b ∈ B}, a ∈ A, we

conclude that

D(A,B) = D(B,A).

3. Applying the Proposition 4.4 number (2), we have

D(A,B) ≤ s [D(A,C) +D(C,B)] .

Remark 4.3 If (X, db) is a complete b-metric space, then (CB(X), H) is also.
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4.1.3 Multi-valued mappings

Definition 4.7 A point of x0 ∈ X is said to be a fixed point of the multi-valued mappings

T : X −→ CB(X) if x0 ∈ Tx0.

Example 4.4 .

1. Let X = [0; 1] and let T defined by

Tx =
[0; 1

2 ], x 6= 1
4 ,

{1
4}, x = 1

4 .

2. Let X = [−1; 1] and let T defined by

Tx =


{−x}, x /∈ {−1, 0},
{0, 1}, x = −1,
{1}, x = 0.

Forward, we denote by F (T ) the set of all fixed points of a multi-valued mapping T ,

that is,

F (T ) = {p ∈ X : p ∈ Tp} .

4.2 Fixed point theorem for multi-valued mapping in metric
space

In this section, we present some fixed point of [42, 52] and [57]. Witch generalized in

section 4.3.

In 1969, Nadler [52] first presented a generalization of Banach fixed point theorem for a

multi-valued mapping in a complete metric space as following:

Theorem 4.8 [52] Let (X, d) be a complete metric space and let T is a multi- valued

contraction mapping from X into CB(X), then T has a fixed point.

In 2014, Khojasteh proved the following theorem.
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Theorem 4.9 [42] Let (X, d) be a complete metric space and let T be a multi- valued

mapping from X into CB(X). Let T satisfy the following:

H(Tx, Ty) ≤
(
D(x, Ty) +D(y, Tx)
δ(x, Tx) + δ(y, Ty) + 1

)
d(x, y),

for all x, y ∈ X. Then T has a fixed point u ∈ X.

Theorem 4.10 [57] Let (X, d) be a complete metric space and S, T : X → CB(X) be

multi-valued maps satisfying, for all x, y ∈ X

H(Sx, Ty) ≤ N(x, y)M(x, y), (4.7)

where

N(x, y) = max {d(x, y), D(x, Sx) +D(y, Ty), D(x, Ty) +D(y, Sx)}
δ(x, Sx) + δ(y, Ty) + 1 , (4.8)

and

M(x, y) = max
{
d(x, y), D(x, Sx), D(y, Ty), D(x, Ty) +D(y, Sx)

2

}
. (4.9)

Then

(a) S and T have at least one common fixed point p ∈ X.

(b) For n even, {(ST )n/2x} and {T (ST )n/2x} converge to a common fixed point for each

x ∈ X.

(c) If p and q are distinct common fixed points of S and T , then

1
2 ≤ d(p, q).

4.3 Fixed point theorem for multi-valued mapping in b-metric
space

In this section, we now turn our work 3 to the concept of fixed point theorem for multi-

valued mapping in b-metric space.

We start this section with the following tow Lemmas witch use for the proof of our next

theorem.
3This work was published in [47].
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Lemma 4.4 Let (X, db) be a complete b-metric space and let {xn} be a sequence in X

such that

db (xn, xn+1) ≤ βndb (xn−1, xn) , for all n = 1, 2, 3, . . . (4.10)

where 0 ≤ βn = db(xn−1, xn) + db(xn, xn+1)
db(xn−1, xn) + db(xn, xn+1) + 1 . Then

1. βn < βn−1 for all n = 1, 2, 3, . . . ;

2. {xn} is a Cauchy sequence in X.

Proof.

1. Assume that xn 6= xn+1 for each n ≥ 1. Let dn−1 = db (xn−1, xn), can be written as

dn−1 + dn
dn−1 + dn + 1 = βn < 1. (4.11)

We show that βn < βn−1, for all n > 0.

We deduce from (4.10) and (4.11) that

dn ≤ βndn−1 < dn−1, for all n > 0, (4.12)

and also

dn−1 ≤ βn−1dn−2 < dn−2, for all n > 1. (4.13)

From (4.12) and (4.13), we conclude that

dn < dn−2.

Also, by the above inequality we obtain

0 < dn + dn−1 < dn−1 + dn−2,

and

0 < dn + dn−1 + 1 < dn−1 + dn−2 + 1,

consequently
dn + dn−1

dn + dn−1 + 1 <
dn−1 + dn−2

dn−1 + dn−2 + 1 ,

is equivalent to βn < βn−1, continuing this process, we get

βn < βn−1 < · · · < β1.
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2. Accordingly, by Lemma 1.2 (Chap 1) with β = β1 < 1, then {xn} is a Cauchy

sequence in X.

To prove the following theorem we need this lemma.

Lemma 4.5 Let (X, db) be a complete b-metric space with a coefficient s ≥ 1, α non-

negative reel number, and S, T : X → CB(X) be multi-valued maps satisfying, for all

x, y ∈ X

sαδ(Sx, Ty) ≤ N(x, y)M(x, y), (4.14)

where

N(x, y) = max {db(x, y), D(x, Sx) +D(y, Ty), D(x, Ty) +D(y, Sx)}
δ(x, Sx) + δ(y, Ty) + 1 , (4.15)

and

M(x, y) = max
{
d(x, y), D(x, Sx), D(y, Ty), D(x, Ty) +D(y, Sx)

2s

}
. (4.16)

Then every fixed point of S is a fixed point of T , and conversely.

Proof. Suppose that p is a fixed point of S. Using (4.14) and the definition of δ,

D(p, Tp) ≤ δ(p, Tp) ≤ δ(Sp, Tp) ≤ 1
sα
N(p, p)M(p, p). (4.17)

Where,

N(p, p) = max {db(p, p), D(p, Sp) +D(p, Tp), D(p, Tp) +D(p, Sp)}
δ(p, Sp) + δ(p, Tp) + 1

≤ D(p, Tp)
D(p, Tp) + 1 = β < 1,

and,

M(p, p) = max
{
db(p, p), D(p, Sp), D(p, Tp), D(p, Tp) +D(p, Sp)

2s

}
≤ D(p, Tp).

From (4.17)

D(p, Tp) ≤ β

sα
D(p, Tp),
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since β

sα
< 1, which implies that p is also a fixed point of T .

In a similar manner it can be shown that, if p ∈ Tp, then p ∈ Sp.

We now state the theorem without proof.

Theorem 4.11 Let (X, db) be a complete b-metric space with a coefficient s ≥ 1, α

nonnegative reel number, and S, T : X → CB(X) be multi-valued maps satisfying

(4.14), (4.15) and (4.16). Then

(a) S and T have at least one common fixed point p ∈ X.

(b) For n even, {(ST )n/2x} and {T (ST )n/2x} converge to a common fixed point for

each x ∈ X.

(c) If p and q are distinct common fixed points of S and T , then

sα

2 ≤ db(p, q).

Proof. Part (a), starting from an arbitrary point x0 ∈ X and x1 ∈ Sx0, we can define

the sequence {xn} by a formula

x2n+1 ∈ Sx2n, x2n+2 ∈ Tx2n+1, for all n ≥ 0. (4.18)

Without loss of generality, we may assume that δ(Sx2n, Tx2n−1) 6= 0 and δ(Sx2n, Tx2n+1) 6=

0 for each n. For, if there exist an n such that δ(Sx2n, Tx2n−1) = 0, then Sx2n = Tx2n−1,

which implies that x2n ∈ Sx2n, since x2n ∈ Tx2n−1, and x2n is a fixed point of S, hence

of T by Lemma 4.5 (Chap 4). Similar remarks apply if there exists an n for which

δ(Sx2n, Tx2n+1) = 0.

We may also assume that xn 6= xn+1 for each n. For, if there exists an n for which

x2n 6= x2n+1, then, since x2n+1 ∈ Sx2n, x2n+1 ∈ F (S), and by Lemma 4.5 (Chap 4),

x2n ∈ F (T ). Similarly, x2n+1 = x2n+2 for any n implies that x2n+1 ∈ F (T ) ∩ F (S).

First we to show that {xn} is a Cauchy sequence in X. For this, consider

db(x2n+1, x2n) ≤ δ(Sx2n, Tx2n−1). (4.19)
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Note that d2n = db(x2n+1, x2n).

From (4.15)

N(x2n, x2n−1) ≤ max {d2n−1, d2n + d2n−1, 0 + db(x2n−1, x2n+1)}
d2n + d2n−1 + 1

≤ max {d2n−1, d2n + d2n−1, s [d2n−1 + d2n]}
d2n + d2n−1 + 1

= s
d2n−1 + d2n

d2n−1 + d2n + 1 = sβ2n,

where β2n = d2n−1 + d2n

d2n−1 + d2n + 1 .

From (4.16)

M(x2n, x2n−1) ≤ max
{
d2n−1, d2n, d2n−1,

0 + db(x2n−1, x2n+1)
2s

}

≤ max
{
d2n−1, d2n,

d2n−1 + d2n

2

}
= max{d2n−1, d2n}.

Using (4.14), (4.20) and (4.20) in (4.19) can be written as

d2n ≤ δ(Sx2n, Tx2n−1) ≤ β2n

sα−1 max{d2n−1, d2n}.

Since each xn 6= xn+1, d2n > 0, the above inequality implies that

d2n ≤
β2n

sα−1d2n−1. (4.20)

A similar computation verifies that

d2n+1 ≤
β2n+1

sα−1 d2n. (4.21)

From inequalities (4.20) and (4.21), for all n > 0,

dn+1 ≤
βn+1

sα−1 dn. (4.22)

We observe by Lemme 4.4 that {xn} is a Cauchy sequence in (X, db). By completeness of

(X, db), there exists p ∈ X such that limn→∞ xn = p.

Next, to show that p is a fixed point of T . For this, using b-triangular inequality, we have

D(p, Tp) ≤ s[db(p, x2n+1) +D(x2n+1, Tp)]

≤ s[db(p, x2n+1) + δ(Sx2n, Tp)].
(4.23)
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Using (4.15),

N(x2n, p) = max {db(x2n, p), D(x2n, Sx2n) +D(p, Tp), D(x2n, Tp) +D(p, Sx2n)}
δ(x2n, Sx2n) + δ(p, Tp) + 1

≤ max {db(x2n, p), db(x2n, x2n+1) + db(p, Tp), db(x2n, Tp) + db(p, x2n+1)}
db(x2n, x2n+1) + db(p, Tp) + 1 .

(4.24)

From (4.16),

M(x2n, p) = max
{
db(x2n, p), D(x2n, Sx2n), D(p, Tp), D(x2n, Tp) +D(p, Sx2n)

2s

}

≤ max
{
db(x2n, p), db(x2n, x2n+1), D(p, Tp), db(x2n, Tp) + db(p, x2n+1)

2s

}
.

(4.25)

Substituting (4.24) and (4.25) into (4.23), using (4.14), and taking the limit of both sides

as n −→∞, we have

D(p, Tp) ≤ 1
sα−1

db(p, Tp)
db(p, Tp) + 1D(p, Tp),

since 1
sα−1

db(p, Tp)
db(p, Tp) + 1 < 1, which implies that D(p, Tp) = 0, and hence that p ∈ F (T ).

From Lemma 4.5 (Chap 4), p ∈ F (S).

To prove (b), merely observe that, from (4.18) and the fact that x0 is arbitrary, we may

write

xn+1 ∈ (ST )n/2x and xn+2 ∈ T (ST )n/2x.

(c) Suppose that p and q are distinct common fixed points of S and T .

Then

db(p, q) ≤ δ(Sp, Tq). (4.26)

Using (4.15),

N(p, q) = max {db(p, q), 0, D(p, Tq) +D(q, Sp)}
δ(p, Sp) + δ(q, T q) + 1

≤ max {db(p, q), db(p, q) + db(q, p)}
db(p, Sp) + db(q, T q) + 1

= 2db(p, q).
Using (4.16),

M(p, q) = max
{
db(p, q), 0, 0,

D(p, Tq) +D(q, Sp)
2s

}
= db(p, q).
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Employing the inequality (4.14) and substituting it into (4.26) gives

db(p, q) ≤
2
sα
d2
b(p, q),

which yields the result.

This finishes the proof.

Remark 4.4 Theorem 4.11 shows that the fixed point of a multivalued mapping is not

necessarily unique.

Now, we obtain the following corollary from the main Theorem 4.11.

Corollary 4.12 Let (X, db) be a complete b-metric space with a coefficient s ≥ 1, α

nonnegative reel number and T : X → CB(X) be a multivalued map satisfying for all

x, y ∈ X

sαδ(Tx, Ty) ≤ N(x, y)M(x, y), (4.27)

where

N(x, y) = max {db(x, y), D(x, Tx) +D(y, Ty), D(x, Ty) +D(y, Tx)}
δ(x, Tx) + δ(y, Ty) + 1 , (4.28)

and

M(x, y) = max
{
db(x, y), D(x, Tx), D(y, Ty), D(x, Ty) +D(y, Tx)

2s

}
. (4.29)

Then

(a) T has at least one fixed point.

(b) {T nx} converge to a fixed point of T .

(c) If p and q are distinct fixed points of T , then

sα

2 ≤ db(p, q).

Proof. Take S = T in Theorem 4.11.

Now, we get the special cases of Theorem 4.11 as followings:
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Corollary 4.13 Let (X, db) be a complete b-metric space with a coefficient s ≥ 1, α

nonnegative reel number and let T be a self map of X satisfying

sαdb(Tx, Ty) ≤
(

db(x, Ty) + db(y, Tx)
db(x, Tx) + db(y, Ty) + 1

)
db(x, y), (4.30)

for all x, y ∈ X. Then

(a) T has at least one fixed point.

(b) {T nx} converge to a fixed point of T .

(c) If p and q are distinct fixed points of T , then sα

2 ≤ db(p, q).

Proof. If we take S = T in (4.14), N(x, y) = db(x, Ty) + db(y, Tx)
db(x, Tx) + db(y, Ty) + 1 in (4.15) and

M(x, y) = db(x, y) in (4.16), from Theorem 4.11.

Remark 4.5 By choosing :

1. s = 1 in Theorem 4.11, we get Theorem 2.6 and 2.1 of Rhoades [57].

2. s = 1 in Corollary 4.13, we get Theorem 1 of Khojasteh et all [42].

We now present an example of the Corollary 4.13.

Example 4.5 Let X = {0, 1
2 , 1} and let d : X −→ R+ defined by

db(0,
1
2) = 1, db(0, 1) = 10, db(1,

1
2) = 8,

db(0, 0) = db(
1
2 ,

1
2) = db(1, 1) = 0,

db(x, y) = db(y, x), for all x, y ∈ X.

(X, d) is a complete b-metric space with coefficient s = 10
9 , and α = 1. Let T : X −→ X

be defined by

Tx =


0, x = 0, 1
1
2 , x = 1

2 .
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Then, we have the following cases:

- When x = 0 and y = 1
2 then,

db(T0, T 1
2) = db(0,

1
2) = 1

≤ 9
10

(
db(0, T 1

2) + db(1
2 , T0)

db(0, T0) + db(1
2 , T

1
2) + 1

)
db(0,

1
2)

= 9
5 .

- When x = 1 and y = 1
2 then,

db(T1, T 1
2) = db(0,

1
2) = 1

≤ 9
10

(
db(1, T 1

2) + db(1
2 , T1)

db(1, T1) + db(1
2 , T

1
2) + 1

)
db(1,

1
2)

= 324
55 .

- When x = 0 and y = 1 then,

db(T0, T1) = db(0, 0) = 0

≤ 9
10

(
db(0, T1) + db(1, T0)

db(0, T0) + db(1, T1) + 1

)
db(0, 1)

= 90
11 .

- When x = 1
2 and y = 0 then,

db(T
1
2 , T0) = db(

1
2 , 0) = 1

≤ 9
10

(
db(1

2 , T0) + db(0, T 1
2)

db(1
2 , T

1
2) + db(0, T0) + 1

)
db(

1
2 , 0)

= 81
10 .

Thus all the cases are verified. Moreover, it can be shown that T satisfies all the conditions

of the Corollary 4.13. Then T has two distinct fixed points {0, 1
2} and

5
9 ≤ db(0, 1

2) = 1.
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Conclusions and perspectives

The general conclusion of this study is the interest in finding the common fixed points of

some theorems in a generalized metric space, which is the b-metric space for single and

multi-valued functions under rational contractive conditions.

Our work included six main results summarized as follows:

1. We prove some fixed points theorems for rational contractive type conditions in

metric space (see Theorems 2.7, 2.8 and 2.9 ).

2. We have reviewed some fixed point results in the setting of b-metric space (see

Theorem 3.5).

3. We prove the existence and uniqueness of some common fixed points theorem for

two self-mappings in b-metric space (see Theorems 3.3 and 3.4).

4. We have generalized some results for multi-valued maps presented in [52] by using

the concept of δ distance and b-metric space (see Theorem 4.11).

5. As an application, we have studied the existence of the solution of an integral

equation of type Fredholm (see Example3.4) .
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6. We have also constructed some examples which show that our generalizations are

genuine.

Perspectives

In the future, we will look at the following issues as examples:

1. We are able to produce some results in the field of fixed point theory, by making

changes in:

(a) The used spaces (dislocated b-metric space, complex valued b-metric space

[21]).

(b) The conditions of contraction.

2. Fixed point theorems for single and multi-valued mappings in extended b-metric

space for example:

(a) The fixed point theorem of Hardy-Rogers [30] and Meir-Keeler [45].

(b) The results of the common fixed points, see for example [22] and [37].
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