KASDI MERBAH-OUARGLA UNIVERSITY
Faculty of Mathematics and Material Sciences
Department of Mathematics
Applied Mathematics Laboratory
Branch: Mathematics
Specialty: Mathematical Analysis and Applications

Year: 2022
Registration NA ${ }^{\circ}$:
/......./....../......./....../
PhD Thesis

For obtaining the Doctorate degree
In Mathematics

Contribution To The Existence Of Solutions And Stability Of The Bresse System With Memories And Delays

Presented By:
BEKHOUCHE Rania

On 18/04/2022
In front of the jury composed of:

Mr. Meflah Mabrouk	Pr	University of Ouargla	President
Mr. Merabet Ismail	Pr	University of Ouargla	Examiner
Mr. Bensayah Abdallah	MCA	University of Ouargla	Examiner
Mr. Fareh Abdelfattah	Pr	University of El Oued	Examiner
Mr. Guesmia Aissa	HDR	University of Lorraine-Metz	Supervisor
Mr. Chacha Djamal Ahmed	Pr	University of Ouargla	Co-Supervisor
Mr. Messaoudi Salim	Pr	University of Sharjah	Visitor

I dedicate my dissertation thesis to my little and big family and many friends.
A special feeling of gratitude to my loving parents, Salima and Abdelhamid whose words of encouragement and push for tenacity ring in my ears This PhD thesis is dedicated to my husband who has been a constant source of support and encouragement during this difficult period To my dearest sisters and brother To all my family Bekhouche and Gossa To my dear daughter Lyne

To our colleagues at the department of mathematique, University Kasdi Merbah of Ouargla

I didecated this thesis.

ACKNOWLEDGEMENT

First of all, I would like to express my gratitude to God Almighty, for having given me the opportunity to complete this thesis.

I would like to express my sincer gratitude to the person who proposed me the subject and who has supervised me throughout these years of study: my advisor Prof. Guesmia Aissa for the continuous support of my Ph.D study and related research, for his patience, motivation and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my PhD study.

I would like to express my deep appreciation to Co-supervisor of thesis Prof. Chacha Ahmed Djamal for his enthusiasm, availability and advice. I will keep in memory the confidence and the sympathy that he showed me during these years of work. Thank you for these valuable guidelines.
I would like to thank Prof. Messaoudi Salim, Professor at University of Sharjah Sharjah, United Arab Emirates for helping me to complete part of the thesis. Also, I express my thanks to Prof. Meflah Mabrouk, Professor in Kasdi Merbah

Ouargla for having accepted to chair the jury of this thesis.
Besides my advisor, I would like to thank the rest of my thesis committee: Prof.
Merabet Ismail and Prof. Bensayah Abdallah for their insightful comments and encouragement.

Thanks also to Prof. Fareh Abdelfattah of the University of Hamma Lakhdar, EL

Oued for having accepted to be part of my jury of my thesis.
Last but not the least, I would like to thank my family: my parents and my husband for supporting me spiritually throughout writing this thesis and my life in general.
Dedication i
Acknowledgement ii
Notations and conventions 1
Abstract 2
Introduction 3
1 PRELIMINARIES 11
1.1 Notions of functional analysis 11
1.1.1 Hilbert Spaces 11
1.1.2 Banach Spaces 12
1.1.3 $\quad L^{p}(\Omega)$ Spaces 13
1.1.4 $\quad L^{p}(\mathrm{a}, \mathrm{b}, \mathrm{E})$ Spaces 14
1.1.5 Sobolev Spaces 14
1.2 Some useful inequalities 16
1.3 Some physical definitions 17
1.4 Lyapunov Direct Method (for local stability) 18
1.5 Lyapunov analysis for global stability 18
1.6 Semigroups 19
1.7 Lax-Milgram Theorem 21
2 Well-posedness of Bresse system with memories and delays 23
3 Bresse system stability in the case of three memories 38
3.1 Energy calculation 39
3.2 Main lemmas 40
4 Bresse system stability in the case of two memories 48
4.1 Introduction 48
4.2 Main lemmas 50
5 Bresse system stability in the case of one memory on the second equation 58
6 Uniform and weak stability of Bresse system with one infinite memory in
the shear angle displacement 65
6.1 Well-posedness 67
6.2 Stability 75
6.3 Proof of uniform decay 77
6.4 Proof of weak decay 87
Conclusion 90
\mathbb{R} : the real numbers
Ω : usually denotes an open set in a topological space
$\mathrm{D}(\mathrm{A})$: the domain of A
$R(A)$: the image of A
$\rho(A)$: the resolvent set of A
A^{-1} : the inverse of A
$C([0, T]: X)$: the space of continuous functions defined on $0 \leq t \leq T$ with value in X
L^{p} : the usual space of measurable whose p th power is Lebesgue integrable
I: Identity operator
Δ : the Laplace operator
∇ : gradient operator
$R(\lambda, A)$: the resolvent operator of A
$\frac{\partial u}{\partial \eta}$: the outward normal derivative
$\|u\|_{p}$: the norm of u in L^{p}
$\|u\|_{\infty}$: \quad the norm of u in L^{∞}
$\langle.,$.$\rangle : scalar product$

This thesis is concerned with the existence, uniqueness and regularity of solutions as well as the exponential stability for a Bresse system in one-dimensional open bounded domain under homogeneous Dirichlet or mixed Dirichlet-Neumann boundary conditions and with time delays and infinite memories. First, we show that the system is well posed in the sense of semigroup theory. Second, when three memories are present, we prove the exponential stability without any restriction on the speeds of wave propagations. Third, when only two memories are present or when only one memory is acting on the second equation, we prove the exponential stability depending on the speeds of wave propagations. Finaly we consider a one-dimensional linear Bresse systems in a bounded open interval with one infinite memory acting only on the shear angle equation. First, we establish the wellposedness using the semigroup theory. Then, we prove two general (uniform and weak) decay estimates depending on the speeds of wave propagations and the arbitrary growth at infinity of the relaxation function.

Keywords: Bresse system, Time delay, Infinite memory, Well-posedness, Stability, Semigroup theory, Energy method.

In this thesis, we consider the following Bresse system in one-dimensional open bounded domain with time delays and infinite memories:

$$
\left\{\begin{array}{l}
\left.\rho_{1} \varphi_{t t}-k_{1}\left(\varphi_{x}+\psi+l w\right)_{x}-l k_{3}\left(w_{x}-l \varphi\right)+F_{1}=0, \quad(x, t) \in\right] 0, L\left[\times \mathbb{R}_{+},\right. \tag{1}\\
\left.\rho_{2} \psi_{t t}-k_{2} \psi_{x x}+k_{1}\left(\varphi_{x}+\psi+l w\right)+F_{2}=0, \quad(x, t) \in\right] 0, L\left[\times \mathbb{R}_{+},\right. \\
\left.\rho_{1} w_{t t}-k_{3}\left(w_{x}-l \varphi\right)_{x}+l k_{1}\left(\varphi_{x}+\psi+l w\right)+F_{3}=0, \quad(x, t) \in\right] 0, L\left[\times \mathbb{R}_{+},\right. \\
\varphi(0, t)=\frac{\partial^{k}}{\partial x^{k}} \psi(0, t)=\frac{\partial^{k}}{\partial x^{k}} w(0, t)=\varphi(L, t)=\frac{\partial^{k}}{\partial x^{k}} \psi(L, t)=\frac{\partial^{k}}{\partial x^{k}} w(L, t)=0, \quad t \in \mathbb{R}_{+}, \\
\varphi(x,-t)=\varphi_{0}(x, t), \varphi_{t}(x, 0)=\varphi_{1}(x), \quad t \in \mathbb{R}_{+}, \\
\psi(x,-t)=\psi_{0}(x, t), \psi_{t}(x, 0)=\psi_{1}(x), \quad t \in \mathbb{R}_{+}, \\
w(x,-t)=w_{0}(x, t), w_{t}(x, 0)=w_{1}(x), \quad t \in \mathbb{R}_{+}, \\
\left.\varphi_{t}\left(x, t-\tau_{1}\right)=h_{1}\left(x, t-\tau_{1}\right), \quad(x, t) \in\right] 0, L[\times] 0, \tau_{1}[, \\
\left.\psi_{t}\left(x, t-\tau_{2}\right)=h_{2}\left(x, t-\tau_{2}\right), \quad(x, t) \in\right] 0, L[\times] 0, \tau_{2}[, \\
\left.w_{t}\left(x, t-\tau_{3}\right)=h_{3}\left(x, t-\tau_{3}\right), \quad(x, t) \in\right] 0, L[\times] 0, \tau_{3}[,
\end{array}\right.
$$

where the external forces F_{i} are given by

$$
\begin{aligned}
& F_{1}(x, t)=\int_{0}^{+\infty} g_{1}(s) \varphi_{x x}(x, t-s) d s+\mu_{1} \varphi_{t}\left(x, t-\tau_{1}\right), \\
& F_{2}(x, t)=\int_{0}^{+\infty} g_{2}(s) \psi_{x x}(x, t-s) d s+\mu_{2} \psi_{t}\left(x, t-\tau_{2}\right)
\end{aligned}
$$

and

$$
F_{3}(x, t)=\int_{0}^{+\infty} g_{3}(s) w_{x x}(x, t-s) d s+\mu_{3} w_{t}\left(x, t-\tau_{3}\right)
$$

$g_{i}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a given function, $\mu_{i} \in \mathbb{R}, L, l, \rho_{i}, k_{i}, \tau_{i} \in \mathbb{R}_{+}^{*}, \varphi_{0}, \varphi_{1}, \psi_{0}, \psi_{1}, w_{0}, w_{1}$ and h_{i} are given initial data belonging into a suitable Hilbert spaces, and

$$
(\varphi, \psi, w):] 0, L\left[\times \mathbb{R}_{+} \rightarrow \mathbb{R}^{3}\right.
$$

is the state (unknown) of (2.1). The subscripts t and x denote the derivatives with respect to t and x, respectively. The infinite integrals depending on the relaxation functions g_{i} are representing the infinite memories and playing the role of dampers for (2.1), whereas the terms depending on μ_{i} and τ_{i} are representing the discrete time delays and playing the role of destabilizers for (2.1).

When the three memories are effective in (2.1) (i.e. $g_{1} g_{2} g_{3} \neq 0$), we consider the homogeneous Dirichlet boundary conditions; that is $k=0$. However, when only two memories are present in (2.1), the mixed Dirichlet-Neumann boundary conditions will be considered; that is $k=1$.

The Bresse system (Bresse [6]) is known as the circular arch problem, where φ, w and ψ represent, respectively, the vertical, longitudinal and shear angle displacements, and the constants L, l, ρ_{i} and k_{i} account for some its physical properties. For more details, we refer to ([27] and [28]).

During the last few years, the well-posedness and stability of Bresse system were the subject of several studies in the literature using different kinds of controls, where the obtained stability results depend, in particular, on the number and position of the controls, the smoothness of initial data and some relations between the speeds of wave propagations defined by

$$
\begin{equation*}
S_{1}=\sqrt{\frac{k_{1}}{\rho_{1}}}, \quad S_{2}=\sqrt{\frac{k_{2}}{\rho_{2}}} \quad \text { and } \quad S_{3}=\sqrt{\frac{k_{3}}{\rho_{1}}} \tag{2}
\end{equation*}
$$

Let us mention here some of these results related to the subject of our thesis.
When the longitudinal displacement w is ignored, the Bresse system is reduced to the well known Timoshenko beams [46]. In this case, we refer the readers to [14], [17] and [23] and the references therein for the stability question with infinite memories (in the presence and absence of time delay s). Different general connections between the growth of relaxation functions at infinity and the decay rate of solutions were proved.

When the term $w_{x}-l \varphi$ is not present in 2.1$)_{1}$ and it is replaced by w_{x} in (2.1) ${ }_{3}$, Bresse system is known under the name of laminated Timoshenko beams, where the stability with infinite memories (in the absence of time delays) was traeted by several authors; see for instance, [21] and the references therein.

In the absence of time delays ($\mu_{1}=\mu_{2}=\mu_{3}=0$), the stability of Bresse system with infinite memories was the subject of the papers [19] (three infinite memories), [20] (two infinite memories), [15] (one infinite memory acting on (2.11), [11 (one infinite memory acting on $(2.1)_{2}$) and [16] (one infinite memory acting on (2.1) ${ }_{3}$). In these papers, it was shown that, when each equation is controlled, the Bresse system is stable regardless to the speeds of wave propagations (2), where the decay rate of solutions depends mainly on the growth at infinity of the relaxation functions. However, when at least one equation is free, the obtained stability estimate is of uniform or weak type depending on some relations between S_{i}. In particular, when only one infinite memory is considered, it was proved in [11] and [16] that the exponential stability is valid if the relaxation function converges exponentially to zero at infinity and

$$
\begin{equation*}
S_{1}=S_{2}=S_{3} . \tag{3}
\end{equation*}
$$

Otherwise, the decay rate of solutions is weaker than the exponential one. This decay rate is reduced to the polynomial one if the relaxation function converges exponentially to zero at infinity and (3) does not hold. However, when the infinite memory is acting on (2.1) ${ }_{1}$, the results of [15] show that the exponential stability does not hold even if (3) is satisfied and the relaxation function converges exponentially to zero at infinity, but the system is still stable at least polynomially with a decay rate depending on the smoothness of initial data.

During the last few years, the stability of Bresse systems was also treated in the literature using (local or global) frictional dampings instead of infinite memories (still in the absence of time delays); see [12], 37] and [44 (one frictional damping acting on the shear angle displacements), [3], 47] and [48] (two frictional dampings), and [8], 43], [45] and [48] (three frictional dampings).

When the relaxation functions converge exponentially to zero and the frictional damp-
ings are linear, the both infinite memories and frictional dampings lead to the same exponential and polynomial decay rate of solutions, and take account the same restrictions on (2). Similar stability results were proved in [13], [29] and [31] also in case where Bresse system is coupled with one or two heat equations in a certain manner.

As far as we know, the stability of Bresse system in the presence of time delays has never been treated in the literature. It is known by now that the infinite memory generates a dissipation strong enough to guarantee the stability (see the references cited above), whereas the time delay can destabilize a system that was asymptotically stable in the absence of time delay; see [32].

Our objectif in this thesis is to prove that, depending on (2) and the number of infinite memories, the exponential stability of Bresse system holds also in the presence of time delays and even if the number of infinite memories is smaller than the one of time delays. We will consider the three cases: (i) three infinite memories, (ii) two infinite memories, and (iii) one infinite memory acting on the second equation in (2.1). Our results generalizes some ones cited above.

For more reading about the last case, we refer to Lagnese et al. [27] and [28]. It is worthnoting that the system considered by Bresse [6] is obtained by taking

$$
\begin{equation*}
\left(F_{1}, F_{2}, F_{3}\right)=\left(0,-\gamma \psi_{t}, 0\right), \tag{4}
\end{equation*}
$$

with $\gamma>0$.
To stabilize the Bresse system, various dampings have been employed and several decay results have been established. Alabau-Boussouira et al. [2] considered the case (4) and proved that the exponential stability is equivalent to

$$
\begin{equation*}
S_{1}=S_{2}=S_{3} . \tag{5}
\end{equation*}
$$

When (5) is not satisfied, they showed that the norm of solutions decays polynomially to zero with rates depending on the regularity of the initial data. These latter results were extended and improved in [37] by considering a locally distributed dissipation (that is, γ in (4) is replaced by a non-negative function $a:] 0, L\left[\rightarrow \mathbb{R}_{+}\right.$which is positive only on a part of $] 0, L[$). In their work, the authors of (37] obtained a better decay rate when (5) does not
hold. The exponential stability result of [2] was also established by Soriano et al. [44] for the case of indefinite damping. That is, when $\gamma=a(x)$, where $a:] 0, L[\rightarrow \mathbb{R}$ is a function with a positive average on $] 0, L[$ and such that

$$
\left\|a-\int_{0}^{L} a(x) d x\right\|_{\left.L^{2}(00, L]\right)}
$$

is small enough. In such a situation, a may change sigh in $] 0, L[$. Also, some optimal polynomial decay rates for Bresse systems in case (4) were proved in [12] when (5) does not hold. Wehbe and Youcef [47] treated the case

$$
\left(F_{1}, F_{2}, F_{3}\right)=\left(0,-a_{1}(x) \psi_{t},-a_{2}(x) w_{t}\right),
$$

where $\left.a_{i}:\right] 0, L\left[\rightarrow \mathbb{R}_{+}\right.$are non-negative functions which can vanish on some part of $] 0, L[$, and proved that the exponential stability holds if and only if $S_{1}=S_{2}$. When $S_{1} \neq S_{2}$, a polynomial decay rate depending on the regularity of the initial data was obtained. This rate, in the case of classical solutions, is $t^{-\frac{1}{2}+\epsilon}$.

When only the first and second equations are controlled by means of linear frictional dampings; that is,

$$
\left(F_{1}, F_{2}, F_{3}\right)=\left(-\gamma_{1} \varphi_{t},-\gamma_{2} \psi_{t}, 0\right),
$$

with $\gamma_{i}>0$, the equivalence between the exponential stability and the equality $S_{1}=S_{3}$ was established in [3]. In addition, a polynomial stability was also shown when $S_{1} \neq S_{3}$, where the decay rate depends on the regularity of the initial data. In the particular case of classical solutions, the polynomial decay of [3] is of the rate $t^{-\frac{1}{2}}$ and it is optimal. Soufyane and Said-Houari [45] looked into the case of three frictional dampings in the whole space \mathbb{R} (instead of $] 0, L[)$ and established some polynomial stability estimates. For stabilization via nonlinear frictional dampings, we refere the readers to [8] and [43].

Concerning the stabilization via heat effect, one of the earliest results concerning the asymptotic behavior of the Bresse system is due to Liu and Rao [29], where a Bresse system
of the form

$$
\left\{\begin{array}{l}
\rho_{1} \varphi_{t t}-k\left(\varphi_{x}+\psi+l w\right)_{x}-l k_{0}\left(w_{x}-l \varphi\right)+l \gamma \chi=0 \tag{6}\\
\rho_{2} \psi_{t t}-b \psi_{x x}+k\left(\varphi_{x}+\psi+l w\right)+\gamma \theta_{x}=0 \\
\rho_{1} w_{t t}-k_{0}\left(w_{x}-l \varphi\right)_{x}+l k\left(\varphi_{x}+\psi+l w\right)+\gamma \chi_{t}=0 \\
\rho_{3} \theta_{t}-\theta_{x x}+\gamma \psi_{x t}=0 \\
\rho_{3} \chi_{t}-\chi_{x x}+\gamma\left(w_{x}-l \varphi\right)_{t}=0
\end{array}\right.
$$

in a bounded interval, together with initial and boundary conditions has been considered. In that work, Liu and Rao [29] proved that the norm of solutions decays exponentially if and only if (5) holds. Otherwise, the solutions decay polynomially with rates depending on the regularity of the initial data. For the classical solutions, with boundary conditions of Dirichlet-Neumann-Neumann or Dirichlet-Dirichlet-Dirichlet type, these rates are of the form $t^{-\frac{1}{4}+\epsilon}$ or $t^{-\frac{1}{8}+\epsilon}$, respectively, where $\epsilon>0$ is an arbitrary "small" constant. Other results similar to those of [29] were obtained in [13] for the Bresse system (6) without χ. The obtained decay for classical solutions when (5) is not satisfied is, in general, of the rate $t^{-\frac{1}{6}+\epsilon}$; whereas the rate is $t^{-\frac{1}{3}+\epsilon}$ when $S_{1} \neq S_{2}$ and $S_{1}=S_{3}$. Najdi and Wehbe [31] extended the results of [13] to the case where the thermal dissipation is locally distributed, and improved the polynomial stability estimate to $t^{-\frac{1}{2}}$ when (5) is not satisfied. Recently, Keddi et al. [25] studied a thermoelastic Bresse system with Cattaneo's thermal dissipation of the form

$$
\left\{\begin{array}{l}
\rho_{1} \varphi_{t t}-k\left(\varphi_{x}+\psi+l w\right)_{x}-l k_{0}\left(w_{x}-l \varphi\right)=0 \\
\rho_{2} \psi_{t t}-b \psi_{x x}+k\left(\varphi_{x}+\psi+l w\right)+\gamma \theta_{x}=0 \\
\rho_{1} w_{t t}-k_{0}\left(w_{x}-l \varphi\right)_{x}+l k\left(\varphi_{x}+\psi+l w\right)=0 \\
\rho_{3} \theta_{t}+q_{x}+\gamma \psi_{x t}=0 \\
\tau q_{t}+\beta q+\theta_{x}=0
\end{array}\right.
$$

in a bounded interval, where φ, ψ and w are, respectively, the vertical, shear angle and longitudinal displacements, θ and q denote the temperature difference and the heat flux, and $\rho_{1}, \rho_{2}, \rho_{3}, k, k_{0}, b, \beta, \gamma$ and τ are positive constants. Under suitable relations between the constants, the authors of [25] showed exponential and optimal polynomial decay rates. The same system was treated by Said-Houari and Hamadouche [40] in the whole space \mathbb{R}, where they showed that the coupling of the Bresse system with the heat conduction of the Cattaneo theory leads to a loss of regularity of the solution and they proved that the decay rate of the solution in the L^{2}-norm is of the rate $t^{-1 / 12}$. For more problems of thermoelastic

Bresse systems, we refer the reader to [39], where a global existence was proved using two heat equations, and to [41] and [42], where Cauchy thermoelastic Bresse problems were treated.

Concerning the stability of Bresse systems via memories, there are only very few results. For instance, Guesmia and Kafini [19] discussed, without restrictions on the speeds, the stability issue for the case when the three equations are controlled via infinite memories of the form

$$
\begin{aligned}
& F_{1}=-\int_{0}^{+\infty} g_{1}(s) \varphi_{x x}(x, t-s) d s, \quad F_{2}=-\int_{0}^{+\infty} g_{2}(s) \psi_{x x}(x, t-s) d s \\
& F_{3}=-\int_{0}^{+\infty} g_{3}(s) w_{x x}(x, t-s) d s
\end{aligned}
$$

where $g_{i}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$are differentiable, non-increasing and integrable functions on \mathbb{R}_{+}. Their decay estimate depends only on the growth of the relaxation functions g_{i} at infinity, which are allowed to have a decay rate at infinity arbitrary close to $\frac{1}{s}$. The same stability estimate of [19] was later established in [20] when only two infinite memories are considered; that is

$$
\begin{align*}
& \left(F_{1}, F_{2}, F_{3}\right)=\left(0,-\int_{0}^{+\infty} g_{2}(s) \psi_{x x}(x, t-s) d s,-\int_{0}^{+\infty} g_{3}(s) w_{x x}(x, t-s) d s\right) \tag{7}\\
& \left(F_{1}, F_{2}, F_{3}\right)=\left(-\int_{0}^{+\infty} g_{1}(s) \varphi_{x x}(x, t-s) d s, 0,-\int_{0}^{+\infty} g_{3}(s) w_{x x}(x, t-s) d s\right) \tag{8}
\end{align*}
$$

or

$$
\begin{equation*}
\left(F_{1}, F_{2}, F_{3}\right)=\left(-\int_{0}^{+\infty} g_{1}(s) \varphi_{x x}(x, t-s) d s,-\int_{0}^{+\infty} g_{2}(s) \psi_{x x}(x, t-s) d s, 0\right) \tag{9}
\end{equation*}
$$

under the following conditions on the speeds of wave propagations:

$$
\begin{equation*}
S_{1}=S_{2} \text { in cases (7) and (8), } \quad S_{1}=S_{3} \text { in case (9). } \tag{10}
\end{equation*}
$$

When (10) does not hold, a weak stability estimate was given in [20], where the decay rate depends also on the smoothness of the initial data. Similar results were obtained in [16] when the memory term acts on the longitudinal displacements. Howover, when the memory term acts on the vertical displacements, it was proved in [15 that the system can
not be exponentially stable even if the speeds of wave propagations are equal, but it is still polynomially stable.

To the best of our knowledge, the only known stability results for Bresse systems with only one infinite memory acting on the shear angle displacements are the ones obtained in [11] in case

$$
\begin{equation*}
\left(F_{1}, F_{2}, F_{3}\right)=\left(0,-\int_{0}^{+\infty} g(s) \psi_{x x}(x, t-s) d s, 0\right) \tag{11}
\end{equation*}
$$

where $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is differentiable, non-increasing and integrable function on \mathbb{R}_{+}. In [11], it was assumed that g satisfies, for $\alpha_{1}, \alpha_{2}>0$,

$$
\begin{equation*}
-\alpha_{2} g(s) \leq g^{\prime}(s) \leq-\alpha_{1} g(s), \quad \forall s \in \mathbb{R}_{+}, \tag{12}
\end{equation*}
$$

and was shown that the exponential stability holds if and only if (5) is satisfied. Otherwise, only the polynomial stability with a decay rate of type $t^{-\frac{1}{2}}$ and its optimality were obtained. Notice that the condition (12) implies that g converges exponentially to zero at infinity and satisfies

$$
\begin{equation*}
g(0) e^{-\alpha_{2} s} \leq g(s) \leq g(0) e^{-\alpha_{1} s}, \quad \forall s \in \mathbb{R}_{+} \tag{13}
\end{equation*}
$$

The thesis is organized as follows. We start with the first chapter representing a reminder of some functional analysis results that will be used later. In chapter 2, we present our hypotheses and we prove the well-posedness of (2.1). The proof of the exponential stability result in case of three infinite memories will be given in chapter 3. Chapter 4 is devoted to the exponential stability results in case of two infinite memories. In chapter 5, we establish the wellposedness using the semigroups theory. Finally, we prove in chapter 6 two general (uniform and weak) decay estimates depending on the speeds of wave propagations and the arbitrary growth at infinity of the relaxation function. In the conclusion we discuss some general comments and issues.

CHAPTER 1

\square

In this chapter, devoted to reminders, we have grouped some essential notions of functional analysis. Also, we briefly give the definitions and notations of some convolution products and some integral inequalities which will be useful for the rest of our thesis.

1.1 Notions of functional analysis

1.1.1 Hilbert Spaces

Scalar products and the notion of Hilbert space

Definition 1.1 Let \mathcal{H} be a real or complex vector space. A scalar product is an application $\langle.,\rangle:. \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$ if \mathcal{H} is a complex vector space and $\langle.,\rangle:. \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$ if \mathcal{H} is a real vector space, verifying

- $\forall y \in \mathcal{H}: x \mapsto\langle x, y\rangle$ is linear (in x),
- $\langle y, x\rangle=\overline{\langle x, y\rangle}$,
- $\forall x \in H:\langle x, x\rangle \geq 0$,
- $\langle x, x\rangle=0$ then $x=0$.

Therefore $y \mapsto\langle x, y\rangle$ is antilinear (in y) if \mathcal{H} is a complex vector space.
We pose

$$
\|x\|=\sqrt{\langle x, x\rangle} .
$$

Lemma 1.2 Let \mathcal{H} be a real or complex vector space with scalar product $\langle.,$.$\rangle .$
Then, for all $x, y \in \mathcal{H}$,

$$
\|x+y\|^{2}=\|x\|^{2}+2 \operatorname{Re}\langle x, y\rangle+\|y\|^{2} .
$$

Corollary 1.3 Let \mathcal{H} be a vector space (real or complex) with scalar product $\langle.,$.$\rangle . Then$ $\|x\|=\sqrt{\langle x, x\rangle}$ defines a norm.

Definition 1.4 A Hilbert space is a real or complex vector space with a scalar product and which is complete for the associated norm.

1.1.2 Banach Spaces

A normed vector space E called Banach space if it is complete for its norm.
The topological dual of E noted by E^{\prime} is the space of continuous linear forms on E; ie:

$$
f \in E^{\prime} \Leftrightarrow f: E \rightarrow \mathbb{R}
$$

linear and

$$
\exists c>0,|\langle f, x\rangle| \leqslant c\|x\|_{E}, \forall x \in E .
$$

we equipped the dual space E^{\prime} with the following norm :

$$
\|f\|_{E^{\prime}}=\sup _{\|x\| \leqslant 1}\langle f, x\rangle
$$

with this norm E^{\prime}, is a Banach space.

Reminders on L^{p}-Spaces

We consider Ω an open set of \mathbb{R}^{n}. The functions f will be considered from Ω into \mathbb{R} or \mathbb{C}.

1.1.3 $L^{p}(\Omega)$ Spaces

Definition 1.5 Let $1 \leq p<+\infty$ and Ω an open set of \mathbb{R}^{n} we define

$$
L^{p}(\Omega)=\left\{f: \Omega \rightarrow \mathbb{R} \quad \text { mesurable and } \quad \int_{\Omega}|f(x)|^{p} d x<+\infty\right\}
$$

We define on $L^{p}(\Omega)$ the norm:

$$
\|f\|_{p}=\left(\int_{\Omega}|f(x)|^{p} d x\right)^{1 / p}
$$

Theorem 1.6 The space $L^{p}(\Omega)$ is reflexive if $1<p<+\infty$.

Lemma 1.7 The spaces $L^{1}(\Omega)$ and $C([0,1])$ are not reflective .

Proof. See [9] p . 17

Theorem 1.8 Every closed subspace of a reflexive Banach space is reflexive.
Proof. See [9] p . 18
Notation 1.9 Let $1 \leq p \leq+\infty$; we denote by p^{\prime} the conjugate exponent of $p ;$ ie: $\frac{1}{p}+\frac{1}{p^{\prime}}=1$.

Property 1.10 1- The space $L^{p}(\Omega)$ is separable for $1 \leq p<+\infty$.

2- The space $L^{\infty}(\Omega)$ is neither reflexive, nor separable and its dual contains strictly $L^{1}(\Omega)$.

3- For mes $(\Omega)<+\infty$, and $1 \leq p \leq q \leq+\infty$, we have :

$$
L^{q}(\Omega) \subset L^{p}(\Omega)
$$

and

$$
L^{\infty}(\Omega) \subset L^{2}(\Omega) \subset L^{1}(\Omega)
$$

Theorem 1.11 77] $D(\Omega)$ is dense in $L^{p}(\Omega)$ for $1 \leq p<+\infty$ that is:

$$
\overline{D(\Omega)}=L^{p}(\Omega) . \quad \forall p, 1 \leq p<+\infty .
$$

1.1.4 $L^{p}(\mathbf{a}, \mathrm{~b}, \mathrm{E})$ Spaces

Let Ω be a Banach space and $] a, b[$ an open interval of \mathbb{R}, we define, for $1 \leq p<+\infty$,

$$
L^{p}(a, b, E)=\{f:] a, b\left[\rightarrow E \quad \text { mesurable such that } \quad \int_{(a, b)}|f(t)|_{E}^{p} d t<+\infty\right\}
$$

For $p=\infty, L^{\infty}(a, b, E)=\{f:(a, b) \longrightarrow E: \exists C \geq 0$ mesurable such that $\|f(t)\|_{E} \leq C \quad$ for $\left.\quad t \in(a, b)\right\}$ We define on $L^{p}(a, b, E)$ the norm

$$
\|f\|_{L^{p}(a, b, E)}=\left\{\begin{array}{l}
{\left[\int_{(a, b)}\|f(t)\|_{E}^{p} d t\right]^{\frac{1}{p}}, \quad \text { if } \quad 1 \leq p<+\infty} \\
\sup _{t \in(a, b)}\|f(t)\|_{E}, \quad \text { if } \quad p=+\infty
\end{array}\right.
$$

Equipped with this norm $L^{p}(a, b, E)$ is a Banach space.

1.1.5 Sobolev Spaces

We introduce the space $\mathcal{H}^{m}(\Omega)$ as being the space of functions $u \in L^{2}(\Omega)$, whose all partial derivatives of order less than or equal m in the weak sense are in $L^{2}(\Omega)$.

These spaces play a fundammental role in the study of partial differential equations.

Definition 1.12 For $m \in \mathbb{N}$, we define the Sobolev space of order m by:

$$
\begin{gathered}
\mathcal{H}^{m}(\Omega)=\left\{u \in L^{2}(\Omega): \mathcal{D}^{\alpha} u \in L^{2}(\Omega), \forall \alpha \in N^{n} \quad \text { with }|\alpha| \leq m\right\} \\
\text { where } \alpha=\left(\alpha_{1}, . ., \alpha_{n}\right), \alpha_{j} \in \mathbb{N},|\alpha|=\alpha_{1}+\ldots+\alpha_{n} \quad \text { and } \quad \mathcal{D}^{\alpha}=\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \ldots . . \partial x_{n}^{\alpha_{n}}} .
\end{gathered}
$$

We provide $\mathcal{H}^{m}(\Omega)$ with the scalar product

CHAPTER 1. PRELIMINARIES

$$
(u, v)_{m}=\sum_{|\alpha| \leq m} \int_{\Omega} \mathcal{D}^{\alpha} u(x) \mathcal{D}^{\alpha} v(x) d x
$$

and the norm associated with this scalar product

$$
\|u\|_{\mathcal{H}^{m}(\Omega)}=\left(\sum_{|\alpha| \leq m} \int_{\Omega}\left|\mathcal{D}^{\alpha} u(x)\right|^{2} d x\right)^{1 / 2}=\left(\sum_{|\alpha| \leq m}\left\|\mathcal{D}^{\alpha} u\right\|_{2}^{2}\right)^{1 / 2}
$$

Definition 1.13 [1] For $m \in \mathbb{N}, 1 \leq p \leq+\infty$ and Ω an open set from \mathbb{R}^{n},

$$
\begin{equation*}
W^{m, p}(\Omega)=\left\{u \in L^{p}(\Omega) ; \quad D^{\alpha} u \in L^{p}(\Omega), \forall \alpha \in \mathbb{N}^{n} \text { with }|\alpha| \leq m\right\} . \tag{1.1}
\end{equation*}
$$

- If $m=1, W^{1, p}(\Omega)=\left\{u \in L^{p}(\Omega), \quad \nabla u \in\left(L^{p}(\Omega)\right)^{n}\right\}$.

Theorem 1.14 The space $W^{m, p}(\Omega)$, for $1 \leq p<+\infty$, equipped with the norm

$$
\|f\|_{W^{m, p}(\Omega)}=\left(\sum_{|\alpha| \leq m}\left\|D^{\alpha} f\right\|_{L^{p}(\Omega)}^{p}\right)^{\frac{1}{p}}
$$

is a Banach space.
Moreover, for $p=2$, the Banach space $W^{m, 2}$ becomes a Hilbert space which we note \mathcal{H}^{m}, with the norm

$$
\|f\|_{\mathcal{H}^{m}(\Omega)}=\left(\sum_{|\alpha| \leq m}\left\|D^{\alpha} f\right\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}}
$$

and a scalar product

$$
\begin{equation*}
\langle u, v\rangle_{m}=\sum_{|\alpha| \leq m}\left\langle D^{\alpha} u, D^{\alpha} v\right\rangle \tag{1.2}
\end{equation*}
$$

associated to the norm $\|u\|_{\mathcal{H}^{m}}=\sqrt{\langle u, u\rangle}_{m}$.
In the case Ω is bounded set of \mathbb{R}^{n}, due to the lack of density of $C_{c}^{\infty}(\Omega)$ in $W^{m, p}(\Omega)$ $\left(m \in \mathbb{N}^{*}, 1 \leq p<+\infty\right)$, we define the space $W_{0}^{m, p}(\Omega)$ as the closure of $C_{c}^{\infty}(\Omega)$ in $W^{m, p}(\Omega)$. We denote $\mathcal{H}_{0}^{m}(\Omega)=W_{0}^{m, 2}(\Omega)$.

Theorem 1.15 Let Ω be an open set of \mathbb{R}^{n} and let $m \in N$. The space $\mathcal{H}^{m}(\Omega)$ with scalar product (1.2) is a separable and reflexive Hilbert space.

1.2 Some useful inequalities

Lemma 1.16 (Cauchy-Schwarz inequality)

$$
\forall u, v \in L^{2}(\Omega):\left|\int_{\Omega} u v d x\right| \leq\left(\int_{\Omega}|u|^{2} d x\right)^{\frac{1}{2}}\left(\int_{\Omega}|v|^{2} d x\right)^{\frac{1}{2}}
$$

$\forall u, v \in\left(L^{2}(\Omega)\right)^{n}:$

$$
\left|\int_{\Omega} \sum_{i=1}^{n} u_{i} v_{i} d x\right| \leq\left(\int_{\Omega} \sum_{i=1}^{n} u_{i}^{2} d x\right)^{\frac{1}{2}}\left(\int_{\Omega} \sum_{i=1}^{n} v_{i}^{2} d x\right)^{\frac{1}{2}}
$$

Lemma 1.17 (Young's inequality)
For all $a, b \in \mathbb{R}$ and $\epsilon>0$, we have:

$$
a b \leq \epsilon a^{2}+\frac{b^{2}}{4 \epsilon}
$$

Proof. We have

$$
(2 \epsilon a-b)^{2} \geq 0
$$

for all $\epsilon>0$, then:

$$
4 \epsilon^{2} a^{2}+b^{2}-4 \epsilon a b \geq 0,
$$

this includes

$$
4 \epsilon a b \leq 4 \epsilon^{2} a^{2}+b^{2}
$$

therefore

$$
a b \leq \epsilon a^{2}+\frac{b^{2}}{4 \epsilon}
$$

this completes the demonstration.

Lemma 1.18 (Young's inequality) For all a and b real positive or zero, and all p and q real strictly positive such that $\frac{1}{p}+\frac{1}{q}=1$ (they are sometimes said to be conjugated), we have:

$$
\begin{equation*}
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q} \tag{1.3}
\end{equation*}
$$

The equality occurs if and only if $a^{p}=b^{q}$.

Proof. The function exp is convex, which means that, for all x, y and $\lambda \in[0,1]$

$$
\begin{equation*}
\exp (\lambda x+(1-\lambda y)) \leq \lambda \exp (x)+(1-\lambda) \exp (y) \tag{1.4}
\end{equation*}
$$

In particular

$$
\begin{aligned}
a b & =\exp (\ln (a b)) \\
& =\exp \left(\frac{\ln a^{p}}{p}+\frac{\ln b^{q}}{q}\right) \\
& \leq \frac{1}{p} \exp \left(\ln a^{p}\right)+\frac{1}{q} \exp \left(\ln b^{q}\right)=\frac{a^{p}}{p}+\frac{b^{q}}{q},
\end{aligned}
$$

hence the result.

Lemma 1.19 (Hölder's inequality)
Let f and g be two functions respectively in $L^{p}(\Omega)$ and in $L^{q}(\Omega)$, with $p, q \geq 1$ and $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$. Then, the product $f g$ is in $L^{r}(\Omega)$ and we have

$$
\left(\int_{\Omega}|f g|^{r} d x\right)^{\frac{1}{r}} \leq\left(\int_{\Omega}|f|^{p} d x\right)^{\frac{1}{p}}\left(\int_{\Omega}|g|^{q} d x\right)^{\frac{1}{q}}
$$

Lemma 1.20 (Sobolev-Poincaré's inequality)
Let Ω be a bounded open of \mathbb{R}^{n}, then there exists a constant C, depending on Ω and p, such that

$$
\|u\|_{L^{p}(\Omega)} \leq C(\Omega)\|\nabla u\|_{L^{p}(\Omega)} \quad \forall u \in W_{0}^{1, p}(\Omega), \forall 1 \leq p<+\infty .
$$

1.3 Some physical definitions

Definition 1.21 (Energy) Energy (from the Greek: force in action) is what allows us to act: without it, nothing happens, no motion, no light, no life!

In the physical sense, energy characterizes the capacity to modify a state, to produce a work leading to motion, light, or heat. Any action or change of state requires that energy is exchanged.

Definition 1.22 (Thermoelastic) Thermoelasticity is the relationship between the elasticity of a body and its dilatation according to heat.

1.4 Lyapunov Direct Method (for local stability)

Given a system $x=f(x)$, with f continuous, and for some region \Re around the origin (specifically an open subset of \mathbb{R}^{n} containing the origin), if we can produce a scalar, continuously-differentiable function $V(x)$, such that

$$
\begin{gathered}
V(x)>0, \quad \forall x \in \Re \backslash\{0\}, \quad V(0)=0, \quad \text { and } \\
\dot{V}(x)=\frac{\partial V}{\partial x} \frac{\partial x}{\partial t}=\frac{\partial V}{\partial x} f(x) \leq 0, \quad \forall x \in \Re \backslash\{0\}, \quad \dot{V}(0)=0,
\end{gathered}
$$

then the origin $(x=0)$ is stable in the sense of Lyapunov.
If, additionally, we have

$$
\dot{V}(x)=\frac{\partial V}{\partial x} f(x)<0, \forall x \in \Re \backslash\{0\},
$$

then the origin is (locally) asymptotically stable. And if we have

$$
\dot{V}(x)=\frac{\partial V}{\partial x} f(x) \leq-(x), \forall x \in \Re \backslash\{0\},
$$

for some $\alpha>0$, then the origin is (locally) exponentially stable.

1.5 Lyapunov analysis for global stability

Given a system $\dot{x}=f(x)$, with f continuous, and for some region \Re around the origin (specifically an open subset of \mathbb{R}^{n} containing the origin), if we can produce a scalar, continuously-differentiable function $V(x)$, such that

$$
\begin{gathered}
V(x)>0 \\
\dot{V}(x)=\frac{\partial V}{\partial x} f(x)<0, \quad \text { and }
\end{gathered}
$$

$$
V(x) \longrightarrow \infty \quad \text { whenever } \quad\|x\| \longrightarrow \infty
$$

then the origin $(x=0)$ is globally asymptotically stable. If additionally we have that

$$
\dot{V}(x) \leq-\alpha V(x),
$$

for some $\alpha>0$, then the origin is globally exponentially stable.

Reminders on the theory of semi-groups

We will recall some notions and theorems of the theory of semi-groups, which are necessary for the development of our topic. For more details, we refer to [38] and [30].

1.6 Semigroups

Numerous physical models can be written in the form of an abstract Cauchy problem

$$
\left\{\begin{array}{l}
\dot{x}(t)=\mathcal{A} x(t), t>0 \tag{1.5}\\
x(0)=x_{0}
\end{array}\right.
$$

where (') denotes the derivative with respect to time t, \mathcal{A} is the infinitesimal generator of a C_{0}-semigroup $T(t)$ over a Hilbert space \mathcal{H} and $x_{0} \in \mathcal{H}$ is given. We are looking for a solution $x: \mathbb{R}_{+} \rightarrow \mathcal{H}$. Therefore, we start by introducing some basic concepts concerning the semigroups.

Definition 1.23 Let X be a Banach space.

1) A one parameter family $T(t), t \geq 0$, of bounded linear operators from X into X is a semigroup of bounded linear operators on X if

- $T(0)=I$;
- $T(t+s)=T(t) T(s) . \quad \forall s, t \geq 0$.

2) A semigroup of bounded linear operators, $T(t)$, is uniformly continuous if

$$
\lim _{t \rightarrow 0^{+}}\|T(t)-I\|_{\mathcal{L}(\mathcal{H})}=0 .
$$

3) A semigroup $T(t)$ of bounded linear operators on X is a strongly continuous semigroup of bounded linear operators or a C_{0}-semigroup if

$$
\lim _{t \rightarrow 0^{+}} T(t) x=x
$$

4) The linear operator \mathcal{A} defined by

$$
D(\mathcal{A})=\left\{x \in X ; \lim _{t \rightarrow 0^{+}} \frac{T(t) x-x}{t} \quad \text { exists }\right\}
$$

and

$$
\mathcal{A} x=\lim _{t \rightarrow 0} \frac{T(t) x-x}{t}, \quad \forall x \in D(\mathcal{A})
$$

is the infinitesimal generator of the semigroup $T(t)$.
Theorem 1.24 Let $T(t)$ be a C_{0}-semigroup. Then there exist constants $w \geq 0$ and $M \geq 1$ such that

$$
\|T(t)\|_{\mathcal{L}(\mathcal{H})} \leq M e^{w t}, \quad \forall t>0
$$

In the above theorem, if $w=0$, then $T(t)$ is called uniformly bounded, and if moreover $M=1$, then $T(t)$ is called a C_{0}-semigroup of contractions.

Definition 1.25 Let \mathcal{H} be a Hilbert space. An operator $(\mathcal{A}, D(\mathcal{A}))$ on \mathcal{H} satisfying

$$
\Re(\mathcal{A} U, U) \leq 0, \quad \forall U \in D(\mathcal{A})
$$

is said to be a dissipative operator. A maximal dissipative operator $(\mathcal{A}, D(\mathcal{A}))$ on \mathcal{H} is a dissipative operator for which $\mathcal{R}(\lambda I-\mathcal{A})=\mathcal{H}$, for some $\lambda>0$. A maximal dissipative operator is also called m-dissipative operator. For the existence of solutions, we normally use the following Lumer-Phillips Theorem or Hille-Yosida Theorem.

Theorem 1.26 (Lumer-Phillips Theorem) Let \mathcal{A} be a linear operator with dense domain $D(\mathcal{A})$ in a Banach space X.

- If \mathcal{A} is dissipative and there exists a $\lambda_{0}>0$ such that the range $\mathcal{R}\left(\lambda_{0} I-\mathcal{A}\right)=X$, then \mathcal{A} generates a C_{0}-semigroup of contractions on X.
- If \mathcal{A} is the infinitesimal generator of a C_{0}-semigroup of contractions on X then $\mathcal{R}(\lambda I-$ $\mathcal{A})=X$ for all $\lambda>0$ and \mathcal{A} is dissipative.

Consequently, \mathcal{A} is maximal dissipative on a Hilbert space \mathcal{H} if and only if it generates a C_{0}-semigroup of contractions on \mathcal{H}, and thus the existence of the solution is justified by the following corollary which follows from Lumer-Phillips theorem.

Corollary 1.27 Let \mathcal{H} be a Hilbert space and let \mathcal{A} be a linear operator defined from $D(\mathcal{A}) \subset \mathcal{H}$ into \mathcal{H}. If \mathcal{A} is maximal dissipative, then the initial value problem 1.5) has a unique weak solution $x \in C([0,+\infty], \mathcal{H})$, for each initial data $x_{0} \in \mathcal{H}$.

Moreover, if $x_{0} \in D(\mathcal{A})$, then $x \in C([0,+\infty), D(\mathcal{A})) \cap C^{1}([0,+\infty), \mathcal{H})$.

1.7 Lax-Milgram Theorem

The Lax-Milgram theorem is a simple and efficient tool for solving ordinary and linear partial differential equations.

Definition 1.28 We say that a bilinear form

$$
a(u, v): \mathcal{H} \times \mathcal{H} \longrightarrow \mathbb{R}
$$

is

- Continue if there is a positive constant C such that

$$
|a(u, v)| \leq C\|u\|\|v\|, \quad \forall u, v \in \mathcal{H},
$$

- Coercive if there is a constant $\alpha>0$ such that

$$
a(v, v) \geq \alpha\|v\|^{2}, \quad \forall v \in \mathcal{H} .
$$

Theorem 1.29 (Lax-Milgram) Let a be a continuous, coercive, bilinear form.
Then for all $\varphi \in \mathcal{H}^{\prime}$, there exists a unique $u \in \mathcal{H}$ such that

$$
a(u, v)=(\varphi, v), \quad \forall v \in \mathcal{H} .
$$

Moreover, if a is symmetric, then u is characterized by the property

$$
u \in \mathcal{H} \quad \text { and } \quad \frac{1}{2} a(u, u)-\langle\varphi, u\rangle=\min _{v \in \mathcal{H}}\left\{\frac{1}{2} a(v, v)-\langle\varphi, v\rangle\right\} .
$$

CHAPTER 2

\square
 WELL-POSEDNESS OF BRESSE SYSTEM WITH MEMORIES AND DELAYS

Well-posedness

In this section, we state our assumptions on g_{i} and prove the global existence, uniqueness and smoothness of solution of this system.

$$
\left\{\begin{array}{l}
\left.\rho_{1} \varphi_{t t}-k_{1}\left(\varphi_{x}+\psi+l w\right)_{x}-l k_{3}\left(w_{x}-l \varphi\right)+F_{1}=0, \quad(x, t) \in\right] 0, L\left[\times \mathbb{R}_{+},\right. \tag{2.1}\\
\left.\rho_{2} \psi_{t t}-k_{2} \psi_{x x}+k_{1}\left(\varphi_{x}+\psi+l w\right)+F_{2}=0, \quad(x, t) \in\right] 0, L\left[\times \mathbb{R}_{+},\right. \\
\left.\rho_{1} w_{t t}-k_{3}\left(w_{x}-l \varphi\right)_{x}+l k_{1}\left(\varphi_{x}+\psi+l w\right)+F_{3}=0, \quad(x, t) \in\right] 0, L\left[\times \mathbb{R}_{+},\right. \\
\varphi(0, t)=\frac{\partial^{k}}{\partial x^{k}} \psi(0, t)=\frac{\partial^{k}}{\partial x^{k}} w(0, t)=\varphi(L, t)=\frac{\partial^{k}}{\partial x^{k}} \psi(L, t)=\frac{\partial^{k}}{\partial x^{k}} w(L, t)=0, \quad t \in \mathbb{R}_{+}, \\
\varphi(x,-t)=\varphi_{0}(x, t), \varphi_{t}(x, 0)=\varphi_{1}(x), \quad t \in \mathbb{R}_{+}, \\
\psi(x,-t)=\psi_{0}(x, t), \psi_{t}(x, 0)=\psi_{1}(x), \quad t \in \mathbb{R}_{+}, \\
w(x,-t)=w_{0}(x, t), w_{t}(x, 0)=w_{1}(x), \quad t \in \mathbb{R}_{+}, \\
\left.\varphi_{t}\left(x, t-\tau_{1}\right)=h_{1}\left(x, t-\tau_{1}\right), \quad(x, t) \in\right] 0, L[\times] 0, \tau_{1}[, \\
\left.\psi_{t}\left(x, t-\tau_{2}\right)=h_{2}\left(x, t-\tau_{2}\right), \quad(x, t) \in\right] 0, L[\times] 0, \tau_{2}[, \\
\left.w_{t}\left(x, t-\tau_{3}\right)=h_{3}\left(x, t-\tau_{3}\right), \quad(x, t) \in\right] 0, L[\times] 0, \tau_{3}[,
\end{array}\right.
$$

Following a method devised in [10], we consider new auxiliary variables

$$
\left.\eta_{i}:\right] 0, L\left[\times \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}\right.
$$

to treat the infinite memories, and following the idea in [32] and [33] to deal with the discrite

CHAPTER 2. WELL-POSEDNESS OF BRESSE SYSTEM WITH MEMORIES AND DELAYS
time delay terms by considering new auxiliary variables

$$
\left.z_{i}:\right] 0, L\left[\times \mathbb{R}_{+} \times\right] 0,1[\rightarrow \mathbb{R}
$$

we put

$$
\begin{cases}\eta_{1}(x, t, s)=\varphi(x, t)-\varphi(x, t-s), & (x, t, s) \in] 0, L\left[\times \mathbb{R}_{+} \times \mathbb{R}_{+}\right. \tag{2.2}\\ \eta_{2}(x, t, s)=\psi(x, t)-\psi(x, t-s), & (x, t, s) \in] 0, L\left[\times \mathbb{R}_{+} \times \mathbb{R}_{+},\right. \\ \eta_{3}(x, t, s)=\omega(x, t)-\omega(x, t-s), & (x, t, s) \in] 0, L\left[\times \mathbb{R}_{+} \times \mathbb{R}_{+}\right. \\ z_{1}(x, t, \rho)=\varphi_{t}\left(x, t-\tau_{1} \rho\right), & (x, t, \rho) \in] 0, L\left[\times \mathbb{R}_{+} \times\right] 0,1[\\ z_{2}(x, t, \rho)=\psi_{t}\left(x, t-\tau_{2} \rho\right), & (x, t, \rho) \in] 0, L\left[\times \mathbb{R}_{+} \times\right] 0,1[\\ z_{3}(x, t, \rho)=\omega_{t}\left(x, t-\tau_{3} \rho\right), & (x, t, \rho) \in] 0, L\left[\times \mathbb{R}_{+} \times\right] 0,1[\end{cases}
$$

The initial data of η_{i} and z_{i} are then given by

$$
\left\{\begin{array}{l}
\eta_{1}^{0}(x, s)=\eta_{1}(x, 0, s)=\varphi_{0}(x, 0)-\varphi_{0}(x, s) \tag{2.3}\\
\eta_{2}^{0}(x, s)=\eta_{2}(x, 0, s)=\psi_{0}(x, 0)-\psi_{0}(x, s) \\
\eta_{3}^{0}(x, s)=\eta_{3}(x, 0, s)=\omega_{0}(x, 0)-\omega_{0}(x, s) \\
z_{1}^{0}(x, \rho)=z_{1}(x, 0, \rho)=h_{1}\left(x,-\tau_{1} \rho\right) \\
z_{2}^{0}(x, \rho)=z_{2}(x, 0, \rho)=h_{2}\left(x,-\tau_{2} \rho\right) \\
z_{3}^{0}(x, \rho)=z_{3}(x, 0, \rho)=h_{3}\left(x,-\tau_{3} \rho\right)
\end{array}\right.
$$

The variables η_{i} and z_{i} satisfy

$$
\left\{\begin{array}{l}
\eta_{1 t}(x, t, s)+\eta_{1 s}(x, t, s)=\varphi_{t}(t) \tag{2.4}\\
\eta_{2 t}(x, t, s)+\eta_{2 s}(x, t, s)=\psi_{t}(t) \\
\eta_{3 t}(x, t, s)+\eta_{3 s}(x, t, s)=\omega_{t}(t) \\
\eta_{i}(x, t, 0)=0, i=1,2,3 \\
\eta_{1}(0, t, s)=\eta_{1}(L, t, s)=0 \\
\frac{\partial^{k}}{\partial x^{k}} \eta_{i}(0, t, s)=\frac{\partial^{k}}{\partial x^{k}} \eta_{i}(L, t, s)=0, i=2,3
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\tau_{1} z_{1 t}(x, t, \rho)+z_{1 \rho}(x, t, \rho)=0 \tag{2.5}\\
\tau_{2} z_{2 t}(x, t, \rho)+z_{2 \rho}(x, t, \rho)=0 \\
\tau_{3} z_{3 t}(x, t, \rho)+z_{3 \rho}(x, t, \rho)=0 \\
z_{1}(x, t, 0)=\varphi_{t}(x, t), z_{2}(x, t, 0)=\psi_{t}(x, t), z_{3}(x, t, 0)=\omega_{t}(x, t) \\
z_{1}(0, t, \rho)=z_{1}(L, t, \rho)=0 \\
\frac{\partial^{k}}{\partial x^{k}} z_{i}(0, t, \rho)=\frac{\partial^{k}}{\partial x^{k}} z_{i}(L, t, \rho)=0, i=2,3
\end{array}\right.
$$

where the subscripts s and ρ denote the derivatives with respect to s and ρ, respectively. If, for example, $\mu_{1}=0$, the corresponding variable z_{1} is not considered and (2.1) is replaced

CHAPTER 2. WELL-POSEDNESS OF BRESSE SYSTEM WITH MEMORIES AND DELAYS
by $\varphi_{t}(x, 0)=h_{1}(x)$. Similarly, if, for example $g_{1}=0$, the corresponding variable η_{1} is not considered and the first condition in 2.1$)_{5}$ is replaced by $\varphi(x, 0)=\varphi_{0}(x)$. And the same thing when $\mu_{2}=0$ and/or $\mu_{3}=0$ and/or $g_{2}=0$ and/or $g_{3}=0$. To simplify the formulas, we note x, t, s and ρ only when it is necessary to avoid ambiguity.

Let us consider the space

$$
\mathcal{H}=H_{0}^{1}(] 0, L[) \times V_{1}^{2} \times L^{2}(] 0, L[) \times V_{0}^{2} \times L_{1} \times L_{2} \times L_{3} \times L_{d} \times \tilde{L}_{d}^{2}
$$

where $H_{0}^{1}(] 0, L[)=\{\omega:] 0,1\left[\rightarrow H^{1}(] 0, L[), w(0)=w(L)=0\right\}$,

$$
\begin{gathered}
L_{1}=\left\{\omega: \mathbb{R}_{+} \rightarrow H_{0}^{1}(] 0, L[), \int_{0}^{L} \int_{0}^{+\infty} g_{1}(s) \omega_{x}^{2}(x, s) d s d x<+\infty\right\}, \\
L_{i}=\left\{\omega: \mathbb{R}_{+} \rightarrow V_{1}, \int_{0}^{L} \int_{0}^{+\infty} g_{i}(s) \omega_{x}^{2}(x, s) d s d x<+\infty\right\}, i=2,3, \\
L_{d}=\{\omega:] 0,1\left[\rightarrow L^{2}(] 0, L[), \int_{0}^{L} \int_{0}^{1} \omega^{2}(x, \rho) d \rho d x<+\infty\right\}, \\
\tilde{L}_{d}=\{\omega:] 0,1\left[\rightarrow V_{0}, \int_{0}^{L} \int_{0}^{1} \omega^{2}(x, \rho) d \rho d x<+\infty\right\}, \\
V_{1}= \begin{cases}H_{0}^{1}(] 0, L[) & \text { if } k=0, \\
\left\{\omega \in H^{1}(] 0, L[), \int_{0}^{L} \omega(x) d x=0\right\} & \text { if } k=1\end{cases}
\end{gathered}
$$

and

$$
V_{0}= \begin{cases}L^{2}(] 0, L[) & \text { if } k=0 \\ \left\{\omega \in L^{2}(] 0, L[), \int_{0}^{L} \omega(x) d x=0\right\} & \text { if } k=1\end{cases}
$$

The spaces L_{i} and L_{d} are endowed with the classical inner products

$$
\langle\omega, \tilde{\omega}\rangle_{L_{i}}=\int_{0}^{L} \int_{0}^{+\infty} g_{i}(s) \omega_{x}(x, s) \tilde{\omega}_{x}(x, s) d s d x
$$

and

$$
\langle\omega, \tilde{\omega}\rangle_{L_{d}}=\langle\omega, \tilde{\omega}\rangle_{\tilde{L}_{d}}=\int_{0}^{L} \int_{0}^{1} \omega(x, \rho) \tilde{\omega}(x, \rho) d \rho d x
$$

CHAPTER 2. WELL-POSEDNESS OF BRESSE SYSTEM WITH MEMORIES AND

 DELAYSWe put

$$
\mathcal{U}(t)=\left(\varphi, \psi, \omega, \varphi_{t}, \psi_{t}, \omega_{t}, \eta_{1}, \eta_{2}, \eta_{3}, z_{1}, z_{2}, z_{3}\right)^{T}
$$

So its initial data \mathcal{U}_{0} is given by

$$
\mathcal{U}_{0}=\mathcal{U}(0)=\left(\varphi_{0}, \psi_{0}, \omega_{0}, \varphi_{1}, \psi_{1}, \omega_{1}, \eta_{1}^{0}, \eta_{2}^{0}, \eta_{3}^{0}, z_{1}^{0}, z_{2}^{0}, z_{3}^{0}\right)^{T} .
$$

The system (2.1) can be formulated in the following abstract linear first-order system:

$$
\left\{\begin{array}{l}
\mathcal{U}_{t}=(\mathcal{A}+\mathcal{B}) \mathcal{U}(t), \quad t>0 \tag{2.6}\\
\mathcal{U}(0)=\mathcal{U}_{0}
\end{array}\right.
$$

where the operators \mathcal{A} and \mathcal{B} are linear and given by
$\mathcal{A}\left(\omega_{1}, \cdots, \omega_{12}\right)^{T}=\left(\omega_{4}, \omega_{5}, \omega_{6}, \hat{\omega}_{7}, \hat{\omega}_{8}, \hat{\omega}_{9}, \omega_{4}-\omega_{7 s}, \omega_{5}-\omega_{8 s}, \omega_{6}-\omega_{9 s},-\frac{1}{\tau_{1}} \omega_{10 \rho},-\frac{1}{\tau_{2}} \omega_{11 \rho},-\frac{1}{\tau_{3}} \omega_{12 \rho}\right)^{T}$ and

$$
\begin{equation*}
\mathcal{B}\left(\omega_{1}, \cdots, \omega_{12}\right)^{T}=\left(0,0,0, \frac{\left|\mu_{1}\right|}{\rho_{1}} \omega_{4}, \frac{\left|\mu_{2}\right|}{\rho_{2}} \omega_{5}, \frac{\left|\mu_{3}\right|}{\rho_{1}} \omega_{6}, 0,0,0,0,0,0\right)^{T} \tag{2.7}
\end{equation*}
$$

where

$$
\begin{aligned}
& \hat{\omega}_{7}=\frac{k_{1}}{\rho_{1}}\left(\omega_{1 x}+\omega_{2}+l \omega_{3}\right)_{x}+\frac{l k_{3}}{\rho_{1}}\left(\omega_{3 x}-l \omega_{1}\right)-\frac{g_{1}^{0}}{\rho_{1}} \omega_{1 x x}+\frac{1}{\rho_{1}} \int_{0}^{+\infty} g_{1}(s) \omega_{7 x x} d s-\frac{\mu_{1}}{\rho_{1}} \omega_{10}(1)-\frac{\left|\mu_{1}\right|}{\rho_{1}} \omega_{4}, \\
& \hat{\omega}_{8}=\frac{k_{2}-g_{2}^{0}}{\rho_{2}} \omega_{2 x x}-\frac{k_{1}}{\rho_{2}}\left(\omega_{1 x}+\omega_{2}+l \omega_{3}\right)+\frac{1}{\rho_{2}} \int_{0}^{+\infty} g_{2}(s) \omega_{8 x x} d s-\frac{\mu_{2}}{\rho_{2}} \omega_{11}(1)-\frac{\left|\mu_{2}\right|}{\rho_{2}} \omega_{5}
\end{aligned}
$$

and
$\hat{\omega}_{9}=\frac{k_{3}}{\rho_{1}}\left(\omega_{3 x}-l \omega_{1}\right)_{x}-\frac{l k_{1}}{\rho_{1}}\left(\omega_{1 x}+\omega_{2}+l \omega_{3}\right)-\frac{g_{3}^{0}}{\rho_{1}} \omega_{3 x x}+\frac{1}{\rho_{1}} \int_{0}^{+\infty} g_{3}(s) \omega_{9 x x} d s-\frac{\mu_{3}}{\rho_{1}} \omega_{12}(1)-\frac{\left|\mu_{3}\right|}{\rho_{1}} \omega_{6}$,
where we put

$$
g_{i}^{0}=\int_{0}^{+\infty} g_{i}(s) d s
$$

The domains $\mathcal{D}(\mathcal{B})$ and $\mathcal{D}(\mathcal{A})$ of \mathcal{B} and \mathcal{A}, respectively, are given by $\mathcal{D}(B)=\mathcal{H}$ and $\mathcal{D}(\mathcal{A})=\left\{W=\left(w_{1}, \cdots, w_{12}\right)^{T} \in \mathcal{H}, \mathcal{A} W \in \mathcal{H}, \omega_{i+6}(0)=0, \omega_{i+9}(0)=\omega_{i+3}, i=1,2,3\right\}$,

CHAPTER 2. WELL-POSEDNESS OF BRESSE SYSTEM WITH MEMORIES AND

 DELAYSthis means that
$\mathcal{D}(\mathcal{A})=\left\{\begin{array}{c}\left(\omega_{1}, \cdots, \omega_{12}\right)^{T} \in \mathcal{H}, \omega_{7}(0)=\omega_{8}(0)=\omega_{9}(0)=0, \omega_{10}(0)=\omega_{4}, \omega_{11}(0)=\omega_{5}, \omega_{12}(0)=\omega_{6} \\ \left(\omega_{4}, \omega_{5}, \omega_{6}\right) \in H_{0}^{1}\left(10, L[) \times V_{1}^{2},\left(\omega_{7 s}, \omega_{8 s}, \omega_{9 s}\right) \in L_{1} \times L_{2} \times L_{3},\left(\omega_{10 \rho}, \omega_{11 \rho}, \omega_{12 \rho}\right) \in L_{d} \times \tilde{L}_{d}^{2}\right. \\ \left(k_{1}-g_{1}^{0}\right) \omega_{1 x x}+\int_{0}^{+\infty} g_{1}(s) \omega_{7 x x} d s \in L^{2}(] 0, L[) \\ \left(k_{2}-g_{2}^{0}\right) \omega_{2 x x}+\int_{0}^{+\infty} g_{2}(s) \omega_{8 x x} d s \in V_{0} \\ \left(k_{3}-g_{3}^{0}\right) \omega_{3 x x}+\int_{0}^{+\infty} g_{3}(s) \omega_{9 x x} d s \in V_{0}\end{array}\right\}$

More general, we have $\mathcal{D}\left(\mathcal{A}^{0}\right)=\mathcal{H}, \mathcal{D}\left(\mathcal{A}^{1}\right)=\mathcal{D}(\mathcal{A})$ and, for $n=2,3, \cdots$,

$$
\mathcal{D}\left(\mathcal{A}^{n}\right)=\left\{W \in \mathcal{D}\left(\mathcal{A}^{n-1}\right), \mathcal{A} W \in \mathcal{D}\left(\mathcal{A}^{n-1}\right)\right\} .
$$

Therefore, we conclude from (2.2), (2.3), (2.4) and (2.5) that the systems (2.1) and (2.6) are equivalent.

Remark 2.1 When only two memories are considered, some additional multipliers are needed to get the stability of (2.1) (section 4). These multipliers generate some boundary terms depending on $\psi_{x}(0, t), \psi_{x}(L, t), w_{x}(0, t)$ and $w_{x}(L, t)$. To avoid these boundary terms, we consider the homogeneous Dirichlet-Neumann boundary conditions for ψ and w ($k=1$ in (2.1)). But in this case, the Poincaré's inequality is not applicable neither for ψ nor for w. To overcome this problem, we consider a change of variables (as in [20] and [24]). By integrating on $] 0, L[$ the second and third equations in (2.1) and using the boundary conditions with $k=1$, we obtain

$$
\begin{equation*}
\frac{\partial^{2}}{\partial t^{2}} \int_{0}^{L} \psi d x+\frac{k_{1}}{\rho_{2}} \int_{0}^{L} \psi d x+\frac{l k_{1}}{\rho_{2}} \int_{0}^{L} w d x+\frac{\mu_{2}}{\rho_{2}} \frac{\partial}{\partial t} \int_{0}^{L} \psi\left(x, t-\tau_{2}\right) d x=0 \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2}}{\partial t^{2}} \int_{0}^{L} w d x+\frac{l^{2} k_{1}}{\rho_{1}} \int_{0}^{L} w d x+\frac{l k_{1}}{\rho_{1}} \int_{0}^{L} \psi d x+\frac{\mu_{3}}{\rho_{1}} \frac{\partial}{\partial t} \int_{0}^{L} w\left(x, t-\tau_{3}\right) d x=0 \tag{2.10}
\end{equation*}
$$

Therefore, (2.9) implies that

$$
\begin{equation*}
\int_{0}^{L} w d x=-\frac{\rho_{2}}{l k_{1}} \frac{\partial^{2}}{\partial t^{2}} \int_{0}^{L} \psi d x-\frac{1}{l} \int_{0}^{L} \psi d x-\frac{\mu_{2}}{l k_{1}} \frac{\partial}{\partial t} \int_{0}^{L} \psi\left(x, t-\tau_{2}\right) d x \tag{2.11}
\end{equation*}
$$

CHAPTER 2. WELL-POSEDNESS OF BRESSE SYSTEM WITH MEMORIES AND DELAYS

Let $\tau_{0}=\min \left\{\tau_{2}, \tau_{3}\right\}, l_{0}=\sqrt{\frac{k_{1}}{\rho_{2}}+\frac{l^{2} k_{1}}{\rho_{1}}}$ and $\left.h_{0}(t)=-\frac{\mu_{2}}{\rho_{2}} \frac{\partial^{2}}{\partial t^{2}} \int_{0}^{L} h_{2}\left(x, t-\tau_{2}\right) d x-\frac{\mu_{2} l^{2} k_{1}}{\rho_{1} \rho_{2}} \int_{0}^{L} h_{2}\left(x, t-\tau_{2}\right) d x+\frac{\mu_{3} l k_{1}}{\rho_{1} \rho_{2}} \int_{0}^{L} h_{3}\left(x, t-\tau_{3}\right) d x, \quad t \in\right] 0, \tau_{0}[$.

Substituting (2.11) into (2.10) and using the last two boundary conditions in (2.1), we get

$$
\begin{equation*}
\left.\frac{\partial^{4}}{\partial t^{4}} \int_{0}^{L} \psi d x+l_{0}^{2} \frac{\partial^{2}}{\partial t^{2}} \int_{0}^{L} \psi d x=h_{0}, \quad t \in\right] 0, \tau_{0}[\tag{2.12}
\end{equation*}
$$

Then, solving (2.12) by classical arguments and then substituting into (2.11), we find that

$$
\begin{equation*}
\left.\int_{0}^{L} \psi d x=\tilde{c}_{1} \cos \left(l_{0} t\right)+\tilde{c}_{2} \sin \left(l_{0} t\right)+\tilde{c}_{3} t+\tilde{c}_{4}+\int_{0}^{t} \int_{0}^{s} \tilde{h}_{0}(y) d y d s, \quad t \in\right] 0, \tau_{0}[\tag{2.13}
\end{equation*}
$$

and

$$
\begin{gather*}
\int_{0}^{L} w d x=\frac{\tilde{c}_{1}}{l}\left(\frac{\rho_{2} l_{0}^{2}}{k_{1}}-1\right) \cos \left(l_{0} t\right)+\frac{\tilde{c}_{2}}{l}\left(\frac{\rho_{2} l_{0}^{2}}{k_{1}}-1\right) \sin \left(l_{0} t\right) \tag{2.14}\\
\left.-\frac{1}{l}\left(\tilde{c}_{3} t+\tilde{c}_{4}\right)-\frac{1}{l} \int_{0}^{t} \int_{0}^{s} \tilde{h}_{0}(y) d y d s-\frac{\rho_{2}}{l k_{1}} \tilde{h}_{0}(t)-\frac{\mu_{2}}{l k_{1}} \int_{0}^{L} h_{2}\left(x, t-\tau_{2}\right) d x, \quad t \in\right] 0, \tau_{0}[,
\end{gather*}
$$

where $\tilde{c}_{1}, \cdots, \tilde{c}_{4}$ are real constants and (here Re denotes the real part $i^{2}=-1$)

$$
\left.\tilde{h}_{0}(t)=\operatorname{Re}\left[e^{-i l_{0} t} \int_{0}^{t} e^{2 i l_{0} s} \int_{0}^{s} e^{-i l_{0} y} h_{0}(y) d y d s\right], \quad t \in\right] 0, \tau_{0}[
$$

Let

$$
\left(\bar{\psi}_{0}(x), \bar{w}_{0}(x)\right)= \begin{cases}\left(\psi_{0}(x, 0), w_{0}(x, 0)\right) & \text { in case } g_{1}=0 \\ \left(\psi_{0}(x), w_{0}(x, 0)\right) & \text { in case } g_{2}=0 \\ \left(\psi_{0}(x, 0), w_{0}(x)\right) & \text { in case } g_{3}=0\end{cases}
$$

Using the initial data of ψ and w in (2.1), we see that

$$
\left\{\begin{array}{l}
\tilde{c}_{1}=\frac{k_{1}}{\rho_{2} l_{0}^{2}} \int_{0}^{L} \bar{\psi}_{0} d x+\frac{l k_{1}}{\rho_{2} l_{0}^{2}} \int_{0}^{L} \bar{w}_{0} d x+\frac{\mu_{2}}{\rho_{2} l_{0}^{2}} \int_{0}^{L} h_{2}\left(x,-\tau_{2}\right) d x \\
\tilde{c}_{2}=\frac{k_{1}}{\rho_{2} l_{0}^{2}} \int_{0}^{L} \psi_{1} d x+\frac{l k_{1}}{\rho_{2} l_{0}^{2}} \int_{0}^{L} w_{1} d x+\frac{\mu_{2}}{\rho_{2} l_{0}^{2}} \int_{0}^{L} \frac{\partial}{\partial t} h_{2}\left(x,-\tau_{2}\right) d x, \\
\tilde{c}_{3}=\left(1-\frac{k_{1}}{\rho_{2} l_{0}^{2}}\right) \int_{0}^{L} \psi_{1} d x-\frac{l k_{1}}{\rho_{2} l_{0}^{2}} \int_{0}^{L} w_{1} d x-\frac{\mu_{2}}{\rho_{2} l_{0}^{2}} \int_{0}^{L} \frac{\partial}{\partial t} h_{2}\left(x,-\tau_{2}\right) d x, \\
\tilde{c}_{4}=\left(1-\frac{k_{1}}{\rho_{2} l_{0}^{2}}\right) \int_{0}^{L} \bar{\psi}_{0} d x-\frac{l k_{1}}{\rho_{2} l_{0}^{2}} \int_{0}^{L} \bar{w}_{0} d x-\frac{\mu_{2}}{\rho_{2} l_{0}^{2}} \int_{0}^{L} h_{2}\left(x,-\tau_{2}\right) d x .
\end{array}\right.
$$

CHAPTER 2. WELL-POSEDNESS OF BRESSE SYSTEM WITH MEMORIES AND DELAYS

Let, for $t \in] 0, \tau_{0}[$,

$$
\tilde{\psi}_{0}(t)=\int_{0}^{L} \psi d x \quad \text { and } \quad \tilde{w}_{0}(t)=\int_{0}^{L} w d x
$$

and for $n \in \mathbb{N}^{*}$ and $\left.t \in\right] n \tau_{0},(n+1) \tau_{0}[$,

$$
\tilde{\psi}_{n}(t)=\int_{0}^{L} \psi d x \quad \text { and } \quad \tilde{w}_{n}(t)=\int_{0}^{L} w d x
$$

with
$\left(\tilde{\psi}_{n}\left(n \tau_{0}\right), \tilde{w}_{n}\left(n \tau_{0}\right)\right)=\left(\tilde{\psi}_{n-1}\left(n \tau_{0}\right), \tilde{w}_{n-1}\left(n \tau_{0}\right)\right) \quad$ and $\quad\left(\tilde{\psi}_{n}^{\prime}\left(n \tau_{0}\right), \tilde{w}_{n}^{\prime}\left(n \tau_{0}\right)\right)=\left(\tilde{\psi}_{n-1}^{\prime}\left(n \tau_{0}\right), \tilde{w}_{n-1}^{\prime}\left(n \tau_{0}\right)\right)$.

By induction on n and according to (2.10) and (2.11), we see that $\tilde{\psi}_{n}$ and $\tilde{w}_{n}, n \in \mathbb{N}^{*}$, are defined on $] n \tau_{0},(n+1) \tau_{0}\left[\right.$ as $\tilde{\psi}_{0}$ and \tilde{w}_{0} (with $\tilde{\psi}_{n-1}, \tilde{w}_{n-1}, \tilde{\psi}_{n-1}\left(n \tau_{0}\right)$, $\tilde{w}_{n-1}\left(n \tau_{0}\right), \tilde{\psi}_{n-1}^{\prime}\left(n \tau_{0}\right)$, $\tilde{w}_{n-1}^{\prime}\left(n \tau_{0}\right), \int_{n \tau_{0}}^{t}$ and $\int_{n \tau_{0}}^{s}$ instead of $h_{2}, h_{3}, \int_{0}^{L} \bar{\psi}_{0} d x, \int_{0}^{L} \bar{w}_{0} d x, \int_{0}^{L} \psi_{1} d x, \int_{0}^{L} w_{1} d x, \int_{0}^{t}$ and \int_{0}^{s}, respectively). Finally, the functions

$$
\hat{\psi}=\tilde{\psi}_{n} \quad \text { and } \quad \hat{w}=\tilde{w}_{n}, \quad \forall n \in \mathbb{N}, \forall t \in\left[n \tau_{0},(n+1) \tau_{0}[\right.
$$

are the unique two times derivatives solution of the system

$$
\left\{\begin{array}{l}
\frac{\partial^{2}}{\partial t^{2}} \hat{w}(t)+\frac{l^{2} k_{1}}{\rho_{1}} \hat{w}(t)+\frac{l k_{1}}{\rho_{1}} \hat{\psi}(t)+\frac{\mu_{3}}{\rho_{1}} \frac{\partial}{\partial t} \hat{\psi}\left(t-\tau_{2}\right)=0, \quad t>0 \\
\hat{w}(t)=-\frac{\rho_{2}}{l k_{1}} \frac{\partial^{2}}{\partial t^{2}} \hat{\psi}(t)-\frac{1}{l} \hat{\psi}(t)-\frac{\mu_{2}}{l k_{1}} \frac{\partial}{\partial t} \hat{\psi}\left(t-\tau_{2}\right), \quad t>0 \\
\left.\frac{\partial}{\partial t} \hat{\psi}\left(t-\tau_{2}\right)=\int_{0}^{L} h_{2}\left(x, t-\tau_{2}\right) d x, \quad t \in\right] 0, \tau_{2}[\\
\left.\frac{\partial}{\partial t} \hat{w}\left(t-\tau_{3}\right)=\int_{0}^{L} h_{3}\left(x, t-\tau_{3}\right) d x, \quad t \in\right] 0, \tau_{3}[\\
\hat{\psi}(0)=\int_{0}^{L} \tilde{\psi}_{0} d x, \quad \hat{\psi}^{\prime}(0)=\int_{0}^{L} \psi_{1} d x \\
\hat{w}(0)=\int_{0}^{L} \tilde{w}_{0} d x, \quad \hat{w}^{\prime}(0)=\int_{0}^{L} w_{1} d x
\end{array}\right.
$$

Consequentely, the functions

$$
\tilde{\psi}=\psi-\frac{1}{L} \hat{\psi} \quad \text { and } \quad \tilde{w}=w-\frac{1}{L} \hat{w}
$$

CHAPTER 2. WELL-POSEDNESS OF BRESSE SYSTEM WITH MEMORIES AND DELAYS
satisfy

$$
\begin{equation*}
\int_{0}^{L} \tilde{\psi} d x=\int_{0}^{L} \tilde{w} d x=\int_{0}^{L} \tilde{\eta}_{2} d x=\int_{0}^{L} \tilde{\eta}_{3} d x=0 \tag{2.15}
\end{equation*}
$$

where

$$
\begin{cases}\text { Cases } g_{1}=0 \text { or } g_{3}=0: & \tilde{\eta}_{2}(x, t, s)=\tilde{\psi}(x, t)-\tilde{\psi}(x, t-s) \\ \text { in }] 0, L\left[\times \mathbb{R}_{+} \times \mathbb{R}_{+},\right. \\ \text {Cases } g_{1}=0 \text { or } g_{2}=0: & \tilde{\eta}_{3}(x, t, s)=\tilde{w}(x, t)-\tilde{w}(x, t-s) \\ \text { in }] 0, L\left[\times \mathbb{R}_{+} \times \mathbb{R}_{+}\right.\end{cases}
$$

Therefore, the Poincaré's inequality

$$
\begin{equation*}
\exists c_{0}>0: \int_{0}^{L} v^{2} d x \leq c_{0} \int_{0}^{L} v_{x}^{2} d x, \quad \forall v \in H_{0}^{1}(] 0, L[) \cup V_{1} \tag{2.16}
\end{equation*}
$$

is applicable for $\tilde{\psi}, \tilde{w}$, $\tilde{\eta}_{2}$ and $\tilde{\eta}_{3}$, provided that $\tilde{\psi}, \tilde{w} \in H^{1}(] 0, L[)$. In addition, $(\varphi, \tilde{\psi}, \tilde{w})$ satisfies the boundary conditions and the first three equations in (2.1) with initial data

$$
\psi_{0}-\frac{1}{L} \hat{\psi}(0), \quad \psi_{1}-\frac{1}{L} \hat{\psi}^{\prime}(0), \quad w_{0}-\frac{1}{L} \hat{w}(0) \text { and } \quad w_{1}-\frac{1}{L} \hat{w}^{\prime}(0),
$$

instead of $\psi_{0}, \psi_{1}, w_{0}$ and w_{1}, respectively. In the sequel, we work with $\tilde{\psi}, \tilde{w}, \tilde{\eta}_{2}$ and $\tilde{\eta}_{3}$ instead of ψ, w, η_{2} and η_{3}, but, for simplicity of notation, we use ψ, w, η_{2} and η_{3} instead of $\tilde{\psi}, \tilde{w}, \tilde{\eta}_{2}$ and $\tilde{\eta}_{3}$, respectively.

Now, we assume that
(A1) The function g_{i} is differentiable, nonincreasing and integrable on \mathbb{R}_{+}.
(A2) There exists a positive constant k_{0} such that, for any $(\varphi, \psi, \omega) \in H_{0}^{1}(] 0, L[) \times V_{1}^{2}$,

$$
\begin{gather*}
\int_{0}^{L}\left(\varphi_{x}^{2}+\psi_{x}^{2}+\omega_{x}^{2}\right) d x \tag{2.17}\\
\leq k_{0} \int_{0}^{L}\left(k_{2} \psi_{x}^{2}+k_{3}\left(\omega_{x}-l \varphi\right)^{2}+k_{1}\left(\varphi_{x}+\psi+l \omega\right)^{2}-g_{1}^{0} \varphi_{x}^{2}-g_{2}^{0} \psi_{x}^{2}-g_{3}^{0} \omega_{x}^{2}\right) d x
\end{gather*}
$$

(A3) There exist positive constants α_{i} such that

$$
\begin{equation*}
-\alpha_{i} g_{i}(s) \leq g_{i}^{\prime}(s), \quad \forall s \in \mathbb{R}_{+} \tag{2.18}
\end{equation*}
$$

Let consider the expression

$$
\left\|\left(w_{1}, w_{2}, w_{3}\right)\right\|_{0}^{2}=\int_{0}^{L}\left(\left(k_{2}-g_{2}^{0}\right) \omega_{2 x}^{2}+k_{1}\left(\omega_{1 x}+\omega_{2}+l \omega_{3}\right)^{2}+k_{3}\left(\omega_{3 x}-l \omega_{1}\right)^{2}-g_{1}^{0} \omega_{1 x}^{2}-g_{3}^{0} \omega_{3 x}^{2}\right) d x
$$

CHAPTER 2. WELL-POSEDNESS OF BRESSE SYSTEM WITH MEMORIES AND

 DELAYSThanks to (A2) and Poincaré's inequality (2.16), $\|\cdot\|_{0}$ defines a norm on $\mathcal{H}_{0}:=H_{0}^{1}(] 0, L[) \times$ V_{1}^{2} equivalent to the one $\|\cdot\|_{\mathcal{H}_{0}}$ given by

$$
\begin{equation*}
\left\|\left(w_{1}, w_{2}, w_{3}\right)\right\|_{\mathcal{H}_{0}}^{2}=\int_{0}^{L}\left(\omega_{1 x}^{2}+\omega_{2 x}^{2}+\omega_{3 x}^{2}\right) d x \tag{2.19}
\end{equation*}
$$

that is, there exist two positive constants \tilde{l}_{1} and \tilde{l}_{2} satisfying

$$
\tilde{l}_{1}\|\omega\|_{\mathcal{H}_{0}} \leq\|\omega\|_{0} \leq \tilde{l}_{2}\|\omega\|_{\mathcal{H}_{0}}, \quad \forall \omega=\left(\omega_{1}, \omega_{2}, \omega_{3}\right) \in \mathcal{H}_{0}
$$

Then $\left(\mathcal{H},\langle\cdot, \cdot\rangle_{\mathcal{H}}\right)$ is a Hilbert space, where the inner product $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ is given by, for $W=$ $\left(\omega_{1}, \cdots, \omega_{12}\right)^{T}$ and $\tilde{W}=\left(\tilde{\omega}_{1}, \cdots, \tilde{\omega}_{12}\right)^{T}$,

$$
\begin{aligned}
\langle W, \tilde{W}\rangle_{\mathcal{H}} & =\int_{0}^{L}\left(\left(k_{2}-g_{2}^{0}\right) \omega_{2 x} \tilde{\omega}_{2 x}+k_{1}\left(\omega_{1 x}+\omega_{2}+l \omega_{3}\right)\left(\tilde{\omega}_{1 x}+\tilde{\omega}_{2}+l \tilde{\omega}_{3}\right)+k_{3}\left(\omega_{3 x}-l \omega_{1}\right)\left(\tilde{\omega}_{3 x}-l \tilde{\omega}_{1}\right)\right) d x \\
& +\int_{0}^{L}\left(\rho_{1} \omega_{4} \tilde{\omega}_{4}+\rho_{2} \omega_{5} \tilde{\omega}_{5}+\rho_{1} \omega_{6} \tilde{\omega}_{6}-g_{1}^{0} \omega_{1 x} \tilde{\omega}_{1 x}-g_{3}^{0} \omega_{3 x} \tilde{\omega}_{3 x}\right) d x+\left\langle\omega_{7}, \tilde{\omega}_{7}\right\rangle_{L_{1}}+\left\langle\omega_{8}, \tilde{\omega}_{8}\right\rangle_{L_{2}} \\
& \left.+\left\langle\omega_{9}, \tilde{\omega}_{9}\right\rangle_{L_{3}}+\tau_{1}\left|\mu_{1}\right|\left\langle\omega_{10}, \tilde{\omega}_{10}\right\rangle_{L_{d}}+\tau_{2}\left|\mu_{2}\right|\left\langle\omega_{11}, \tilde{\omega}_{11}\right\rangle\right\rangle_{L_{d}}+\tau_{3}\left|\mu_{3}\right|\left\langle\omega_{12}, \tilde{\omega}_{12}\right\rangle_{L_{d}} .
\end{aligned}
$$

Moreover, $\mathcal{D}(\mathcal{A}) \subset \mathcal{H}$ with dense embedding. Finally, $\mathcal{D}\left(\mathcal{A}^{n}\right)$ is endowed with the graph norm

$$
\|W\|_{\mathcal{D}\left(\mathcal{A}^{n}\right)}=\sum_{k=0}^{n}\left\|\mathcal{A}^{k} w\right\|_{\mathcal{H}}
$$

where $\|\cdot\|_{\mathcal{H}}$ is the norm generated by $\langle\cdot, \cdot\rangle_{\mathcal{H}}$. Now, the well-posedness of problem (2.6) is ensured by the following theorem:

Theorem 2.2 Assume that (A1)-(A3) hold. Then, for any $n \in \mathbb{N}$ and $\mathcal{U}_{0} \in \mathcal{D}\left(\mathcal{A}^{n}\right)$, the system (2.6) has a unique solution satisfying

$$
\mathcal{U} \in \bigcap_{k=0}^{n} C^{k}\left(\mathbb{R}_{+}, \mathcal{D}\left(\mathcal{A}^{n-k}\right)\right)
$$

Proof. To prove Theorem 2.9, first, we prove that $-\mathcal{A}$ is a maximal monotone operator; that is $I d-\mathcal{A}$ is surjectif and (notice that \mathcal{A} is linear)

$$
\langle\mathcal{A} W, W\rangle_{\mathcal{H}} \leq 0, \quad \forall W \in \mathcal{D}(\mathcal{A})
$$

CHAPTER 2. WELL-POSEDNESS OF BRESSE SYSTEM WITH MEMORIES AND

 DELAYSHere, $I d$ denotes the identity operator. Let $W=\left(\omega_{1}, \cdots, \omega_{12}\right)^{T} \in \mathcal{D}(A)$. We have

$$
\begin{aligned}
\langle\mathcal{A} W, W\rangle_{\mathcal{H}} & =\int_{0}^{L}\left(\left(k_{2}-g_{2}^{0}\right) \omega_{2 x} \omega_{5 x}-g_{1}^{0} \omega_{1 x} \omega_{4 x}-g_{3}^{0} \omega_{3 x} \omega_{6 x}+k_{1}\left(\omega_{1 x}+\omega_{2}+l \omega_{3}\right)\left(\omega_{4 x}+\omega_{5}+l \omega_{6}\right)\right) d x \\
& +\int_{0}^{L}\left(k_{2}\left(\omega_{3 x}-l \omega_{1}\right)\left(\omega_{6 x}-l \omega_{4}\right)\right) d x-\int_{0}^{L} \int_{0}^{1}\left(\left|\mu_{1}\right| \omega_{10} \omega_{10 \rho}+\left|\mu_{2}\right| \omega_{11} \omega_{11 \rho}+\left|\mu_{3}\right| \omega_{12} \omega_{12 \rho}\right) d \rho d x \\
& +\int_{0}^{L}\left(k_{1}\left(\omega_{1 x}+\omega_{2}+l \omega_{3}\right)_{x}+l k_{3}\left(\omega_{3 x}-l \omega_{1}\right)-g_{1}^{0} \omega_{1 x x}+\int_{0}^{+\infty} g_{1}(s) \omega_{7 x x} d s-\mu_{1} \omega_{10}(1)-\left|\mu_{1}\right| \omega_{4}\right. \\
& +\int_{0}^{L}\left(-k_{1}\left(\omega_{1 x}+\omega_{2}+l \omega_{3}\right)+k_{2} \omega_{2 x x}-g_{2}^{0} \omega_{2 x x}+\int_{0}^{+\infty} g_{2}(s) \omega_{8 x x} d s-\mu_{2} \omega_{11}(1)-\left|\mu_{2}\right| \omega_{5}\right) \omega_{5} d x \\
& +\int_{0}^{L}\left(-l k_{1}\left(\omega_{1 x}+\omega_{2}+l \omega_{3}\right)+k_{3}\left(\omega_{3 x}-l \omega_{1}\right)-g_{3}^{0} \omega_{3 x x}+\int_{0}^{+\infty} g_{3}(s) \omega_{9 x x} d s-\mu_{3} \omega_{12}(1)-\left|\mu_{3}\right| \omega\right. \\
& +\int_{0}^{L} \int_{0}^{+\infty}\left(g_{1}(s) \omega_{7 x}\left(\omega_{4}-\omega_{7 s}\right)_{x}+g_{2}(s) \omega_{8 x}\left(\omega_{5}-\omega_{8 s}\right)_{x}+g_{3}(s) \omega_{9 x}\left(\omega_{6}-\omega_{9 s}\right)_{x}\right) d s d x .
\end{aligned}
$$

It is clear that, by integrating by parts with respect to x and using the homogeneous Dirichlet boundary conditions, we obtain

$$
\begin{aligned}
\langle\mathcal{A} W, W\rangle_{\mathcal{H}} & =-\int_{0}^{L} \int_{0}^{+\infty}\left(g_{1}(s) \omega_{7 s x} \omega_{7 x}+g_{2}(s) \omega_{8 x} \omega_{8 s x}+g_{3}(s) \omega_{9 s x} \omega_{9 x}\right) d s d x \\
& -\int_{0}^{L}\left(\mu_{1} \omega_{10}(1) \omega_{4}+\left|\mu_{1}\right| \omega_{4}^{2}+\left|\mu_{2}\right| \omega_{11}(1) \omega_{5}+\left|\mu_{2}\right| \omega_{5}^{2}+\left|\mu_{3}\right| \omega_{12}(1) \omega_{6}+\left|\mu_{3}\right| \omega_{6}^{2}\right) d x \\
& -\int_{0}^{L} \int_{0}^{1}\left(\left|\mu_{1}\right| \omega_{10} \omega_{10 \rho}+\left|\mu_{2}\right| \omega_{11} \omega_{11 \rho}+\left|\mu_{3}\right| \omega_{12} \omega_{12 \rho}\right) d p d x
\end{aligned}
$$

Using the fact that (because $W \in \mathcal{D}(\mathcal{A})$ and according to (2.18))

$$
\lim _{s \rightarrow+\infty} g_{1}(s) \omega_{7 x}(x, s)=\lim _{s \rightarrow+\infty} g_{2}(s) \omega_{8 x}(x, s)=\lim _{s \rightarrow+\infty} g_{3}(s) \omega_{9 x}(x, s)=0
$$

and

$$
\omega_{7 x}(0)=\omega_{8 x}(0)=\omega_{9 x}(0)=0, \quad \omega_{10}(0)=\omega_{4}, \quad \omega_{11}(0)=\omega_{5}, \quad \omega_{12}(0)=\omega_{6},
$$

we arrive at, by integrating with respect to s and ρ,

$$
-\int_{0}^{L} \int_{0}^{+\infty} g_{i}(s) \omega_{(6+i) x}(x, s) \omega_{(6+i) x s}(x, s) d s d x=\frac{1}{2} \int_{0}^{L} \int_{0}^{+\infty} g_{i}^{\prime}(s) \omega_{(6+i) x}^{2}(x, s) d s d x, \quad i=1,2,3
$$

and

$$
-\int_{0}^{L} \int_{0}^{1}\left|\mu_{i}\right| \omega_{(i+9)} \omega_{(i+9) \rho} d \rho d x=\frac{1}{2} \int_{0}^{L}\left|\mu_{i}\right| \omega_{(i+3)}^{2} d x-\frac{1}{2} \int_{0}^{L}\left|\mu_{i}\right| \omega_{(i+9)}^{2}(1) d x, \quad i=1,2,3 .
$$

CHAPTER 2. WELL-POSEDNESS OF BRESSE SYSTEM WITH MEMORIES AND

 DELAYSOn the other hand, Young's inequality implies that
$-\int_{0}^{L}\left|\mu_{1}\right| \omega_{10}(1) \omega_{4} d x \leq \frac{1}{2} \int_{0}^{L}\left|\mu_{1}\right|\left(\omega_{4}^{2}+\omega_{10}^{2}(1)\right) d x, \quad-\int_{0}^{L}\left|\mu_{2}\right| \omega_{11}(1) \omega_{5} d x \leq \frac{1}{2} \int_{0}^{L}\left|\mu_{2}\right|\left(\omega_{5}^{2}+\omega_{11}^{2}(1)\right) d x$
and

$$
-\int_{0}^{L}\left|\mu_{3}\right| \omega_{12}(1) \omega_{6} d x \leq \frac{1}{2} \int_{0}^{L}\left|\mu_{3}\right|\left(\omega_{6}^{2}+\omega_{12}^{2}(1)\right) d x
$$

Therefore

$$
\begin{equation*}
\langle\mathcal{A} W, W\rangle_{\mathcal{H}} \leq \frac{1}{2} \int_{0}^{L} \int_{0}^{+\infty}\left(g_{1}^{\prime}(s) \omega_{7 x}^{2}+g_{2}^{\prime}(s) \omega_{8 x}^{2}+g_{3}^{\prime}(s) \omega_{9 x}^{2}\right) d s d x . \tag{2.20}
\end{equation*}
$$

Because $g^{\prime} \leq 0$, then $\langle\mathcal{A} W, W\rangle \leq 0$, which means that \mathcal{A} is dissipative.
Notice that, thanks to (2.18) and because $g_{i}^{\prime} \leq 0$ and $\left(\omega_{7}, \omega_{8}, \omega_{9}\right) \in L_{1} \times L_{2} \times L_{3}$, we have

$$
\begin{aligned}
\left|\int_{0}^{L} \int_{0}^{+\infty} g_{i}^{\prime}(s) \omega_{(6+i) x}^{2} d s d x\right| & =-\int_{0}^{L} \int_{0}^{+\infty} g_{i}^{\prime}(s) \omega_{(6+i) x}^{2} d s d x \\
& \leq \alpha_{i} \int_{0}^{L} \int_{0}^{+\infty} g_{i}(s) \omega_{(6+i) x}^{2} d s d x \\
& \leq \alpha_{i}\left\|\omega_{(6+i)}\right\|_{L_{i}}^{2}<+\infty, \quad i=1,2,3
\end{aligned}
$$

So the integral in 2.20 is well defined.
Next, we shall prove that $I d-\mathcal{A}$ is surjective. Indeed, let $F=\left(f_{1}, \cdots, f_{12}\right)^{T} \in \mathcal{H}$, we will show that there exists $W=\left(\omega_{1}, \cdots, \omega_{12}\right)^{T} \in \mathcal{D}(\mathcal{A})$ satisfying

$$
\begin{equation*}
(I d-\mathcal{A}) W=F, \tag{2.21}
\end{equation*}
$$

which is equivalent to

$$
\left\{\begin{array}{l}
\omega_{4}=\omega_{1}-f_{1}, \omega_{5}=\omega_{2}-f_{2}, \omega_{6}=\omega_{3}-f_{3}, \tag{2.22}\\
\rho_{1} \omega_{1}-\left(k_{1}-\int_{0}^{+\infty} g_{1}(s) d s\right) \omega_{1 x x}+l^{2} k_{2} \omega_{1}-k_{1} \omega_{2 x}-l\left(k_{1}+k_{2}\right) \omega_{3 x} \\
-\int_{0}^{+\infty} g_{1} \omega_{7 x x} d s+\mu_{1} \omega_{10}(x, t, 1)+\left|\mu_{1}\right| \omega_{1}=\rho_{1}\left(f_{4}+f_{1}\right)+\left|\mu_{1}\right| f_{1} \\
\rho_{2} \omega_{2}+k_{1} \omega_{1 x}-\left(k_{2}-\int_{0}^{+\infty} g_{2} d s\right) \omega_{2 x x}+k_{1} \omega_{2}+l k_{1} \omega_{3} \\
-\int_{0}^{+\infty} g_{2} \omega_{8 x x} d s+\mu_{2} \omega_{11}(x, t, 1)+\left|\mu_{2}\right| \omega_{2}=\rho_{2}\left(f_{5}+f_{2}\right)+\left|\mu_{2}\right| f_{2} \\
\rho_{1} \omega_{3}+l\left(k_{1}+k_{2}\right) \omega_{1 x}+l k_{1} \omega_{2}-\left(k_{3}-\int_{0}^{+\infty} g_{3}(s)\right) \omega_{3 x x}+l^{2} k_{1} \omega_{3} \\
-\int_{0}^{+\infty} g_{3} \omega_{9 x x} d s+\mu_{3} \omega_{12}(x, t, 1)+\left|\mu_{3}\right| \omega_{3}=\rho_{1}\left(f_{6}+f_{3}\right)+\left|\mu_{3}\right| f_{3} \\
\omega_{7 s}+\omega_{7}=f_{7}+\omega_{1}-f_{1}, \omega_{8 s}+\omega_{8}=f_{8}+\omega_{2}-f_{2}, \omega_{9 s}+\omega_{9}=f_{9}+\omega_{3}-f_{3} \\
\omega_{10}+\frac{1}{\tau_{1}} \omega_{10 p}(1)=f_{10}, \omega_{11}+\frac{1}{\tau_{2}} \omega_{11 p}(1)=f_{11}, \omega_{12}+\frac{1}{\tau_{3}} \omega_{12 p}(1)=f_{12}
\end{array}\right.
$$

First, we see that the first three equations in (2.22) give aready the components w_{4}, w_{5} and w_{6}, and we have $\left(w_{4}, w_{5}, w_{6}\right) \in H_{0}^{1}(] 0, L[) \times V_{1}^{2}$ if $\left(w_{1}, w_{2}, w_{3}\right) \in H_{0}^{1}(] 0, L[) \times V_{1}^{2}$.

Second, we note that the three equations 2.22$\left.)_{7}-2.22\right)_{9}$ with $\omega_{7}(0)=\omega_{8}(0)=\omega_{9}(0)=$ 0 have the unique solutions

$$
\begin{align*}
& \omega_{7}(s)=\left(1-e^{-s}\right)\left(\omega_{1}-f_{1}\right)+e^{-s} \int_{0}^{s} e^{y} f_{7}(y) d y \tag{2.23}\\
& \omega_{8}(s)=\left(1-e^{-s}\right)\left(\omega_{2}-f_{2}\right)+e^{-s} \int_{0}^{s} e^{y} f_{8}(y) d y \tag{2.24}
\end{align*}
$$

and

$$
\begin{equation*}
\omega_{9}(s)=\left(1-e^{-s}\right)\left(\omega_{3}-f_{3}\right)+e^{-s} \int_{0}^{s} e^{y} f_{9}(y) d y \tag{2.25}
\end{equation*}
$$

On the other hand, using Fubini theorem, Hölder's inequality and noting that $f_{7} \in L_{1}$, we

CHAPTER 2. WELL-POSEDNESS OF BRESSE SYSTEM WITH MEMORIES AND DELAYS
get

$$
\begin{aligned}
\int_{0}^{L} \int_{0}^{+\infty} g_{1}(s)\left(e^{-s} \int_{0}^{s} e^{y} f_{7 x}(y) d y\right)^{2} d s d x & \leq \int_{0}^{L} \int_{0}^{+\infty} e^{-2 s} g_{1}(s)\left(\int_{0}^{s} e^{y} d y\right) \int_{0}^{s} e^{y} f_{7 x}^{2}(y) d y d s d x \\
& \leq \int_{0}^{L} \int_{0}^{+\infty} e^{-s}\left(1-e^{-s}\right) g_{1}(s) \int_{0}^{s} e^{y} f_{7 x}^{2}(y) d y d s d x \\
& \leq \int_{0}^{L} \int_{0}^{+\infty} e^{-s} g_{1}(s) \int_{0}^{s} e^{y} f_{7 x}^{2}(y) d y d s d x \\
& \leq \int_{0}^{L} \int_{0}^{+\infty} e^{y} f_{7 x}^{2}(y) \int_{y}^{+\infty} e^{-s} g_{1}(s) d s d y d x \\
& \leq \int_{0}^{L} \int_{0}^{+\infty} e^{y} g_{1}(y) f_{7 x}^{2}(y) \int_{y}^{+\infty} e^{-s} d s d y d x \\
& \leq \int_{0}^{L} \int_{0}^{+\infty} g_{1}(y) f_{7 x}^{2}(y) d y d x=\left\|f_{7}\right\|_{L_{1}}^{2}<+\infty
\end{aligned}
$$

then

$$
s \mapsto e^{-s} \int_{0}^{s} e^{\tau} f_{7}(\tau) d \tau \in L_{1},
$$

and therefore, if $\left.\left(w_{1}, w_{2}, w_{3}\right) \in H_{0}^{1}(] 0, L[) \times V_{1}^{2}, 2.23\right)$ implies that $w_{7} \in L_{1}$. Moreover, $w_{7 s} \in L_{1}$ since 2.22$)_{7}$. Similarly, we get that $w_{8}, w_{8 s} \in L_{2}$ and $w_{9}, w_{9 s} \in L_{3}$.

Third, the last three equations in (2.22) with $\omega_{10}(0)=\omega_{4}=\omega_{1}-f_{1}, \omega_{11}(0)=\omega_{5}=$ $\omega_{2}-f_{2}$ and $\omega_{12}(0)=\omega_{6}=\omega_{3}-f_{3}$ have the unique solutions

$$
\left\{\begin{align*}
\omega_{10} & =\left(\omega_{1}-f_{1}+\tau_{1} \int_{0}^{\rho} e^{\tau_{1} y} f_{10}(y) d y\right) e^{-\tau_{1} \rho} \tag{2.26}\\
\omega_{11} & =\left(\omega_{2}-f_{2}+\tau_{2} \int_{0}^{\rho} e^{\tau_{2} y} f_{11}(y) d y\right) e^{-\tau_{2} \rho} \\
\omega_{12} & =\left(\omega_{3}-f_{3}+\tau_{2} \int_{0}^{\rho} e^{\tau_{3} y} f_{12}(y) d y\right) e^{-\tau_{3} \rho}
\end{align*}\right.
$$

We see that, using Hölder's inequality and noting that $f_{10} \in L_{d}$,

$$
\begin{aligned}
\int_{0}^{L} \int_{0}^{1}\left(\int_{0}^{\rho} e^{\tau_{1} y} f_{10}(y) d y\right)^{2} d \rho d x & \leq \int_{0}^{L} \int_{0}^{1}\left(\int_{0}^{\rho} e^{2 \tau_{1} y} d y\right)\left(\int_{0}^{\rho} f_{10}^{2}(y) d y\right) d \rho d x \\
& \leq \int_{0}^{L} \int_{0}^{1}\left(\int_{0}^{1} e^{2 \tau_{1} y} d y\right)\left(\int_{0}^{1} f_{10}^{2}(y) d y\right) d \rho d x \\
& \leq e^{2 \tau_{1}} \int_{0}^{L} \int_{0}^{1} f_{10}^{2} d y d x=e^{2 \tau_{1}}\left\|f_{10}\right\|_{L_{d}}^{2}<+\infty
\end{aligned}
$$

then

$$
\rho \mapsto \int_{0}^{\rho} e^{\tau_{1} y} f_{10}(y) d y \in L_{d},
$$

CHAPTER 2. WELL-POSEDNESS OF BRESSE SYSTEM WITH MEMORIES AND

 DELAYSand therefore, if $\left(w_{1}, w_{2}, w_{3}\right) \in H_{0}^{1}(] 0, L[) \times V_{1}^{2},(2.26)$ implies that $w_{10} \in L_{d}$. Moreover, $w_{10 \rho} \in L_{d}$ since $2.22{ }_{10}$. Similarly, we obtain that $w_{11}, w_{11 \rho}, w_{12}, w_{12 \rho} \in \tilde{L}_{d}$.

Finally, we have to prove that there exists $\left(w_{1}, w_{2}, w_{3}\right) \in H_{0}^{1}(] 0, L[) \times V_{1}^{2}$ satisfying the fourth, fifth and sixth equations in (2.22), and

$$
\begin{equation*}
\left(k_{i}-g_{i}^{0}\right) \omega_{i x x}+\int_{0}^{+\infty} g_{i}(s) \omega_{(i+6) x x}(s) d s \in L^{2}(] 0, L[), \quad i=1,2,3, \tag{2.27}
\end{equation*}
$$

and so we conclude that there exists $W \in \mathcal{D}(\mathcal{A})$ satisfying (2.21). To do so, using (2.23), (2.24), (2.25) and (2.26), we see that the fourth, fifth and sixth equations in (2.22) are equivalent to

$$
\left\{\begin{array}{c}
\left(\rho_{1}+l^{2} k_{2}+\left|\mu_{1}\right|\right) \omega_{1}-k_{1} \omega_{2 x}-l\left(k_{1}+k_{2}\right) \omega_{3 x}-l_{1} \omega_{1 x x}=\tilde{f}_{1} \tag{2.28}\\
\left(\rho_{2}+k_{1}+\left|\mu_{2}\right|\right) \omega_{2}+k_{1} \omega_{1 x}-l_{2} \omega_{2 x x}+l k_{1} \omega_{3}=\widetilde{f}_{2} \\
\left(\rho_{1}+l^{2} k_{1}+\left|\mu_{3}\right|\right) \omega_{3}+l\left(k_{1}+k_{2}\right) \omega_{1 x}+l k_{1} \omega_{2}-l_{3} \omega_{3 x x}=\tilde{f}_{3}
\end{array}\right.
$$

where

$$
\left\{\begin{array}{l}
\tilde{f}_{1}=\rho_{1}\left(f_{4}+f_{1}\right)+\left|\mu_{1}\right| f_{1}+\mu_{1} f_{4}+\int_{0}^{+\infty} g_{1}(s) e^{-s} \int_{0}^{s} e^{y}\left(f_{7}(y)-f_{1}\right)_{x x} d y d s-\mu_{1} \tau_{1} e^{-\tau_{1} \rho} \int_{0}^{\rho} e^{\tau_{1} y} f_{10}(y) d y \\
\tilde{f}_{2}=\rho_{2}\left(f_{5}+f_{2}\right)+\left|\mu_{2}\right| f_{2}+\mu_{2} f_{5}+\int_{0}^{+\infty} g_{2}(s) e^{-s} \int_{0}^{s} e^{y}\left(f_{8}(y)-f_{2}\right)_{x x} d y d s-\mu_{2} \tau_{2} e^{-\tau_{2} \rho} \int_{0}^{\rho} e^{\tau_{2} y} f_{11}(y) d y \\
\tilde{f}_{3}=\rho_{1}\left(f_{6}+f_{3}\right)+\left|\mu_{3}\right| f_{3}+\mu_{3} f_{6}+\int_{0}^{+\infty} g_{3}(s) e^{-s} \int_{0}^{s} e^{y}\left(f_{9}(y)-f_{3}\right)_{x x} d y d s-\mu_{3} \tau_{3} e^{-\tau_{3} \rho} \int_{0}^{\rho} e^{\tau_{33} y} f_{12}(y) d y
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
l_{1}=k_{1}-\int_{0}^{+\infty} g_{1}(s) e^{-s} d s \\
l_{2}=k_{2}-\int_{0}^{+\infty} g_{2}(s) e^{-s} d s \\
l_{3}=k_{3}-\int_{0}^{+\infty} g_{3}(s) e^{-s} d s
\end{array}\right.
$$

Firstly, notice that $l_{i} \geq k_{i}-g_{i}^{0}>0$ (according to (A2)). Then we can easily prove that the operator

$$
\mathcal{P}\left(\begin{array}{c}
\omega_{1} \\
\omega_{2} \\
\omega_{3}
\end{array}\right)=\left(\begin{array}{c}
\left(\rho_{1}+l^{2} k_{2}+\left|\mu_{1}\right|\right) \omega_{1}-k_{1} \omega_{2 x}-l\left(k_{1}+k_{3}\right) \omega_{3 x}-l_{1} \omega_{1 x x} \\
\left(\rho_{2}+k_{1}+\left|\mu_{2}\right|\right) \omega_{2}+k_{1} \omega_{1 x}-l_{2} \omega_{2 x x}+l k_{1} \omega_{3} \\
\left(\rho_{1}+l^{2} k_{1}+\left|\mu_{3}\right|\right) \omega_{3}+l\left(k_{1}+k_{3}\right) \omega_{1 x}+l k_{1} \omega_{2}-l_{3} \omega_{3 x x}
\end{array}\right)
$$

is self-adjoint linear positive definite operator. Therefore, multiplying the three equations in (2.28) by $v_{1} \in H_{0}^{1}(] 0, L[)$ and $v_{2}, v_{3} \in V_{1}$, respectively, integrating by parts with respect

CHAPTER 2. WELL-POSEDNESS OF BRESSE SYSTEM WITH MEMORIES AND

 DELAYSto x and using the boundary conditions, we obtain that the variational formulation of (2.28) is of the form

$$
\begin{equation*}
a\left(\left(w_{1}, w_{2}, w_{3}\right)^{T},\left(v_{1}, v_{2}, v_{3}\right)^{T}\right)=\mathcal{L}\left(v_{1}, v_{2}, v_{3}\right)^{T}, \quad \forall\left(v_{1}, v_{2}, v_{3}\right)^{T} \in H_{0}^{1}(] 0, L[) \times V_{1}^{2} \tag{2.29}
\end{equation*}
$$

where a is a given bilinear symetric and coercive form on $H_{0}^{1}(] 0, L[) \times V_{1}^{2}$ and \mathcal{L} is a given linear and continuous form on $H_{0}^{1}(] 0, L[) \times V_{1}^{2}$, where $H_{0}^{1}(] 0, L[) \times V_{1}^{2}$ is equipped with the inner product that generates the norm (2.19). Hence, applying the Lax-Milgram theorem, we deduce that 2.29) has a unique solution $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)^{T} \in H_{0}^{1}(] 0, L[) \times V_{1}^{2}$. Then, using classical regularity arguments we conclude that (2.28) has a unique solution $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)^{T} \in H_{0}^{1}(] 0, L[) \times V_{1}^{2}$ satisfying (2.27), so 2.23), 2.24) and (2.25) imply that the fourth, fifth and sixth equations in (2.22) are satisfied. This proves that $I d-\mathcal{A}$ is surjective. Finally, we note that 2.20 and 2.21 mean that $-\mathcal{A}$ is a maximal monotone operator. Then, using Lummer-Phillips theorem, we deduce that \mathcal{A} is an infinitesimal generator of a linear C_{0}-semigroup on \mathcal{H}. On the other hand, as the linear operator \mathcal{B} is Lipschitz continuous, it follows that $\mathcal{A}+\mathcal{B}$ also is an infinitesimal generator of a linear C_{0}-semigroup on \mathcal{H}. Consequently, (2.6) is well-posed in the sense of Theorem 2.1 (see [26] and [38]).

CHAPTER 3

__BRESSE SYSTEM STABILITY IN THE CASE OF THREE MEMORIES

In this chapter, we inverstigate the asymptotic behaviour of the solution of problem (2.6) under three infinite memories and homogeneous Dirichlet boundary conditions ($k=0$ in (2.1)) by using the energy method to produce a suitable Lyapunov functional. We assume the following additional assumption:
(A4) There exist positive constants γ_{i} such that

$$
\begin{equation*}
g_{i}(0)>0 \quad \text { and } \quad g_{i}^{\prime}(s) \leq-\gamma_{i} g_{i}(s), \quad \forall s \in \mathbb{R}_{+} . \tag{3.1}
\end{equation*}
$$

We will prove, under (3.1) and a smallness condition on $\max \left|\mu_{i}\right|$, that the solution of (2.6) decays to zero as t tends to infinity; that is

$$
\begin{equation*}
\lim _{t \xrightarrow{+\infty}}\|\mathcal{U}(t)\|_{\mathcal{H}}^{2}=0 \tag{3.2}
\end{equation*}
$$

and the decay rate of $\|\mathcal{U}\|_{\mathcal{H}}^{2}$ is of exponential type. More precisely, we have the next theorem.

Theorem 3.1 Assume that (A1)-(A4) hold. Then there exists a positive constant $\mu_{0} \in$]0,1] independent of μ_{i} such that, if

$$
\begin{equation*}
\max _{i=1}^{3}\left|\mu_{i}\right|<\mu_{0} \tag{3.3}
\end{equation*}
$$

then, for any $\mathcal{U}_{0} \in \mathcal{H}$, there exist positive constants β_{1} and β_{2} (depending in a continuous way on $\left\|\mathcal{U}_{0}\right\|_{\mathcal{H}}$) such that the solution of (2.6) satisfies

$$
\begin{equation*}
\|\mathcal{U}(t)\|_{\mathcal{H}}^{2} \leq \beta_{2} e^{-\beta_{1} t}, \quad \forall t \in \mathbb{R}_{+} \tag{3.4}
\end{equation*}
$$

CHAPTER 3. BRESSE SYSTEM STABILITY IN THE CASE OF THREE MEMORIES

3.1 Energy calculation

We introduce some notations that we will use in this chapter. We pose:

$$
\mathcal{H}=H_{0}^{1}(] 0, L[) \times V_{1}^{2} \times L^{2}(] 0, L[) \times V_{0}^{2} \times L_{1} \times L_{2} \times L_{3} \times L_{d} \times \tilde{L}_{d}^{2}
$$

The spaces $L_{i}, L_{d}, \tilde{L}_{d}, V_{0}, V_{1}$ are defined in chapter 2 , and

$$
\mathcal{U}_{0}=\mathcal{U}(0)=\left(\varphi_{0}, \psi_{0}, \omega_{0}, \varphi_{1}, \psi_{1}, \omega_{1}, \eta_{1}^{0}, \eta_{2}^{0}, \eta_{3}^{0}, z_{1}^{0}, z_{2}^{0}, z_{3}^{0}\right)^{T} .
$$

U is the solution of the system (2.1), when

$$
\mathcal{U}(t)=\left(\varphi, \psi, \omega, \varphi_{t}, \psi_{t}, \omega_{t}, \eta_{1}, \eta_{2}, \eta_{3}, z_{1}, z_{2}, z_{3}\right)^{T}
$$

Lemma 3.2 Let U be the solution of the system (2.1), then for all $t>0$,

$$
\begin{aligned}
\frac{d E(t)}{d t} & \leq\left|\mu_{1}\right| \int_{0}^{L} \varphi_{t}^{2} d x+\left|\mu_{2}\right| \int_{0}^{L} \psi_{t}^{2} d x+\left|\mu_{3}\right| \int_{0}^{L} \omega_{t}^{2} d x+\frac{1}{2} \int_{0}^{L} \int_{0}^{+\infty} g_{1}^{\prime}(s) \eta_{1 x}^{2} d s d x \\
& +\frac{1}{2} \int_{0}^{L} \int_{0}^{+\infty} g_{2}^{\prime}(s) \eta_{2 x}^{2} d s d x+\frac{1}{2} \int_{0}^{L} \int_{0}^{+\infty} g_{3}^{\prime}(s) \eta_{3 x}^{2} d s d x
\end{aligned}
$$

Proof. Assume that $(A 1)-(A 4)$ are satisfied and let $\mathcal{U}_{0} \in \mathcal{D}(A)$, so that all the calculations below are justified. We start our proof by providing a bound on the derivative of the energy functional E assoociated with the solution of (2.6) corresponding to \mathcal{U}_{0} defined by

$$
\begin{align*}
E(t) & =\frac{1}{2}\|\mathcal{U}(t)\|_{\mathcal{H}}^{2}=\frac{1}{2}\left\{\int_{0}^{L}\left[\left(k_{2}-g_{2}^{\circ}\right) \psi_{x}^{2}-g_{1}^{\circ} \varphi_{x}^{2}-g_{3}^{\circ} \omega_{x}^{2}+k_{1}\left(\varphi_{x}+\psi+l \omega\right)^{2}\right] d x\right. \\
& +\int_{0}^{L}\left[k_{3}\left(\omega_{x}-l \varphi\right)^{2}+\rho_{1} \varphi_{t}^{2}+\rho_{2} \psi_{t}^{2}+\rho_{1} \omega_{t}^{2}\right] d x+\left\langle\eta_{1}, \eta_{1}\right\rangle_{L_{1}}+\left\langle\eta_{2}, \eta_{2}\right\rangle_{L_{2}}+\left\langle\eta_{3}, \eta_{3}\right\rangle_{L_{3}}^{(3} \tag{3.5}\\
& \left.+\tau_{1}\left|\mu_{1}\right|\left\langle z_{1}, z_{1}\right\rangle_{L_{d}}+\tau_{2}\left|\mu_{2}\right|\left\langle z_{2}, z_{2}\right\rangle_{L_{d}}+\tau_{3}\left|\mu_{3}\right|\left\langle z_{3}, z_{3}\right\rangle_{L_{d}}\right\} .
\end{align*}
$$

Multiplying the first equation of (2.1) by φ_{t}, the second one by ψ_{t}, and the third one by ω_{t}, performing an integration by parts and using (2.6), (2.7) and (2.20), we obtain

$$
\begin{align*}
E^{\prime}(t) & \leq\left|\mu_{1}\right| \int_{0}^{L} \varphi_{t}^{2} d x+\left|\mu_{2}\right| \int_{0}^{L} \psi_{t}^{2} d x+\left|\mu_{3}\right| \int_{0}^{L} \omega_{t}^{2} d x+\frac{1}{2} \int_{0}^{L} \int_{0}^{+\infty} g_{1}^{\prime}(s) \eta_{1 x}^{2} d s d x \\
& +\frac{1}{2} \int_{0}^{L} \int_{0}^{+\infty} g_{2}^{\prime}(s) \eta_{2 x}^{2} d s d x+\frac{1}{2} \int_{0}^{L} \int_{0}^{+\infty} g_{3}^{\prime}(s) \eta_{3 x}^{2} d s d x \tag{3.6}
\end{align*}
$$

CHAPTER 3. BRESSE SYSTEM STABILITY IN THE CASE OF THREE MEMORIES

where $\left({ }^{\prime}\right)$ denotes the devivative when the function has only one variable. The inequality (3.6) shows that E^{\prime} is not negative in general because of the presence of delays, and therefore the system (2.6) is, in general, not necessarly dissipative with respect to E. In order to continue the proof of Theorem 3.1, we need the next Lemmas, where some classical functionals are used (see, for example [14], [20] and [32]).

3.2 Main lemmas

Lemma 3.3 The functional

$$
I_{1}(t)=-\rho_{1} \int_{0}^{L} \varphi_{t} \int_{0}^{+\infty} g_{1}(s) \eta_{1} d s d x
$$

satisfies, for any $\delta>0$, there exists $c_{\delta}>0$ such that

$$
\begin{align*}
I_{1}^{\prime}(t) & \leq-\rho_{1}\left(g_{1}^{0}-\delta\right) \int_{0}^{L} \varphi_{t}^{2} d x+\delta \int_{0}^{L}\left(\varphi_{x}^{2}+\psi_{x}^{2}+\omega_{x}^{2}\right) d x \\
& +c_{\delta} \int_{0}^{L} \int_{0}^{+\infty}\left[g_{1}(s) \eta_{1 x}^{2}-g_{1}^{\prime}(s) \eta_{1 x}^{2}\right] d s d x+\delta\left|\mu_{1}\right|^{2} \int_{0}^{L} z_{1}^{2}(1) d x \tag{3.7}
\end{align*}
$$

Proof. First, noticing that

$$
\begin{align*}
\frac{\partial}{\partial t} \int_{0}^{+\infty} g_{1}(s) \eta_{1} d s & =\partial_{t} \int_{-\infty}^{t} g_{1}(t-s)(\varphi(t)-\varphi(s)) d s \tag{3.8}\\
& =\int_{-\infty}^{t} g_{1}^{\prime}(t-s)(\varphi(t)-\varphi(s)) d s+\left(\int_{-\infty}^{t} g_{1}(t-s) d s\right) \varphi_{t}
\end{align*}
$$

that is

$$
\begin{equation*}
\frac{\partial}{\partial t} \int_{0}^{+\infty} g_{1}(s) \eta_{1} d s=\int_{0}^{+\infty} g_{1}^{\prime}(s) \eta_{1} d s+g_{1}^{0} \varphi_{t} \tag{3.9}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\frac{\partial}{\partial t} \int_{0}^{+\infty} g_{2}(s) \eta_{2} d s=\int_{0}^{+\infty} g_{2}^{\prime}(s) \eta_{2} d s+g_{2}^{0} \psi_{t} \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial}{\partial t} \int_{0}^{+\infty} g_{3}(s) \eta_{3} d s=\int_{0}^{+\infty} g_{3}^{\prime}(s) \eta_{3} d s+g_{3}^{0} \omega_{t} \tag{3.11}
\end{equation*}
$$

CHAPTER 3. BRESSE SYSTEM STABILITY IN THE CASE OF THREE MEMORIES

Second, using Young's and Hölder's inequalities, we get, for any $\lambda>0$, there exists $c_{\lambda}>0$ such that, for any $u \in L^{2}(] 0, L[)$ and $\eta \in\left\{\eta_{i}, \eta_{i x}\right\}, i=1,2,3$,

$$
\begin{equation*}
\left|\int_{0}^{L} u \int_{0}^{+\infty} g_{i}(s) \eta d s d x\right| \leq \lambda \int_{0}^{L} u^{2} d x+c_{\lambda} \int_{0}^{L} \int_{0}^{+\infty} g_{i} \eta^{2} d s d x \tag{3.12}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\left|\int_{0}^{L} u \int_{0}^{+\infty} g_{i}^{\prime}(s) \eta d s d x\right| \leq \lambda \int_{0}^{L} u^{2} d x-c_{\lambda} \int_{0}^{L} \int_{0}^{+\infty} g_{i}^{\prime}(s) \eta^{2} d s d x \tag{3.13}
\end{equation*}
$$

By differentiating I_{1} and using the first equation in (2.1), we get

$$
\begin{aligned}
I_{1}^{\prime}(t) & =-k_{1} \int_{0}^{L}\left(\varphi_{x}+\psi+l \omega\right)_{x}\left(\int_{0}^{+\infty} g_{1}(s) \eta_{1} d s\right) d x-l k_{3} \int_{0}^{L}\left(\omega_{x}-l \varphi\right)\left(\int_{0}^{+\infty} g_{1}(s) \eta_{1} d s\right) d x \\
& +\int_{0}^{L}\left(\int_{0}^{+\infty} g_{1}(s) \varphi_{x x}(x, t-s) d s\right)\left(\int_{0}^{+\infty} g_{1}(s) \eta_{1} d s\right) d x+\int_{0}^{L} \mu_{1} \varphi_{t}(x, t-\tau)\left(\int_{0}^{+\infty} g_{1}(s) \eta_{1} d s\right) d x \\
& -\rho_{1} \int_{0}^{L} \varphi_{t}\left(\int_{0}^{+\infty} g_{1}^{\prime}(s) \eta_{1} d s\right) d x-\rho_{1} \int_{0}^{L} \varphi_{t}\left(g_{1}^{0} \varphi_{t}\right) d x
\end{aligned}
$$

using (2.2) and integrating by parts, we obtain

$$
\begin{aligned}
I_{1}^{\prime}(t) & \leq k_{1} \int_{0}^{L}\left(\varphi_{x}+\psi+l \omega\right)\left(\int_{0}^{+\infty} g_{1}(s) \eta_{1 x} d s\right) d x-l k_{3} \int_{0}^{L}\left(\omega_{x}-l \varphi\right)\left(\int_{0}^{+\infty} g_{1}(s) \eta_{1} d s\right) d x \\
& +\int_{0}^{L}\left(\int_{0}^{+\infty} g_{1}(s) \eta_{1 x} d s\right)^{2} d x-g_{1}^{0} \int_{0}^{L} \varphi_{x}(x, t)\left(\int_{0}^{+\infty} g_{1}(s) \eta_{1 x}(x, t, s) d s\right) d x \\
& +\int_{0}^{L} \mu_{1} \varphi_{t}(x, t-\tau)\left(\int_{0}^{+\infty} g_{1}(s) \eta_{1} d s\right) d x-\rho_{1} \int_{0}^{L} \varphi_{t}\left(\int_{0}^{+\infty} g_{1}^{\prime}(s) \eta_{1} d s\right) d x-\rho_{1} \int_{0}^{L} \varphi_{t}\left(g_{1}^{0} \varphi_{t}\right) d x
\end{aligned}
$$

Applying Poincaré's, Cauchy-Schwarz and Young's inequalities, we get

$$
\begin{align*}
I_{1}^{\prime}(t) & \leq-\rho_{1} g_{1}^{0} \int_{0}^{L} \varphi_{t}^{2} d x+\delta \int_{0}^{L}\left(\varphi_{x}^{2}+\psi_{x}^{2}+\omega_{x}^{2}\right) d x \\
& -c_{\delta} \int_{0}^{L} \int_{0}^{+\infty} g_{1}^{\prime}(s) \eta_{1 x}^{2} d s d x+c_{\delta} \int_{0}^{L}\left(\int_{0}^{+\infty} g_{1}(s) \eta_{1 x} d s\right)^{2} d x \tag{3.14}\\
& -g_{1}^{0} \int_{0}^{L} \varphi_{x} \int_{0}^{+\infty} g_{1}(s) \eta_{1 x}(x, t, s) d s d x+\int_{0}^{L}\left(\mu_{1} \varphi_{t}(x, t-\tau)\right) \int_{0}^{+\infty} g_{1}(s) \eta_{1} d s d x
\end{align*}
$$

Ones again, applying Cauchy-Schwarz and Young's inequalities to the last two terms in (3.14), we find

$$
\begin{align*}
I_{1}^{\prime}(t) & \leq-\rho_{1}\left(g_{1}^{0}-\delta\right) \int_{0}^{L} \varphi_{t}^{2} d x+\delta \int_{0}^{L}\left(\left(\varphi_{x}+\psi+l \omega\right)^{2}+\varphi_{x}^{2}\right) d x \\
& +c_{\delta} \int_{0}^{L} \int_{0}^{+\infty}\left[g_{1}(s) \eta_{1 x}^{2}-g_{1}^{\prime}(s) \eta_{1 x}^{2}\right] d s d x+\delta\left|\mu_{1}\right|^{2} \int_{0}^{L} z_{1}^{2}(1) d x \tag{3.15}
\end{align*}
$$

whiche gives (3.7).

CHAPTER 3. BRESSE SYSTEM STABILITY IN THE CASE OF THREE MEMORIES

Lemma 3.4 The functionals

$$
I_{2}(t)=-\rho_{2} \int_{0}^{L} \psi_{t} \int_{0}^{+\infty} g_{2}(s) \eta_{2} d s d x \quad \text { and } \quad I_{3}(t)=-\rho_{1} \int_{0}^{L} \omega_{t} \int_{0}^{+\infty} g_{3}(s) \eta_{3} d s d x
$$

satisfy, for any $\delta>0$, there exists $c_{\delta}>0$ such that

$$
\begin{align*}
I_{2}^{\prime}(t) & \leq-\rho_{2}\left(g_{2}^{0}-\delta\right) \int_{0}^{L} \psi_{t}^{2} d x+\delta \int_{0}^{L}\left(\varphi_{x}^{2}+\psi_{x}^{2}+\omega_{x}^{2}\right) d x \tag{3.16}\\
& +c_{\delta} \int_{0}^{L} \int_{0}^{+\infty}\left[g_{2}(s) \eta_{2 x}^{2}-g_{2}^{\prime}(s) \eta_{2 x}^{2}\right] d s d x+\delta\left|\mu_{2}\right|^{2} \int_{0}^{L} z_{2}^{2}(1) d x
\end{align*}
$$

and

$$
\begin{align*}
I_{3}^{\prime}(t) & \leq-\rho_{1}\left(g_{3}^{0}-\delta\right) \int_{0}^{L} \omega_{t}^{2} d x+\delta \int_{0}^{L}\left(\varphi_{x}^{2}+\psi_{x}^{2}+\omega_{x}^{2}\right) \\
& +c_{\delta} \int_{0}^{L} \int_{0}^{+\infty}\left[g_{3}(s) \eta_{3 x}^{2}-g_{3}^{\prime}(s) \eta_{3 x}^{2}\right] d s d x+\delta\left|\mu_{3}\right|^{2} \int_{0}^{L} z_{3}^{2}(1) \tag{3.17}
\end{align*}
$$

Proof. As for (3.7).
Lemma 3.5 The functional

$$
I_{4}(t)=\int_{0}^{L}\left(\rho_{1} \varphi \varphi_{t}+\rho_{2} \psi \psi_{t}+\rho_{1} \omega \omega_{t}\right)
$$

satisfies, for any $\delta>0$, there exists $c_{\delta}>0$ such that

$$
\begin{align*}
I_{4}^{\prime}(t) & \leq \int_{0}^{L}\left(\rho_{1} \varphi_{t}^{2}+\rho_{2} \psi_{t}^{2}+\rho_{1} \omega_{t}^{2}\right) d x+c_{\delta} \sum_{i=1}^{3} \int_{0}^{L} \int_{0}^{+\infty} g_{i}(s) \eta_{i x}^{2} d s d x \\
& -\int_{0}^{L}\left[k_{1}\left(\varphi_{x}+\psi+l \omega\right)^{2}+k_{3}\left(\omega_{x}-l \varphi\right)^{2}+k_{2} \psi_{x}^{2}-g_{1}^{0} \varphi_{x}^{2}-g_{2}^{0} \psi_{x}^{2}-g_{3}^{0} \omega_{x}^{2}\right] d x \tag{3.18}\\
& +c_{\delta} \sum_{i=1}^{3}\left|\mu_{i}\right|^{2} \int_{0}^{L} z_{i}^{2}(1) d x+\delta \int_{0}^{L}\left(\varphi_{x}^{2}+\psi_{x}^{2}+\omega_{x}^{2}\right) d x .
\end{align*}
$$

Proof. By exploiting equations of (2.1) and integrating by parts, we get

$$
\begin{equation*}
I_{4}^{\prime}(t) \leq \int_{0}^{L}\left(\rho_{1} \varphi_{t}^{2}+\rho_{2} \psi_{t}^{2}+\rho_{1} \omega_{t}\right) d x-k_{1} \int_{0}^{L}\left(\varphi_{x}+\psi+l \omega\right)^{2} d x \tag{3.19}
\end{equation*}
$$

$-k_{3} \int_{0}^{L}\left(\omega_{x}-l \varphi\right)^{2} d x+g_{1}^{0} \int_{0}^{L} \varphi_{x}^{2} d x-\left(k_{2}-g_{2}^{0}\right) \int_{0}^{L} \psi_{x}^{2} d x+g_{3}^{0} \int_{0}^{L} \omega_{x}^{2} d x-\mu_{1} \int_{0}^{L} z_{1}(1) \varphi(t) d x$ $-\mu_{2} \int_{0}^{L} z_{2}(1) \psi(t) d x-\mu_{3} \int_{0}^{L} z_{3}(1) \omega(t) d x-\int_{0}^{L} \varphi_{x} \int_{0}^{+\infty} g_{1}(s) \eta_{1 x} d s d x$
$-\int_{0}^{L} \psi_{x} \int_{0}^{+\infty} g_{2}(s) \eta_{2 x} d s d x-\int_{0}^{L} \omega_{x} \int_{0}^{+\infty} g_{3}(s) \eta_{3 x} d s d x$.

CHAPTER 3. BRESSE SYSTEM STABILITY IN THE CASE OF THREE MEMORIES

Using Poincaré's, Young's and Hölder's inequalities for the last three terms of (3.19), we get, for all $\delta>0$, there exists a positive constant c_{δ} such that

$$
\begin{align*}
& -\int_{0}^{L} \varphi_{x} \int_{0}^{+\infty} g_{1}(s) \eta_{1 x} d s d x-\int_{0}^{L} \psi_{x} \int_{0}^{+\infty} g_{2}(s) \eta_{2 x} d s d x-\int_{0}^{L} \omega_{x} \int_{0}^{+\infty} g_{3}(s) \eta_{3 x} d s d x \\
& \leq \frac{\delta}{2} \int_{0}^{L}\left(\varphi_{x}^{2}+\psi_{x}^{2}+\omega_{x}^{2}\right) d x+c_{\delta} \sum_{i=1}^{3} \int_{0}^{L} \int_{0}^{+\infty} g_{i}(s) \eta_{i x}^{2} d s d x \tag{3.20}
\end{align*}
$$

Again, using Young's and Poincaré's inequalities, we arrive at

$$
\begin{align*}
& -\mu_{1} \int_{0}^{L} z_{1}(1) \varphi(t) d x-\mu_{2} \int_{0}^{L} z_{2}(1) \psi(t) d x-\mu_{3} \int_{0}^{L} z_{3}(1) \omega(t) d x \\
& \leq \frac{\delta}{2} \int_{0}^{L}\left(\varphi_{x}^{2}+\psi_{x}^{2}+\omega_{x}^{2}\right)+c_{\delta} \int_{0}^{L} \sum_{i=1}^{3}\left|\mu_{i}\right|^{2} z_{i}^{2}(1) d x \tag{3.21}
\end{align*}
$$

Inserting (3.20) and (3.21) into (3.19), we find (3.18).
Lemma 3.6 The functionals

$$
I_{5}(t)=\int_{0}^{L} \int_{0}^{1} e^{-2 \tau_{1} \rho} z_{1}^{2} d \rho d x, \quad I_{6}(t)=\int_{0}^{L} \int_{0}^{1} e^{-2 \tau_{2} \rho} z_{2}^{2} d \rho d x
$$

and

$$
I_{7}(t)=\int_{0}^{L} \int_{0}^{1} e^{-2 \tau_{3} \rho} z_{3}^{2} d \rho d x
$$

satisfy

$$
\begin{align*}
& I_{5}^{\prime}(t) \leq-2 e^{-2 \tau_{1}} \int_{0}^{L} \int_{0}^{1} z_{1}^{2} d \rho d x+\frac{1}{\tau_{1}} \int_{0}^{L}\left(\varphi_{t}^{2}-e^{-2 \tau_{1}} z_{1}^{2}(1)\right) d x \tag{3.22}\\
& I_{6}^{\prime}(t) \leq-2 e^{-2 \tau_{2}} \int_{0}^{L} \int_{0}^{1} z_{2}^{2} d \rho d x+\frac{1}{\tau_{2}} \int_{0}^{L}\left(\psi_{t}^{2}-e^{-2 \tau_{2}} z_{2}^{2}(1)\right) d x \tag{3.23}
\end{align*}
$$

and

$$
\begin{equation*}
I_{7}^{\prime}(t) \leq-2 e^{-2 \tau_{3}} \int_{0}^{L} \int_{0}^{1} z_{3}^{2} d \rho d x+\frac{1}{\tau_{3}} \int_{0}^{L}\left(\omega_{t}^{2}-e^{-2 \tau_{3}} z_{3}^{2}(1)\right) d x \tag{3.24}
\end{equation*}
$$

Proof. Using (2.5), the derivative of I_{5} entails

$$
\begin{align*}
I_{5}^{\prime}(t) & =2 \int_{0}^{L} \int_{0}^{1} e^{-2 \tau_{1} \rho} z_{1} z_{1 t} d \rho d x=-\frac{2}{\tau_{1}} \int_{0}^{L} \int_{0}^{1} e^{-2 \tau_{1} \rho} z_{1} z_{1 \rho} d \rho d x \\
& =-\frac{1}{\tau_{1}} \int_{0}^{L} \int_{0}^{1} e^{-2 \tau_{1} \rho} \frac{\partial}{\partial \rho} z_{1}^{2} d \rho d x . \tag{3.25}
\end{align*}
$$

CHAPTER 3. BRESSE SYSTEM STABILITY IN THE CASE OF THREE MEMORIES

Then, by integrating by parts with respect to ρ, we get

$$
\begin{align*}
I_{5}^{\prime}(t) & =-\frac{1}{\tau_{1}} \int_{0}^{L}\left[e^{-2 \tau_{1} \rho} z_{1}^{2}\right]_{\rho=0}^{\rho=1}-2 \int_{0}^{L} \int_{0}^{1} e^{-2 \tau_{1} \rho} z_{1}^{2} d \rho d x \\
& =\frac{1}{\tau_{1}} \int_{0}^{L}\left(z_{1}^{2}(0)-e^{-2 \tau_{1}} z_{1}^{2}(1)\right) d x-2 \int_{0}^{L} \int_{0}^{1} e^{-2 \tau_{1} \rho} z_{1}^{2} d \rho d x . \tag{3.26}
\end{align*}
$$

Therefore, using $z_{1}(t, 0)=\varphi_{t}(t)$, 3.26) can be rewritten as

$$
\begin{equation*}
I_{5}^{\prime}(t)=-2 \int_{0}^{1} e^{-2 \tau_{1} \rho} \int_{0}^{L} z_{1}^{2} d \rho d x+\frac{1}{\tau_{1}} \int_{0}^{L} \varphi_{t}^{2}(t) d x-\frac{e^{-2 \tau_{1}}}{\tau_{1}} \int_{0}^{L} z_{1}^{2}(1) d x \tag{3.27}
\end{equation*}
$$

which gives (3.22), since $e^{-2 \tau_{1} \rho} \geq e^{-2 \tau_{1}}$, for any $\left.\rho \in\right] 0,1[$. The proof of (3.23) and (3.24) is identical to the one of (3.22).
Now, let $\epsilon_{1}, \epsilon_{2}, \epsilon_{3}>0$ and

$$
\begin{equation*}
F=\epsilon_{1} E(t)+\epsilon_{2}\left(I_{1}+I_{2}+I_{3}\right)+I_{4}+\epsilon_{3}\left(\left|\mu_{1}\right| I_{5}+\left|\mu_{2}\right| I_{6}+\left|\mu_{3}\right| I_{7}\right) \tag{3.28}
\end{equation*}
$$

By combining $\sqrt{3.6}, 3.7,3.36,3.17,3.18,3.22,3.23$ and 3.24 with $\delta=\frac{1}{\epsilon_{2}^{2}}$ and using (2.1) and (3.1), we obtain

$$
F^{\prime}(t) \leq-\rho_{1}\left[\epsilon_{2} g_{1}^{0}-\frac{1}{\epsilon_{2}}-\frac{\epsilon_{3}\left|\mu_{1}\right|}{\rho_{1} \tau_{1}}-1\right] \int_{0}^{L} \varphi_{t}^{2} d x-\rho_{2}\left[\epsilon_{2} g_{2}^{0}-\frac{1}{\epsilon_{2}}-\frac{\epsilon_{3}\left|\mu_{2}\right|}{\rho_{2} \tau_{2}}-1\right] \int_{0}^{L} \psi_{t}^{2} d x
$$

$-\rho_{1}\left[\epsilon_{2} g_{3}^{0}-\frac{1}{\epsilon_{2}}-\frac{\epsilon_{3}\left|\mu_{3}\right|}{\rho_{1} \tau_{3}}-1\right] \int_{0}^{L} \omega_{t}^{2} d x+\left(\frac{\epsilon_{1}}{2}-c_{\epsilon_{2}}\right) \sum_{i=1}^{3} \int_{0}^{L} \int_{0}^{+\infty} g_{i}^{\prime}(s) \eta_{i x}^{2} d s d x$
$-\left(1-\frac{k_{0}}{\epsilon_{2}^{2}}-\frac{3 k_{0}}{\epsilon_{2}}\right) \int_{0}^{L}\left[k_{1}\left(\varphi_{x}+\psi+l \omega\right)^{2}+k_{3}\left(\omega_{x}-l \varphi\right)^{2}+k_{2} \psi_{x}^{2}-g_{1}^{0} \varphi_{x}^{2}-g_{2}^{0} \psi_{x}^{2}-g_{3}^{0} \omega_{x}^{2}\right] d x$
$-2 \epsilon_{3} \int_{0}^{L} \int_{0}^{1} \sum_{i=1}^{3}\left|\mu_{i}\right| e^{-2 \tau_{i}} z_{i}^{2} d \rho d x-\left[-c_{\epsilon_{2}}\left|\mu_{1}\right|^{2}+\frac{\epsilon_{3}\left|\mu_{1}\right|}{\tau_{1}} e^{-2 \tau_{1}}-\frac{1}{\epsilon_{2}}\left|\mu_{1}\right|^{2}\right] \int_{0}^{L} z_{1}^{2}(1) d x$
$-\left[-c_{\epsilon_{2}}\left|\mu_{2}\right|^{2}+\frac{\epsilon_{3}\left|\mu_{2}\right|}{\tau_{2}} e^{-2 \tau_{2}}-\frac{1}{\epsilon_{2}}\left|\mu_{2}\right|^{2}\right] \int_{0}^{L} z_{2}^{2}(1) d x-\left[-c_{\epsilon_{2}}\left|\mu_{3}\right|^{2}+\frac{\epsilon_{3}\left|\mu_{3}\right|}{\tau_{3}} e^{-2 \tau_{3}}-\frac{1}{\epsilon_{2}}\left|\mu_{3}\right|^{2}\right] \int_{0}^{L} z_{3}^{2}(1) d x$
$+\epsilon_{1} \int_{0}^{L}\left[\left|\mu_{1}\right| \varphi_{t}^{2}+\left|\mu_{2}\right| \psi_{t}^{2}+\left|\mu_{3}\right| \omega_{t}^{2}\right] d x$.

CHAPTER 3. BRESSE SYSTEM STABILITY IN THE CASE OF THREE MEMORIES

We put

$$
\begin{aligned}
& c_{1}=\epsilon_{2} g_{1}^{0}-\frac{1}{\epsilon_{2}}-1, \quad c_{2}=\epsilon_{2} g_{2}^{0}-\frac{1}{\epsilon_{2}}-1, \quad c_{3}=\epsilon_{2} g_{3}^{0}-\frac{1}{\epsilon_{2}}-1, \quad c_{4}=1-\frac{3 k_{0}}{\epsilon_{2}}, \\
& c_{5}=c_{1}-\frac{\epsilon_{3}\left|\mu_{1}\right|}{\rho_{1} \tau_{1}}, \quad c_{6}=c_{2}-\frac{\epsilon_{3}\left|\mu_{2}\right|}{\rho_{2} \tau_{2}}, \quad c_{7}=c_{3}-\frac{\epsilon_{3}\left|\mu_{3}\right|}{\rho_{1} \tau_{3}}, \quad c_{8}=c_{4}-\frac{k_{0}}{\epsilon_{2}^{2}}, \\
& c_{9}=\min _{i=1}^{3}\left\{2 \epsilon_{3} e^{-2 \tau_{i}}-\tau_{i}\right\}, \quad c_{10}=-\left(c_{\epsilon_{2}}+\frac{1}{\epsilon_{2}}\right)\left|\mu_{1}\right|^{2}, \quad c_{11}=c_{10}+\frac{\epsilon_{3}\left|\mu_{1}\right|}{\tau_{1}} e^{-2 \tau_{1}}, \\
& c_{12}=-\left(c_{\epsilon_{2}}+\frac{1}{\epsilon_{2}}\right)\left|\mu_{2}\right|^{2}, \quad c_{13}=c_{12}+\frac{\epsilon_{3}\left|\mu_{2}\right|}{\tau_{2}} e^{-2 \tau_{2}}, \quad c_{14}=-\left(c_{\epsilon_{2}}+\frac{1}{\epsilon_{2}}\right)\left|\mu_{3}\right|^{2}, \\
& c_{15}=c_{14}+\frac{\epsilon_{3}\left|\mu_{3}\right|}{\tau_{3}} e^{-2 \tau_{3}} .
\end{aligned}
$$

Using (A2), (3.5) and (3.6), we get from (3.29) that

$$
\begin{align*}
& F^{\prime}(t) \leq-c_{8} \int_{0}^{L}\left[k_{1}\left(\varphi_{x}+\psi+l \omega\right)^{2}+k_{3}\left(\omega_{x}-l \varphi\right)^{2}+k_{2} \psi_{x}^{2}-g_{1}^{0} \varphi_{x}^{2}-g_{2}^{0} \psi_{x}^{2}-g_{3}^{0} \omega_{x}^{2}\right] d x \\
& -\int_{0}^{L}\left[\rho_{1} c_{5} \varphi_{t}^{2}+\rho_{2} c_{6} \psi_{t}^{2}+\rho_{1} c_{7} \omega_{t}^{2}\right] d x-\sum_{i=1}^{3} \int_{0}^{L} \int_{0}^{1} \tau_{i}\left|\mu_{i}\right| z_{i}^{2} d s d x-\sum_{i=1}^{3} \int_{0}^{L} \int_{0}^{+\infty} g_{i}(s) \eta_{i x}^{2} d s d x \\
& -\int_{0}^{L}\left(c_{11} z_{1}^{2}(1)+c_{13} z_{2}^{2}(1)+c_{15} z_{3}^{2}(1)\right) d x+\left(\frac{\epsilon_{1}}{2}-c_{\varepsilon_{2}}\right) \sum_{i=1}^{3} \int_{0}^{L} \int_{0}^{+} g_{i}^{\prime}(s) \eta_{i x}^{2} d s d x \tag{3.30}\\
& + \\
& \epsilon_{1} \int_{0}^{L}\left(\left|\mu_{1}\right| \varphi_{t}^{2}+\left|\mu_{2}\right| \psi_{t}^{2}+\left|\mu_{3}\right| \omega_{t}^{2}\right) d x-c_{9} \int_{0}^{L} \int_{0}^{1} \sum_{i=1}^{3}\left|\mu_{i}\right| z_{i}^{2} .
\end{align*}
$$

On the other hand, by the definition of E, I_{1}, \ldots, I_{7}, we have, using again Poincaré's, Hölder's and Young's inequalities,

$$
\begin{align*}
\left|I_{1}\right| & \leq \rho_{1} \int_{0}^{L}\left|\varphi_{t}\right| \int_{0}^{+\infty} g_{1}(s)\left|\eta_{1}\right| d s d x \\
& \leq \frac{\rho_{1}}{2} \int_{0}^{L} \varphi_{t}^{2} d x+\frac{\rho_{1}}{2} \int_{0}^{L}\left(\int_{0}^{+\infty} g_{1} d s\right)\left(\int_{0}^{+\infty} g_{1} \eta_{1}^{2} d s\right) d x \tag{3.31}\\
& \leq \frac{\rho_{1}}{2} \int_{0}^{L} \varphi_{t}^{2} d x+\frac{\rho_{1} c_{0} g_{1}^{0}}{2} \int_{0}^{L} \int_{0}^{+\infty} g_{1}(s) \eta_{1 x}^{2} d s d x \leq c_{18} E(t)
\end{align*}
$$

where c_{0} is the Poincaré's constant. Similarly, we have, for some positive constants $\left(c_{19}, c_{20}, c_{21}\right)$,

$$
\begin{gather*}
\left|I_{2}\right| \leq c_{19} E(t), \quad\left|I_{3}\right| \leq c_{20} E(t), \quad\left|I_{4}\right| \leq c_{21} E(t) \tag{3.32}\\
\left|\mu_{1}\right|\left|I_{5}\right|=\left|\mu_{1}\right| \int_{0}^{1} \int_{0}^{L} e^{-2 \tau_{1} \rho} z_{1}^{2} d x d \rho \leq\left|\mu_{1}\right| \int_{0}^{1} \int_{0}^{L} z_{1}^{2} d x d \rho \leq \frac{2}{\tau_{1}} E(t) \tag{3.33}
\end{gather*}
$$

CHAPTER 3. BRESSE SYSTEM STABILITY IN THE CASE OF THREE MEMORIES

Similarly

$$
\begin{equation*}
\left|\mu_{2}\right|\left|I_{6}\right| \leq \frac{2}{\tau_{2}} E(t) \quad \text { and } \quad\left|\mu_{3}\right|\left|I_{7}\right| \leq \frac{2}{\tau_{3}} E(t) \tag{3.34}
\end{equation*}
$$

Using (3.28) and (3.31)-(3.34), we find that

$$
\left|F(t)-\epsilon_{1} E(t)\right| \leq c_{22} E(t)
$$

where

$$
c_{22}=\epsilon_{2}\left(c_{18}+c_{19}+c_{20}\right)+c_{21}+2 \epsilon_{3}\left(\frac{1}{\tau_{1}}+\frac{1}{\tau_{2}}+\frac{1}{\tau_{3}}\right) .
$$

Therefore

$$
\begin{equation*}
\left(\epsilon_{1}-c_{22}\right) E(t) \leq F(t) \leq\left(\epsilon_{1}+c_{22}\right) E(t) . \tag{3.35}
\end{equation*}
$$

Now, we choose carefully the constants $\epsilon_{1}, \epsilon_{2}$ and ϵ_{3} to get suitable values of $c_{i}(i=1, \ldots, 15)$. First, we choose ϵ_{2} big enough so that

$$
\begin{equation*}
\epsilon_{2}>\max \left\{3 k_{0}, \max _{i=1}^{3} \frac{1+\sqrt{1+4 g_{i}^{0}}}{2 g_{i}^{0}}\right\} \quad \text { and } \quad \frac{1}{\epsilon_{2}^{2}}+\frac{3}{\epsilon_{2}}<\frac{1}{k_{0}} \tag{3.36}
\end{equation*}
$$

to get $c_{1}, c_{2}, c_{3}, c_{4}, c_{8}>0$. Second, we choose ϵ_{1} large enough such that

$$
\begin{equation*}
\epsilon_{1}>\max \left\{2 c_{\epsilon_{2}}, \epsilon_{2}\left(c_{18}+c_{19}+c_{20}\right)+c_{21}+\left(\frac{1}{\tau_{1}}+\frac{1}{\tau_{2}}+\frac{1}{\tau_{3}}\right) \max _{i=1}^{3} \tau_{i} e^{2 \tau_{i}}\right\} \tag{3.37}
\end{equation*}
$$

which implies that $\frac{\epsilon_{1}}{2}-c_{\epsilon_{2}}>0$ and $\epsilon_{1}-\epsilon_{2}\left(c_{18}+c_{19}+c_{20}\right)-c_{21}>0$. Third, let us put

$$
\begin{gathered}
M_{0}=\frac{\epsilon_{1}-\epsilon_{2}\left(c_{18}+c_{19}+c_{20}\right)-c_{21}}{2\left(\frac{1}{\tau_{1}}+\frac{1}{\tau_{2}}+\frac{1}{\tau_{3}}\right)}, \quad M_{1}=\min \left\{\rho_{1} \tau_{1} c_{1}, \rho_{2} \tau_{2} c_{2}, \rho_{1} \tau_{3} c_{3}\right\}, \quad M_{2}=\min \left\{\frac{\rho_{1} c_{1}}{\epsilon_{1}}, \frac{\rho_{2} c_{2}}{\epsilon_{1}}, \frac{\rho_{1} c_{3}}{\epsilon_{1}}\right\}, \\
M_{3}=\left(\frac{1}{\epsilon_{2}}+c_{\epsilon_{2}}\right) \max _{i=1}^{3} \tau_{i} e^{2 \tau_{i}}, \quad M_{4}=\frac{1}{\epsilon_{1}} \max _{i=1}^{3} \frac{1}{\tau_{i}} \quad \text { and } \quad M_{5}=\frac{1}{2} \max _{i=1}^{3} \tau_{i} e^{2 \tau_{i}} .
\end{gathered}
$$

Notice that the constants M_{0}, \cdots, M_{5} are positive and fixed thanks to the choices of ϵ_{1} and ϵ_{2}.

Now, assuming that $\left|\mu_{1}\right|,\left|\mu_{2}\right|$ and $\left|\mu_{3}\right|$ are small enough such that (3.3) holds with

$$
\begin{equation*}
\mu_{0}=\min \left\{1, \frac{M_{0}}{M_{3}}, \frac{M_{1}}{M_{5}}, \frac{M_{2}}{M_{4} M_{5}+1}, \frac{M_{2}}{M_{3} M_{4}+1}, \sqrt{\frac{M_{1}}{M_{3}}}\right\} \tag{3.38}
\end{equation*}
$$

CHAPTER 3. BRESSE SYSTEM STABILITY IN THE CASE OF THREE MEMORIES

and choosing ϵ_{3} such that

$$
\begin{equation*}
\min \left\{M_{5}, M_{3} \max _{i=1}^{3}\left|\mu_{i}\right|\right\}<\epsilon_{3}<\min \left\{M_{0}, \frac{M_{1}}{\max _{i=1}^{3}\left|\mu_{i}\right|}, \frac{1}{M_{4}}\left(\frac{M_{2}}{\max _{i=1}^{3}\left|\mu_{i}\right|}-1\right)\right\} \tag{3.39}
\end{equation*}
$$

The condition (3.3) and the choice of μ_{0} imply that ϵ_{3} exists and $c_{5}, c_{6}, c_{7}, c_{9}, c_{11}, c_{13}, c_{15}, \epsilon_{1}-$ $c_{22}>0$. Moreover, (3.30) implies that

$$
\begin{align*}
& F^{\prime}(t) \leq-c_{8} \int_{0}^{L}\left[k_{1}\left(\varphi_{x}+\psi+l \omega\right)^{2}+k_{2}\left(\omega_{x}-l \varphi\right)^{2}+k_{2} \psi_{x}^{2}-g_{1}^{0} \varphi_{x}^{2}-g_{2}^{0} \psi_{x}^{2}-g_{3}^{0} \omega_{x}^{2} d x\right] \tag{3.40}\\
& -c_{16} \int_{0}^{L}\left(\rho_{1} \varphi_{t}^{2}+\rho_{2} \psi_{t}^{2}+\rho_{1} \omega_{t}^{2}\right) d x-\sum_{i=1}^{3} \int_{0}^{L} \int_{0}^{1} \tau_{i}\left|\mu_{i}\right| z_{i}^{2} d \rho d x-\sum_{i=1}^{3} \int_{0}^{L} \int_{0}^{+\infty} g_{i}(s) \eta_{i x}^{2} d s d x
\end{align*}
$$

since $g_{i}^{\prime} \leq 0$, where

$$
c_{16}=\min \left\{c_{5}-\frac{\epsilon_{1}\left|\mu_{1}\right|}{\rho_{1}}, c_{6}-\frac{\epsilon_{1}\left|\mu_{2}\right|}{\rho_{2}}, c_{7}-\frac{\epsilon_{1}\left|\mu_{3}\right|}{\rho_{1}}\right\}
$$

which is a positive constant according to the choice of μ_{0}. Therefore, using the definition of E and (3.40),

$$
\begin{equation*}
F^{\prime}(t) \leq-c_{17} E(t) \tag{3.41}
\end{equation*}
$$

where $c_{17}=\min \left\{2 c_{16}, 2 c_{8}, 2\right\}$. Finally, we conclude from (3.35) and (3.41) that $F \sim E$ and

$$
F^{\prime}(t) \leq-c_{17} E(t) \leq-c_{23} F(t)
$$

where $c_{23}=\frac{c_{17}}{\epsilon_{1}+c_{22}}$. By integrating the above inequality, we get (3.4), for any $\mathcal{U}_{0} \in \mathcal{D}(A)$, since $F \sim E$. The density of $\mathcal{D}(A)$ in \mathcal{H} and the continuity of β_{1} and β_{2} with respect to $\left\|\mathcal{U}_{0}\right\|_{\mathcal{H}}$ imply that (3.4) is satisfied, for any $\mathcal{U}_{0} \in \mathcal{H}$.

CHAPTER 4

BRESSE SYSTEM STABILITY IN THE CASE OF TWO MEMORIES

4.1 Introduction

In this section, we study the stability of (2.1) under the homogeneous Dirichlet-Neumann boundary conditions ($k=1$ in (2.1)) with two infinite memories acting on the second and third equations

$$
\left\{\begin{array}{l}
\rho_{1} \varphi_{t t}-k_{1}\left(\varphi_{x}+\psi+l w\right)_{x}-l k_{3}\left(w_{x}-l \varphi\right)+\mu_{1} \varphi_{t}\left(x, t-\tau_{1}\right)=0 \tag{4.1}\\
\rho_{2} \psi_{t t}-k_{2} \psi_{x x}+k_{1}\left(\varphi_{x}+\psi+l w\right)+\int_{0}^{+\infty} g_{2}(s) \psi_{x x}(x, t-s) d s+\mu_{2} \psi_{t}\left(x, t-\tau_{2}\right)=0 \\
\rho_{1} w_{t t}-k_{3}\left(w_{x}-l \varphi\right)_{x}+l k_{1}\left(\varphi_{x}+\psi+l w\right)+\int_{0}^{+\infty} g_{3}(s) w_{x x}(x, t-s) d s+\mu_{3} w_{t}\left(x, t-\tau_{3}\right)=0 \\
\varphi(0, t)=\psi_{x}(0, t)=w_{x}(0, t)=\varphi(L, t)=\psi_{x}(L, t)=w_{x}(L, t)=0 \\
\varphi(x, 0)=\varphi_{0}(x), \varphi_{t}(x, 0)=\varphi_{1}(x) \\
\psi(x,-t)=\psi_{0}(x, t), \psi_{t}(x, 0)=\psi_{1}(x) \\
w(x,-t)=w_{0}(x, t), w_{t}(x, 0)=w_{1}(x) \\
\varphi_{t}\left(x, t-\tau_{1}\right)=h_{1}\left(x, t-\tau_{1}\right), \psi_{t}\left(x, t-\tau_{2}\right)=h_{2}\left(x, t-\tau_{2}\right), w_{t}\left(x, t-\tau_{3}\right)=h_{3}\left(x, t-\tau_{3}\right)
\end{array}\right.
$$

CHAPTER 4. BRESSE SYSTEM STABILITY IN THE CASE OF TWO MEMORIES

or on the first and third equations

$$
\left\{\begin{array}{l}
\rho_{1} \varphi_{t t}-k_{1}\left(\varphi_{x}+\psi+l w\right)_{x}-l k_{3}\left(w_{x}-l \varphi\right)+\int_{0}^{+\infty} g_{1}(s) \varphi_{x x}(x, t-s) d s+\mu_{1} \varphi_{t}\left(x, t-\tau_{1}\right)=0 \tag{4.2}\\
\rho_{2} \psi_{t t}-k_{2} \psi_{x x}+k_{1}\left(\varphi_{x}+\psi+l w\right)+\mu_{2} \psi_{t}\left(x, t-\tau_{2}\right)=0 \\
\rho_{1} w_{t t}-k_{3}\left(w_{x}-l \varphi\right)_{x}+l k_{1}\left(\varphi_{x}+\psi+l w\right)+\int_{0}^{+\infty} g_{3}(s) \omega_{x x}(x, t-s) d s+\mu_{3} w_{t}\left(x, t-\tau_{3}\right)=0 \\
\varphi(0, t)=\psi_{x}(0, t)=w_{x}(0, t)=\varphi(L, t)=\psi_{x}(L, t)=w_{x}(L, t)=0 \\
\varphi(x,-t)=\varphi_{0}(x, t), \varphi_{t}(x, 0)=\varphi_{1}(x) \\
\psi(x, 0)=\psi_{0}(x), \psi_{t}(x, 0)=\psi_{1}(x) \\
w(x,-t)=w_{0}(x, t), w_{t}(x, 0)=w_{1}(x) \\
\varphi_{t}\left(x, t-\tau_{1}\right)=h_{1}\left(x, t-\tau_{1}\right), \psi_{t}\left(x, t-\tau_{2}\right)=h_{2}\left(x, t-\tau_{2}\right), w_{t}\left(x, t-\tau_{3}\right)=h_{3}\left(x, t-\tau_{3}\right)
\end{array}\right.
$$

or on the first and second equations

$$
\left\{\begin{array}{l}
\rho_{1} \varphi_{t t}-k_{1}\left(\varphi_{x}+\psi+l w\right)_{x}-l k_{3}\left(w_{x}-l \varphi\right)+\int_{0}^{+\infty} g_{1}(s) \varphi_{x x}(x, t-s) d s+\mu_{1} \varphi_{t}\left(x, t-\tau_{1}\right)=0 \tag{4.3}\\
\rho_{2} \psi_{t t}-k_{2} \psi_{x x}+k_{1}\left(\varphi_{x}+\psi+l w\right)+\int_{0}^{+\infty} g_{2}(s) \psi_{x x}(x, t-s) d s+\mu_{2} \psi_{t}\left(x, t-\tau_{2}\right)=0 \\
\rho_{1} w_{t t}-k_{3}\left(w_{x}-l \varphi\right)_{x}+l k_{1}\left(\varphi_{x}+\psi+l w\right)+\mu_{3} w_{t}\left(x, t-\tau_{3}\right)=0 \\
\varphi(0, t)=\psi_{x}(0, t)=w_{x}(0, t)=\varphi(L, t)=\psi_{x}(L, t)=w_{x}(L, t)=0 \\
\varphi(x,-t)=\varphi_{0}(x, t), \varphi_{t}(x, 0)=\varphi_{1}(x) \\
\psi(x,-t)=\psi_{0}(x, t), \psi_{t}(x, 0)=\psi_{1}(x) \\
w(x, 0)=w_{0}(x), w_{t}(x, 0)=w_{1}(x) \\
\varphi_{t}\left(x, t-\tau_{1}\right)=h_{1}\left(x, t-\tau_{1}\right), \psi_{t}\left(x, t-\tau_{2}\right)=h_{2}\left(x, t-\tau_{2}\right), w_{t}\left(x, t-\tau_{3}\right)=h_{3}\left(x, t-\tau_{3}\right)
\end{array}\right.
$$

We consider systems (4.1)-(4.3) in the case where the speeds of wave propagations satisfy

$$
\left\{\begin{array}{l}
S_{1}=S_{2} \quad \text { in case 4.1), } \tag{4.4}\\
S_{2}=S_{1} \quad \text { in case 4.2 }, \\
S_{3}=S_{1} \quad \text { in case 4.3) }
\end{array}\right.
$$

We will prove that the solution of (2.6) decays exponentially to zero as t tends to infinity. More precisely, we have this theorem.

CHAPTER 4. BRESSE SYSTEM STABILITY IN THE CASE OF TWO MEMORIES

Theorem 4.1 Assume that (A1)-(A4) and (4.4) are satisfied such that

$$
\begin{cases}g_{3}^{0} \text { is small enough } & \text { in case 4.1), } \tag{4.5}\\ l<\frac{2 k_{1}}{\sqrt{k_{2} k_{3}}} \text { and } g_{1}^{0} \text { and } g_{3}^{0} \text { are small enough } & \text { in case 4.2), } \\ g_{1}^{0} \text { is small enough } & \text { in case 4.3). }\end{cases}
$$

Then there exists a positive constant $\left.\left.\mu_{0} \in\right] 0,1\right]$ independent of μ_{i} such that, if (3.3) is satisfied, then (3.4) holds.

Proof. The proof is similar to the one of Theorem 3.1. We will also follow the proof given in [20] concerning the case where no delay is present in 4.1)-4.3) (that is $\left(\mu_{1}, \mu_{2}, \mu_{3}\right)=$ $(0,0,0))$. As for (3.5) and (3.6), we define the energy functional E by

$$
\begin{gathered}
E(t)=\frac{1}{2}\|\mathcal{U}(t)\|_{\mathcal{H}}^{2} \\
=\frac{1}{2}\left\{\begin{array}{c}
\int_{0}^{L}\left(\left(k_{2}-g_{2}^{\circ}\right) \psi_{x}^{2}-g_{3}^{\circ} \omega_{x}^{2}+k_{1}\left(\varphi_{x}+\psi+l \omega\right)^{2}+k_{3}\left(\omega_{x}-l \varphi\right)^{2}+\rho_{1} \varphi_{t}^{2}+\rho_{2} \psi_{t}^{2}+\rho_{1} \omega_{t}^{2}\right) d x \\
+\left\langle\eta_{2}, \eta_{2}\right\rangle_{L_{2}}+\left\langle\eta_{3}, \eta_{3}\right\rangle_{L_{3}}+\tau_{1}\left|\mu_{1}\right|\left\langle z_{1}, z_{1}\right\rangle_{L_{d}}+\tau_{2}\left|\mu_{2}\right|\left\langle z_{2}, z_{2}\right\rangle_{L_{d}}+\tau_{3}\left|\mu_{3}\right|\left\langle z_{3}, z_{3}\right\rangle_{L_{d}} \quad \text { in case (4.1), } \\
\int_{0}^{L}\left(k_{2} \psi_{x}^{2}-g_{1}^{\circ} \varphi_{x}^{2}-g_{3}^{\circ} \omega_{x}^{2}+k_{1}\left(\varphi_{x}+\psi+l \omega\right)^{2}+k_{3}\left(\omega_{x}-l \varphi\right)^{2}+\rho_{1} \varphi_{t}^{2}+\rho_{2} \psi_{t}^{2}+\rho_{1} \omega_{t}^{2}\right) d x \\
+\left\langle\eta_{1}, \eta_{1}\right\rangle_{L_{1}}+\left\langle\eta_{3}, \eta_{3}\right\rangle_{L_{3}}+\tau_{1}\left|\mu_{1}\right|\left\langle z_{1}, z_{1}\right\rangle_{L_{d}}+\tau_{2}\left|\mu_{2}\right|\left\langle z_{2}, z_{2}\right\rangle_{L_{d}}+\tau_{3}\left|\mu_{3}\right|\left\langle z_{3}, z_{3}\right\rangle_{L_{d}} \quad \text { in case (4.2), } \\
\int_{0}^{L}\left(\left(k_{2}-g_{2}^{\circ}\right) \psi_{x}^{2}-g_{1}^{\circ} \varphi_{x}^{2}+k_{1}\left(\varphi_{x}+\psi+l \omega\right)^{2}+k_{3}\left(\omega_{x}-l \varphi\right)^{2}+\rho_{1} \varphi_{t}^{2}+\rho_{2} \psi_{t}^{2}+\rho_{1} \omega_{t}^{2}\right) d x \\
+\left\langle\eta_{1}, \eta_{1}\right\rangle_{L_{1}}+\left\langle\eta_{2}, \eta_{2}\right\rangle_{L_{2}}+\tau_{1}\left|\mu_{1}\right|\left\langle z_{1}, z_{1}\right\rangle_{L_{d}}+\tau_{2}\left|\mu_{2}\right|\left\langle z_{2}, z_{2}\right\rangle_{L_{d}}+\tau_{3}\left|\mu_{3}\right|\left\langle z_{3}, z_{3}\right\rangle_{L_{d}} \quad \text { in case 4.3), }
\end{array}\right.
\end{gathered}
$$

and we get (similarly to (3.6))
$E^{\prime}(t) \leq\left\{\begin{array}{l}\int_{0}^{L}\left(\left|\mu_{1}\right| \varphi_{t}^{2}+\left|\mu_{2}\right| \psi_{t}^{2}+\left|\mu_{3}\right| \omega_{t}^{2}\right) d x+\frac{1}{2} \int_{0}^{L} \int_{0}^{+\infty}\left(g_{2}^{\prime}(s) \eta_{2 x}^{2}+g_{3}^{\prime}(s) \eta_{3 x}^{2}\right) d s d x \quad \text { in case 4.1), } \\ \int_{0}^{L}\left(\left|\mu_{1}\right| \varphi_{t}^{2}+\left|\mu_{2}\right| \psi_{t}^{2}+\left|\mu_{3}\right| \omega_{t}^{2}\right) d x+\frac{1}{2} \int_{0}^{L} \int_{0}^{+\infty}\left(g_{1}^{\prime}(s) \eta_{1 x}^{2}+g_{3}^{\prime}(s) \eta_{3 x}^{2}\right) d s d x \quad \text { in case 4.2), } \\ \int_{0}^{L}\left(\left|\mu_{1}\right| \varphi_{t}^{2}+\left|\mu_{2}\right| \psi_{t}^{2}+\left|\mu_{3}\right| \omega_{t}^{2}\right) d x+\frac{1}{2} \int_{0}^{L} \int_{0}^{+\infty}\left(g_{1}^{\prime}(s) \eta_{1 x}^{2}+g_{2}^{\prime}(s) \eta_{2 x}^{2}\right) d s d x \quad \text { in case 4.3). }\end{array}\right.$
In order to continue the proof of Theorem 4.1, we need the Lemmas.

4.2 Main lemmas

Lemma 4.2 We use the functionals defined in Lemma 3.2, Lemma 3.3, and Lemma 3.4 and the corresponding estimates and the next Lemmas as follows.

CHAPTER 4. BRESSE SYSTEM STABILITY IN THE CASE OF TWO MEMORIES

$I_{1}(t) \quad$ (from Lemma 3.3) in cases (4.2) and (4.3) with the estimate (3.15).
$I_{2}(t)$ (from Lemma 3.4) in cases (4.1) and (4.3) with the estimate (3.16).
$I_{3}(t) \quad$ (from Lemma 3.4) in cases (4.1) and (4.2) with the estimate (3.17).
Proof. The proof is identical to the one given in Lemmas 3.3 and 3.4.
Lemma 4.3 The functional

$$
I_{4}(t)=\int_{0}^{L}\left(\rho_{1} \varphi \varphi_{t}+\rho_{2} \psi \psi_{t}+\rho_{1} \omega \omega_{t}\right) d x \quad \text { in cases (4.1)- (4.3) }
$$

satisfies, for any $\delta_{0}, \gamma_{0}>0$, there exists $c_{\delta_{0}}, c_{\gamma_{0}}>0$ such that

$$
\begin{align*}
I_{4}^{\prime}(t) & \leq \int_{0}^{L}\left(\rho_{1} \varphi_{t}^{2}+\rho_{2} \psi_{t}^{2}+\rho_{1} \omega_{t}^{2}\right) d x-\int_{0}^{L}\left[k_{1}\left(\varphi_{x}+\psi+l \omega\right)^{2}+k_{3}\left(\omega_{x}-l \varphi\right)^{2}+k_{2} \psi_{x}^{2}\right] d x \\
& +c_{\gamma_{0}} \sum_{i=1}^{3}\left|\mu_{i}\right|^{2} \int_{0}^{L} z_{i}^{2}(1) d x+\left(\delta_{0}+\gamma_{0}\right) \int_{0}^{L}\left(\varphi_{x}^{2}+\psi_{x}^{2}+\omega_{x}^{2}\right) d x \\
& +\left\{\begin{array}{l}
\int_{0}^{L}\left(g_{2}^{0} \psi_{x}^{2}+g_{3}^{0} \omega_{x}^{2}\right) d x+c_{\delta_{0}} \int_{0}^{L} \int_{0}^{+\infty}\left(g_{2}(s) \eta_{2 x}^{2}+g_{3}(s) \eta_{3 x}^{2}\right) d s d x \quad \text { in case 4.1), (4. } \\
\int_{0}^{L}\left(g_{1}^{0} \varphi_{x}^{2}+g_{3}^{0} \omega_{x}^{2}\right) d x+c_{\delta_{0}} \int_{0}^{L} \int_{0}^{+\infty}\left(g_{1}(s) \eta_{1 x}^{2}+g_{3}(s) \eta_{3 x}^{2}\right) d s d x \quad \text { in case 4.2), } \\
\int_{0}^{L}\left(g_{1}^{0} \varphi_{x}^{2}+g_{2}^{0} \psi_{x}^{2}\right) d x+c_{\delta_{0}} \int_{0}^{L} \int_{0}^{+\infty}\left(g_{1}(s) \eta_{1 x}^{2}+g_{2}(s) \eta_{2 x}^{2}\right) d s d x \quad \text { in case 4.3). }
\end{array}\right. \tag{4.8}
\end{align*}
$$

Proof. The proof is identical to the one given in Lemma 3.4.
Lemma 4.4 In this Lemma we use the same functionals that defined in part 3 Lemma 3.5

Proof. The proof is identical to the one given in Lemma 3.5.
Lemma 4.5 The functionals
$I_{8}(t)=\rho_{2} \int_{0}^{L}\left(\varphi_{x}+\psi+l \omega\right) \psi_{t} d x+\frac{k_{2} \rho_{1}}{k_{1}} \int_{0}^{L} \psi_{x} \varphi_{t} d x-\frac{\rho_{1}}{k_{1}} \int_{0}^{L} \varphi_{t} \int_{0}^{+\infty} g_{2}(s) \psi_{x}(t-s) d s d x$ in case (4.1)
$I_{9}(t)=-\rho_{2} \int_{0}^{L}\left(\varphi_{x}+\psi+l \omega\right) \psi_{t} d x-\frac{k_{2} \rho_{1}}{k_{1}} \int_{0}^{L} \psi_{x} \varphi_{t} d x+\frac{\rho_{2}}{k_{1}} \int_{0}^{L} \psi_{t} \int_{0}^{+\infty} g_{1}(s) \varphi_{x}(t-s) d s d x$ in case (4.2)

CHAPTER 4. BRESSE SYSTEM STABILITY IN THE CASE OF TWO MEMORIES

and

$$
I_{10}(t)=-\rho_{1} \int_{0}^{L}\left(\varphi_{x}+\psi+l \omega\right) \omega_{t} d x-\frac{k_{3} \rho_{1}}{k_{1}} \int_{0}^{L}\left(\omega_{x}-l \varphi\right) \varphi_{t} d x+\frac{\rho_{1}}{k_{1}} \int_{0}^{L} \omega_{t} \int_{0}^{+\infty} g_{1}(s) \varphi_{x}(t-s) d s d x
$$

in case 4.3
satisfy, for any $\epsilon_{0}, \epsilon_{1}, \epsilon_{2}, \delta_{0}, \gamma_{0}>0$, there exist $c_{\delta_{0}}, c_{\gamma_{0}}, c_{\epsilon_{0}}>0$ such that

$$
\begin{align*}
I_{8}^{\prime}(t) & \leq-k_{1} \int_{0}^{L}\left(\varphi_{x}+\psi+l \omega\right)^{2} d x+\left(\delta_{0}+\frac{l k_{3} \epsilon_{1}}{2 k_{1}}\left(k_{2}-g_{2}^{0}\right)\right) \int_{0}^{L}\left(\omega_{x}-l \varphi\right)^{2} d x \\
& +\delta_{0} \int_{0}^{L} \varphi_{t}^{2} d x+\frac{l k_{3}}{2 \epsilon_{1} k_{1}}\left(k_{2}-g_{2}^{0}\right) \int_{0}^{L} \psi_{x}^{2} d x+\int_{0}^{L}\left(\frac{3 \rho_{2}}{2} \psi_{t}^{2}+\frac{l^{2} \rho_{2}}{2} \omega_{t}^{2}\right) d x \tag{4.9}\\
& +\left(\rho_{2}-\frac{k_{2} \rho_{1}}{k_{1}}\right) \int_{0}^{L} \psi_{t} \varphi_{x t} d x+c_{\delta_{0}} \int_{0}^{L} \int_{0}^{+\infty}\left(g_{2}(s)-g_{2}^{\prime}(s)\right) \eta_{2 x}^{2} d s d x \\
& +\gamma_{0} \int_{0}^{L}\left(\varphi_{x}^{2}+\psi_{x}^{2}+\omega_{x}^{2}\right) d x+c_{\gamma_{0}} \int_{0}^{L}\left(\left|\mu_{1}\right|^{2} z_{1}^{2}(1)+\left|\mu_{2}\right|^{2} z_{2}^{2}(1)\right) d x \\
I_{9}^{\prime}(t) & \leq\left(k_{1}+\delta_{0}+\frac{g_{1}^{0} \epsilon_{1}}{2}\right) \int_{0}^{L}\left(\varphi_{x}+\psi+l \omega\right)^{2} d x+\frac{l k_{2} k_{3} \epsilon_{2}}{2 k_{1}} \int_{0}^{L}\left(\omega_{x}-l \varphi\right)^{2} d x \\
& +\frac{g_{1}^{0}}{2 \epsilon_{1}} \int_{0}^{L} \varphi_{x}^{2} d x+\frac{l k_{2} k_{3}}{2 \epsilon_{2} k_{1}} \int_{0}^{L} \psi_{x}^{2} d x+\left(\delta_{0}-\rho_{2}+\epsilon_{0}\right) \int_{0}^{L} \psi_{t}^{2}+c_{\epsilon_{0}} \int_{0}^{L} \omega_{t}^{2} d x \\
& +\left(\frac{k_{2} \rho_{1}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \psi_{t} \varphi_{x t} d x+c_{\delta_{0}} \int_{0}^{L} \int_{0}^{+\infty}\left(g_{1}(s)-g_{1}^{\prime}(s)\right) \eta_{1 x}^{2} d s d x \tag{4.10}\\
& +\gamma_{0} \int_{0}^{L}\left(\varphi_{x}^{2}+\psi_{x}^{2}+\omega_{x}^{2}\right) d x+c_{\gamma_{0}} \int_{0}^{L}\left(\left|\mu_{1}\right|^{2} z_{1}^{2}(1)+\left|\mu_{2}\right|^{2} z_{2}^{2}(1)\right) d x
\end{align*}
$$

and

$$
\begin{align*}
I_{10}^{\prime}(t) & \leq\left(l k_{1}+\delta_{0}+\frac{l g_{1}^{0} \epsilon_{1}}{2}\right) \int_{0}^{L}\left(\varphi_{x}+\psi+l \omega\right)^{2} d x-\frac{l k_{3}^{2}}{k_{1}} \int_{0}^{L}\left(\omega_{x}-l \varphi\right)^{2} d x \\
& +\frac{l g_{1}^{0}}{2 \epsilon_{1}} \int_{0}^{L} \varphi_{x}^{2} d x+c_{\epsilon_{0}} \int_{0}^{L}\left(\varphi_{t}^{2}+\psi_{t}^{2}\right) d x+\left(-l \rho_{1}+\delta_{0}+\epsilon_{0}\right) \int_{0}^{L} \omega_{t}^{2} d x \\
& +\rho_{1}\left(\frac{k_{3}}{k_{1}}-1\right) \int_{0}^{L} \psi_{t} \varphi_{x t} d x+c_{\delta_{0}} \int_{0}^{L} \int_{0}^{+\infty}\left(g_{1}(s)-g_{1}^{\prime}(s)\right) \eta_{1 x}^{2} d s d x \tag{4.11}\\
& +\gamma_{0} \int_{0}^{L}\left(\varphi_{x}^{2}+\psi_{x}^{2}+\omega_{x}^{2}\right) d x+c_{\gamma_{0}} \int_{0}^{L}\left(\left|\mu_{1}\right|^{2} z_{1}^{2}(1)+\left|\mu_{3}\right|^{2} z_{3}^{2}(1)\right) d x .
\end{align*}
$$

Proof. First, notice that

$$
\frac{\partial}{\partial t} \int_{0}^{+\infty} g_{1}(s) \varphi_{x}(t-s) d s=\partial_{t} \int_{-\infty}^{t} g_{1}(t-s) \varphi_{x}(s) d s=g_{1}(0) \varphi_{x}(t)+\int_{-\infty}^{t} g_{1}^{\prime}(t-s) \varphi_{x}(s) d s
$$

CHAPTER 4. BRESSE SYSTEM STABILITY IN THE CASE OF TWO MEMORIES

$$
\begin{equation*}
=-\int_{0}^{+\infty} g_{1}^{\prime}(s) \varphi_{x}(t) d s+\int_{0}^{+\infty} g_{1}^{\prime}(s) \varphi_{x}(t-s) d s=-\int_{0}^{+\infty} g_{1}^{\prime}(s) \eta_{1 x} d s \tag{4.12}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\frac{\partial}{\partial t} \int_{0}^{+\infty} g_{2}(s) \psi_{x}(t-s) d s=-\int_{0}^{+\infty} g_{2}^{\prime}(s) \eta_{2 x} d s \tag{4.13}
\end{equation*}
$$

By exploiting the first two equations in 4.1), integrating by parts and using the boundary conditions and (4.13), we find

$$
\begin{aligned}
I_{8}^{\prime}(t) & =-k_{1} \int_{0}^{L}\left(\varphi_{x}+\psi+l \omega\right)^{2} d x+\left(\rho_{2}-\frac{k_{2} \rho_{1}}{k_{1}}\right) \int_{0}^{L} \psi_{t} \varphi_{x t} d x+\rho_{2} \int_{0}^{L} \psi_{t}^{2} d x \\
& +\rho_{2} l \int_{0}^{L} \omega_{t} \psi_{t}(x, t) d x+\frac{l k_{3}}{k_{1}}\left(k_{2}-g_{2}^{0}\right) \int_{0}^{L}\left(\omega_{x}-l \varphi\right) \psi_{x} d x+\frac{\rho_{1}}{k_{1}} \int_{0}^{L} \varphi_{t} \int_{0}^{+\infty} g_{2}^{\prime}(s) \eta_{2 x} d s d x \\
& +\frac{l k_{3}}{k_{1}} \int_{0}^{L}\left(\omega_{x}-l \varphi\right) \int_{0}^{+\infty} g_{2}(s) \eta_{2 x} d s d x-\int_{0}^{L} \mu_{2}\left(\varphi_{x}+\psi+l \omega\right) \psi_{t}\left(x, t-\tau_{2}\right) d x \\
& -\frac{k_{2}}{k_{1}} \int_{0}^{L} \mu_{1} \psi_{x}(x, t) \varphi_{t}\left(x, t-\tau_{1}\right) d x+\frac{1}{k_{1}} \int_{0}^{L} \mu_{1} \varphi_{t}\left(x, t-\tau_{1}\right) \int_{0}^{+\infty} g_{2}(s)\left[\psi_{x}(x, t)-\eta_{2 x}(x, t)\right] d s d x
\end{aligned}
$$

By applying Hölder's and Young's inequalities to the last seven terms of the above equality, we deduce (4.9). Similarly, using (4.12) and the first two equations in (4.2), and the first and third equations in 4.3), we get

$$
\begin{aligned}
I_{9}^{\prime}(t) & =k_{1} \int_{0}^{L}\left(\varphi_{x}+\psi+l \omega\right)^{2} d x-g_{1}^{0} \int_{0}^{L}\left(\varphi_{x}+\psi+l \omega\right) \varphi_{x} d x+\left(\frac{k_{2} \rho_{1}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \psi_{t} \varphi_{x t} d x \\
& -\rho_{2} \int_{0}^{L} \psi_{t}^{2} d x-\rho_{2} l \int_{0}^{L} \omega_{t} \psi_{t}(x, t) d x-\frac{l k_{2} k_{3}}{k_{1}} \int_{0}^{L}\left(\omega_{x}-l \varphi\right) \psi_{x} d x \\
& -\frac{\rho_{2}}{k_{1}} \int_{0}^{L} \psi_{t} \int_{0}^{+\infty} g_{1}^{\prime}(s) \eta_{1 x} d s d x+\int_{0}^{L}\left(\varphi_{x}+\psi+l \omega\right) \int_{0}^{+\infty} g_{1}(s) \eta_{1 x} d s d x \\
& +\int_{0}^{L} \mu_{2}\left(\varphi_{x}+\psi+l \omega\right) \psi_{t}\left(x, t-\tau_{2}\right) d x+\frac{k_{2}}{k_{1}} \int_{0}^{L} \mu_{1} \psi_{x}(x, t) \varphi_{t}\left(x, t-\tau_{1}\right) d x \\
& -\frac{1}{k_{1}} \int_{0}^{L} \mu_{2} \psi_{t}\left(x, t-\tau_{2}\right) \int_{0}^{+\infty} g_{1}(s)\left[\varphi_{x}(x, t)-\eta_{1 x}(x, t)\right] d s d x
\end{aligned}
$$

and

$$
\begin{aligned}
I_{10}^{\prime}(t) & =l k_{1} \int_{0}^{L}\left(\varphi_{x}+\psi+l \omega\right)^{2} d x-l g_{1}^{0} \int_{0}^{L}\left(\varphi_{x}+\psi+l \omega\right) \varphi_{x} d x+\rho_{1}\left(\frac{k_{3}}{k_{1}}-1\right) \int_{0}^{L} \omega_{t} \varphi_{x t} d x \\
& -\frac{l k_{3}^{2}}{k_{1}} \int_{0}^{L}\left(\omega_{x}-l \varphi\right)^{2} d x-\int_{0}^{L}\left(l \rho_{1} \omega_{t}^{2}+\rho_{1} \psi_{t} \omega_{t}-\frac{l \rho_{1} k_{3}}{k_{1}} \varphi_{t}^{2}\right) d x-\frac{\rho_{1}}{k_{1}} \int_{0}^{L} \omega_{t} \int_{0}^{+\infty} g_{1}^{\prime}(s) \eta_{1 x} d s d x \\
& +l \int_{0}^{L}\left(\varphi_{x}+\psi+l \omega\right) \int_{0}^{+\infty} g_{1}(s) \eta_{1 x} d s d x+\int_{0}^{L} \mu_{3}\left(\varphi_{x}+\psi+l \omega\right) \omega_{t}\left(x, t-\tau_{3}\right) d x \\
& +\frac{k_{3}}{k_{1}} \int_{0}^{L} \mu_{1}\left(\omega_{x}-l \varphi\right) \varphi_{t}\left(x, t-\tau_{1}\right) d x-\frac{1}{k_{1}} \int_{0}^{L} \mu_{3} \omega_{t}\left(x, t-\tau_{3}\right) \int_{0}^{+\infty} g_{1}(s)\left[\varphi_{x}(x, t)-\eta_{1 x}(x, t)\right] d s d x
\end{aligned}
$$

CHAPTER 4. BRESSE SYSTEM STABILITY IN THE CASE OF TWO MEMORIES

Then, by proceeding as for (4.9), we deduce 4.10) and (4.11).

Lemma 4.6 The functionals

$$
\begin{gathered}
I_{11}(t)=-\rho_{1} k_{3} \int_{0}^{L}\left(\omega_{x}-l \varphi\right) \int_{0}^{x} \omega_{t}(y, t) d y d x-\rho_{1} k_{1} \int_{0}^{L} \varphi_{t} \int_{0}^{x}\left(\varphi_{x}+\psi+l \omega\right)(y, t) d y d x \text { in case 4.1), } \\
I_{12}(t)=I_{11}(t) \quad \text { in case (4.2) and } I_{13}(t)=-I_{11}(t) \text { in case 4.3). }
\end{gathered}
$$

Satisfy, for any $\epsilon_{0}, \delta_{0}, \gamma_{0}, \delta_{1}, \delta_{2}, \delta_{3}>0$, there exists $c_{\epsilon_{0}}, c_{\delta_{0}}, c_{\gamma_{0}}>0$ such that

$$
\begin{align*}
I_{11}^{\prime}(t) \leq & k_{1}^{2} \int_{0}^{L}\left(\varphi_{x}+\psi+l \omega\right)^{2} d x+\left(\frac{k_{3} g_{3}^{0} \delta_{1}}{2}+\delta_{0}-k_{3}^{2}\right) \int_{0}^{L}\left(\omega_{x}-l \varphi\right)^{2} d x \\
& +\left(-\rho_{1} k_{1}+\epsilon_{0}\right) \int_{0}^{L} \varphi_{t}^{2} d x+c_{\epsilon_{0}} \int_{0}^{L}\left(\psi_{t}^{2}+\omega_{t}^{2}\right) d x+\frac{k_{3} g_{3}^{0}}{2 \delta_{1}} \int_{0}^{L} \omega_{x}^{2} d x \tag{4.14}\\
& +c_{\gamma_{0}} \int_{0}^{L}\left(\left|\mu_{1}\right|^{2} z_{1}^{2}(1)+\left|\mu_{3}\right|^{2} z_{3}^{2}(1)\right) d x+\gamma_{0} \int_{0}^{L}\left(\varphi_{x}^{2}+\psi_{x}^{2}+w_{x}^{2}\right)^{2} d x+c_{\delta_{0}} \int_{0}^{L} g_{3}(s) \eta_{3 x}^{2} d s d x \\
I_{12}^{\prime}(t) \leq & \left(k_{1}^{2}+\frac{k_{1} g_{1}^{0} \delta_{2}}{2}+\delta_{0}\right) \int_{0}^{L}\left(\varphi_{x}+\psi+l \omega\right)^{2} d x+\left(\frac{k_{3} g_{3}^{0} \delta_{3}}{2}+\delta_{0}-k_{3}^{2}\right) \int_{0}^{L}\left(\omega_{x}-l \varphi\right)^{2} d x \\
& +\epsilon_{0} \int_{0}^{L} \psi_{t}^{2} d x+c_{\epsilon_{0}} \int_{0}^{L}\left(\varphi_{t}^{2}+\omega_{t}^{2}\right) d x+\frac{k_{1} g_{1}^{0}}{2 \delta_{2}} \int_{0}^{L} \varphi_{x}^{2} d x+\frac{k_{3} g_{3}^{0}}{2 \delta_{3}} \int_{0}^{L} \omega_{x}^{2} d x \tag{4.15}\\
& +c_{\gamma_{0}} \int_{0}^{L}\left(\left|\mu_{1}\right|^{2} z_{1}^{2}(1)+\left|\mu_{3}\right|^{2} z_{3}^{2}(1)\right) d x+\gamma_{0} \int_{0}^{L}\left(\varphi_{x}^{2}+\psi_{x}^{2}+w_{x}^{2}\right)^{2} d x \\
& +c_{\delta_{0}} \int_{0}^{L} \int_{0}^{+\infty}\left(g_{1}(s) \eta_{1 x}^{2}+g_{3}(s) \eta_{3 x}^{2}\right) d s d x
\end{align*}
$$

and

$$
\begin{align*}
I_{13}^{\prime}(t) \leq & \left(-k_{1}^{2}+\frac{k_{1} g_{1}^{0} \delta_{1}}{2}+\delta_{0}\right) \int_{0}^{L}\left(\varphi_{x}+\psi+l \omega\right)^{2} d x+k_{3}^{2} \int_{0}^{L}\left(\omega_{x}-l \varphi\right)^{2} d x \\
& +\left(\epsilon_{0}-\rho_{1} k_{3}\right) \int_{0}^{L} \omega_{t}^{2} d x+c_{\epsilon_{0}} \int_{0}^{L}\left(\varphi_{t}^{2}+\psi_{t}^{2}\right) d x \\
& +\frac{k_{1} g_{1}^{0}}{2 \delta_{1}} \int_{0}^{L} \varphi_{x}^{2} d x+c_{\gamma_{0}} \int_{0}^{L}\left(\left|\mu_{1}\right|^{2} z_{1}^{2}(1)+\left|\mu_{3}\right|^{2} z_{3}^{2}(1)\right) d x \tag{4.16}\\
& +\gamma_{0} \int_{0}^{L}\left(\varphi_{x}^{2}+\psi_{x}^{2}+w_{x}^{2}\right)^{2} d x+c_{\delta_{0}} \int_{0}^{L} \int_{0}^{+\infty} g_{1}(s) \eta_{1 x}^{2} d s d x
\end{align*}
$$

Proof. By exploiting the first and third equations in 4.1), integrating by parts and using

CHAPTER 4. BRESSE SYSTEM STABILITY IN THE CASE OF TWO MEMORIES

the boundary conditions, we get

$$
\begin{align*}
I_{11}^{\prime}(t)= & k_{1}^{2} \int_{0}^{L}\left(\varphi_{x}+\psi+l \omega\right)^{2} d x+l \rho_{1} k_{3} \int_{0}^{L} \varphi_{t} \int_{0}^{x} \omega_{t}(y, t) d y d x+\rho_{1} k_{3} \int_{0}^{L} \omega_{t}^{2} d x-\rho_{1} k_{1} \int_{0}^{L} \varphi_{t}^{2} d x \\
& -k_{3}^{2} \int_{0}^{L}\left(\omega_{x}-l \varphi\right)^{2} d x-\rho_{1} k_{1} \int_{0}^{L} \varphi_{t} \int_{0}^{x}\left(\psi_{t}(y, t)+l \omega_{t}(y, t)\right) d y d x+k_{3} g_{3}^{0} \int_{0}^{L}\left(\omega_{x}-l \varphi\right) \omega_{x} d x \tag{4.17}\\
& -k_{3} \int_{0}^{L}\left(\omega_{x}-l \varphi\right) \int_{0}^{+\infty} g_{3}(s) \eta_{3 x} d s d x+k_{3} \int_{0}^{L}\left(\omega_{x}-l \varphi\right) \int_{0}^{x} \mu_{3} \omega_{t}\left(x, t-\tau_{3}\right) d y d x \\
& +k_{1} \int_{0}^{L} \mu_{1} \varphi_{t}\left(x, t-\tau_{1}\right) \int_{0}^{x}\left(\varphi_{x}+\psi+l \omega\right) d y d x .
\end{align*}
$$

Noting that the functions
$x \rightarrow \int_{0}^{x} \psi_{t}(y, t) d y, \quad x \rightarrow \int_{0}^{x} \omega_{t}(y, t) d y, \quad x \rightarrow \int_{0}^{x} \omega_{t}\left(x, t-\tau_{3}\right) d y \quad$ and $\quad x \rightarrow \int_{0}^{x}\left(\varphi_{x}+\psi+l \omega\right) d y$
vanish at 0 and L, then, applying Poincaré's inequality, we find

$$
\begin{array}{ll}
\int_{0}^{L}\left(\int_{0}^{x} \omega_{t}\left(x, t-\tau_{3}\right) d y\right)^{2} d x \leq c_{0} \int_{0}^{L} \omega_{t}^{2}\left(x, t-\tau_{3}\right) d x, & \int_{0}^{L}\left(\int_{0}^{x} \omega_{t}(y, t) d y\right)^{2} d x \leq c_{0} \int_{0}^{L} \omega_{t}^{2} d x \\
\int_{0}^{L}\left(\int_{0}^{x}\left(\varphi_{x}+\psi+l \omega\right) d y\right)^{2} d x \leq c_{0} \int_{0}^{L}\left(\varphi_{x}+\psi+l \omega\right)^{2} d x, & \int_{0}^{L}\left(\int_{0}^{x} \psi_{t}(y, t) d y\right)^{2} d x \leq c_{0} \int_{0}^{L} \psi_{t}^{2} d x .
\end{array}
$$

By applying Young's inequality in (4.17), and recalling the last equations, we obtain (4.14).
Similarly we find (4.15) and 4.16).
Lemma 4.7 Let

$$
I_{14}(t)= \begin{cases}0 & \text { in cases (4.1) and (4.3), } \tag{4.18}\\ \rho_{2} \int_{0}^{L} \psi_{x} \int_{0}^{x} \psi_{t}(y, t) d y d x & \text { in case (4.2). }\end{cases}
$$

Then, for any $\gamma_{0}, \delta_{1}>0$, there exits $c_{\gamma_{0}}$

$$
\begin{gather*}
I_{14}^{\prime}(t) \leq-\rho_{2} \int_{0}^{L} \psi_{t}^{2} d x+\left(\frac{k_{1} \delta_{1}}{2}+k_{2}\right) \int_{0}^{L} \psi_{x}^{2} d x \tag{4.19}\\
+\frac{k_{1} c_{0}}{2 \delta_{1}} \int_{0}^{L}\left(\varphi_{x}+\psi+l w\right)^{2} d x+\gamma_{0} \int_{0}^{L} \psi_{x}^{2} d x+c_{\gamma_{0}}\left|\mu_{2}\right|^{2} \int_{0}^{L} z_{2}^{2}(1) d x
\end{gather*}
$$

in case (4.2), and $I_{14}^{\prime}(t)=0$ in cases (4.1) and (4.3).
Proof. By exploiting the second equation in (4.2), integrating by parts and using the boundary conditions, we get

$$
\begin{equation*}
I_{14}^{\prime}(t)=\int_{0}^{L}\left(-\rho_{2} \psi_{t}^{2}+k_{2} \psi_{x}^{2}\right) d x-k_{1} \int_{0}^{L} \psi_{x} \int_{0}^{x}\left(\varphi_{x}(y, t)+\psi(y, t)+l w(y, t)\right) d y d x \tag{4.20}
\end{equation*}
$$

CHAPTER 4. BRESSE SYSTEM STABILITY IN THE CASE OF TWO MEMORIES

$$
-\mu_{2} \int_{0}^{L} \psi_{x} \int_{0}^{x} \psi_{t}\left(y, t-\tau_{2}\right) d y d x
$$

in case 4.2), and $I_{14}^{\prime}(t)=0$ in cases 4.1) and (4.3). Now, noting that the function

$$
x \mapsto \int_{0}^{x}\left(\varphi_{x}(y, t)+\psi(y, t)+l w(y, t)\right) d y \quad \text { and } \quad x \mapsto \int_{0}^{x} \psi_{t}\left(y, t-\tau_{2}\right) d y
$$

vanishes at 0 and L (because of (2.15)), then, applying Poincaré's and Young's inequalities to the last two integrals in (6.76), we conclude 6.75).
Let $N, N_{1}, N_{2}, N_{3}, N_{4}, N_{5} \geq 0$ and, for $i=1,2,3$ (corresponding to (4.1), (4.2) and (4.3), respectively),

$$
\begin{equation*}
F_{i}=N E+I_{7+i}+N_{2} I_{14}+N_{3} I_{10+i}+N_{4} I_{4}+N_{5}\left(\left|\mu_{1}\right| I_{5}+\left|\mu_{2}\right| I_{6}+\left|\mu_{3}\right| I_{7}\right)+N_{1} \sum_{j \in\{1,2,3\} \backslash\{i\}} I_{j} . \tag{4.21}
\end{equation*}
$$

Using (3.1), (4.4), (6.47) and the definition of E, and choosing the constants $N_{1}, N_{2}, N_{3}, N_{4}, \delta_{j}$ and ϵ_{j} as in [20]-proof of Theorem 3.2 (for (4.1)-(4.3) with $\mu_{1}=\mu_{2}=\mu_{3}=0$), we find, for some positive constants c_{1}, \cdots, c_{7},

$$
\begin{align*}
F_{i}^{\prime}(t) & \leq-c_{1} E(t)+N E^{\prime}(t)-c_{2} \sum_{j \in\{1,2,3\} \backslash\{i\}} \int_{0}^{L} \int_{0}^{+\infty} g_{j}^{\prime}(s) \eta_{j x}^{2}(s) d s d x \\
& +\left(c_{3}-c_{4} N_{5}\right) \sum_{i=1}^{3} \int_{0}^{L} \int_{0}^{1}\left|\mu_{i}\right| z_{i}^{2} d \rho d x+\sum_{i=1}^{3} \int_{0}^{L}\left(c_{\gamma_{0}}\left|\mu_{i}\right|-c_{5} N_{5}\right)\left|\mu_{i}\right| z_{i}^{2}(1) d x \tag{4.22}\\
& +c_{6} \gamma_{0} \int_{0}^{L}\left(\varphi_{x}^{2}+\psi_{x}^{2}+\omega_{x}^{2}\right) d x+c_{7} N_{5} \int_{0}^{L}\left(\left|\mu_{1}\right| \varphi_{t}^{2}+\left|\mu_{2}\right| \psi_{t}^{2}+\left|\mu_{3}\right| \omega_{t}^{2}\right) d x
\end{align*}
$$

Thanks to 2.17) and (so $\mu_{0} \leq 1$), we can take $0<\gamma_{0}<\frac{c_{1}}{2 k_{0} c_{6}}$, and then we choose $N_{5} \geq \max \left\{\frac{c_{3}}{c_{4}}, \frac{c_{\gamma_{0}}}{c_{5}}\right\}$ to conclude from 4.7 and 4.22 that, for some positive constants c_{8} and c_{9},

$$
\begin{align*}
F_{i}^{\prime}(t) & \leq-c_{8} E(t)+\left(\frac{N}{2}-c_{2}\right) \sum_{j \in\{1,2,3\} \backslash\{i\}} \int_{0}^{L} \int_{0}^{+\infty} g_{j}^{\prime}(s) \eta_{j x}^{2}(s) d s d x \tag{4.23}\\
& +\left(N+c_{9}\right) \int_{0}^{L}\left(\left|\mu_{1}\right| \varphi_{t}^{2}+\left|\mu_{2}\right| \psi_{t}^{2}+\left|\mu_{3}\right| \omega_{t}^{2}\right) d x
\end{align*}
$$

On the other hand, as for (3.35), there exists a positive constant c_{10} not depending on μ_{i} such that

$$
\begin{equation*}
\left(N-c_{10}\right) E(t) \leq F_{i}(t) \leq\left(N+c_{10}\right) E(t) \tag{4.24}
\end{equation*}
$$

CHAPTER 4. BRESSE SYSTEM STABILITY IN THE CASE OF TWO MEMORIES

then by choosing $N>\max \left\{2 c_{2}, c_{10}\right\}$, we deduce from (4.23) and (4.24) that $F_{i} \sim E$ and, for some positive constant c_{11},

$$
F_{i}^{\prime}(t) \leq-c_{8} E(t)+c_{11} \max _{i=1}^{3}\left|\mu_{i}\right| \int_{0}^{L}\left(\rho_{1} \varphi_{t}^{2}+\rho_{2} \psi_{t}^{2}+\rho_{1} \omega_{t}^{2}\right) d x
$$

By assuming that 3.3 holds with $\mu_{0}=\min \left\{1, \frac{c_{8}}{2 c_{11}}\right\}$, we find, for some positive constant c_{12},

$$
\begin{equation*}
F_{i}^{\prime}(t) \leq-c_{12} E(t) \tag{4.25}
\end{equation*}
$$

Finally, we conclude from (4.24) and (4.25) that

$$
F_{i}^{\prime}(t) \leq-c_{12} E(t) \leq-c_{13} F_{i}(t),
$$

By integrating the above inequality, we get (3.4), for any $\mathcal{U}_{0} \in \mathcal{D}$, since $F_{i} \sim E$.
The density of $\mathcal{D}(A) \in \mathcal{H}$ and the continuity of β_{1} and β_{2} with respect to $\left\|\mathcal{U}_{0}\right\|_{\mathcal{H}}$ imply that (3.4) is satisfied, for any $\mathcal{U}_{0} \in \mathcal{H}$ (as in chapter 3).

CHAPTER 5

(BRESSE SYSTEM STABILITY IN THE CASE OF ONE
 MEMORY ON THE SECOND EQUATION

In this chapter, we study the stability of (2.1) (with $k=1$) when only one infinite memory is acting on the second equation; that is $g_{1}=g_{3}=0$. To simplify the notations, let us denote g_{2} and η_{2} by g and η, respectively. So we have the system

$$
\left\{\begin{array}{l}
\rho_{1} \varphi_{t t}-k_{1}\left(\varphi_{x}+\psi+l w\right)_{x}-l k_{3}\left(w_{x}-l \varphi\right)+\mu_{1} \varphi_{t}\left(x, t-\tau_{1}\right)=0 \tag{5.1}\\
\rho_{2} \psi_{t t}-k_{2} \psi_{x x}+k_{1}\left(\varphi_{x}+\psi+l w\right)+\int_{0}^{+\infty} g(s) \psi_{x x}(x, t-s) d s+\mu_{2} \psi_{t}\left(x, t-\tau_{2}\right)=0 \\
\rho_{1} w_{t t}-k_{3}\left(w_{x}-l \varphi\right)_{x}+l k_{1}\left(\varphi_{x}+\psi+l w\right)+\mu_{3} w_{t}\left(x, t-\tau_{3}\right)=0 \\
\varphi(0, t)=\psi_{x}(0, t)=w_{x}(0, t)=\varphi(L, t)=\psi_{x}(L, t)=w_{x}(L, t)=0 \\
\varphi(x, 0)=\varphi_{0}(x), \varphi_{t}(x, 0)=\varphi_{1}(x) \\
\psi(x,-t)=\psi_{0}(x, t), \psi_{t}(x, 0)=\psi_{1}(x) \\
w(x, 0)=w_{0}(x), w_{t}(x, 0)=w_{1}(x) \\
\varphi_{t}\left(x, t-\tau_{1}\right)=h_{1}\left(x, t-\tau_{1}\right), \psi_{t}\left(x, t-\tau_{2}\right)=h_{2}\left(x, t-\tau_{2}\right), w_{t}\left(x, t-\tau_{3}\right)=h_{3}\left(x, t-\tau_{3}\right) .
\end{array}\right.
$$

Theorem 5.1 Assume that (A1)-(A4) and (3) are satisfied, and l and $\max _{i=1}^{3}\left|\mu_{i}\right|$ are small enough. Then (3.4) holds.

Proof. The proof is similar to the ones given in the previous two sections. First, as for (3.5) and (3.6), the energy functional

$$
\begin{align*}
E(t)= & \frac{1}{2}\|U(t)\|_{\mathcal{H}}^{2}=\frac{1}{2} \int_{0}^{L}\left[\left(k_{2}-g^{\circ}\right) \psi_{x}^{2}+k_{1}\left(\varphi_{x}+\psi+l w\right)^{2}+k_{3}\left(w_{x}-l \varphi\right)^{2}\right] d x \\
& +\frac{1}{2} \int_{0}^{L}\left[\rho_{1} \varphi_{t}^{2}+\rho_{2} \psi_{t}^{2}+\rho_{1} w_{t}^{2}\right] d x+\frac{1}{2} \int_{0}^{L} \int_{0}^{+\infty} g(s) \eta_{x}^{2} d s d x \tag{5.2}\\
& +\frac{1}{2} \int_{0}^{L} \int_{0}^{1}\left(\tau_{1}\left|\mu_{1}\right| z_{1}^{2}+\tau_{2}\left|\mu_{2}\right| z_{2}^{2}+\tau_{3}\left|\mu_{3}\right| z_{3}^{2}\right) d \rho d x
\end{align*}
$$

satisfies

$$
\begin{equation*}
E^{\prime}(t) \leq\left|\mu_{1}\right| \int_{0}^{L} \varphi_{t}^{2} d x+\left|\mu_{2}\right| \int_{0}^{L} \psi_{t}^{2} d x+\left|\mu_{3}\right| \int_{0}^{L} w_{t}^{2} d x+\frac{1}{2} \int_{0}^{L} \int_{0}^{+\infty} g^{\prime}(s) \eta_{x}^{2} d s d x \tag{5.3}
\end{equation*}
$$

Lemma 5.2 The functional I_{2} defined in Lemma 3.4 satisfies (3.16).
Proof. The proof is identical to the one of Lemma 3.4.

Lemma 5.3 The functional

$$
I_{1}(t)=-\int_{0}^{L}\left(\rho_{1} \varphi \varphi_{t}+\rho_{2} \psi \psi_{t}+\rho_{1} w w_{t}\right)
$$

satisfies, for any $\delta_{0}>0$, there exists $c_{\delta_{0}}>0$ such that

$$
\begin{align*}
I_{1}^{\prime}(t) \leq & -\int_{0}^{L}\left(\rho_{1} \varphi_{t}^{2}+\rho_{2} \psi_{t}^{2}+\rho_{1} w_{t}^{2}\right) d x-c_{\delta_{0}} \int_{0}^{L} \int_{0}^{+\infty} g^{\prime}(s) \eta_{x}^{2} d s d x+c_{\delta_{0}} \sum_{i=1}^{3}\left|\mu_{i}\right|^{2} \int_{0}^{L} z_{i}^{2}(1) d x \tag{5.4}\\
& +\int_{0}^{L}\left[k_{1}\left(\varphi_{x}+\psi+l w\right)^{2}+k_{3}\left(w_{x}-l \varphi\right)^{2}+\left(k_{2}-g^{0}\right) \psi_{x}^{2}\right] d x+\delta_{0} \int_{0}^{L}\left(\varphi_{x}^{2}+\psi_{x}^{2}+w_{x}^{2}\right) d x
\end{align*}
$$

Proof. By exploiting equations of (5.1) and integrating by parts, we get

$$
\begin{align*}
I_{1}^{\prime}(t) & =-\int_{0}^{L}\left(\rho_{1} \varphi_{t}^{2}+\rho_{2} \psi_{t}^{2}+\rho_{1} w_{t}^{2}\right) d x+k_{1} \int_{0}^{L}\left(\varphi_{x}+\psi+l w\right)^{2} d x+k_{3} \int_{0}^{L}\left(w_{x}-l \varphi\right)^{2} d x \\
& +\left(k_{2}-g^{0}\right) \int_{0}^{L} \psi_{x}^{2} d x+\mu_{1} \int_{0}^{L} z_{1}(1) \varphi d x+\mu_{2} \int_{0}^{L} z_{2}(1) \psi d x \tag{5.5}\\
& +\mu_{3} \int_{0}^{L} z_{3}(1) w d x+\int_{0}^{L} \psi_{x} \int_{0}^{+\infty} g(s) \eta_{x} d s d x
\end{align*}
$$

Using Poincaré's, Young's and Hölder's inequalities for the last four term of (5.5) and exploiting (3.1), we find (5.4).

Lemma 5.4 The functionals I_{5}, I_{6} and I_{7} defined in Lemma 3.6 satisfy (3.22), (3.23) and (3.24).

Proof. See the proof of Lemma 3.6.

Lemma 5.5 The functional
$I_{3}(t)=\rho_{2} \int_{0}^{L}\left(\varphi_{x}+\psi+l w\right) \psi_{t} d x+\frac{k_{2} \rho_{1}}{k_{1}} \int_{0}^{L} \psi_{x} \varphi_{t} d x-\frac{\rho_{1}}{k_{1}} \int_{0}^{L} \varphi_{t} \int_{0}^{+\infty} g(s) \psi_{x}(t-s) d s d x$,
satisfies, for any $\delta_{0}, \epsilon_{0}, \epsilon_{1}, \epsilon_{2}>0$, there exist $c_{\delta_{0}}, c_{\epsilon_{0}}>0$ such that

$$
\begin{align*}
I_{3}^{\prime}(t) \leq & -k_{1} \int_{0}^{L}\left(\varphi_{x}+\psi+l w\right)^{2} d x+\left(\delta_{0}+\frac{l k_{2} k_{3} \epsilon_{1}}{2 k_{1}}+\frac{l k_{3} g^{0} \epsilon_{2}}{2 k_{1}}\right) \int_{0}^{L}\left(w_{x}-l \varphi\right)^{2} d x+\delta_{0} \int_{0}^{L} \varphi_{t}^{2} d x \\
& +\left(\frac{l k_{2} k_{3}}{2 \epsilon_{1} k_{1}}+\frac{l k_{3} g^{0}}{2 \epsilon_{2} k_{1}}\right) \int_{0}^{L} \psi_{x}^{2} d x+\int_{0}^{L}\left(c_{\epsilon_{0}} \psi_{t}^{2}+\epsilon_{0} w_{t}^{2}\right) d x-c_{\delta_{0}} \int_{0}^{L} \int_{0}^{+\infty} g^{\prime}(s) \eta_{x}^{2} d s d x \tag{5.6}\\
& +\delta_{0} \int_{0}^{L}\left(\varphi_{x}^{2}+\psi_{x}^{2}+w_{x}^{2}\right) d x+c_{\delta_{0}} \int_{0}^{L}\left(\left|\mu_{1}\right|^{2} z_{1}^{2}(1)+\left|\mu_{2}\right|^{2} z_{2}^{2}(1)\right) d x
\end{align*}
$$

Proof. By exploiting the first two equations in (5.1), integrating by parts, using (4.13) and the boundary conditions (see the proof of Lemma 4.5), applying (3.12), (3.13) and Young's and Poincaré's inequalities, and exploiting (3) and (3.1), we deduce (5.6).

Lemma 5.6 The functional

$$
I_{4}(t)=-\rho_{1} k_{3} \int_{0}^{L}\left(w_{x}-l \varphi\right) \int_{0}^{x} w_{t}(y) d y d x-\rho_{1} k_{1} \int_{0}^{L} \varphi_{t} \int_{0}^{x}\left(\varphi_{x}+\psi+l w\right)(y) d y d x,
$$

satisfies, for any $\epsilon_{0}, \delta_{0}>0$, there exist $c_{\epsilon_{0}}, c_{\delta_{0}}>0$ such that

$$
\begin{align*}
I_{4}^{\prime}(t) \leq & k_{1}^{2} \int_{0}^{L}\left(\varphi_{x}+\psi+l w\right)^{2} d x-k_{3}^{2} \int_{0}^{L}\left(w_{x}-l \varphi\right)^{2} d x+c_{\epsilon_{0}} \int_{0}^{L} \psi_{t}^{2} d x+\rho_{1} k_{3} \int_{0}^{L} w_{t}^{2} d x \\
& +\left(-\rho_{1} k_{1}+\epsilon_{0}\right) \int_{0}^{L} \varphi_{t}^{2} d x+\delta_{0} \int_{0}^{L}\left(\varphi_{x}^{2}+\psi_{x}^{2}+w_{x}^{2}\right) d x+c_{\delta_{0}} \int_{0}^{L}\left(\mu_{1}^{2} z_{1}^{2}(1)+\mu_{3}^{2} z_{3}^{2}(1)\right) d x \tag{5.7}
\end{align*}
$$

Proof. By exploiting the first and third equations in (5.1), integrating by parts and using (2.15) and the boundary conditions, we get

$$
\begin{align*}
I_{4}^{\prime}(t)= & \rho_{1} k_{3} \int_{0}^{L} w_{t}^{2} d x-\rho_{1} k_{1} \int_{0}^{L} \varphi_{t}^{2} d x+k_{1}^{2} \int_{0}^{L}\left(\varphi_{x}+\psi+l w\right)^{2} d x \\
& -k_{3}^{2} \int_{0}^{L}\left(w_{x}-l \varphi\right)^{2} d x-\rho_{1} \int_{0}^{L} \varphi_{t} \int_{0}^{x}\left(k_{1} \psi_{t}(y)+l\left(k_{1}-k_{3}\right) w_{t}(y)\right) d y d x \\
& +\mu_{3} k_{3} \int_{0}^{L}\left(w_{x}-l \varphi\right) \int_{0}^{x} z_{3}(y, 1) d y d x+\mu_{1} k_{1} \int_{0}^{L} z_{1}(1) \int_{0}^{x}\left(\varphi_{x}+\psi+l w\right)(y) d y d x . \tag{5.8}
\end{align*}
$$

Noting that the functions

$$
x \mapsto \int_{0}^{x} \psi_{t}(y) d y, \quad x \mapsto \int_{0}^{x} z_{3}(y, 1) d y \quad \text { and } \quad x \mapsto \int_{0}^{x}\left(\varphi_{x}+\psi+l w\right)(y) d y
$$

vanish at 0 and L (because of (2.15), then, applying (2.16), we have

$$
\begin{equation*}
\int_{0}^{L}\left(\int_{0}^{x} \psi_{t}(y) d y\right)^{2} d x \leq c_{0} \int_{0}^{L} \psi_{t}^{2} d x, \quad \int_{0}^{L}\left(\int_{0}^{x} z_{3}(y, 1) d y\right)^{2} d x \leq c_{0} \int_{0}^{L} z_{3}^{2}(1) d x \tag{5.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{L}\left(\int_{0}^{x}\left(\varphi_{x}+\psi+l w\right)(y) d y\right)^{2} d x \leq c_{0} \int_{0}^{L}\left(\varphi_{x}+\psi+l w\right)^{2} d x \tag{5.10}
\end{equation*}
$$

By applying Young's and Poincaré's inequalities for the last three terms in 5.8), recalling (5.9) and (5.10), and exploiting (3), we conclude (5.7).

Lemma 5.7 Let

$$
I_{8}(t)=-\rho_{1} \int_{0}^{L}\left(\varphi_{x}+\psi+l w\right) w_{t} d x-\frac{k_{3} \rho_{1}}{k_{1}} \int_{0}^{L}\left(w_{x}-l \varphi\right) \varphi_{t} d x
$$

Then, for any $\epsilon_{0}, \delta_{0}>0$, there exist $c_{\epsilon_{0}}, c_{\delta_{0}}>0$ such that

$$
\begin{gather*}
I_{8}^{\prime}(t) \leq l k_{1} \int_{0}^{L}\left(\varphi_{x}+\psi+l w\right)^{2} d x-\frac{l k_{3}^{2}}{k_{1}} \int_{0}^{L}\left(w_{x}-l \varphi\right)^{2} d x+c_{\epsilon_{0}} \int_{0}^{L} \psi_{t}^{2} d x \tag{5.11}\\
+\int_{0}^{L}\left(\frac{l \rho_{1} k_{3}}{k_{1}} \varphi_{t}^{2}+\left(-l \rho_{1}+\epsilon_{0}\right) w_{t}^{2}\right) d x+\delta_{0} \int_{0}^{L}\left(\varphi_{x}^{2}+\psi_{x}^{2}+w_{x}^{2}\right) d x+c_{\delta_{0}} \int_{0}^{L}\left(\mu_{1}^{2} z_{1}^{2}(1)+\mu_{3}^{2} z_{3}^{2}(1)\right) d x
\end{gather*}
$$

Proof. Using the first and third equations in (5.1), integrating by parts and using the boundary conditions, we find

$$
\begin{aligned}
I_{8}^{\prime}(t)= & l k_{1} \int_{0}^{L}\left(\varphi_{x}+\psi+l w\right)^{2} d x-\frac{l k_{3}^{2}}{k_{1}} \int_{0}^{L}\left(w_{x}-l \varphi\right)^{2} d x+\rho_{1}\left(\frac{k_{3}}{k_{1}}-1\right) \int_{0}^{L} \varphi_{x t} w_{t} d x \\
& -l \rho_{1} \int_{0}^{L} w_{t}^{2} d x+\frac{l k_{3} \rho_{1}}{k_{1}} \int_{0}^{L} \varphi_{t}^{2} d x-\rho_{1} \int_{0}^{L} \psi_{t} w_{t} d x+\mu_{3} \int_{0}^{L}\left(\varphi_{x}+\psi+l w\right) z_{3}(1) d x \\
& +\frac{k_{3} \mu_{1}}{k_{1}} \int_{0}^{L}\left(w_{x}-l \varphi\right) z_{1}(1) d x .
\end{aligned}
$$

By applying Young's and Poincaré's inequalities for the last three terms of the above equality and using (3), we obtain (5.11).

Lemma 5.8 Let

$$
I_{9}(t)=-\rho_{2} \int_{0}^{L} \psi_{x} \int_{0}^{x} \psi_{t}(y) d y d x
$$

Then, for any $\delta_{0}, \delta_{2}>0$, there exists $c_{\delta_{0}}>0$ such that

$$
\begin{align*}
I_{9}^{\prime}(t) \leq & \rho_{2} \int_{0}^{L} \psi_{t}^{2} d x+\left(\frac{k_{1}}{2 \delta_{2}}+g^{0}+\delta_{0}-k_{2}\right) \int_{0}^{L} \psi_{x}^{2} d x+c_{\delta_{0}} \mu_{2}^{2} \int_{0}^{L} z_{2}^{2}(1) d x \\
& +\frac{c_{0} k_{1} \delta_{2}}{2} \int_{0}^{L}\left(\varphi_{x}+\psi+l w\right)^{2} d x-c_{\delta_{0}} \int_{0}^{L} \int_{0}^{+\infty} g^{\prime}(s) \eta_{x}^{2} d s d x \tag{5.12}
\end{align*}
$$

Proof. By exploiting the second equation in 5.1), integrating by parts and using the boundary conditions, we find

$$
\begin{align*}
I_{9}^{\prime}(t)= & \rho_{2} \int_{0}^{L} \psi_{t}^{2} d x+\left(g^{0}-k_{2}\right) \int_{0}^{L} \psi_{x}^{2} d x-\int_{0}^{L} \psi_{x} \int_{0}^{+\infty} g(s) \eta_{x} d s d x \tag{5.13}\\
& +k_{1} \int_{0}^{L} \psi_{x} \int_{0}^{x}\left(\varphi_{x}+\psi+l w\right)(y) d y d x+\mu_{2} \int_{0}^{L} \psi_{x} \int_{0}^{x} z_{2}(y, 1) d y d x
\end{align*}
$$

Noting that the function

$$
x \mapsto \int_{0}^{x}\left(\varphi_{x}+\psi+l w\right)(y) d y \quad \text { and } \quad x \mapsto \int_{0}^{x} z_{2}(y, 1) d y
$$

vanishes at 0 and L (because of (2.15), then, applying (2.16), we have

$$
\left\{\begin{array}{l}
\int_{0}^{L}\left(\int_{0}^{x}\left(\varphi_{x}+\psi+l w\right)(y) d y\right)^{2} d x \leq c_{0} \int_{0}^{L}\left(\varphi_{x}+\psi+l w\right)^{2} d x \tag{5.14}\\
\int_{0}^{L}\left(\int_{0}^{x} z_{2}(y, 1) d y\right)^{2} d x \leq c_{0} \int_{0}^{L} z_{2}^{2}(1) d x
\end{array}\right.
$$

Then, application of Young's and Poincaré's inequalities and (3.12) for the last three terms in (5.13), and use of (5.14) yield (5.12).

Let $\mu_{0}:=\max _{i=1}^{3}\left|\mu_{i}\right|, N, N_{1}, \cdots, N_{6}$ be positive constants that will be fixed later and

$$
\begin{equation*}
F:=N E+N_{1} I_{2}+N_{2} I_{4}+N_{3} I_{8}+N_{4} I_{1}+N_{5} I_{9}+I_{3}+N_{6}\left(\left|\mu_{1}\right| I_{5}+\left|\mu_{2}\right| I_{6}+\left|\mu_{3}\right| I_{7}\right) \tag{5.15}
\end{equation*}
$$

Then, by combining (3.16), (3.22), (3.23), (3.24), (5.3), (5.4), (5.6), (5.7), (5.11) and (5.12), and using (2.17), (3.1) and the definition of E, we obtain

$$
\begin{equation*}
F^{\prime}(t) \leq \int_{0}^{L}\left(l_{1} \varphi_{t}^{2}+l_{2} \psi_{t}^{2}+l_{3} w_{t}^{2}+l_{4} \psi_{x}^{2}+l_{5}\left(w_{x}-l \varphi\right)^{2}+l_{6}\left(\varphi_{x}+\psi+l w\right)^{2}\right) d x \tag{5.16}
\end{equation*}
$$

$$
\begin{aligned}
& +\left(\frac{N}{2}-c\left(N_{1}, N_{4}, N_{5}, \delta_{0}\right)\right) \int_{0}^{L} \int_{0}^{+\infty} g^{\prime}(s) \eta_{x}^{2} d s d x+\left(\delta_{0} c\left(N_{1}, N_{2}, N_{3}, N_{4}, N_{5}\right)+\mu_{0} c\left(N, N_{6}\right)\right) E(t) \\
& +\epsilon_{0} c\left(N_{2}, N_{3}\right) \int_{0}^{L}\left(\varphi_{t}^{2}+w_{t}^{2}\right) d x+c\left(N_{2}, N_{3}, \epsilon_{0}\right) \int_{0}^{L} \psi_{t}^{2} d x d x \\
& -N_{6} c\left(\tau_{1}, \tau_{2}, \tau_{3}\right) \int_{0}^{L} \int_{0}^{1}\left(\tau_{1}\left|\mu_{1}\right| z_{1}^{2}+\tau_{2}\left|\mu_{2}\right| z_{2}^{2}+\tau_{3}\left|\mu_{3}\right| z_{3}^{2}\right) d \rho d x \\
& +\left(\mu_{0} c\left(\delta_{0}, N_{1}, N_{2}, N_{3}, N_{4}, N_{5}\right)-N_{6} c\left(\tau_{1}, \tau_{2}, \tau_{3}\right)\right) \int_{0}^{L}\left(\left|\mu_{1}\right| z_{1}^{2}(1)+\left|\mu_{2}\right| z_{2}^{2}(1)+\left|\mu_{3}\right| z_{3}^{2}(1)\right) d x
\end{aligned}
$$

where

$$
\begin{gathered}
l_{1}=-\rho_{1} k_{1} N_{2}-\rho_{1} N_{4}+\frac{l \rho_{1} k_{3} N_{3}}{k_{1}}, \quad l_{2}=-\rho_{2} g^{0} N_{1}-\rho_{2} N_{4}+\rho_{2} N_{5}, \\
l_{3}=-l \rho_{1} N_{3}-\rho_{1} N_{4}+\rho_{1} k_{3} N_{2}, \quad l_{4}=-\left(k_{2}-\frac{k_{1}}{2 \delta_{2}}\right) N_{5}+k_{2} N_{4}+\frac{l k_{2} k_{3}}{2 k_{1} \epsilon_{1}}+g^{0}\left(N_{5}-N_{4}+\frac{l k_{3}}{2 k_{1} \epsilon_{2}}\right), \\
l_{5}=-k_{3}^{2} N_{2}-\frac{l k_{3}^{2} N_{3}}{k_{1}}+k_{3} N_{4}+\frac{l k_{2} k_{3} \epsilon_{1}}{2 k_{1}}+\frac{l k_{3} g^{0} \epsilon_{2}}{2 k_{1}} \quad \text { and } \quad l_{6}=-k_{1}+k_{1}^{2} N_{2}+l k_{1} N_{3}+k_{1} N_{4}+\frac{c_{0} k_{1} \delta_{2} N_{5}}{2} .
\end{gathered}
$$

At this point, as in [5], we choose carefully the constants N, N_{i}, δ_{i} and ϵ_{i} to get suitable values of l_{i}.

First, we choose

$$
N_{3}=\delta_{1}=1, \quad \varepsilon_{1}=\frac{k_{3}}{k_{2}}, \quad \varepsilon_{2}=\frac{k_{3}}{2 g^{0}}, \quad \delta_{2}=\frac{k_{1}}{k_{2}-g^{0}}, \quad N_{4}=k_{3} N_{2} \quad \text { and } \quad N_{5}=4 k_{3} N_{2}
$$

(from 2.17), we see that $k_{2}-g^{0}>0$); thus, the constants l_{i} take the forms

$$
\left\{\begin{array}{l}
l_{1}=-\rho_{1}\left(k_{1}+k_{3}\right) N_{2}+\frac{l \rho_{1} k_{3}}{k_{1}}, \quad l_{2}=-\rho_{2}\left(g^{0} N_{1}-3 k_{3} N_{2}\right), \\
l_{3}=-l \rho_{1}, \quad l_{4}=-\left(k_{2}-g^{0}\right) k_{3} N_{2}+\frac{l}{k_{1}}\left(\frac{k_{2}^{2}}{2}+\left(g^{0}\right)^{2}\right), \\
l_{5}=-\frac{l k_{3}^{2}}{4 k_{1}}<0, \quad l_{6}=-k_{1}\left(1-\left(k_{1}+k_{3}+\frac{2 c_{0} k_{1} k_{3}}{k_{2}-g^{0}}\right) N_{2}\right)+l k_{1} .
\end{array}\right.
$$

Now, we choose $N_{2}>0$ so small that

$$
1-\left(k_{1}+k_{3}+\frac{2 c_{0} k_{1} k_{3}}{k_{2}-g^{0}}\right) N_{2}>0
$$

then, take $\varepsilon_{0}=\frac{1}{2 c\left(N_{2}, N_{3}\right)} l \rho_{1}$, and put

$$
\left\{\begin{array}{l}
\tilde{l}_{1}:=l_{1}+\varepsilon_{0} c\left(N_{2}, N_{3}\right)=-\rho_{1}\left(k_{1}+k_{3}\right) N_{2}+l \rho_{1}\left(\frac{1}{2}+\frac{k_{3}}{k_{1}}\right) \\
\tilde{l}_{2}:=l_{2}+c\left(N_{2}, N_{3}, \varepsilon_{0}\right) \\
\tilde{l}_{3}:=l_{3}+\varepsilon_{0} c\left(N_{2}, N_{3}\right)=-\frac{l \rho_{1}}{2}<0
\end{array}\right.
$$

Next, we assume that $l>0$ is small enough such that

$$
\tilde{l}_{1}<0, \quad l_{4}<0 \quad \text { and } \quad l_{6}<0
$$

After that, we pick $N_{1}>0$ very large so that $\tilde{l}_{2}<0$. Then we find that

$$
\hat{l}:=2 \max \left\{\frac{1}{\rho_{1}} \tilde{l}_{1}, \frac{1}{\rho_{2}} \tilde{l}_{2}, \frac{1}{\rho_{1}} \tilde{l}_{3}, \frac{1}{k_{2}-g^{0}} l_{4}, \frac{1}{k_{3}} l_{5}, \frac{1}{k_{1}} l_{6}\right\}<0 .
$$

Choosing $\delta_{0}>0$ small enough and N_{6} large enough so that
$\hat{l}+\delta_{0} c\left(N_{1}, N_{2}, N_{3}, N_{4}, N_{5}\right)<0 \quad$ and $\quad-\frac{1}{2}\left(\hat{l}+\delta_{0} c\left(N_{1}, N_{2}, N_{3}, N_{4}, N_{5}\right)\right)-N_{6} c\left(\tau_{1}, \tau_{2}, \tau_{3}\right) \leq 0$.
Consequently, we obtain from (5.16), for some positive constants c_{1}, c_{2}, c_{3},

$$
\begin{align*}
F^{\prime}(t) & \leq-\left(c_{1}-\mu_{0} c(N)\right) E(t)+\left(\frac{N}{2}-c_{2}\right) \int_{0}^{L} \int_{0}^{+\infty} g^{\prime}(s) \eta_{x}^{2} d s d x \tag{5.17}\\
& +\left(\mu_{0} c_{2}-c_{3}\right) \int_{0}^{L}\left(\left|\mu_{1}\right| z_{1}^{2}(1)+\left|\mu_{2}\right| z_{2}^{2}(1)+\left|\mu_{3}\right| z_{3}^{2}(1)\right) d x
\end{align*}
$$

On the other hand, we deduce from the definition of E and I_{i} that there exists a positive constant c_{4} (independent of μ_{0} and N) satisfying

$$
\left|N_{1} I_{1}+N_{2} I_{7}+N_{3} I_{8}+N_{4} I_{2}+N_{5} I_{9}+I_{6}+N_{6}\left(\left|\mu_{1}\right| I_{3}+\left|\mu_{2}\right| I_{4}+\left|\mu_{3}\right| I_{5}\right)\right| \leq c_{4} E(t)
$$

therefore

$$
\left(N-c_{4}\right) E \leq F \leq\left(N+c_{4}\right) E .
$$

Then, choosing $N>\max \left\{2 c_{2}, c_{4}\right\}$, assuming that μ_{0} is small enough such that

$$
\mu_{0}<\min \left\{\frac{c_{1}}{c(N)}, \frac{c_{3}}{c_{2}}\right\}
$$

and noting that $g^{\prime} \leq 0$, we get that $F \sim E$ and, for some positive constant γ_{1},

$$
\begin{equation*}
F^{\prime}(t) \leq-\gamma_{1} F(t) \tag{5.18}
\end{equation*}
$$

By integrating (5.18) and using the equivalence $F \sim E$, we conclude (3.4).

CHAPTER 6

UNIFORM AND WEAK STABILITY OF BRESSE SYSTEM WITH ONE INFINITE MEMORY IN THE SHEAR ANGLE DISPLACEMENT

This chapter presents a full copy of the paper [5], we consider a Bresse system in onedimensional open bounded interval subjected to homogeneous Dirichlet-Neumann-Neumann boundary conditions and with the presence of one infinite memory acting on the shear angle equation. Precisely, we are concerned with the following problem:

$$
\left\{\begin{array}{l}
\rho_{1} \varphi_{t t}-k_{1}\left(\varphi_{x}+\psi+l w\right)_{x}-l k_{3}\left(w_{x}-l \varphi\right)=0 \tag{6.1}\\
\rho_{2} \psi_{t t}-k_{2} \psi_{x x}+k_{1}\left(\varphi_{x}+\psi+l w\right)+\int_{0}^{+\infty} g(s) \psi_{x x}(x, t-s) d s=0 \\
\rho_{1} w_{t t}-k_{3}\left(w_{x}-l \varphi\right)_{x}+l k_{1}\left(\varphi_{x}+\psi+l w\right)=0 \\
\varphi(0, t)=\psi_{x}(0, t)=w_{x}(0, t)=\varphi(L, t)=\psi_{x}(L, t)=w_{x}(L, t)=0 \\
\varphi(x, 0)=\varphi_{0}(x), \varphi_{t}(x, 0)=\varphi_{1}(x) \\
\psi(x,-t)=\psi_{0}(x, t), \psi_{t}(x, 0)=\psi_{1}(x) \\
w(x, 0)=w_{0}(x), w_{t}(x, 0)=w_{1}(x)
\end{array}\right.
$$

where $(x, t) \in] 0, L\left[\times \mathbb{R}_{+}, g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}\right.$is a given function, and L, l, ρ_{i} and k_{i} are positive constants. The integral term in system (6.1) represents the infinite memory, and the state (unknown) is

$$
(\varphi, \psi, w):] 0, L[\times] 0,+\infty\left[\rightarrow \mathbb{R}^{3}\right.
$$

Our objective is to establish the well-posedness and the asymptotic stability of this problem in terms of the growth of g at infinity and the speeds of wave propagations given by (2).

The Bresse system is known as the circular arch problem and is given by the following equations:

$$
\rho_{1} \varphi_{t t}=Q_{x}+l N+F_{1}, \quad \rho_{2} \psi_{t t}=M_{x}-Q+F_{2}, \quad \rho_{1} w_{t t}=N_{x}-l Q+F_{3},
$$

with

$$
N=k_{0}\left(w_{x}-l \varphi\right), \quad Q=k\left(\varphi_{x}+l w+\psi\right) \quad \text { and } \quad M=b \psi_{x},
$$

where $\rho_{1}, \rho_{2}, l, k, k_{0}$ and b are positive physical constants, N, Q and M denote, respectively, the axial force, the shear force and the bending moment, and w, φ and ψ represent, respectively, the longitudinal, vertical and shear angle displacements. Here

$$
\rho_{1}=\rho A, \quad \rho_{2}=\rho I, \quad k_{0}=E A, \quad k=k^{\prime} G A, \quad b=E I \quad \text { and } \quad l=R^{-1}
$$

such that $\rho, E, G, k^{\prime}, A, I$ and R are positive constants and denote, respectively, the density, the modulus of elasticity, the shear modulus, the shear factor, the cross-sectional area, the second moment of area of the cross-section and the radius of curvature. Finally, F_{1}, F_{2} and F_{3} are the external forces defined in $] 0, L[\times] 0,+\infty[$.

Our goal in this chapter is to study the well-posedness and asymptotic stability of system (6.1) in terms of the arbitrary growth at infinity of the kernel g and the speeds of wave propagations (2). We prove that the systems is well-posed and its energy converges to zero when time goes to infinity and provide two general decay estimates: a uniform stability estimate under (5), and another weak stability result in general. Our results generalize those of [11] and allow a wider class of relaxation functions. See Remark 6.6 below.

The proof of the well-posedness is based on the semigroup theory. For the stability estimates, we use the energy method and an approach introduced by the present authors in 21] and [22].

This chapter is organized as follows. In section 1, we prove the well-posedness of (6.1). In section 2, we present our stability results. The proof of our uniform and weak decay estimates are given, respectively, in sections 3 and 4.

6.1 Well-posedness

In this section, we discuss the well-posedness of (6.1) using the semigroup approach. Following the method of [10], we consider the functional

$$
\begin{equation*}
\eta(x, t, s)=\psi(x, t)-\psi(x, t-s) \quad \text { in }] 0, L\left[\times \mathbb{R}_{+} \times \mathbb{R}_{+} .\right. \tag{6.2}
\end{equation*}
$$

This functional satisfies

$$
\begin{cases}\eta_{t}+\eta_{s}-\psi_{t}=0 & \text { in }] 0, L\left[\times \mathbb{R}_{+} \times \mathbb{R}_{+}\right. \tag{6.3}\\ \eta_{x}(0, t, s)=\eta_{x}(L, t, s)=0 & \text { in } \mathbb{R}_{+} \times \mathbb{R}_{+} \\ \eta(x, t, 0)=0 & \text { in }] 0, L\left[\times \mathbb{R}_{+}\right.\end{cases}
$$

Let $\eta^{0}(x, s)=\eta(x, 0, s)$,

$$
\begin{gather*}
U^{0}=\left(\varphi_{0}, \psi_{0}, w_{0}, \varphi_{1}, \psi_{1}, w_{1}, \eta^{0}\right)^{T} \tag{6.4}\\
U=\left(\varphi, \psi, w, \varphi_{t}, \psi_{t}, w_{t}, \eta\right)^{T} \tag{6.5}
\end{gather*}
$$

and

$$
\begin{equation*}
g^{0}=\int_{0}^{+\infty} g(s) d s \tag{6.6}
\end{equation*}
$$

Then the system (6.1) takes the following abstract form:

$$
\left\{\begin{array}{l}
U_{t}=\mathcal{A} U \tag{6.7}\\
U(t=0)=U^{0}
\end{array}\right.
$$

where \mathcal{A} is the linear operator defined by

$$
\mathcal{A} U=\left(\begin{array}{c}
\varphi_{t} \\
\psi_{t} \\
w_{t} \\
k_{1} \rho_{1} \varphi_{x x}-l^{2} k_{3} \rho_{1} \varphi+k_{1} \rho_{1} \psi_{x}+l \rho_{1}\left(k_{1}+k_{3}\right) w_{x} \\
-k_{1} \rho_{2} \varphi_{x}+1 \rho_{2}\left(k_{2}-g^{0}\right) \psi_{x x}-k_{1} \rho_{2} \psi-l k_{1} \rho_{2} w+1 \rho_{2} \int_{0}^{+\infty} g \eta_{x x} d s \\
-l \rho_{1}\left(k_{1}+k_{3}\right) \varphi_{x}-l k_{1} \rho_{1} \psi+k_{3} \rho_{1} w_{x x}-l^{2} k_{1} \rho_{1} w \\
\psi_{t}-\eta_{s}
\end{array}\right) .
$$

Let

$$
\begin{equation*}
L_{2}=\left\{v: \mathbb{R}_{+} \rightarrow H_{*}^{1}(] 0, L[), \int_{0}^{L} \int_{0}^{+\infty} g v_{x}^{2} d s d x<+\infty\right\} \tag{6.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{H}=H_{0}^{1}(] 0, L[) \times\left(H_{*}^{1}(] 0, L[)\right)^{2} \times L^{2}(] 0, L[) \times\left(L_{*}^{2}(] 0, L[)\right)^{2} \times L_{2}, \tag{6.9}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{*}^{2}(] 0, L[)=\left\{v \in L^{2}(] 0, L[), \int_{0}^{L} v d x=0\right\} \tag{6.10}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{*}^{1}(] 0, L[)=\left\{v \in H^{1}(] 0, L[), \int_{0}^{L} v d x=0\right\} \tag{6.11}
\end{equation*}
$$

The domain $D(\mathcal{A})$ of \mathcal{A} is defined by

$$
\begin{gather*}
D(\mathcal{A})=\left\{V=\left(v_{1}, \cdots, v_{7}\right)^{T} \in \mathcal{H}, \mathcal{A} V \in \mathcal{H}, v_{7}(0)=0, \partial_{x} v_{2}(0)=\partial_{x} v_{3}(0)=0,\right. \tag{6.12}\\
\left.\partial_{x} v_{2}(L)=\partial_{x} v_{3}(L)=0, \partial_{x} v_{7}(\cdot, 0)=\partial_{x} v_{7}(\cdot, L)=0\right\}
\end{gather*}
$$

that is, according to the definition of \mathcal{H} and \mathcal{A},

$$
\begin{gathered}
D(\mathcal{A})=\left\{\left(v_{1}, \cdots, v_{7}\right)^{T} \in \mathcal{H},\left(v_{1}, \cdots, v_{6}\right)^{T} \in H_{0}^{1}(] 0, L[) \times\left(H_{*}^{1}(] 0, L[)\right)^{2} \times H_{0}^{1}(] 0, L[) \times\left(H_{*}^{1}(] 0, L[)\right)^{2},\right. \\
v_{1}, v_{3} \in H^{2}(] 0, L[),\left(k_{2}-g^{0}\right) \partial_{x x} v_{2}+\int_{0}^{+\infty} g \partial_{x x} v_{7} d s \in L_{*}^{2}(] 0, L[), \partial_{s} v_{7} \in L_{2}, \\
\left.v_{7}(0)=0, \partial_{x} v_{2}(0)=\partial_{x} v_{3}(0)=\partial_{x} v_{2}(L)=\partial_{x} v_{3}(L)=0, \partial_{x} v_{7}(\cdot, 0)=\partial_{x} v_{7}(\cdot, L)=0\right\} .
\end{gathered}
$$

More generally, for $n \in \mathbb{N}$,

$$
D\left(\mathcal{A}^{n}\right)= \begin{cases}\mathcal{H} & \text { if } n=0 \\ D(\mathcal{A}) & \text { if } n=1, \\ \left\{V \in D\left(\mathcal{A}^{n-1}\right), \mathcal{A} V \in D\left(\mathcal{A}^{n-1}\right)\right\} & \text { if } n=2,3, \cdots\end{cases}
$$

Remark 6.1 As in [20], by integrating on $] 0, L[$ the second and third equations in (6.1), and using the boundary conditions, we get

$$
\begin{equation*}
\partial_{t t}\left(\int_{0}^{L} \psi d x\right)+\frac{k_{1}}{\rho_{2}} \int_{0}^{L} \psi d x+\frac{l k_{1}}{\rho_{2}} \int_{0}^{L} w d x=0 \tag{6.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial_{t t}\left(\int_{0}^{L} w d x\right)+\frac{l^{2} k_{1}}{\rho_{1}} \int_{0}^{L} w d x+\frac{l k_{1}}{\rho_{1}} \int_{0}^{L} \psi d x=0 \tag{6.14}
\end{equation*}
$$

Therefore, 6.13) implies that

$$
\begin{equation*}
\int_{0}^{L} w d x=-\frac{\rho_{2}}{l k_{1}} \partial_{t t}\left(\int_{0}^{L} \psi d x\right)-\frac{1}{l} \int_{0}^{L} \psi d x \tag{6.15}
\end{equation*}
$$

Substiting (6.15) into (6.14), we get

$$
\begin{equation*}
\partial_{t t t t}\left(\int_{0}^{L} \psi d x\right)+\left(\frac{k_{1}}{\rho_{2}}+\frac{l^{2} k_{1}}{\rho_{1}}\right) \partial_{t t}\left(\int_{0}^{L} \psi d x\right)=0 . \tag{6.16}
\end{equation*}
$$

Let $l_{0}=\sqrt{\frac{k_{1}}{\rho_{2}}+\frac{l^{2} k_{1}}{\rho_{1}}}$. Then, solving 6.16, we find

$$
\begin{equation*}
\int_{0}^{L} \psi d x=\tilde{c}_{1} \cos \left(l_{0} t\right)+\tilde{c}_{2} \sin \left(l_{0} t\right)+\tilde{c}_{3} t+\tilde{c}_{4} \tag{6.17}
\end{equation*}
$$

where $\tilde{c}_{1}, \cdots, \tilde{c}_{4}$ are real constants. By combining (6.15) and (6.17), we get

$$
\begin{equation*}
\int_{0}^{L} w d x=\tilde{c}_{1}\left(\frac{\rho_{2} l_{0}^{2}}{l k_{1}}-\frac{1}{l}\right) \cos \left(l_{0} t\right)+\tilde{c}_{2}\left(\frac{\rho_{2} l_{0}^{2}}{l k_{1}}-\frac{1}{l}\right) \sin \left(l_{0} t\right)-\frac{\tilde{c}_{3}}{l} t-\frac{\tilde{c}_{4}}{l} . \tag{6.18}
\end{equation*}
$$

Let

$$
\left(\tilde{\psi}_{0}(x), \tilde{w}_{0}(x)\right)=\left(\psi_{0}(x, 0), w_{0}(x)\right)
$$

Using the initial data of ψ and w in (6.1), we see that

$$
\left\{\begin{array}{l}
\tilde{c}_{1}=\frac{k_{1}}{\rho_{2} l_{0}^{2}} \int_{0}^{L} \tilde{\psi}_{0} d x+\frac{l k_{1}}{\rho_{2} l_{0}^{2}} \int_{0}^{L} \tilde{w}_{0} d x \\
\tilde{c}_{2}=\frac{k_{1}}{\rho_{2} l_{0}^{3}} \int_{0}^{L} \psi_{1} d x+\frac{l k_{1}}{\rho_{2} l_{0}^{3}} \int_{0}^{L} w_{1} d x \\
\tilde{c}_{3}=\left(1-\frac{k_{1}}{\rho_{2} l_{0}^{2}}\right) \int_{0}^{L} \psi_{1} d x-\frac{l k_{1}}{\rho_{2} l_{0}^{2}} \int_{0}^{L} w_{1} d x \\
\tilde{c}_{4}=\left(1-\frac{k_{1}}{\rho_{2} l_{0}^{2}}\right) \int_{0}^{L} \tilde{\psi}_{0} d x-\frac{l k_{1}}{\rho_{2} l_{0}^{2}} \int_{0}^{L} \tilde{w}_{0} d x
\end{array}\right.
$$

Let

$$
\begin{equation*}
\tilde{\psi}=\psi-\frac{1}{L}\left(\tilde{c}_{1} \cos \left(l_{0} t\right)+\tilde{c}_{2} \sin \left(l_{0} t\right)+\tilde{c}_{3} t+\tilde{c}_{4}\right) \tag{6.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{w}=w-\frac{1}{L}\left(\tilde{c}_{1}\left(\frac{\rho_{2} l_{0}^{2}}{l k_{1}}-\frac{1}{l}\right) \cos \left(l_{0} t\right)+\tilde{c}_{2}\left(\frac{\rho_{2} l_{0}^{2}}{l k_{1}}-\frac{1}{l}\right) \sin \left(l_{0} t\right)-\frac{\tilde{c}_{3}}{l} t-\frac{\tilde{c}_{4}}{l}\right) . \tag{6.20}
\end{equation*}
$$

Then, from (6.17) and (6.18), one can check that

$$
\begin{equation*}
\int_{0}^{L} \tilde{\psi} d x=\int_{0}^{L} \tilde{w} d x=0 \tag{6.21}
\end{equation*}
$$

and, hence,

$$
\begin{equation*}
\int_{0}^{L} \tilde{\eta} d x=0 \tag{6.22}
\end{equation*}
$$

where

$$
\tilde{\eta}(x, t, s)=\tilde{\psi}(x, t)-\tilde{\psi}(x, t-s) \quad \text { in }] 0, L\left[\times \mathbb{R}_{+} \times \mathbb{R}_{+} .\right.
$$

Therefore, Poincaré's inequality

$$
\begin{equation*}
\exists c_{0}>0: \int_{0}^{L} v^{2} d x \leq c_{0} \int_{0}^{L} v_{x}^{2} d x, \quad \forall v \in H_{*}^{1}(] 0, L[) \tag{6.23}
\end{equation*}
$$

is applicable for $\tilde{\psi}, \tilde{w}$ and $\tilde{\eta}$, provided that $\tilde{\psi}, \tilde{w} \in H^{1}(] 0, L[)$. In addition, $(\varphi, \tilde{\psi}, \tilde{w})$ satisfies the boundary conditions and the first three equations in (6.1) with initial data

$$
\begin{gathered}
\psi_{0}-\frac{1}{L}\left(\tilde{c}_{1}+\tilde{c}_{4}\right), \quad \psi_{1}-\frac{1}{L}\left(l_{0} \tilde{c}_{2}+\tilde{c}_{3}\right), \\
w_{0}-\frac{1}{L}\left(\tilde{c}_{1}\left(\frac{\rho_{2} l_{0}^{2}}{l k_{1}}-\frac{1}{l}\right)-\frac{\tilde{c}_{4}}{l}\right) \quad \text { and } \quad w_{1}-\frac{1}{L}\left(\tilde{c}_{2} l_{0}\left(\frac{\rho_{2} l_{0}^{2}}{l k_{1}}-\frac{1}{l}\right)-\frac{\tilde{c}_{3}}{l}\right)
\end{gathered}
$$

instead of $\psi_{0}, \psi_{1}, w_{0}$ and w_{1}, respectively. In the sequel, we work with $\tilde{\psi}, \tilde{w}$ and $\tilde{\eta}$ instead of ψ, w and η, but, for simplicity of notation, we use ψ, w and η instead of $\tilde{\psi}, \tilde{w}$ and $\tilde{\eta}$, respectively.

Now, to prove the well-posedness of (6.7), we make the following hypothesis:
(H1) The function $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is differentiable, non-increasing and integrable on \mathbb{R}_{+} such that there exists a postive constant k_{0} such that, for any

$$
(\varphi, \psi, w)^{T} \in H_{0}^{1}(] 0, L[) \times\left(H_{*}^{1}(] 0, L[)\right)^{2},
$$

we have

$$
\begin{equation*}
k_{0} \int_{0}^{L}\left(\varphi_{x}^{2}+\psi_{x}^{2}+w_{x}^{2}\right) d x \leq \int_{0}^{L}\left(\left(k_{2}-g^{0}\right) \psi_{x}^{2}+k_{1}\left(\varphi_{x}+\psi+l w\right)^{2}+k_{3}\left(w_{x}-l \varphi\right)^{2}\right) d x \tag{6.24}
\end{equation*}
$$

Moreover, there exists a positive constant β such that

$$
\begin{equation*}
-\beta g(s) \leq g^{\prime}(s), \quad \forall s \in \mathbb{R}_{+} \tag{6.25}
\end{equation*}
$$

Remark 6.2 1. It is evident that 6.24) implies that

$$
\begin{equation*}
k_{0} \int_{0}^{L}\left(\varphi_{x}^{2}+\psi_{x}^{2}+w_{x}^{2}\right) d x \leq \int_{0}^{L}\left(k_{2} \psi_{x}^{2}+k_{1}\left(\varphi_{x}+\psi+l w\right)^{2}+k_{3}\left(w_{x}-l \varphi\right)^{2}\right) d x \tag{6.26}
\end{equation*}
$$

On the other hand, thanks to (6.23) applied for ψ and w, and Poincaré's inequality

$$
\begin{equation*}
\exists \tilde{c}_{0}>0: \int_{0}^{L} v^{2} d x \leq \tilde{c}_{0} \int_{0}^{L} v_{x}^{2} d x, \quad \forall v \in H_{0}^{1}(] 0, L[) \tag{6.27}
\end{equation*}
$$

applied for φ, there exists a positive constant \tilde{k}_{0} such that, for any

$$
(\varphi, \psi, w)^{T} \in H_{0}^{1}(] 0, L[) \times\left(H_{*}^{1}(] 0, L[)\right)^{2},
$$

we have

$$
\begin{equation*}
\int_{0}^{L}\left(k_{2} \psi_{x}^{2}+k_{1}\left(\varphi_{x}+\psi+l w\right)^{2}+k_{3}\left(w_{x}-l \varphi\right)^{2}\right) d x \leq \tilde{k}_{0} \int_{0}^{L}\left(\varphi_{x}^{2}+\psi_{x}^{2}+w_{x}^{2}\right) d x \tag{6.28}
\end{equation*}
$$

Thus, from (6.26) and (6.28), we deduce that the right hand side of the inequality (6.26) defines a norm on $H_{0}^{1}(] 0, L[) \times\left(H_{*}^{1}(] 0, L[)\right)^{2}$ equivalent to the natural norm of $\left(H^{1}(] 0, L[)\right)^{3}$.
2. As in [20], we conclude from (6.24) that

$$
\begin{equation*}
k_{0}+g^{0}-k_{2} \leq 0 . \tag{6.29}
\end{equation*}
$$

Indeed, for the choice $\varphi=w=0$, 6.24) gives

$$
\left(k_{0}+g^{0}-k_{2}\right) \int_{0}^{L} \psi_{x}^{2} d x \leq k_{1} \int_{0}^{L} \psi^{2} d x, \quad \forall \psi \in H_{*}^{1}(] 0, L[) .
$$

This inequality implies, for $\psi(x)=\cos (\lambda x)-\frac{1}{\lambda L} \sin (\lambda L)$ and $\left.\lambda \in\right] 0,+\infty[$ (notice that $\left.\psi \in H_{*}^{1}(] 0, L[)\right)$,

$$
\left(k_{0}+g^{0}-k_{2}\right)\left(L-\frac{1}{2 \lambda} \sin (2 \lambda L)\right) \leq \frac{k_{1}}{\lambda^{2}}\left(L+\frac{1}{2 \lambda} \sin (2 \lambda L)-\frac{2}{\lambda^{2} L} \sin ^{2}(\lambda L)\right), \quad \forall \lambda>0 .
$$

By letting λ go to $+\infty$, we deduce (6.29).

According to Remark 6.2, we notice that, under the hypothesis (H1), the sets L_{2} and \mathcal{H} are Hilbert spaces equipped, respectively, with the inner products that generate the norms, for $v \in L_{2}$ and $V=\left(v_{1}, \cdots, v_{7}\right)^{T} \in \mathcal{H}$,

$$
\begin{equation*}
\|v\|_{L_{2}}^{2}=\int_{0}^{L} \int_{0}^{+\infty} g v_{x}^{2} d s d x \tag{6.30}
\end{equation*}
$$

and

$$
\begin{gather*}
\|V\|_{\mathcal{H}}^{2}=\int_{0}^{L}\left(\left(k_{2}-g^{0}\right)\left(\partial_{x} v_{2}\right)^{2}+k_{1}\left(\partial_{x} v_{1}+v_{2}+l v_{3}\right)^{2}+k_{3}\left(\partial_{x} v_{3}-l v_{1}\right)^{2}\right) d x \tag{6.31}\\
+\int_{0}^{L}\left(\rho_{1} v_{4}^{2}+\rho_{2} v_{5}^{2}+\rho_{1} v_{6}^{2}\right) d x+\left\|v_{7}\right\|_{L_{2}}^{2}
\end{gather*}
$$

Now, a simple computation implies that, for any $V=\left(v_{1}, \cdots, v_{7}\right)^{T} \in D(\mathcal{A})$,

$$
\begin{equation*}
\langle\mathcal{A} V, V\rangle_{\mathcal{H}}=\frac{1}{2} \int_{0}^{L} \int_{0}^{+\infty} g^{\prime}\left(\partial_{x} v_{7}\right)^{2} d s d x \tag{6.32}
\end{equation*}
$$

Since g is non-increasing, we deduce from (6.32) that

$$
\begin{equation*}
\langle\mathcal{A} V, V\rangle_{\mathcal{H}} \leq 0 \tag{6.33}
\end{equation*}
$$

This implies that A is dissipative. Notice that, according to 6.25) and the fact that g is non-increasing, we see that, for $v \in L_{2}$,

$$
\begin{aligned}
\left|\int_{0}^{L} \int_{0}^{+\infty} g^{\prime} v_{x}^{2} d s d x\right| & =-\int_{0}^{L} \int_{0}^{+\infty} g^{\prime} v_{x}^{2} d s d x \\
& \leq \beta \int_{0}^{L} \int_{0}^{+\infty} g v_{x}^{2} d s d x \\
& \leq \beta\|v\|_{L_{2}}^{2} \\
& <+\infty
\end{aligned}
$$

so the integral in the right hand side of (6.32) is well defined.
Next, we follow the proof given in [20] to prove that $I d-\mathcal{A}$ is surjective, where $I d$ is the identity operator. Let $F=\left(f_{1}, \cdots, f_{7}\right)^{T} \in \mathcal{H}$. We seek the existence of $V=\left(v_{1}, \cdots, v_{7}\right)^{T} \in$ $D(\mathcal{A})$, a solution of the equation

$$
\begin{equation*}
(I d-\mathcal{A}) V=F \tag{6.34}
\end{equation*}
$$

The first three equations in (6.34) take the form

$$
\left\{\begin{array}{l}
v_{4}=v_{1}-f_{1}, \tag{6.35}\\
v_{5}=v_{2}-f_{2}, \\
v_{6}=v_{3}-f_{3}
\end{array}\right.
$$

Using (6.35), the last equation in (6.34) is equivalent to

$$
\begin{equation*}
\partial_{s} v_{7}+v_{7}=v_{2}+f_{7}-f_{2} . \tag{6.36}
\end{equation*}
$$

By integrating (6.36) and using the fact that $v_{7}(0)=0$ (from (6.12)), we get

$$
\begin{equation*}
v_{7}(s)=\left(1-e^{-s}\right)\left(v_{2}-f_{2}\right)+e^{-s} \int_{0}^{s} e^{\tau} f_{7}(\tau) d \tau \tag{6.37}
\end{equation*}
$$

We see that, from 6.35), if $\left(v_{1}, v_{2}, v_{3}\right) \in H_{0}^{1}(] 0, L[) \times\left(H_{*}^{1}(] 0, L[)\right)^{2}$, then $\left(v_{4}, v_{5}, v_{6}\right) \in$ $H_{0}^{1}(] 0, L[) \times\left(H_{*}^{1}(] 0, L[)\right)^{2}$. On the other hand, using Fubini theorem, Hölder's inequality
and noting that $f_{7} \in L_{2}$, we get

$$
\begin{aligned}
\int_{0}^{L} \int_{0}^{+\infty} g(s) & \left(e^{-s} \int_{0}^{s} e^{\tau} \partial_{x} f_{7}(\tau) d \tau\right)^{2} d s d x \\
& \leq \int_{0}^{+\infty} e^{-2 s} g(s)\left(\int_{0}^{s} e^{\tau} d \tau\right) \int_{0}^{s} e^{\tau}\left(\partial_{x} f_{7}(\tau)\right)^{2} d \tau d s d x \\
& \leq \int_{0}^{L} \int_{0}^{+\infty} e^{-s}\left(1-e^{-s}\right) g(s) \int_{0}^{s} e^{\tau}\left(\partial_{x} f_{7}(\tau)\right)^{2} d \tau d s d x \\
& \leq \int_{0}^{L} \int_{0}^{+\infty} e^{-s} g(s) \int_{0}^{s} e^{\tau}\left(\partial_{x} f_{7}(\tau)\right)^{2} d \tau d s d x \\
& \leq \int_{0}^{L} \int_{0}^{+\infty} e^{\tau}\left(\partial_{x} f_{7}(\tau)\right)^{2} \int_{\tau}^{+\infty} e^{-s} g(s) d s d \tau d x \\
& \leq \int_{0}^{L} \int_{0}^{+\infty} e^{\tau} g(\tau)\left(\partial_{x} f_{7}(\tau)\right)^{2} \int_{\tau}^{+\infty} e^{-s} d s d \tau d x \\
& \leq \int_{0}^{L} \int_{0}^{+\infty} g(\tau)\left(\partial_{x} f_{7}(\tau)\right)^{2} d \tau d x \\
& \leq\left\|f_{7}\right\|_{L_{2}}^{2} \\
& <+\infty
\end{aligned}
$$

then

$$
s \mapsto e^{-s} \int_{0}^{s} e^{\tau} f_{7}(\tau) d \tau \in L_{2}
$$

and therefore (6.37) implies that $v_{7} \in L_{2}$. Moreover, $\partial_{s} v_{7} \in L_{2}$ by (6.36). So, to prove that (6.34) admits a solution $V \in D(\mathcal{A})$, it is enough to show that

$$
\begin{equation*}
\partial_{x} v_{7}(\cdot, 0)=\partial_{x} v_{7}(\cdot, L)=0 \tag{6.38}
\end{equation*}
$$

and $\left(v_{1}, v_{2}, v_{3}\right)$ exists and satisfies the required regularity and boundary conditions in $D(\mathcal{A})$; that is

$$
\begin{gather*}
\left(v_{1}, v_{2}, v_{3}\right)^{T} \in\left(H^{2}(] 0, L[) \cap H_{0}^{1}(] 0, L[)\right) \times H_{*}^{1}(] 0, L[) \times\left(H^{2}(] 0, L[) \cap H_{*}^{1}(] 0, L[)\right)^{2}, \tag{6.39}\\
\left(k_{2}-g^{0}\right) \partial_{x x} v_{2}+\int_{0}^{+\infty} g \partial_{x x} v_{7} d s \in L_{*}^{2}(] 0, L[) \tag{6.40}
\end{gather*}
$$

and

$$
\begin{equation*}
\partial_{x} v_{2}(0)=\partial_{x} v_{3}(0)=\partial_{x} v_{2}(L)=\partial_{x} v_{3}(L)=0 . \tag{6.41}
\end{equation*}
$$

Let us assume that (6.38)-6.41) hold. Multiplying the fourth, fifth and sixth equations in (6.34) by $\rho_{1} \tilde{v}_{1}, \rho_{2} \tilde{v}_{2}$ and $\rho_{1} \tilde{v}_{3}$, respectively, integrating their sum over $] 0, L[$, using
the boundary conditions (6.38) and (6.41), and inserting (6.35) and (6.37), we get that $\left(v_{1}, v_{2}, v_{3}\right)$ solves the variational problem

$$
\begin{equation*}
a_{1}\left(\left(v_{1}, v_{2}, v_{3}\right)^{T},\left(\tilde{v}_{1}, \tilde{v}_{2}, \tilde{v}_{3}\right)^{T}\right)=\tilde{a}_{1}\left(\left(\tilde{v}_{1}, \tilde{v}_{2}, \tilde{v}_{3}\right)^{T}\right) \tag{6.42}
\end{equation*}
$$

for any $\left(\tilde{v}_{1}, \tilde{v}_{2}, \tilde{v}_{3}\right)^{T} \in H_{0}^{1}(] 0, L[) \times\left(H_{*}^{1}(] 0, L[)\right)^{2}$, where

$$
\begin{equation*}
a_{1}\left(\left(v_{1}, v_{2}, v_{3}\right)^{T},\left(\tilde{v}_{1}, \tilde{v}_{2}, \tilde{v}_{3}\right)^{T}\right) \tag{6.43}
\end{equation*}
$$

$$
\begin{aligned}
= & \int_{0}^{L}\left(k_{1}\left(\partial_{x} v_{1}+v_{2}+l v_{3}\right)\left(\partial_{x} \tilde{v}_{1}+\tilde{v}_{2}+l \tilde{v}_{3}\right)+k_{3}\left(\partial_{x} v_{3}-l v_{1}\right)\left(\partial_{x} \tilde{v}_{3}-l \tilde{v}_{1}\right)\right) d x \\
& +\int_{0}^{L}\left(\rho_{1} v_{1} \tilde{v}_{1}+\rho_{2} v_{2} \tilde{v}_{2}+\rho_{1} v_{3} \tilde{v}_{3}+\left(k_{2}-\tilde{g}^{0}\right) \partial_{x} v_{2} \partial_{x} \tilde{v}_{2}\right) d x
\end{aligned}
$$

$\tilde{g}^{0}=\int_{0}^{+\infty} e^{-s} g(s) d s$ and

$$
\begin{align*}
\tilde{a}_{1}\left(\left(\tilde{v}_{1}, \tilde{v}_{2}, \tilde{v}_{3}\right)^{T}\right)= & \int_{0}^{L}\left(\rho_{1}\left(f_{1}+f_{4}\right) \tilde{v}_{1}+\rho_{2}\left(f_{2}+f_{5}\right) \tilde{v}_{2}+\rho_{1}\left(f_{3}+f_{6}\right) \tilde{v}_{3}\right) d x \\
& +\left(g^{0}-\tilde{g}^{0}\right) \int_{0}^{L} \partial_{x} f_{2} \partial_{x} \tilde{v}_{2} d x \tag{6.44}\\
& -\int_{0}^{L}\left(\int_{0}^{+\infty} e^{-s} g(s) \int_{0}^{s} e^{\tau} \partial_{x} f_{7}(\tau) d \tau d s\right) \partial_{x} \tilde{v}_{2} d x
\end{align*}
$$

We note that, as before, using again Fubini theorem, Hölder's inequality and the fact that $f_{7} \in L_{2}$,

$$
\begin{aligned}
\int_{0}^{L}\left(\int_{0}^{+\infty} e^{-s} g(s) \int_{0}^{s}\right. & \left.e^{\tau} \partial_{x} f_{7}(\tau) d \tau d s\right)^{2} d x \\
& \leq \int_{0}^{L}\left(\int_{0}^{+\infty} e^{-s} g(s) \int_{0}^{s} e^{\tau}\left|\partial_{x} f_{7}(\tau)\right| d \tau d s\right)^{2} d x \\
& \leq \int_{0}^{L}\left(\int_{0}^{+\infty} e^{\tau}\left|\partial_{x} f_{7}(\tau)\right| \int_{\tau}^{+\infty} g(s) e^{-s} d s d \tau\right)^{2} d x \\
& \leq \int_{0}^{L}\left(\int_{0}^{+\infty} e^{\tau} g(\tau)\left|\partial_{x} f_{7}(\tau)\right| \int_{\tau}^{+\infty} e^{-s} d s d \tau\right)^{2} d x \\
& \leq \int_{0}^{L}\left(\int_{0}^{+\infty} g(\tau)\left|\partial_{x} f_{7}(\tau)\right| d \tau\right)^{2} d x \\
& \leq \int_{0}^{L}\left(\int_{0}^{+\infty} g(\tau) d \tau\right)\left(\int_{0}^{+\infty} g(\tau)\left(\partial_{x} f_{7}(\tau)\right)^{2} d \tau\right) d x \\
& \leq g^{0}\left\|f_{7}\right\|_{L_{2}}^{2} \\
& <+\infty
\end{aligned}
$$

which implies that

$$
x \mapsto \int_{0}^{+\infty} e^{-s} g(s) \int_{0}^{s} e^{\tau} \partial_{x} f_{7}(\tau) d \tau d s \in L^{2}(] 0, L[)
$$

On the other hand, $\tilde{g}^{0} \leq g^{0}<k_{2}$ (by (6.29). Then, by virtue of (6.24) and (6.28), we have a_{1} is a bilinear, continuous and coercive form on

$$
\left(H_{0}^{1}(] 0, L[) \times\left(H_{*}^{1}(] 0, L[)\right)^{2}\right) \times\left(H_{0}^{1}(] 0, L[) \times\left(H_{*}^{1}(] 0, L[)\right)^{2}\right),
$$

and \tilde{a}_{1} is a linear and continuous form on $H_{0}^{1}(] 0, L[) \times\left(H_{*}^{1}(] 0, L[)\right)^{2}$. Consequently, using the Lax-Milgram theorem, we deduce that (6.42) has a unique solution

$$
\left(v_{1}, v_{2}, v_{3}\right)^{T} \in H_{0}^{1}(] 0, L[) \times\left(H_{*}^{1}(] 0, L[)\right)^{2} .
$$

Therefore, using classical elliptic regularity arguments, we conclude that the forth, fifth and sixth equations in (6.34) are satisfied with $\left(v_{1}, v_{2}, v_{3}\right)^{T}$ satisfying (6.39) and 6.41), and, using (6.35) and (6.37), v_{7} satisfies (6.38) and (6.40). Thus, we deduce that (6.34) admits a unique solution $V \in D(\mathcal{A})$, and then $I d-\mathcal{A}$ is surjective.

The operator $-\mathcal{A}$ is then linear maximal monotone, and $D(\mathcal{A})$ is dense in \mathcal{H}. Finally, thanks to the Hille-Yosida theorem (see [38]), we deduce from (6.33) and (6.34) that \mathcal{A} generates a C_{0}-semigroup of contractions in \mathcal{H}. This gives the following well-posedness results of (6.7) (see [26] and [38]).
Theorem 6.3 Assume that (H1) holds. For any $n \in \mathbb{N}$ and $U^{0} \in D\left(\mathcal{A}^{n}\right)$, 6.7) has a unique solution

$$
\begin{equation*}
U \in \cap_{k=0}^{n} C^{n-k}\left(\mathbb{R}_{+} ; D\left(\mathcal{A}^{k}\right)\right) . \tag{6.45}
\end{equation*}
$$

6.2 Stability

In this section, we study the stability of (6.7), where the obtained two (uniform and weak) decay rates of solution depend on the speeds of wave propagations (2) and the growth of g at infinity characterized by the following additional hypothesis:
(H2) Assume that $g(0)>0$ and there exists a non-increasing differentiable function $\xi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}^{*}$ such that

$$
\begin{equation*}
g^{\prime}(s) \leq-\xi(s) g(s), \quad \forall s \in \mathbb{R}_{+} \tag{6.46}
\end{equation*}
$$

We start by considering the case where the speeds of wave propagations (2) satisfy (5).

Theorem 6.4 Assume that (H1), (H2) and (5) are satisfied such that
l is small enough.
Let $U^{0} \in \mathcal{H}$ be such that

$$
\begin{equation*}
\xi \equiv \text { constant or } \sup _{s \in \mathbb{R}_{+}} \int_{0}^{L}\left(\eta_{x}^{0}(x, s)\right)^{2} d x<+\infty \tag{6.48}
\end{equation*}
$$

Then there exist constants $\left.\left.\beta_{0} \in\right] 0,1\right]$ and $\alpha_{1}>0$ such that, for all $\left.\alpha_{0} \in\right] 0, \beta_{0}[$, the solution of (6.7) satisfies

$$
\begin{equation*}
\|U(t)\|_{\mathcal{H}}^{2} \leq \alpha_{1}\left(1+\int_{0}^{t}(g(s))^{1-\alpha_{0}} d s\right) e^{-\alpha_{0}} \int_{0}^{t} \xi(s) d s+\alpha_{1} \int_{t}^{+\infty} g(s) d s, \quad \forall t \in \mathbb{R}_{+} . \tag{6.49}
\end{equation*}
$$

When (5) does not hold, we prove the following weaker stability result for (6.7).
Theorem 6.5 Assume that (H1), (H2) and (6.47) are satisfied. Let $U^{0} \in D(\mathcal{A})$ be such that

$$
\begin{equation*}
\xi \equiv \text { constant } \quad \text { or } \sup _{s \in \mathbb{R}_{+}} \max _{k=0,1} \int_{0}^{L}\left(\partial_{s}^{k} \eta_{x}^{0}(x, s)\right)^{2} d x<+\infty \tag{6.50}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{1}=S_{3} . \tag{6.51}
\end{equation*}
$$

Then there exists a positive constant α_{1} such that

$$
\begin{equation*}
\|U(t)\|_{\mathcal{H}}^{2} \leq \frac{\alpha_{1}\left(1+\int_{0}^{t} \xi(s) \int_{s}^{+\infty} g(\tau) d \tau d s\right)}{\int_{0}^{t} \xi(s) d s}, \quad \forall t>0 \tag{6.52}
\end{equation*}
$$

Remark 6.6 1. If (6.46) holds with $\xi \equiv$ constant, then (6.49) and (6.52) give, respectively, for some positive constants d_{1} and d_{2},

$$
\begin{equation*}
\|U(t)\|_{\mathcal{H}}^{2} \leq d_{1} e^{-d_{2} t}, \quad \forall t \in \mathbb{R}_{+} \tag{6.53}
\end{equation*}
$$

and

$$
\begin{equation*}
\|U(t)\|_{\mathcal{H}}^{2} \leq \frac{d_{1}}{t}, \quad \forall t>0 \tag{6.54}
\end{equation*}
$$

So this particular case includes the results of [11]. The estimates (6.53) and 6.54) give the best decay rates which can be obtained from (6.49) and (6.52), respectively.
2. When $\xi \equiv$ constant, condition (6.46) implies that g converges exponentially to zero at infinity. However, when $\xi \neq$ constant, condition (6.46) allows $s \mapsto g(s)$ to have a decay rate arbitrarly close to $\frac{1}{s}$ at infinity, which represents the critical limit, since g is integrable on \mathbb{R}_{+}. For specific examples of g satisfying (6.46), and the corresponding decay rates given by (6.49) and (6.52), see [21] and [22].

To prove (6.49) and (6.52), we will consider suitable multipliers and construct appropriate Lyapunov functionals satisfying some differential inequalities, for any $U^{0} \in D(\mathcal{A})$ and $t \in \mathbb{R}_{+}$; so all the calculations are justified. By integrating these differential inequalities, we get (6.49) and (6.52), for any $U^{0} \in D(\mathcal{A})$. By simple density arguments $(D(\mathcal{A})$ is dense in \mathcal{H}, (6.49) remains valid, for any $U^{0} \in \mathcal{H}$.

We will use c, throughout the rest of this thesis, to denote a generic positive constant which depends continuously on the initial data U^{0} and the fixed parameters in 6.1), (6.23) and (6.27), and can be different from step to step. When c depends on some new constants y_{1}, y_{2}, \cdots, introduced in the proof, the constant c is noted $c_{y_{1}}, c_{y_{1}, y_{2}}, \cdots$.

Let us consider the energy functional E associated to (6.7) defined by

$$
\begin{equation*}
E(t)=\frac{1}{2}\|U(t)\|_{\mathcal{H}}^{2} \tag{6.55}
\end{equation*}
$$

From (6.7) and (6.32), we see that

$$
\begin{equation*}
E_{i}^{\prime}(t)=\frac{1}{2} \int_{0}^{L} \int_{0}^{+\infty} g^{\prime} \eta_{x}^{2} d s d x \tag{6.56}
\end{equation*}
$$

Recalling that g is non-increasing, (6.56) implies that E is non-increasing, and consequently, (6.7) is dissipative.

6.3 Proof of uniform decay

First, we consider the following functional:

$$
\begin{equation*}
I(t)=-\rho_{2} \int_{0}^{L} \psi_{t} \int_{0}^{+\infty} g(s) \eta d s d x \tag{6.57}
\end{equation*}
$$

Lemma 6.7 For any $\delta_{0}>0$, there exists $c_{\delta_{0}}>0$ such that

$$
\begin{align*}
I^{\prime}(t) \leq & -\rho_{2}\left(g^{0}-\delta_{0}\right) \int_{0}^{L} \psi_{t}^{2} d x+\delta_{0} \int_{0}^{L}\left(\psi_{x}^{2}+\left(\varphi_{x}+\psi+l w\right)^{2}\right) d x \tag{6.58}\\
& +c_{\delta_{0}} \int_{0}^{L} \int_{0}^{+\infty}\left(g(s)-g^{\prime}(s)\right) \eta_{x}^{2} d s d x
\end{align*}
$$

Proof. First, we note that

$$
\begin{aligned}
\partial_{t} \int_{0}^{+\infty} g(s) \eta d s & =\partial_{t} \int_{-\infty}^{t} g(t-s)(\psi(t)-\psi(s)) d s \\
& =\int_{-\infty}^{t} g^{\prime}(t-s)(\psi(t)-\psi(s)) d s+\left(\int_{-\infty}^{t} g(t-s) d s\right) \psi_{t}
\end{aligned}
$$

that is

$$
\begin{equation*}
\partial_{t} \int_{0}^{+\infty} g(s) \eta d s=\int_{0}^{+\infty} g^{\prime}(s) \eta d s+g^{0} \psi_{t} \tag{6.59}
\end{equation*}
$$

Second, using Young's and Hölder's inequalities, we get the following inequality: for all $\lambda>0$, there exists $c_{\lambda}>0$ such that, for any $v \in L^{2}(] 0, L[)$ and $\hat{\eta} \in\left\{\eta, \partial_{x} \eta\right\}$,

$$
\begin{equation*}
\left|\int_{0}^{L} v \int_{0}^{+\infty} g(s) \hat{\eta} d s d x\right| \leq \lambda \int_{0}^{L} v^{2} d x+c_{\lambda} \int_{0}^{L} \int_{0}^{+\infty} g(s) \hat{\eta}^{2} d s d x \tag{6.60}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\left|\int_{0}^{L} v \int_{0}^{+\infty} g^{\prime}(s) \hat{\eta} d s d x\right| \leq \lambda \int_{0}^{L} v^{2} d x-c_{\lambda} \int_{0}^{L} \int_{0}^{+\infty} g^{\prime}(s) \hat{\eta}^{2} d s d x \tag{6.61}
\end{equation*}
$$

Now, direct computations, using the first equation in (6.1), integrating by parts and using the boundary conditions and (6.59), yield

$$
\begin{aligned}
I^{\prime}(t)= & -\rho_{2} g^{0} \int_{0}^{L} \psi_{t}^{2} d x+\int_{0}^{L}\left(\int_{0}^{+\infty} g(s) \eta_{x} d s\right)^{2} d x \\
& +\left(k_{1}-g^{0}\right) \int_{0}^{L} \psi_{x} \int_{0}^{+\infty} g(s) \eta_{x} d s d x \\
& +k_{1} \int_{0}^{L}\left(\varphi_{x}+\psi+l w\right) \int_{0}^{+\infty} g(s) \eta d s d x \\
& -\rho_{2} \int_{0}^{L} \psi_{t} \int_{0}^{+\infty} g^{\prime}(s) \eta d s d x .
\end{aligned}
$$

Using (6.60) and (6.61) for the last three terms of this equality, Poincare's inequality (6.23) for η, and Hölder's inequality to estimate

$$
\left(\int_{0}^{+\infty} g(s) \partial_{x} \eta d s\right)^{2}
$$

we get (6.58).
Lemma 6.8 Let

$$
\begin{align*}
J(t)= & \rho_{2} \int_{0}^{L}\left(\varphi_{x}+\psi+l w\right) \psi_{t} d x+\frac{k_{2} \rho_{1}}{k_{1}} \int_{0}^{L} \psi_{x} \varphi_{t} d x \\
& -\frac{\rho_{1}}{k_{1}} \int_{0}^{L} \varphi_{t} \int_{0}^{+\infty} g(s) \psi_{x}(t-s) d s d x \tag{6.62}
\end{align*}
$$

Then, for any $\delta_{0}, \epsilon_{0}, \epsilon_{1}, \epsilon_{2}>0$, there exist $c_{\delta_{0}}, c_{\epsilon_{0}}>0$ such that

$$
\begin{align*}
J^{\prime}(t) \leq & -k_{1} \int_{0}^{L}\left(\varphi_{x}+\psi+l w\right)^{2} d x+\left(\delta_{0}+\frac{l k_{2} k_{3} \epsilon_{1}}{2 k_{1}}+\frac{l k_{3} g^{0} \epsilon_{2}}{2 k_{1}}\right) \int_{0}^{L}\left(w_{x}-l \varphi\right)^{2} d x \\
& +\delta_{0} \int_{0}^{L} \varphi_{t}^{2} d x+\left(\frac{l k_{2} k_{3}}{2 k_{1} \epsilon_{1}}+\frac{l k_{3} g^{0}}{2 k_{1} \epsilon_{2}}\right) \int_{0}^{L} \psi_{x}^{2} d x+\int_{0}^{L}\left(c_{\epsilon_{0}} \psi_{t}^{2}+\epsilon_{0} w_{t}^{2}\right) d x \\
& +\left(\frac{k_{2} \rho_{1}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \psi_{x t} \varphi_{t} d x+c_{\delta_{0}} \int_{0}^{L} \int_{0}^{+\infty}\left(g(s)-g^{\prime}(s)\right) \eta_{x}^{2} d s d x . \tag{6.63}
\end{align*}
$$

Proof. First, notice that

$$
\begin{aligned}
\partial_{t} \int_{0}^{+\infty} g(s) \psi_{x}(t-s) d s & =\partial_{t} \int_{-\infty}^{t} g(t-s) \psi_{x}(s) d s \\
& =g(0) \psi_{x}(t)+\int_{-\infty}^{t} g^{\prime}(t-s) \psi_{x}(s) d s \\
& =-\int_{0}^{+\infty} g^{\prime}(s) \psi_{x}(t) d s+\int_{0}^{+\infty} g^{\prime}(s) \psi_{x}(t-s) d s
\end{aligned}
$$

that is

$$
\begin{equation*}
\partial_{t} \int_{0}^{+\infty} g(s) \psi_{x}(t-s) d s=-\int_{0}^{+\infty} g^{\prime}(s) \eta_{x} d s \tag{6.64}
\end{equation*}
$$

Now, by exploiting the first two equations in (6.1), integrating by parts, using (6.64) and the boundary conditions, we get

$$
\begin{aligned}
J^{\prime}(t)= & -k_{1} \int_{0}^{L}\left(\varphi_{x}+\psi+l w\right)^{2} d x+\left(\frac{k_{2} \rho_{1}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \psi_{x t} \varphi_{t} d x+\rho_{2} \int_{0}^{L} \psi_{t}^{2} d x \\
& +\rho_{2} l \int_{0}^{L} \psi_{t} w_{t} d x+\frac{l k_{3}}{k_{1}}\left(k_{2}-g^{0}\right) \int_{0}^{L}\left(w_{x}-l \varphi\right) \psi_{x} d x \\
& +\frac{\rho_{1}}{k_{1}} \int_{0}^{L} \varphi_{t} \int_{0}^{+\infty} g^{\prime}(s) \eta_{x} d s d x+\frac{l k_{3}}{k_{1}} \int_{0}^{L}\left(w_{x}-l \varphi\right) \int_{0}^{+\infty} g(s) \eta_{x} d s d x .
\end{aligned}
$$

By applying (6.60), 6.61) and Young's inequality for the last four terms of the above equality, we deduce 6.63).

Lemma 6.9 Let

$$
\begin{equation*}
K(t)=-\rho_{1} \int_{0}^{L}\left(\varphi_{x}+\psi+l w\right) w_{t} d x-\frac{k_{3} \rho_{1}}{k_{1}} \int_{0}^{L}\left(w_{x}-l \varphi\right) \varphi_{t} d x \tag{6.65}
\end{equation*}
$$

Then, for any $\epsilon_{0}>0$, there exists $c_{\epsilon_{0}}>0$ such that

$$
\begin{align*}
K^{\prime}(t) \leq & l k_{1} \int_{0}^{L}\left(\varphi_{x}+\psi+l w\right)^{2} d x-\frac{l k_{3}^{2}}{k_{1}} \int_{0}^{L}\left(w_{x}-l \varphi\right)^{2} d x+c_{\epsilon_{0}} \int_{0}^{L} \psi_{t}^{2} d x \\
& +\int_{0}^{L}\left(\frac{l \rho_{1} k_{3}}{k_{1}} \varphi_{t}^{2}+\left(-l \rho_{1}+\epsilon_{0}\right) w_{t}^{2}\right) d x+\rho_{1}\left(\frac{k_{3}}{k_{1}}-1\right) \int_{0}^{L} w_{t} \varphi_{x t} d x \tag{6.66}
\end{align*}
$$

Proof. Using the first and third equations in (6.1), integrating by parts and using the boundary conditions, we find

$$
\begin{aligned}
K^{\prime}(t)= & l k_{1} \int_{0}^{L}\left(\varphi_{x}+\psi+l w\right)^{2} d x-\frac{l k_{3}^{2}}{k_{1}} \int_{0}^{L}\left(w_{x}-l \varphi\right)^{2} d x+\rho_{1}\left(\frac{k_{3}}{k_{1}}-1\right) \int_{0}^{L} \varphi_{x t} w_{t} d x \\
& -l \rho_{1} \int_{0}^{L} w_{t}^{2} d x+\frac{l k_{3} \rho_{1}}{k_{1}} \int_{0}^{L} \varphi_{t}^{2} d x-\rho_{1} \int_{0}^{L} \psi_{t} w_{t} d x
\end{aligned}
$$

By applying Young's inequality for the last term of the above equality, we obtain 6.66).
Lemma 6.10 Let

$$
\begin{align*}
P(t)= & -\rho_{1} k_{3} \int_{0}^{L}\left(w_{x}-l \varphi\right) \int_{0}^{x} w_{t}(y, t) d y d x \\
& -\rho_{1} k_{1} \int_{0}^{L} \varphi_{t} \int_{0}^{x}\left(\varphi_{x}+\psi+l w\right)(y, t) d y d x \tag{6.67}
\end{align*}
$$

Then, for any $\epsilon_{0}, \delta_{1}>0$, there exists $c_{\epsilon_{0}}>0$ such that

$$
\begin{align*}
P^{\prime}(t) \leq & k_{1}^{2} \int_{0}^{L}\left(\varphi_{x}+\psi+l w\right)^{2} d x-k_{3}^{2} \int_{0}^{L}\left(w_{x}-l \varphi\right)^{2} d x+c_{\epsilon_{0}} \int_{0}^{L} \psi_{t}^{2} d x \\
& +\left(-\rho_{1} k_{1}+\epsilon_{0}+\frac{l \rho_{1}\left|k_{3}-k_{1}\right| \delta_{1}}{2}\right) \int_{0}^{L} \varphi_{t}^{2} d x+\rho_{1}\left(k_{3}+\frac{\tilde{c}_{0} l\left|k_{3}-k_{1}\right|}{2 \delta_{1}}\right) \int_{0}^{L} w_{t}^{2} d x . \tag{6.68}
\end{align*}
$$

Proof. By exploiting the first and third equations in (6.1), integrating by parts and using (6.21) and the boundary conditions, we get

$$
\begin{align*}
P^{\prime}(t)= & +\rho_{1} k_{3} \int_{0}^{L} w_{t}^{2} d x-\rho_{1} k_{1} \int_{0}^{L} \varphi_{t}^{2} d x+k_{1}^{2} \int_{0}^{L}\left(\varphi_{x}+\psi+l w\right)^{2} d x \\
& -k_{3}^{2} \int_{0}^{L}\left(w_{x}-l \varphi\right)^{2} d x-\rho_{1} \int_{0}^{L} \varphi_{t} \int_{0}^{x}\left(k_{1} \psi_{t}(y, t)+l\left(k_{1}-k_{3}\right) w_{t}(y, t)\right) d y d x \tag{6.69}
\end{align*}
$$

Noting that the functions

$$
x \mapsto \int_{0}^{x} \psi_{t}(y, t) d y \quad \text { and } \quad x \mapsto \int_{0}^{x} w_{t}(y, t) d y
$$

vanish at 0 and L (because of (6.21), then, applying (6.27), we have

$$
\begin{equation*}
\int_{0}^{L}\left(\int_{0}^{x} \psi_{t}(y, t) d y\right)^{2} d x \leq \tilde{c}_{0} \int_{0}^{L} \psi_{t}^{2} d x \tag{6.70}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{L}\left(\int_{0}^{x} w_{t}(y, t) d y\right)^{2} d x \leq \tilde{c}_{0} \int_{0}^{L} w_{t}^{2} d x \tag{6.71}
\end{equation*}
$$

By applying Young's inequality for the last term in (6.69), and recalling (6.70) and 6.71), we conclude (6.68).

Lemma 6.11 Let

$$
\begin{equation*}
R(t)=-\int_{0}^{L}\left(\rho_{1} \varphi \varphi_{t}+\rho_{2} \psi \psi_{t}+\rho_{1} w w_{t}\right) d x \tag{6.72}
\end{equation*}
$$

Then, for any $\delta_{0}>0$, there exists $c_{\delta_{0}}>0$ such that

$$
\begin{align*}
R^{\prime}(t) \leq & \int_{0}^{L}\left(\left(k_{2}+\delta_{0}-g^{0}\right) \psi_{x}^{2}+k_{1}\left(\varphi_{x}+\psi+l w\right)^{2}+k_{3}\left(w_{x}-l \varphi\right)^{2}\right) d x \\
& -\int_{0}^{L}\left(\rho_{1} \varphi_{t}^{2}+\rho_{2} \psi_{t}^{2}+\rho_{1} w_{t}^{2}\right) d x+c_{\delta_{0}} \int_{0}^{L} \int_{0}^{+\infty} g(s) \eta_{x}^{2} d s d x \tag{6.73}
\end{align*}
$$

Proof. By exploiting the first three equations in (6.1), integrating by parts and using the boundary conditions, we find

$$
\begin{aligned}
R^{\prime}(t)= & \int_{0}^{L}\left(\left(k_{2}-g^{0}\right) \psi_{x}^{2}+k_{1}\left(\varphi_{x}+\psi+l w\right)^{2}+k_{3}\left(w_{x}-l \varphi\right)^{2}\right) d x \\
& -\int_{0}^{L}\left(\rho_{1} \varphi_{t}^{2}+\rho_{2} \psi_{t}^{2}+\rho_{1} w_{t}^{2}\right) d x+\int_{0}^{L} \psi_{x} \int_{0}^{+\infty} g(s) \eta_{x} d s d x
\end{aligned}
$$

By applying (6.60) for the last term in this equality, we arrive at 6.73).
Lemma 6.12 Let

$$
\begin{equation*}
D(t)=-\rho_{2} \int_{0}^{L} \psi_{x} \int_{0}^{x} \psi_{t}(y, t) d y d x \tag{6.74}
\end{equation*}
$$

Then, for any $\delta_{0}, \delta_{2}>0$, there exists $c_{\delta_{0}}>0$ such that

$$
\begin{align*}
D^{\prime}(t) \leq & \rho_{2} \int_{0}^{L} \psi_{t}^{2} d x+\left(\frac{k_{1}}{2 \delta_{2}}+g^{0}+\delta_{0}-k_{2}\right) \int_{0}^{L} \psi_{x}^{2} d x \\
& +\frac{\tilde{c}_{0} k_{1} \delta_{2}}{2} \int_{0}^{L}\left(\varphi_{x}+\psi+l w\right)^{2} d x+c_{\delta_{0}} \int_{0}^{L} \int_{0}^{+\infty} g(s) \eta_{x}^{2} d s d x \tag{6.75}
\end{align*}
$$

Proof. By exploiting the second equation in 6.1), integrating by parts and using the boundary conditions, we find

$$
\begin{align*}
D^{\prime}(t)= & \rho_{2} \int_{0}^{L} \psi_{t}^{2} d x+\left(g^{0}-k_{2}\right) \int_{0}^{L} \psi_{x}^{2} d x-\int_{0}^{L} \psi_{x} \int_{0}^{+\infty} g(s) \eta_{x} d s d x \\
& +k_{1} \int_{0}^{L} \psi_{x} \int_{0}^{x}\left(\varphi_{x}(y, t)+\psi(y, t)+l w(y, t)\right) d y d x \tag{6.76}
\end{align*}
$$

Noting that the function

$$
x \mapsto \int_{0}^{x}\left(\varphi_{x}(y, t)+\psi(y, t)+l w(y, t)\right) d y
$$

vanishes at 0 and L (because of (6.21), then, applying (6.27), we have

$$
\begin{equation*}
\int_{0}^{L}\left(\int_{0}^{x}\left(\varphi_{x}(y, t)+\psi(y, t)+l w(y, t)\right) d y\right)^{2} d x \leq \tilde{c}_{0} \int_{0}^{L}\left(\varphi_{x}+\psi+l w\right)^{2} d x \tag{6.77}
\end{equation*}
$$

Then, application of Young's inequality and (6.60) for the last two terms in (6.76), and use of 6.77) yield 6.75).

Let $N, N_{1}, N_{2}, N_{3}, N_{4}, N_{5}>0$ and

$$
\begin{equation*}
F:=N E+N_{1} I+N_{2} P+N_{3} K+N_{4} R+N_{5} D+J . \tag{6.78}
\end{equation*}
$$

Then, by combining (6.58), (6.63), (6.66), (6.68), (6.73) and (6.75), we obtain

$$
\begin{align*}
F^{\prime}(t) \leq & \int_{0}^{L}\left(l_{1} \varphi_{t}^{2}+l_{2} \psi_{t}^{2}+l_{3} w_{t}^{2}+l_{4} \psi_{x}^{2}+l_{5}\left(w_{x}-l \varphi\right)^{2}+l_{6}\left(\varphi_{x}+\psi+l w\right)^{2}\right) d x \tag{6.79}\\
& +N E^{\prime}(t)+c_{N_{1}, N_{4}, N_{5}, \delta_{0}} \int_{0}^{L} \int_{0}^{+\infty}\left(g(s)-g^{\prime}(s)\right) \eta_{x}^{2} d s d x \\
& +\delta_{0} c_{N_{1}, N_{4}, N_{5}} \int_{0}^{L}\left(\psi_{x}^{2}+\left(\varphi_{x}+\psi+l w\right)^{2}+\left(w_{x}-l \varphi\right)^{2}+\varphi_{t}^{2}+\psi_{t}^{2}\right) d x \\
& +\left(\frac{k_{2} \rho_{1}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \psi_{x t} \varphi_{t} d x+N_{3} \rho_{1}\left(\frac{k_{3}}{k_{1}}-1\right) \int_{0}^{L} w_{t} \varphi_{x t} d x \\
& +\epsilon_{0} c_{N_{2}, N_{3}} \int_{0}^{L}\left(\varphi_{t}^{2}+w_{t}^{2}\right) d x+c_{N_{2}, N_{3}, \epsilon_{0}} \int_{0}^{L} \psi_{t}^{2} d x
\end{align*}
$$

where

$$
\begin{gathered}
l_{1}=-\rho_{1} k_{1} N_{2}-\rho_{1} N_{4}+\frac{l \rho_{1}\left|k_{3}-k_{1}\right| \delta_{1} N_{2}}{2}+\frac{l \rho_{1} k_{3} N_{3}}{k_{1}}, \quad l_{2}=-\rho_{2} g^{0} N_{1}-\rho_{2} N_{4}+\rho_{2} N_{5}, \\
l_{3}=-l \rho_{1} N_{3}-\rho_{1} N_{4}+\rho_{1}\left(k_{3}+\frac{l \tilde{c}_{0}\left|k_{3}-k_{1}\right|}{2 \delta_{1}}\right) N_{2}, \\
l_{4}=-\left(k_{2}-\frac{k_{1}}{2 \delta_{2}}\right) N_{5}+k_{2} N_{4}+\frac{l k_{2} k_{3}}{2 k_{1} \epsilon_{1}}+g^{0}\left(N_{5}-N_{4}+\frac{l k_{3}}{2 k_{1} \epsilon_{2}}\right), \\
l_{5}=-k_{3}^{2} N_{2}-\frac{l k_{3}^{2} N_{3}}{k_{1}}+k_{3} N_{4}+\frac{l k_{2} k_{3} \epsilon_{1}}{2 k_{1}}+\frac{l k_{3} g^{0} \epsilon_{2}}{2 k_{1}} \quad \text { and } l_{6}=-k_{1}+k_{1}^{2} N_{2}+l k_{1} N_{3}+k_{1} N_{4}+\frac{\tilde{c}_{0} k_{1} \delta_{2} N_{5}}{2} .
\end{gathered}
$$

Using (6.24), (6.31), (6.55) and (6.56), we get from (6.79) that

$$
\begin{equation*}
F^{\prime}(t) \leq \int_{0}^{L}\left(l_{1} \varphi_{t}^{2}+l_{2} \psi_{t}^{2}+l_{3} w_{t}^{2}+l_{4} \psi_{x}^{2}+l_{5}\left(w_{x}-l \varphi\right)^{2}+l_{6}\left(\varphi_{x}+\psi+l w\right)^{2}\right) d x \tag{6.80}
\end{equation*}
$$

$$
\begin{aligned}
& +\delta_{0} c_{N_{1}, N_{4}, N_{5}} E(t)+\left(N-c_{N_{1}, N_{4}, N_{5}, \delta_{0}}\right) E^{\prime}(t)+c_{N_{1}, N_{4}, N_{5}, \delta_{0}} \int_{0}^{L} \int_{0}^{+\infty} g(s) \eta_{x}^{2} d s d x \\
& +\left(\frac{k_{2} \rho_{1}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \psi_{x t} \varphi_{t} d x+N_{3} \rho_{1}\left(\frac{k_{3}}{k_{1}}-1\right) \int_{0}^{L} w_{t} \varphi_{x t} d x \\
& +\epsilon_{0} c_{N_{2}, N_{3}} \int_{0}^{L}\left(\varphi_{t}^{2}+w_{t}^{2}\right) d x+c_{N_{2}, N_{3}, \epsilon_{0}} \int_{0}^{L} \psi_{t}^{2} d x .
\end{aligned}
$$

At this point, we choose carefully the constants N, N_{i}, δ_{i} and ϵ_{i} to get suitable values of l_{i}.
First, let us take

$$
N_{3}=\delta_{1}=1, \quad \varepsilon_{1}=\frac{k_{3}}{k_{2}}, \quad \varepsilon_{2}=\frac{k_{3}}{2 g^{0}}, \quad \delta_{2}=\frac{k_{1}}{k_{2}-g^{0}}, \quad N_{4}=k_{3} N_{2}, \quad N_{5}=4 k_{3} N_{2} ;
$$

thus, the l_{i} 's take the forms

$$
\left\{\begin{array}{l}
l_{1}=-\rho_{1}\left(k_{1}+k_{3}\right) N_{2}+l \rho_{1}\left(\frac{\left|k_{1}-k_{3}\right|}{2} N_{2}+\frac{k_{3}}{k_{1}}\right) \\
l_{2}=-\rho_{2}\left(g^{0} N_{1}-3 k_{3} N_{2}\right) \\
l_{3}=-l \rho_{1}\left(1-\frac{\tilde{c}_{0}\left|k_{1}-k_{3}\right|}{2} N_{2}\right) \\
l_{4}=-\left(k_{2}-g^{0}\right) k_{3} N_{2}+\frac{l}{k_{1}}\left(\frac{k_{2}^{2}}{2}+\left(g^{0}\right)^{2}\right), \\
l_{5}=-\frac{l k_{3}^{2}}{4 k_{1}}<0 \\
l_{6}=-k_{1}\left(1-\left(k_{1}+k_{3}+\frac{2 \tilde{c}_{0} k_{1} k_{3}}{k_{2}-g^{0}}\right) N_{2}\right)+l k_{1}
\end{array}\right.
$$

Now, we choose $N_{2}>0$ so small that

$$
1-\tilde{c}_{0}\left|k_{1}-k_{3}\right| N_{2}>0, \quad 1-\left(k_{1}+k_{3}+\frac{2 \tilde{c}_{0} k_{1} k_{3}}{k_{2}-g^{0}}\right) N_{2}>0,
$$

then, take $\varepsilon_{0}=\frac{1}{2 c_{N_{2}}, N_{3}} l \rho_{1}$, so that we have

$$
\left\{\begin{array}{l}
\tilde{l}_{1}=l_{1}+\varepsilon_{0} c_{N_{2}, N_{3}}=-\rho_{1}\left(k_{1}+k_{3}\right) N_{2}+l \rho_{1}\left(\frac{1}{2}+\frac{\left|k_{1}-k_{3}\right|}{2} N_{2}+\frac{k_{3}}{k_{1}}\right) \\
\tilde{l}_{2}=l_{2}+c_{N_{2}, N_{3}, \varepsilon_{0}}, \\
\tilde{l}_{3}=l_{3}+\varepsilon_{0} c_{N_{2}, N_{3}}=-\frac{l \rho_{1}}{2}\left(1-\tilde{c}_{0}\left|k_{1}-k_{3}\right| N_{2}\right)<0 .
\end{array}\right.
$$

Next, we recall (6.47) to select $l>0$ small enough such that

$$
\tilde{l}_{1}<0, \quad l_{4}<0, \quad l_{6}<0
$$

After that, we pick $N_{1}>0$ very large so that $\tilde{l}_{2}<0$. Then we find that

$$
\hat{l}:=2 \max \left\{\frac{1}{\rho_{1}} \tilde{l}_{1}, \frac{1}{\rho_{2}} \tilde{l}_{2}, \frac{1}{\rho_{1}} \tilde{l}_{3}, \frac{1}{k_{2}} l_{4}, \frac{1}{k_{3}} l_{5}, \frac{1}{k_{1}} l_{6}\right\}<0
$$

and, using (6.31) and (6.55),

$$
\begin{aligned}
& \int_{0}^{L}\left(\tilde{l}_{1} \varphi_{t}^{2}+\tilde{l}_{2} \psi_{t}^{2}+\tilde{l}_{3} w_{t}^{2}+l_{4} \psi_{x}^{2}+l_{5}\left(w_{x}-l \varphi\right)^{2}+l_{6}\left(\varphi_{x}+\psi+l w\right)^{2}\right) d x+\delta_{0} c_{N_{1}, N_{4}, N_{5}} E(t) \\
& \leq \frac{\hat{l}}{2} \int_{0}^{L}\left(\rho_{1} \varphi_{t}^{2}+\rho_{2} \psi_{t}^{2}+\rho_{1} w_{t}^{2}+k_{2} \psi_{x}^{2}+k_{3}\left(w_{x}-l \varphi\right)^{2}+k_{1}\left(\varphi_{x}+\psi+l w\right)^{2}\right) d x+\delta_{0} c_{N_{1}, N_{4}, N_{5}} E(t) \\
& \leq\left(\hat{l}+\delta_{0} c_{N_{1}, N_{4}, N_{5}}\right) E(t)+\frac{\hat{l}_{g}}{2} \int_{0}^{L} \psi_{x}^{2} d x-\frac{\hat{l}}{2} \int_{0}^{L} \int_{0}^{+\infty} g(s) \eta_{x}^{2} d s d x \\
& \leq\left(\hat{l}+\delta_{0} c_{N_{1}, N_{4}, N_{5}}\right) E(t)-\frac{\hat{l}}{2} \int_{0}^{L} \int_{0}^{+\infty} g(s) \eta_{x}^{2} d s d x
\end{aligned}
$$

Finally, we take $\delta_{0}>0$ small enough so that

$$
\hat{l}+\delta_{0} c_{N_{1}, N_{2}, N_{5}}<0
$$

Consequently, we obtain from (6.80) and (6.81), for some positive constants c, \tilde{c}_{1},

$$
\begin{align*}
F^{\prime}(t) \leq & -\tilde{c}_{1} E(t)+(N-c) E^{\prime}(t)+c \int_{0}^{L} \int_{0}^{+\infty} g(s) \eta_{x}^{2} d s d x \\
& +\left(\frac{k_{2} \rho_{1}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \psi_{x t} \varphi_{t} d x+N_{3} \rho_{1}\left(\frac{k_{3}}{k_{1}}-1\right) \int_{0}^{L} w_{t} \varphi_{x t} d x \tag{6.82}
\end{align*}
$$

Now, we estimate the integral of $g \eta_{x}^{2}$ in (6.82).
Case $\xi \equiv$ constant. From (6.46), we have

$$
\begin{aligned}
\xi(t) \int_{0}^{L} \int_{0}^{+\infty} g(s) \eta_{x}^{2} d s d x & =\int_{0}^{L} \int_{0}^{+\infty} \xi g(s) \eta_{x}^{2} d s d x \\
& \leq-\int_{0}^{L} \int_{0}^{+\infty} g^{\prime}(s) \eta_{x}^{2} d s d x
\end{aligned}
$$

then, using 6.56, we find

$$
\begin{equation*}
\xi(t) \int_{0}^{L} \int_{0}^{+\infty} g(s) \eta_{x}^{2} d s d x \leq-2 E^{\prime}(t) \tag{6.83}
\end{equation*}
$$

Case $\xi \neq$ constant. Following the arguments of [21] and [22], and using (6.46) and the fact that ξ is non-increasing, we get

$$
\begin{aligned}
\xi(t) \int_{0}^{L} \int_{0}^{t} g(s) \eta_{x}^{2} d s d x & \leq \int_{0}^{L} \int_{0}^{t} \xi(s) g(s) \eta_{x}^{2} d s d x \\
& \leq-\int_{0}^{L} \int_{0}^{t} g^{\prime}(s) \eta_{x}^{2} d s d x
\end{aligned}
$$

then, recalling (6.56), we obtain

$$
\begin{equation*}
\xi(t) \int_{0}^{L} \int_{0}^{t} g(s) \eta_{x}^{2} d s d x \leq-2 E^{\prime}(t) \tag{6.84}
\end{equation*}
$$

On the other hand, the definition of E, (6.24) and the fact that E is non-increasing imply that

$$
\int_{0}^{L} \psi_{x}^{2}(x, t) d x \leq c E(0)
$$

Therefore

$$
\begin{aligned}
\int_{0}^{L} \eta_{x}^{2} d x & =\int_{0}^{L}\left(\eta_{x}^{0}(x, s-t)+\psi_{x}(x, t)-\psi_{x}(x, 0)\right)^{2} d x \\
& \leq c\left(E(0)+\sup _{s \in \mathbb{R}_{+}} \int_{0}^{L}\left(\eta_{x}^{0}(x, s)\right)^{2} d x\right)
\end{aligned}
$$

Then, using the boundedness condition on η^{0} in (6.48), we deduce that

$$
\begin{equation*}
\xi(t) \int_{0}^{L} \int_{t}^{+\infty} g(s) \eta_{x}^{2} d s d x \leq c \xi(t) \int_{t}^{+\infty} g(s) d s \tag{6.85}
\end{equation*}
$$

Hence, by combining (6.84) and (6.85), we find

$$
\begin{equation*}
\xi(t) \int_{0}^{L} \int_{0}^{+\infty} g(s) \eta_{x}^{2} d s d x \leq-2 E^{\prime}(t)+c \xi(t) \int_{t}^{+\infty} g(s) d s \tag{6.86}
\end{equation*}
$$

Finally, multiplying (6.82) by $\xi(t)$ and combining with (6.83) and (6.86), we get for the two previous cases, for some $\tilde{c}_{2}>0$,

$$
\begin{align*}
\xi(t) F^{\prime}(t) \leq & -\tilde{c}_{1} \xi(t) E(t)+c \xi(t) \int_{t}^{+\infty} g(s) d s+(N-c) \xi(t) E^{\prime}(t)-\tilde{c}_{2} E^{\prime}(t) \\
& +\left(\frac{k_{2} \rho_{1}}{k_{1}}-\rho_{2}\right) \xi(t) \int_{0}^{L} \psi_{x t} \varphi_{t} d x+N_{3} \rho_{1}\left(\frac{k_{3}}{k_{1}}-1\right) \xi(t) \int_{0}^{L} w_{t} \varphi_{x t} d x \tag{6.87}
\end{align*}
$$

On the other hand, from (6.24), (6.31) and (6.55), we deduce that there exists a positive constant γ (independent of N) satisfying

$$
\left|N_{1} I+N_{2} P+N_{3} K+N_{4} R+N_{5} D+J\right| \leq \gamma E,
$$

which, combined with (6.78), implies that

$$
\begin{equation*}
(N-\gamma) E \leq F \leq(N+\gamma) E . \tag{6.88}
\end{equation*}
$$

Choosing N so that

$$
N \geq c \quad \text { and } \quad N>\gamma,
$$

noting that $E^{\prime} \leq 0$ and using (6.87) and (6.88), we deduce that $F \sim E$ and

$$
\begin{align*}
\tilde{F}^{\prime}(t) \leq & -\tilde{c}_{1} \xi(t) E(t)+\operatorname{ch}(t)+\xi^{\prime}(t) F(t) \\
& +\left(\frac{k_{2} \rho_{1}}{k_{1}}-\rho_{2}\right) \xi(t) \int_{0}^{L} \psi_{x t} \varphi_{t} d x+N_{3} \rho_{1}\left(\frac{k_{3}}{k_{1}}-1\right) \xi(t) \int_{0}^{L} w_{t} \varphi_{x t} d x \tag{6.89}
\end{align*}
$$

where

$$
\tilde{F}=\xi F+\tilde{c}_{2} E \quad \text { and } \quad h(t)=\xi(t) \int_{t}^{+\infty} g(s) d s
$$

From (6.88) and the relation $0 \leq \xi(t) F(t) \leq \xi(0) F(t)$, we see that

$$
\begin{equation*}
\tilde{c}_{2} E \leq \tilde{F} \leq\left(\tilde{c}_{2}+\xi(0)(N+\gamma)\right) E . \tag{6.90}
\end{equation*}
$$

Therefore, 6.89 implies that, for any $\left.\alpha_{0} \in\right] 0, \beta_{0}\left[\right.$, where $\beta_{0}=\min \left\{1, \frac{\tilde{c}_{1}}{\tilde{c}_{2}+\xi(0)(N+\gamma)}\right\}$,

$$
\begin{align*}
\tilde{F}^{\prime}(t) \leq & -\alpha_{0} \xi(t) \tilde{F}(t)+\operatorname{ch}(t) \\
& +\left(\frac{k_{2} \rho_{1}}{k_{1}}-\rho_{2}\right) \xi(t) \int_{0}^{L} \psi_{x t} \varphi_{t} d x+N_{3} \rho_{1}\left(\frac{k_{3}}{k_{1}}-1\right) \xi(t) \int_{0}^{L} w_{t} \varphi_{x t} d x \tag{6.91}
\end{align*}
$$

Since the last two terms in (6.91) vanish (thanks to (5)), then (6.91) implies that

$$
\partial_{t}\left(e^{\alpha_{0}} \int_{0}^{t} \xi(s) d s \tilde{F}(t)\right) \leq c e^{\alpha_{0} \int_{0}^{t} \xi(s) d s} h(t)
$$

Therefore, by integrating over $[0, T]$ with $T \geq 0$, we get

$$
\tilde{F}(T) \leq e^{-\alpha_{0}} \int_{0}^{T} \xi(s) d s\left(\tilde{F}(0)+c \int_{0}^{T} e^{\alpha_{0}} \int_{0}^{t} \xi(s) d s h(t) d t\right)
$$

which implies, according to 6.90, that

$$
\begin{equation*}
E(T) \leq c e^{-\alpha_{0}} \int_{0}^{T} \xi(s) d s\left(1+\int_{0}^{T} e^{\alpha_{0}} \int_{0}^{t} \xi(s) d s h(t) d t\right) \tag{6.92}
\end{equation*}
$$

Since

$$
e^{\alpha_{0} \int_{0}^{t} \xi(s) d s} h(t)=\frac{1}{\alpha_{0}} \partial_{t}\left(e^{\alpha_{0}} \int_{0}^{t} \xi(s) d s\right) \int_{t}^{+\infty} g(s) d s
$$

then, by integration by parts, we obtain

$$
\begin{aligned}
& \int_{0}^{T} e^{\alpha_{0}} \int_{0}^{t} \xi(s) d s \\
& h(t) d t \\
& \quad=\frac{1}{\alpha_{0}}\left(e^{\alpha_{0}} \int_{0}^{T} \xi(s) d s\right. \\
& \int_{T}^{+\infty} g(s) d s-\int_{0}^{+\infty} g(s) d s+\int_{0}^{T} e^{\alpha_{0}} \int_{0}^{t} \xi(s) d s \\
&
\end{aligned}
$$

Consequently, combining with 6.92, we arrive at

$$
\begin{align*}
& E(T) \leq c\left(e^{-\alpha_{0} \int_{0}^{T} \xi(s) d s}+\int_{T}^{+\infty} g(s) d s\right) \tag{6.93}\\
&+c e^{-\alpha_{0}} \int_{0}^{T} \xi(s) d s \\
& \int_{0}^{T} e^{\alpha_{0}} \int_{0}^{t} \xi(s) d s \\
& g(t) d t .
\end{align*}
$$

On the other hand, 6.46) implies that

$$
\partial_{t}\left(e^{\alpha_{0} \int_{0}^{t} \xi(s) d s}(g(t))^{\alpha_{0}}\right)=\alpha_{0}(g(t))^{\alpha_{0}-1}\left(\xi(t) g(t)+g^{\prime}(t)\right) e^{\alpha_{0}} \int_{0}^{t} \xi(s) d s \leq 0
$$

and, hence,

$$
e^{\alpha_{0}} \int_{0}^{t} \xi(s) d s(g(t))^{\alpha_{0}} \leq(g(0))^{\alpha_{0}}
$$

Therefore,

$$
\begin{equation*}
\int_{0}^{T} e^{\alpha_{0}} \int_{0}^{t} \xi(s) d s \tag{6.94}
\end{equation*}
$$

Finally, (6.55) and (6.94) give (6.49).

6.4 Proof of weak decay

In this section, we treat the case when (3) does not hold but (6.51) holds. In this case, the last term in (6.91) vanishes. So we need to estimate

$$
\left(\frac{k_{2} \rho_{1}}{k_{1}}-\rho_{2}\right) \xi(t) \int_{0}^{L} \psi_{x t} \varphi_{t} d x
$$

using the following system resulting from differentiating (6.1) with respect to time t :

$$
\left\{\begin{array}{l}
\rho_{1} \varphi_{t t t}-k_{1}\left(\varphi_{x t}+\psi_{t}+l w_{t}\right)_{x}-l k_{3}\left(w_{x t}-l \varphi_{t}\right)=0 \tag{6.95}\\
\rho_{2} \psi_{t t t}-k_{2} \psi_{x x t}+k_{1}\left(\varphi_{x t}+\psi_{t}+l w_{t}\right)+\int_{0}^{+\infty} g(s) \psi_{x x t}(x, t-s) d s=0 \\
\rho_{1} w_{t t t}-k_{3}\left(w_{x t}-l \varphi_{t}\right)_{x}+l k_{1}\left(\varphi_{x t}+\psi_{t}+l w_{t}\right)=0 \\
\varphi_{t}(0, t)=\psi_{x t}(0, t)=w_{x t}(0, t)=\varphi_{t}(L, t)=\psi_{x t}(L, t)=w_{x t}(L, t)=0
\end{array}\right.
$$

System 6.95 is well posed for initial data $U^{0} \in D(\mathcal{A})$ thanks to Theorem 6.3, where $U_{t} \in C\left(\mathbb{R}_{+} ; \mathcal{H}\right)$. Let $U^{0} \in D(\mathcal{A})$ and \tilde{E} be the energy of 6.95) defined by

$$
\begin{equation*}
\tilde{E}(t)=\frac{1}{2}\left\|U_{t}(t)\right\|_{\mathcal{H}}^{2} \tag{6.96}
\end{equation*}
$$

Similarly to (6.56), we have

$$
\begin{equation*}
\tilde{E}^{\prime}(t)=\frac{1}{2} \int_{0}^{L} \int_{0}^{+\infty} g^{\prime} \eta_{x t}^{2} d s d x \leq 0 \tag{6.97}
\end{equation*}
$$

so \tilde{E} is non-increasing. We use an idea introduced in [14] to get the following lemma.
Lemma 6.13 For any $\epsilon>0$, there exists $c_{\epsilon}>0$ such that

$$
\begin{equation*}
\left|\left(\frac{k_{2} \rho_{1}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \psi_{x t} \varphi_{t} d x\right| \leq c_{\epsilon} \int_{0}^{L} \int_{0}^{+\infty} g(s) \eta_{x t}^{2} d s d x+\epsilon E(t)-c_{\epsilon} E^{\prime}(t) \tag{6.98}
\end{equation*}
$$

Proof. We have, by the definition of η,

$$
\begin{align*}
\left(\frac{k_{2} \rho_{1}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \psi_{x t} \varphi_{t} d x= & \frac{1}{g^{0}}\left(\frac{k_{2} \rho_{1}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \varphi_{t} \int_{0}^{+\infty} g(s) \eta_{x t} d s d x \\
& +\frac{1}{g^{0}}\left(\frac{k_{2} \rho_{1}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \varphi_{t} \int_{0}^{+\infty} g(s) \psi_{x t}(t-s) d s d x \tag{6.99}
\end{align*}
$$

Using (6.60) and (6.55), we get, for all $\epsilon>0$,

$$
\begin{align*}
\left|\frac{1}{g^{0}}\left(\frac{k_{2 \rho}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \varphi_{t} \int_{0}^{+\infty} g(s) \eta_{x t} d s d x\right| \leq & \frac{\epsilon}{2} E(t) \\
& +c_{\epsilon} \int_{0}^{L} \int_{0}^{+\infty} g(s) \eta_{x t}^{2} d s d x \tag{6.100}
\end{align*}
$$

On the other hand, by integrating with respect to s and using the definition of η, we obtain

$$
\begin{aligned}
\int_{0}^{L} \varphi_{t} \int_{0}^{+\infty} g(s) \psi_{x t}(t-s) d s d x & =-\int_{0}^{L} \varphi_{t} \int_{0}^{+\infty} g(s) \partial_{s}\left(\psi_{x}(t-s)\right) d s d x \\
& =\int_{0}^{L} \varphi_{t}\left(g(0) \psi_{x}(t)+\int_{0}^{+\infty} g^{\prime}(s) \psi_{x}(t-s) d s\right) d x \\
& =-\int_{0}^{L} \varphi_{t} \int_{0}^{+\infty} g^{\prime}(s) \eta_{x} d s d x
\end{aligned}
$$

Therefore, using (6.61) and 6.56,

$$
\begin{equation*}
\left|\frac{1}{g^{0}}\left(-\frac{k_{2} \rho_{1}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \varphi_{t} \int_{0}^{+\infty} g(s) \psi_{x t}(t-s) d s d x\right| \leq \frac{\epsilon}{2} E(t)-c_{\epsilon} E^{\prime}(t) \tag{6.101}
\end{equation*}
$$

Inserting (6.100) and (6.101) into (6.99), we obtain (6.98).
Now, using (6.51), combining (6.91) and (6.98), and choosing ϵ small enough, we find

$$
\begin{align*}
\tilde{F}^{\prime}(t) \leq & -c \xi(t) E(t)+c h(t)-c \xi(t) E^{\prime}(t) \\
& +c \xi(t) \int_{0}^{L} \int_{0}^{+\infty} g(s) \eta_{x t}^{2} d s d x \tag{6.102}
\end{align*}
$$

On the other hand, using the boundedness condition on η^{0} in (6.50), we have (as for 6.83) and 6.86)

$$
\begin{equation*}
\xi(t) \int_{0}^{L} \int_{0}^{+\infty} g(s) \eta_{x t}^{2} d s d x \leq-c \tilde{E}^{\prime}(t)+\operatorname{ch}(t) \tag{6.103}
\end{equation*}
$$

Hence, combining (6.102) and 6.103), we have

$$
\begin{equation*}
(\tilde{F}(t)+c \tilde{E}(t)+c \xi(t) E(t))^{\prime} \leq-c \xi(t) E(t)+c h(t) \tag{6.104}
\end{equation*}
$$

since ξ is nonincreasing. Therefore, by integrating on $[0, T]$ and using the fact E is nonincreasing, we get

$$
c E(T) \int_{0}^{T} \xi(t) d t \leq \tilde{F}(0)+c \tilde{E}(0)+c \xi(0) E(0)+c \int_{0}^{T} h(t) d t
$$

which gives (6.52), since (6.55).

In the conclusion we give some general comments, issues and open problems.

1. Some extensions of our results to the distributed time delays case can be obtained; that is when $\mu_{i} y_{i}(x, t)\left(y_{i} \in\left\{\varphi_{t}, \psi_{t}, w_{t}\right\}\right)$ is replaced by

$$
\int_{0}^{+\infty} f_{i}(s) y_{i}(x, t-s) d s
$$

where $f_{i}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is given function. For Timoshenko system with distributed time delay, see [17], where the stability was proved also when $S_{1} \neq S_{2}$. Similarily, the constant time delay τ_{i} can be replaced by a time-varying delay $\tau_{i}(t)$. In case of wave equation, see [34, [36] and [35].
2. The stability results of this work can be generalized to finite memories \int_{0}^{t} instead of infinite ones $\int_{0}^{+\infty}$. Applications of our approach to some specific coupled Bresse-heat and Bresse-wave systems can be also presented.
3. It is interesting to consider the case where only one infinite memory is considered on the first or third equation in (2.1). This question will be the focus of our attention in a future work. When no time delay is considered, the stability was treated in [11, [22] and [16].
4. The class of relaxation functions g_{i} that converge exponentially to zero at infinity is the simplest standard one considered in the literature. Looking for the largest possible class of g_{i} was not amoung the objectives of our work. But it is possible to consider
larger class of g_{i} than the one satisfying (2.18) and (3.1), and get general stability estimate (with smaller decay rates than the exponential one given in this work). For this issue, we refer the readers to [17] and [23] in case of Timoshenko beams (in the presence of time delay or not), and to [16], [19] and [20] in case of Bresse system (without time delay).
5. Our results hold true if the Dirichlet-Dirichlet-Dirichlet boundary conditions are replaced by some mixed Dirichlet-Neumann ones.
6. One of the interesting question related to our results is proving the stability of our systems in the whole space \mathbb{R} (instead of $] 0, L[$).
7. When (3) and (4.4) do not hold (which is more interesting from the physical point of view), proving the stability results given in sections 4 and 5 seems a delicate question (even for the simpler Timoshenko-type systems with time delay [17]), since the second energy $E_{2}=\frac{1}{2}\left\|U_{t}\right\|_{\mathcal{H}}^{2}$ (used in the literature in case $\mu_{1}=\mu_{2}=\mu_{3}=0$) is not necessarily nonincreasing due to the terms depending on μ_{i}, these terms can not be absorbed by E itself even if μ_{0} is supposed small enough.

BIBLIOGRAPHY

[1] R. Adams, Sobolev Spaces, New York: Academic Press (1975).
[2] F. Alabau-Boussouira, J. E. Muñoz Rivera and D. S. Almeida Júnior, Stability to weak dissipative Bresse system, J. Math. Anal. Appl., 374 (2011), 481-498.
[3] M. O. Alves, L. H. Fatori, M. A. Jorge Silva and R. N. Monteiro, Stability and optimality of decay rate for weakly dissipative Bresse system, Math. Meth. Appl. Sci., 38 (2015), 898-908.
[4] R. Bekhouche, F. Beldi, D. A. Chacha and A. Guesmia, Study of the existence, uniqueness and stability of solutions for a Bresse system with infinite memories and time delays, Elect. J. Qualitative Theory Diff. Equa., submitted.
[5] R. Bekhouche, A. Guesmia and S. Messaoudi, Uniform and weak stability of Bresse system with one infinite memory in the shear angle displacement, Arab J. Maths., DOI: 10.1007/s40065-021-00355-9, to appear.
[6] J. A. C. Bresse, Cours de Mécanique Appliquée, Mallet Bachelier, Paris, (1859).
[7] H.Bresis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, (2010).
[8] W. Charles, J. A. Soriano, F. A. Nascimentoc and J. H. Rodrigues, Decay rates for Bresse system with arbitrary nonlinear localized damping, J. Diff. Equa., 255 (2013), 2267-2290.
[9] R. Chill .Quelques méthodes de résolution pour les équations non linéaires , Laboratoire de Mathématiques et Applications de Metz. 2007/8.
[10] C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.
[11] M. De Lima Santos, A. Soufyane and D. Da Silva Almeida Júnior, Asymptotic behavior to Bresse system with past history, Quart. Appl. Math., 73 (2015), 23-54.
[12] L. H. Fatori and R. N. Monteiro, The optimal decay rate for a weak dissipative Bresse system, Appl. Math. Lett., 25 (2012), 600-604.
[13] L. H. Fatori and J. E. Muñoz Rivera, Rates of decay to weak thermoelastic Bresse system, IMA J. Appl. Math., 75 (2010), 881-904.
[14] H. D. Fernández Sare and J. E. Muñoz Rivera, Stability of Timoshenko systems with past history, J. Math. Anal. Appl., 339 (2008), 482-502.
[15] A. Guesmia, Non-exponential and polynomial stability results of a Bresse system with one infinite memory in the vertical displacement, Nonauton. Dyn. Syst., 4 (2017), 78-97.
[16] A. Guesmia, Asymptotic stability of Bresse system with one infinite memory in the longitudinal displacements, Mediterr. J. Math. 14,49 (2017).
[17] A. Guesmia, Some well-posedness and general stability results in Timoshenko systems with infinite memory and distributed time delay, J. Math. Phys., 55 (2014), 1-40.
[18] A. Guesmia, Well-posedness and stability results for laminated Timoshenko beams with interfacial slip and infinite memory, IMA J. Math. Control and Information 37 (2020), 300-350.
[19] A. Guesmia and M. Kafini, Bresse system with infinite memories, Math. Meth. Appl. Sci., 38 (2015), 2389-2402.
[20] A. Guesmia and M. Kirane, Uniform and weak stability of Bresse system with two infinite memories, ZAMP, 67 (2016), 1-39.
[21] A. Guesmia and S. Messaoudi, A general stability result in a Timoshenko system with infinite memory: A new approach, Math. Meth. Appl. Scie., 37 (2014), 384-392.
[22] A. Guesmia and S. Messaoudi, A new approach to the stability of an abstract system in the presence of infinite history, J. Math. Anal. Appl., 416 (2014), 212-228.
[23] A. Guesmia, S. Messaoudi and A. Soufyane, On the stabilization for a linear Timoshenko system with infinite history and applications to the coupled Timoshenkoheat systems, Elec. J. Diff. Equa., 2012 (2012), 1-45.
[24] A. Guesmia and A. Soufyane, On the stability of Timoshenko-type systems with internal frictional dampings and discrete time delays, Applicable Analysis, 96 (2017), 2075-2101.
[25] A. Keddi, T. Apalara, and S. Messaoudi, Exponential and polynomial decay in a thermoelastic-Bresse system with second sound, Applied Mathematics and Optimization, 77 (2018), 315-341.
[26] V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Masson-John Wiley. Paris, (1994).
[27] J. E. Lagnese, G. Leugering and J. P. Schmidt, Modelling of dynamic networks of thin thermoelastic beams, Math. Meth. Appl. Scie., 16 (1993), 327-358.
[28] J. E. Lagnese, G. Leugering and J. P. Schmidt, Modelling Analysis and Control of Dynamic Elastic Multi-Link Structures, Systems Control Found. Appl., Birkhauser Boston, Inc., Boston, MA, (1994), ISBN: 0-8176-3705-2.
[29] Z. Liu and B. Rao, Energy decay rate of the thermoelastic Bresse system, Z. Angew. Math. Phys., 60 (2009), 54-69.
[30] Z. Liu and S. Zheng. Semigroups Associated with Dissipative Systems, Research Notes in Mathematics, Champman and Hall/CRC, 398, (1999).
[31] N. Najdi and A. Wehbe, Weakly locally thermal stabilization of Bresse systems, Elec. J. Diff. Equa, (2014), 1-19.
[32] S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 5 (2006), 1561-1585.
[33] S. Nicaise and C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Diff. Integral Equa., 9-10 (2008), 935-958.
[34] S. Nicaise and C. Pignotti, Interior feedback stabilization of wave equations with time dependent delay, Elect. J. Diff. Equa., 41 (2011), 1-20.
[35] S. Nicaise, C. Pignotti and J. Valein, Exponential stability of the wave equation with boundary time-varying delay, Disc. Cont. Dyna. Syst. Series S, 3 (2011), 693-722.
[36] S. Nicaise, J. Valein and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays, Disc. Cont. Dyna. Syst. Series S, 2 (2009), 559-581.
[37] N. Noun and A. Wehbe, Weakly locally internal stabilization of elastic Bresse system, C. R. Acad. Scie. Paris, Sér. I, 350 (2012), 493-498.
[38] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, (1983).
[39] Y. Qin, X-G Yang, Z. Ma, Global Existence of solutions for the thermoelastic Bresse system, Communications on Pure and Applied Analysis, 13 (2014), 13951406
[40] B. Said-Houari and T. Hamadouche, The asymptotic behavior of the Bresse Cattaneo system, Communications in Contemporary Mathematics, 18 (2016), 1-18.
[41] B. Said-Houari and T. Hamadouche, The Cauchy problem of the Bresse system in thermoelasticity of type III, Applicable Analysis, 95 (2016), 2323-2338.
[42] B. Said-Houari and A. Soufyane, The Bresse system in thermoelasticity, Math. Meth. Appl. Sci., 38 (2015), 3642-3652.
[43] J. A. Soriano, W. Charles and R. Schulz, Asymptotic stability for Bresse systems, J. Math. Anal. Appl., 412 (2014), 369-380.
[44] J. A. Soriano, J. E. Muñoz Rivera and L. H. Fatori, Bresse system with indefinite damping, J. Math. Anal. Appl., 387 (2012), 284-290.
[45] A. Soufyane and B. Said-Houari, The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system, Evol. Equa. Cont. Theory, 3 (2014), 713-738.
[46] S. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Philosophical Magazine, 41 (1921), 744-746.
[47] A. Wehbe and W. Youssef, Exponential and polynomial stability of an elastic Bresse system with two locally distributed feedbacks, J. Math. Phys., 51 (2010), 1-17.
[48] W. Youssef, Contrôle et stabilisation de systèmes élastiques couplés, PhD thesis, University of Metz, France, (2009).

