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NOTATIONS

R: the real numbers

Ω: usually denotes an open set in a topological space

D(A): the domain of A

R(A): the image of A

ρ(A): the resolvent set of A

A−1: the inverse of A

C([0, T ] : X): the space of continuous functions defined on 0 ≤ t ≤ T with value in X

Lp: the usual space of measurable whose p th power is Lebesgue integrable

I: Identity operator

∆: the Laplace operator

∇ : gradient operator

R(λ,A): the resolvent operator of A

∂u
∂η

: the outward normal derivative

‖u‖p: the norm of u in Lp

‖u‖∞: the norm of u in L∞

〈., .〉: scalar product

1



ABSTRACT

This thesis is concerned with the existence, uniqueness and regularity of solutions as well

as the exponential stability for a Bresse system in one-dimensional open bounded domain

under homogeneous Dirichlet or mixed Dirichlet-Neumann boundary conditions and with

time delays and infinite memories. First, we show that the system is well posed in the sense

of semigroup theory. Second, when three memories are present, we prove the exponential

stability without any restriction on the speeds of wave propagations. Third, when only two

memories are present or when only one memory is acting on the second equation, we prove

the exponential stability depending on the speeds of wave propagations. Finaly we consider

a one-dimensional linear Bresse systems in a bounded open interval with one infinite mem-

ory acting only on the shear angle equation. First, we establish the wellposedness using

the semigroup theory. Then, we prove two general (uniform and weak) decay estimates

depending on the speeds of wave propagations and the arbitrary growth at infinity of the

relaxation function.

Keywords: Bresse system, Time delay, Infinite memory, Well-posedness, Stability,

Semigroup theory, Energy method.
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INTRODUCTION

In this thesis, we consider the following Bresse system in one-dimensional open bounded

domain with time delays and infinite memories:

ρ1ϕtt − k1(ϕx + ψ + lw)x − lk3(wx − lϕ) + F1 = 0, (x, t) ∈]0, L[×R+,

ρ2ψtt − k2ψxx + k1(ϕx + ψ + lw) + F2 = 0, (x, t) ∈]0, L[×R+,

ρ1wtt − k3(wx − lϕ)x + lk1(ϕx + ψ + lw) + F3 = 0, (x, t) ∈]0, L[×R+,

ϕ(0, t) = ∂k

∂xk
ψ(0, t) = ∂k

∂xk
w(0, t) = ϕ(L, t) = ∂k

∂xk
ψ(L, t) = ∂k

∂xk
w(L, t) = 0, t ∈ R+,

ϕ(x,−t) = ϕ0(x, t), ϕt(x, 0) = ϕ1(x), t ∈ R+,

ψ(x,−t) = ψ0(x, t), ψt(x, 0) = ψ1(x), t ∈ R+,

w(x,−t) = w0(x, t), wt(x, 0) = w1(x), t ∈ R+,

ϕt(x, t− τ1) = h1(x, t− τ1), (x, t) ∈]0, L[×]0, τ1[,
ψt(x, t− τ2) = h2(x, t− τ2), (x, t) ∈]0, L[×]0, τ2[,
wt(x, t− τ3) = h3(x, t− τ3), (x, t) ∈]0, L[×]0, τ3[,

(1)

where the external forces Fi are given by

F1(x, t) =

∫ +∞

0

g1(s)ϕxx(x, t− s)ds+ µ1ϕt(x, t− τ1),

F2(x, t) =

∫ +∞

0

g2(s)ψxx(x, t− s)ds+ µ2ψt(x, t− τ2)

and

F3(x, t) =

∫ +∞

0

g3(s)wxx(x, t− s)ds+ µ3wt(x, t− τ3),

3



Introduction

gi : R+ → R+ is a given function, µi ∈ R, L, l, ρi, ki, τi ∈ R∗+, ϕ0, ϕ1, ψ0, ψ1, w0, w1 and

hi are given initial data belonging into a suitable Hilbert spaces, and

(ϕ, ψ,w) :]0, L[×R+ → R3

is the state (unknown) of (2.1). The subscripts t and x denote the derivatives with respect

to t and x, respectively. The infinite integrals depending on the relaxation functions gi are

representing the infinite memories and playing the role of dampers for (2.1), whereas the

terms depending on µi and τi are representing the discrete time delays and playing the role

of destabilizers for (2.1).

When the three memories are effective in (2.1) (i.e. g1g2g3 6= 0), we consider the homo-

geneous Dirichlet boundary conditions; that is k = 0. However, when only two memories

are present in (2.1), the mixed Dirichlet-Neumann boundary conditions will be considered;

that is k = 1.

The Bresse system (Bresse [6]) is known as the circular arch problem, where ϕ, w and

ψ represent, respectively, the vertical, longitudinal and shear angle displacements, and the

constants L, l, ρi and ki account for some its physical properties. For more details, we refer

to ([27] and [28]).

During the last few years, the well-posedness and stability of Bresse system were the

subject of several studies in the literature using different kinds of controls, where the ob-

tained stability results depend, in particular, on the number and position of the controls,

the smoothness of initial data and some relations between the speeds of wave propagations

defined by

S1 =

√
k1

ρ1

, S2 =

√
k2

ρ2

and S3 =

√
k3

ρ1

. (2)

Let us mention here some of these results related to the subject of our thesis.

When the longitudinal displacement w is ignored, the Bresse system is reduced to the

well known Timoshenko beams [46]. In this case, we refer the readers to [14], [17] and [23]

and the references therein for the stability question with infinite memories (in the presence

and absence of time delay s). Different general connections between the growth of relaxation

functions at infinity and the decay rate of solutions were proved.
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When the term wx− lϕ is not present in (2.1)1 and it is replaced by wx in (2.1)3, Bresse

system is known under the name of laminated Timoshenko beams, where the stability with

infinite memories (in the absence of time delays) was traeted by several authors; see for

instance, [21] and the references therein.

In the absence of time delays (µ1 = µ2 = µ3 = 0), the stability of Bresse system with

infinite memories was the subject of the papers [19] (three infinite memories), [20] (two

infinite memories), [15] (one infinite memory acting on (2.1)1), [11] (one infinite memory

acting on (2.1)2) and [16] (one infinite memory acting on (2.1)3). In these papers, it was

shown that, when each equation is controlled, the Bresse system is stable regardless to the

speeds of wave propagations (2), where the decay rate of solutions depends mainly on the

growth at infinity of the relaxation functions. However, when at least one equation is free,

the obtained stability estimate is of uniform or weak type depending on some relations

between Si. In particular, when only one infinite memory is considered, it was proved

in [11] and [16] that the exponential stability is valid if the relaxation function converges

exponentially to zero at infinity and

S1 = S2 = S3. (3)

Otherwise, the decay rate of solutions is weaker than the exponential one. This decay rate

is reduced to the polynomial one if the relaxation function converges exponentially to zero

at infinity and (3) does not hold. However, when the infinite memory is acting on (2.1)1,

the results of [15] show that the exponential stability does not hold even if (3) is satisfied

and the relaxation function converges exponentially to zero at infinity, but the system is

still stable at least polynomially with a decay rate depending on the smoothness of initial

data.

During the last few years, the stability of Bresse systems was also treated in the literature

using (local or global) frictional dampings instead of infinite memories (still in the absence

of time delays); see [12], [37] and [44] (one frictional damping acting on the shear angle

displacements), [3], [47] and [48] (two frictional dampings), and [8], [43], [45] and [48] (three

frictional dampings).

When the relaxation functions converge exponentially to zero and the frictional damp-
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ings are linear, the both infinite memories and frictional dampings lead to the same ex-

ponential and polynomial decay rate of solutions, and take account the same restrictions

on (2). Similar stability results were proved in [13], [29] and [31] also in case where Bresse

system is coupled with one or two heat equations in a certain manner.

As far as we know, the stability of Bresse system in the presence of time delays has never

been treated in the literature. It is known by now that the infinite memory generates a

dissipation strong enough to guarantee the stability (see the references cited above), whereas

the time delay can destabilize a system that was asymptotically stable in the absence of

time delay; see [32].

Our objectif in this thesis is to prove that, depending on (2) and the number of infinite

memories, the exponential stability of Bresse system holds also in the presence of time

delays and even if the number of infinite memories is smaller than the one of time delays.

We will consider the three cases: (i) three infinite memories, (ii) two infinite memories, and

(iii) one infinite memory acting on the second equation in (2.1). Our results generalizes

some ones cited above.

For more reading about the last case, we refer to Lagnese et al. [27] and [28]. It is

worthnoting that the system considered by Bresse [6] is obtained by taking

(F1, F2, F3) = (0,−γψt, 0), (4)

with γ > 0.

To stabilize the Bresse system, various dampings have been employed and several decay

results have been established. Alabau-Boussouira et al. [2] considered the case (4) and

proved that the exponential stability is equivalent to

S1 = S2 = S3. (5)

When (5) is not satisfied, they showed that the norm of solutions decays polynomially to

zero with rates depending on the regularity of the initial data. These latter results were

extended and improved in [37] by considering a locally distributed dissipation (that is, γ

in (4) is replaced by a non-negative function a :]0, L[→ R+ which is positive only on a part

of ]0, L[). In their work, the authors of [37] obtained a better decay rate when (5) does not

6
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hold. The exponential stability result of [2] was also established by Soriano et al. [44] for

the case of indefinite damping. That is, when γ = a(x), where a :]0, L[→ R is a function

with a positive average on ]0, L[ and such that∥∥∥∥a− ∫ L

0

a(x) dx

∥∥∥∥
L2(]0,L[)

is small enough. In such a situation, a may change sigh in ]0, L[. Also, some optimal

polynomial decay rates for Bresse systems in case (4) were proved in [12] when (5) does not

hold. Wehbe and Youcef [47] treated the case

(F1, F2, F3) = (0,−a1(x)ψt,−a2(x)wt),

where ai :]0, L[→ R+ are non-negative functions which can vanish on some part of ]0, L[,

and proved that the exponential stability holds if and only if S1 = S2. When S1 6= S2, a

polynomial decay rate depending on the regularity of the initial data was obtained. This

rate, in the case of classical solutions, is t−
1
2

+ε.

When only the first and second equations are controlled by means of linear frictional

dampings; that is,

(F1, F2, F3) = (−γ1ϕt,−γ2ψt, 0),

with γi > 0, the equivalence between the exponential stability and the equality S1 = S3

was established in [3]. In addition, a polynomial stability was also shown when S1 6= S3,

where the decay rate depends on the regularity of the initial data. In the particular case of

classical solutions, the polynomial decay of [3] is of the rate t−
1
2 and it is optimal. Soufyane

and Said-Houari [45] looked into the case of three frictional dampings in the whole space

R (instead of ]0, L[) and established some polynomial stability estimates. For stabilization

via nonlinear frictional dampings, we refere the readers to [8] and [43].

Concerning the stabilization via heat effect, one of the earliest results concerning the

asymptotic behavior of the Bresse system is due to Liu and Rao [29], where a Bresse system

7
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of the form 

ρ1ϕtt − k(ϕx + ψ + lw)x − lk0(wx − lϕ) + lγχ = 0,

ρ2ψtt − bψxx + k(ϕx + ψ + lw) + γθx = 0,

ρ1wtt − k0(wx − lϕ)x + lk(ϕx + ψ + lw) + γχt = 0,

ρ3θt − θxx + γψxt = 0,

ρ3χt − χxx + γ(wx − lϕ)t = 0,

(6)

in a bounded interval, together with initial and boundary conditions has been considered.

In that work, Liu and Rao [29] proved that the norm of solutions decays exponentially if

and only if (5) holds. Otherwise, the solutions decay polynomially with rates depending

on the regularity of the initial data. For the classical solutions, with boundary conditions

of Dirichlet-Neumann-Neumann or Dirichlet-Dirichlet-Dirichlet type, these rates are of the

form t−
1
4

+ε or t−
1
8

+ε, respectively, where ε > 0 is an arbitrary ”small” constant. Other

results similar to those of [29] were obtained in [13] for the Bresse system (6) without χ.

The obtained decay for classical solutions when (5) is not satisfied is, in general, of the

rate t−
1
6

+ε; whereas the rate is t−
1
3

+ε when S1 6= S2 and S1 = S3. Najdi and Wehbe [31]

extended the results of [13] to the case where the thermal dissipation is locally distributed,

and improved the polynomial stability estimate to t−
1
2 when (5) is not satisfied. Recently,

Keddi et al. [25] studied a thermoelastic Bresse system with Cattaneo’s thermal dissipation

of the form 

ρ1ϕtt − k(ϕx + ψ + lw)x − lk0(wx − lϕ) = 0,

ρ2ψtt − bψxx + k(ϕx + ψ + lw) + γθx = 0,

ρ1wtt − k0(wx − lϕ)x + lk(ϕx + ψ + lw) = 0,

ρ3θt + qx + γψxt = 0,

τqt + βq + θx = 0,

in a bounded interval, where ϕ , ψ and w are, respectively, the vertical, shear angle and

longitudinal displacements, θ and q denote the temperature difference and the heat flux,

and ρ1, ρ2, ρ3, k, k0, b, β, γ and τ are positive constants. Under suitable relations between

the constants, the authors of [25] showed exponential and optimal polynomial decay rates.

The same system was treated by Said-Houari and Hamadouche [40] in the whole space R,

where they showed that the coupling of the Bresse system with the heat conduction of the

Cattaneo theory leads to a loss of regularity of the solution and they proved that the decay

rate of the solution in the L2-norm is of the rate t−1/12. For more problems of thermoelastic
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Bresse systems, we refer the reader to [39], where a global existence was proved using two

heat equations, and to [41] and [42], where Cauchy thermoelastic Bresse problems were

treated.

Concerning the stability of Bresse systems via memories, there are only very few results.

For instance, Guesmia and Kafini [19] discussed, without restrictions on the speeds, the

stability issue for the case when the three equations are controlled via infinite memories of

the form

F1 = −
∫ +∞

0

g1(s)ϕxx(x, t− s) ds, F2 = −
∫ +∞

0

g2(s)ψxx(x, t− s) ds,

F3 = −
∫ +∞

0

g3(s)wxx(x, t− s) ds,

where gi : R+ → R+ are differentiable, non-increasing and integrable functions on R+.

Their decay estimate depends only on the growth of the relaxation functions gi at infinity,

which are allowed to have a decay rate at infinity arbitrary close to
1

s
. The same stability

estimate of [19] was later established in [20] when only two infinite memories are considered;

that is

(F1, F2, F3) =

(
0,−

∫ +∞

0

g2(s)ψxx(x, t− s) ds,−
∫ +∞

0

g3(s)wxx(x, t− s) ds
)
, (7)

(F1, F2, F3) =

(
−
∫ +∞

0

g1(s)ϕxx(x, t− s) ds, 0,−
∫ +∞

0

g3(s)wxx(x, t− s) ds
)

(8)

or

(F1, F2, F3) =

(
−
∫ +∞

0

g1(s)ϕxx(x, t− s) ds,−
∫ +∞

0

g2(s)ψxx(x, t− s) ds, 0
)
, (9)

under the following conditions on the speeds of wave propagations:

S1 = S2 in cases (7) and (8), S1 = S3 in case (9). (10)

When (10) does not hold, a weak stability estimate was given in [20], where the decay

rate depends also on the smoothness of the initial data. Similar results were obtained in

[16] when the memory term acts on the longitudinal displacements. Howover, when the

memory term acts on the vertical displacements, it was proved in [15] that the system can

9
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not be exponentially stable even if the speeds of wave propagations are equal, but it is still

polynomially stable.

To the best of our knowledge, the only known stability results for Bresse systems with

only one infinite memory acting on the shear angle displacements are the ones obtained in

[11] in case

(F1, F2, F3) =

(
0,−

∫ +∞

0

g(s)ψxx(x, t− s) ds, 0
)
, (11)

where g : R+ → R+ is differentiable, non-increasing and integrable function on R+. In [11],

it was assumed that g satisfies, for α1, α2 > 0,

− α2g(s) ≤ g′(s) ≤ −α1g(s), ∀s ∈ R+, (12)

and was shown that the exponential stability holds if and only if (5) is satisfied. Otherwise,

only the polynomial stability with a decay rate of type t−
1
2 and its optimality were obtained.

Notice that the condition (12) implies that g converges exponentially to zero at infinity and

satisfies

g(0)e−α2s ≤ g(s) ≤ g(0)e−α1s, ∀s ∈ R+. (13)

The thesis is organized as follows. We start with the first chapter representing a reminder

of some functional analysis results that will be used later. In chapter 2, we present our

hypotheses and we prove the well-posedness of (2.1). The proof of the exponential stability

result in case of three infinite memories will be given in chapter 3. Chapter 4 is devoted to

the exponential stability results in case of two infinite memories. In chapter 5, we establish

the wellposedness using the semigroups theory. Finally, we prove in chapter 6 two general

(uniform and weak) decay estimates depending on the speeds of wave propagations and the

arbitrary growth at infinity of the relaxation function. In the conclusion we discuss some

general comments and issues.

10



CHAPTER 1

PRELIMINARIES

In this chapter, devoted to reminders, we have grouped some essential notions of functional

analysis. Also, we briefly give the definitions and notations of some convolution products

and some integral inequalities which will be useful for the rest of our thesis.

1.1 Notions of functional analysis

1.1.1 Hilbert Spaces

Scalar products and the notion of Hilbert space

Definition 1.1 Let H be a real or complex vector space. A scalar product is an application

〈., .〉 : H × H → C if H is a complex vector space and 〈., .〉 : H × H → R if H is a real

vector space, verifying

• ∀y ∈ H : x 7→ 〈x, y〉 is linear (in x),

• 〈y, x〉 = 〈x, y〉,

• ∀x ∈ H : 〈x, x〉 ≥ 0,

• 〈x, x〉 = 0 then x = 0.

11
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Therefore y 7→ 〈x, y〉 is antilinear (in y) if H is a complex vector space.

We pose

‖x‖ =
√
〈x, x〉.

Lemma 1.2 Let H be a real or complex vector space with scalar product 〈., .〉.

Then, for all x, y ∈ H,

‖x+ y‖2 = ‖x‖2 + 2Re〈x, y〉+ ‖y‖2.

Corollary 1.3 Let H be a vector space (real or complex) with scalar product 〈., .〉. Then

‖x‖ =
√
〈x, x〉 defines a norm.

Definition 1.4 A Hilbert space is a real or complex vector space with a scalar product and

which is complete for the associated norm.

1.1.2 Banach Spaces

A normed vector space E called Banach space if it is complete for its norm.

The topological dual of E noted by E ′ is the space of continuous linear forms on E; ie:

f ∈ E ′ ⇔ f : E → R,

linear and

∃c > 0, |〈f, x〉| 6 c‖x‖E,∀x ∈ E.

we equipped the dual space E ′ with the following norm :

‖f‖E′ = sup
‖x‖61

〈f, x〉

with this norm E ′, is a Banach space.

12



CHAPTER 1. PRELIMINARIES

Reminders on Lp-Spaces

We consider Ω an open set of Rn. The functions f will be considered from Ω into R or C.

1.1.3 Lp(Ω) Spaces

Definition 1.5 Let 1 ≤ p < +∞ and Ω an open set of Rn we define

Lp(Ω) =

{
f : Ω→ R mesurable and

∫
Ω

|f(x)|pdx < +∞
}
.

We define on Lp(Ω) the norm:

‖f‖p =

(∫
Ω

|f(x)|pdx
)1/p

.

Theorem 1.6 The space Lp(Ω) is reflexive if 1 < p < +∞.

Lemma 1.7 The spaces L1(Ω) and C([0, 1]) are not reflective .

Proof. See [9] p .17

Theorem 1.8 Every closed subspace of a reflexive Banach space is reflexive.

Proof. See [9] p .18

Notation 1.9 Let 1 ≤ p ≤ +∞; we denote by p′ the conjugate exponent of p; ie: 1
p
+ 1
p′

= 1.

Property 1.10 1- The space Lp(Ω) is separable for 1 ≤ p < +∞.

2- The space L∞(Ω) is neither reflexive, nor separable and its dual contains strictly

L1(Ω).

3- For mes(Ω) < +∞ , and 1 ≤ p ≤ q ≤ +∞, we have :

Lq(Ω) ⊂ Lp(Ω)

13
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and

L∞(Ω) ⊂ L2(Ω) ⊂ L1(Ω).

Theorem 1.11 [7] D(Ω) is dense in Lp(Ω) for 1 ≤ p < +∞ that is:

D(Ω) = Lp(Ω). ∀p, 1 ≤ p < +∞.

1.1.4 Lp(a,b,E) Spaces

Let Ω be a Banach space and ]a, b[ an open interval of R, we define, for 1 ≤ p < +∞,

Lp(a, b, E) =

{
f :]a, b[→ E mesurable such that

∫
(a,b)

|f(t)|pEdt < +∞
}
.

For p =∞, L∞(a, b, E) = {f : (a, b) −→ E : ∃C ≥ 0 mesurable such that

‖f(t)‖E ≤ C for t ∈ (a, b)} We define on Lp(a, b, E) the norm

‖f‖Lp(a,b,E) =


[∫

(a,b)
‖f(t)‖pEdt

] 1
p
, if 1 ≤ p < +∞

sup ess
t∈(a,b)

‖f(t)‖E, if p = +∞.

Equipped with this norm Lp(a, b, E) is a Banach space.

1.1.5 Sobolev Spaces

We introduce the space Hm(Ω) as being the space of functions u ∈ L2(Ω), whose all partial

derivatives of order less than or equal m in the weak sense are in L2(Ω).

These spaces play a fundammental role in the study of partial differential equations.

Definition 1.12 For m ∈ N, we define the Sobolev space of order m by:

Hm(Ω) =
{
u ∈ L2(Ω) : Dαu ∈ L2(Ω),∀α ∈ Nn with |α| ≤ m

}
where α = (α1, .., αn), αj ∈ N, |α| = α1 + ...+ αn and Dα =

∂|α|

∂xα1
1 ......∂x

αn
n

.

We provide Hm(Ω) with the scalar product

14
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(u, v)m =
∑
|α|≤m

∫
Ω

Dαu(x)Dαv(x)dx,

and the norm associated with this scalar product

‖u‖Hm(Ω) =

∑
|α|≤m

∫
Ω

|Dαu(x)|2dx

1/2

=

∑
|α|≤m

‖Dαu‖2
2

1/2

.

Definition 1.13 [1] For m ∈ N, 1 ≤ p ≤ +∞ and Ω an open set from Rn,

Wm,p(Ω) = {u ∈ Lp(Ω); Dαu ∈ Lp(Ω),∀α ∈ Nnwith |α| ≤ m}. (1.1)

• If m = 1,W 1,p(Ω) = {u ∈ Lp(Ω), ∇u ∈ (Lp(Ω))n}.

Theorem 1.14 The space Wm,p(Ω), for 1 ≤ p < +∞, equipped with the norm

‖f‖Wm,p(Ω) =

∑
|α|≤m

‖Dαf‖pLp(Ω)

 1
p

,

is a Banach space.

Moreover, for p = 2, the Banach space Wm,2 becomes a Hilbert space which we note Hm,

with the norm

‖f‖Hm(Ω) =

∑
|α|≤m

‖Dαf‖2
L2(Ω)

 1
2

.

and a scalar product

〈u, v〉m =
∑
|α|≤m

〈Dαu,Dαv〉 (1.2)

associated to the norm ‖u‖Hm =
√
〈u, u〉

m
.

In the case Ω is bounded set of Rn, due to the lack of density of C∞c (Ω) in Wm,p(Ω)

(m ∈ N∗, 1 ≤ p < +∞), we define the space Wm,p
0 (Ω) as the closure of C∞c (Ω) in Wm,p(Ω).

We denote Hm
0 (Ω) = Wm,2

0 (Ω).

Theorem 1.15 Let Ω be an open set of Rn and let m ∈ N . The space Hm(Ω) with scalar

product (1.2) is a separable and reflexive Hilbert space.

15
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1.2 Some useful inequalities

Lemma 1.16 (Cauchy-Schwarz inequality)

∀u, v ∈ L2(Ω) :

∣∣∣∣∫
Ω

uvdx

∣∣∣∣ ≤ (∫
Ω

|u|2dx
) 1

2
(∫

Ω

|v|2dx
) 1

2

.

∀u, v ∈ (L2(Ω))n : ∣∣∣∣∣
∫

Ω

n∑
i=1

uividx

∣∣∣∣∣ ≤
(∫

Ω

n∑
i=1

u2
i dx

) 1
2
(∫

Ω

n∑
i=1

v2
i dx

) 1
2

Lemma 1.17 (Young’s inequality)

For all a, b ∈ R and ε > 0,we have :

ab ≤ εa2 +
b2

4ε
.

Proof. We have

(2εa− b)2 ≥ 0,

for all ε > 0, then:

4ε2a2 + b2 − 4εab ≥ 0,

this includes

4εab ≤ 4ε2a2 + b2,

therefore

ab ≤ εa2 +
b2

4ε
,

this completes the demonstration.

Lemma 1.18 (Young’s inequality) For all a and b real positive or zero, and all p and

q real strictly positive such that 1
p

+ 1
q

= 1 (they are sometimes said to be conjugated), we

have :

ab ≤ ap

p
+
bq

q
. (1.3)

16
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The equality occurs if and only if ap = bq.

Proof. The function exp is convex, which means that, for all x, y and λ ∈ [0, 1]

exp(λx+ (1− λy)) ≤ λ exp(x) + (1− λ) exp(y). (1.4)

In particular

ab = exp(ln(ab))

= exp

(
ln ap

p
+

ln bq

q

)
≤ 1

p
exp(ln ap) +

1

q
exp(ln bq) =

ap

p
+
bq

q
,

hence the result.

Lemma 1.19 (Hölder’s inequality)

Let f and g be two functions respectively in Lp(Ω) and in Lq(Ω), with p, q ≥ 1 and 1
p
+ 1
q

= 1
r
.

Then, the product fg is in Lr(Ω) and we have(∫
Ω

|fg|rdx
) 1

r

≤
(∫

Ω

|f |pdx
) 1

p
(∫

Ω

|g|qdx
) 1

q

.

Lemma 1.20 (Sobolev-Poincaré’s inequality)

Let Ω be a bounded open of Rn, then there exists a constant C, depending on Ω and p, such

that

‖u‖Lp(Ω) ≤ C(Ω)‖∇u‖Lp(Ω) ∀u ∈ W 1,p
0 (Ω),∀ 1 ≤ p < +∞.

1.3 Some physical definitions

Definition 1.21 (Energy) Energy (from the Greek: force in action) is what allows us to

act: without it, nothing happens, no motion, no light, no life!

In the physical sense, energy characterizes the capacity to modify a state, to produce a work

leading to motion, light, or heat. Any action or change of state requires that energy is

exchanged.

17
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Definition 1.22 (Thermoelastic) Thermoelasticity is the relationship between the elas-

ticity of a body and its dilatation according to heat.

1.4 Lyapunov Direct Method (for local stability)

Given a system x = f(x), with f continuous, and for some region < around the ori-

gin (specifically an open subset of Rn containing the origin), if we can produce a scalar,

continuously-differentiable function V (x), such that

V (x) > 0, ∀x ∈ <\{0}, V (0) = 0, and

V̇ (x) =
∂V

∂x

∂x

∂t
=
∂V

∂x
f(x) ≤ 0, ∀x ∈ <\{0}, V̇ (0) = 0,

then the origin (x = 0) is stable in the sense of Lyapunov.

If, additionally, we have

V̇ (x) =
∂V

∂x
f(x) < 0,∀x ∈ <\{0},

then the origin is (locally) asymptotically stable. And if we have

V̇ (x) =
∂V

∂x
f(x) ≤ −(x),∀x ∈ <\{0},

for some α > 0, then the origin is (locally) exponentially stable.

1.5 Lyapunov analysis for global stability

Given a system ẋ = f(x), with f continuous, and for some region < around the ori-

gin (specifically an open subset of Rn containing the origin), if we can produce a scalar,

continuously-differentiable function V (x), such that

V (x) > 0,

V̇ (x) =
∂V

∂x
f(x) < 0, and

18
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V (x) −→∞ whenever ‖x‖ −→ ∞,

then the origin (x = 0) is globally asymptotically stable. If additionally we have that

V̇ (x) ≤ −αV (x),

for some α > 0, then the origin is globally exponentially stable.

Reminders on the theory of semi-groups

We will recall some notions and theorems of the theory of semi-groups, which are necessary

for the development of our topic. For more details, we refer to [38] and [30].

1.6 Semigroups

Numerous physical models can be written in the form of an abstract Cauchy problem{
ẋ(t) = Ax(t), t > 0,
x(0) = x0,

(1.5)

where (̇) denotes the derivative with respect to time t, A is the infinitesimal generator of

a C0-semigroup T (t) over a Hilbert space H and x0 ∈ H is given. We are looking for a

solution x : R+ → H. Therefore, we start by introducing some basic concepts concerning

the semigroups.

Definition 1.23 Let X be a Banach space.

1) A one parameter family T (t), t ≥ 0, of bounded linear operators from X into X is a

semigroup of bounded linear operators on X if

• T (0) = I;

• T (t+ s) = T (t)T (s). ∀s, t ≥ 0.

2) A semigroup of bounded linear operators, T (t), is uniformly continuous if

lim
t→0+
‖T (t)− I‖L(H) = 0.
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3) A semigroup T (t) of bounded linear operators on X is a strongly continuous semigroup

of bounded linear operators or a C0-semigroup if

lim
t→0+

T (t)x = x.

4) The linear operator A defined by

D(A) =

{
x ∈ X; lim

t→0+

T (t)x− x
t

exists

}
and

Ax = lim
t→0

T (t)x− x
t

, ∀x ∈ D(A),

is the infinitesimal generator of the semigroup T (t).

Theorem 1.24 Let T (t) be a C0-semigroup. Then there exist constants w ≥ 0 and M ≥ 1

such that

‖T (t)‖L(H) ≤Mewt, ∀t > 0.

In the above theorem, if w = 0, then T (t) is called uniformly bounded, and if moreover

M = 1, then T (t) is called a C0-semigroup of contractions.

Definition 1.25 Let H be a Hilbert space. An operator (A, D(A)) on H satisfying

<(AU,U) ≤ 0, ∀U ∈ D(A)

is said to be a dissipative operator. A maximal dissipative operator (A, D(A)) on H is a

dissipative operator for which R(λI − A) = H, for some λ > 0. A maximal dissipative

operator is also called m-dissipative operator. For the existence of solutions, we normally

use the following Lumer-Phillips Theorem or Hille-Yosida Theorem.

Theorem 1.26 (Lumer-Phillips Theorem) Let A be a linear operator with dense domain

D(A) in a Banach space X.

• If A is dissipative and there exists a λ0 > 0 such that the range R(λ0I − A) = X,

then A generates a C0-semigroup of contractions on X.
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• If A is the infinitesimal generator of a C0-semigroup of contractions on X then R(λI−

A) = Xfor all λ > 0 and A is dissipative.

Consequently, A is maximal dissipative on a Hilbert space H if and only if it generates

a C0-semigroup of contractions on H, and thus the existence of the solution is justified by

the following corollary which follows from Lumer-Phillips theorem.

Corollary 1.27 Let H be a Hilbert space and let A be a linear operator defined from

D(A) ⊂ H into H. If A is maximal dissipative, then the initial value problem (1.5) has a

unique weak solution x ∈ C([0,+∞],H), for each initial data x0 ∈ H.

Moreover, if x0 ∈ D(A), then x ∈ C ([0,+∞), D(A)) ∩ C1([0,+∞),H) .

1.7 Lax-Milgram Theorem

The Lax-Milgram theorem is a simple and efficient tool for solving ordinary and linear

partial differential equations.

Definition 1.28 We say that a bilinear form

a(u, v) : H×H −→ R

is

• Continue if there is a positive constant C such that

|a(u, v)| ≤ C‖u‖‖v‖, ∀u, v ∈ H,

• Coercive if there is a constant α > 0 such that

a(v, v) ≥ α‖v‖2, ∀v ∈ H.

Theorem 1.29 (Lax-Milgram) Let a be a continuous, coercive, bilinear form.

Then for all ϕ ∈ H′, there exists a unique u ∈ H such that

a(u, v) = (ϕ, v), ∀v ∈ H.

21



CHAPTER 1. PRELIMINARIES

Moreover, if a is symmetric, then u is characterized by the property

u ∈ H and
1

2
a(u, u)− 〈ϕ, u〉 = min

v∈H

{
1

2
a(v, v)− 〈ϕ, v〉

}
.
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CHAPTER 2

WELL-POSEDNESS OF BRESSE SYSTEM WITH

MEMORIES AND DELAYS

Well-posedness

In this section, we state our assumptions on gi and prove the global existence, uniqueness

and smoothness of solution of this system.



ρ1ϕtt − k1(ϕx + ψ + lw)x − lk3(wx − lϕ) + F1 = 0, (x, t) ∈]0, L[×R+,

ρ2ψtt − k2ψxx + k1(ϕx + ψ + lw) + F2 = 0, (x, t) ∈]0, L[×R+,

ρ1wtt − k3(wx − lϕ)x + lk1(ϕx + ψ + lw) + F3 = 0, (x, t) ∈]0, L[×R+,

ϕ(0, t) = ∂k

∂xk
ψ(0, t) = ∂k

∂xk
w(0, t) = ϕ(L, t) = ∂k

∂xk
ψ(L, t) = ∂k

∂xk
w(L, t) = 0, t ∈ R+,

ϕ(x,−t) = ϕ0(x, t), ϕt(x, 0) = ϕ1(x), t ∈ R+,

ψ(x,−t) = ψ0(x, t), ψt(x, 0) = ψ1(x), t ∈ R+,

w(x,−t) = w0(x, t), wt(x, 0) = w1(x), t ∈ R+,

ϕt(x, t− τ1) = h1(x, t− τ1), (x, t) ∈]0, L[×]0, τ1[,
ψt(x, t− τ2) = h2(x, t− τ2), (x, t) ∈]0, L[×]0, τ2[,
wt(x, t− τ3) = h3(x, t− τ3), (x, t) ∈]0, L[×]0, τ3[,

(2.1)

Following a method devised in [10], we consider new auxiliary variables

ηi :]0, L[×R+ × R+ → R

to treat the infinite memories, and following the idea in [32] and [33] to deal with the discrite
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time delay terms by considering new auxiliary variables

zi :]0, L[×R+×]0, 1[→ R,

we put 

η1(x, t, s) = ϕ(x, t)− ϕ(x, t− s), (x, t, s) ∈]0, L[×R+ × R+,

η2(x, t, s) = ψ(x, t)− ψ(x, t− s), (x, t, s) ∈]0, L[×R+ × R+,

η3(x, t, s) = ω(x, t)− ω(x, t− s), (x, t, s) ∈]0, L[×R+ × R+,

z1(x, t, ρ) = ϕt(x, t− τ1ρ), (x, t, ρ) ∈]0, L[×R+×]0, 1[,

z2(x, t, ρ) = ψt(x, t− τ2ρ), (x, t, ρ) ∈]0, L[×R+×]0, 1[,

z3(x, t, ρ) = ωt(x, t− τ3ρ), (x, t, ρ) ∈]0, L[×R+×]0, 1[.

(2.2)

The initial data of ηi and zi are then given by

η0
1(x, s) = η1(x, 0, s) = ϕ0(x, 0)− ϕ0(x, s),

η0
2(x, s) = η2(x, 0, s) = ψ0(x, 0)− ψ0(x, s),

η0
3(x, s) = η3(x, 0, s) = ω0(x, 0)− ω0(x, s),

z0
1(x, ρ) = z1(x, 0, ρ) = h1(x,−τ1ρ),

z0
2(x, ρ) = z2(x, 0, ρ) = h2(x,−τ2ρ),

z0
3(x, ρ) = z3(x, 0, ρ) = h3(x,−τ3ρ).

(2.3)

The variables ηi and zi satisfy

η1t(x, t, s) + η1s(x, t, s) = ϕt(t),

η2t(x, t, s) + η2s(x, t, s) = ψt(t),

η3t(x, t, s) + η3s(x, t, s) = ωt(t),

ηi(x, t, 0) = 0, i = 1, 2, 3,

η1(0, t, s) = η1(L, t, s) = 0,

∂k

∂xk
ηi(0, t, s) = ∂k

∂xk
ηi(L, t, s) = 0, i = 2, 3

(2.4)

and 

τ1z1t(x, t, ρ) + z1ρ(x, t, ρ) = 0,

τ2z2t(x, t, ρ) + z2ρ(x, t, ρ) = 0,

τ3z3t(x, t, ρ) + z3ρ(x, t, ρ) = 0,

z1(x, t, 0) = ϕt(x, t), z2(x, t, 0) = ψt(x, t), z3(x, t, 0) = ωt(x, t),

z1(0, t, ρ) = z1(L, t, ρ) = 0,

∂k

∂xk
zi(0, t, ρ) = ∂k

∂xk
zi(L, t, ρ) = 0, i = 2, 3,

(2.5)

where the subscripts s and ρ denote the derivatives with respect to s and ρ, respectively. If,

for example, µ1 = 0, the corresponding variable z1 is not considered and (2.1)8 is replaced
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by ϕt(x, 0) = h1(x). Similarly, if, for example g1 = 0, the corresponding variable η1 is not

considered and the first condition in (2.1)5 is replaced by ϕ(x, 0) = ϕ0(x). And the same

thing when µ2 = 0 and/or µ3 = 0 and/or g2 = 0 and/or g3 = 0. To simplify the formulas,

we note x, t, s and ρ only when it is necessary to avoid ambiguity.

Let us consider the space

H = H1
0 (]0, L[)× V 2

1 × L2(]0, L[)× V 2
0 × L1 × L2 × L3 × Ld × L̃2

d,

where H1
0 (]0, L[) = {ω :]0, 1[→ H1(]0, L[), w(0) = w(L) = 0},

L1 =

{
ω : R+ → H1

0 (]0, L[),

∫ L

0

∫ +∞

0

g1(s)ω2
x(x, s)dsdx < +∞

}
,

Li =

{
ω : R+ → V1,

∫ L

0

∫ +∞

0

gi(s)ω
2
x(x, s)dsdx < +∞

}
, i = 2, 3,

Ld =

{
ω :]0, 1[→ L2(]0, L[),

∫ L

0

∫ 1

0

ω2(x, ρ)dρdx < +∞
}
,

L̃d =

{
ω :]0, 1[→ V0,

∫ L

0

∫ 1

0

ω2(x, ρ)dρdx < +∞
}
,

V1 =


H1

0 (]0, L[) if k = 0,{
ω ∈ H1(]0, L[),

∫ L

0

ω(x)dx = 0

}
if k = 1

and

V0 =


L2(]0, L[) if k = 0,{
ω ∈ L2(]0, L[),

∫ L

0

ω(x)dx = 0

}
if k = 1.

The spaces Li and Ld are endowed with the classical inner products

〈ω, ω̃〉Li =

∫ L

0

∫ +∞

0

gi(s)ωx(x, s)ω̃x(x, s)dsdx

and

〈ω, ω̃〉Ld = 〈ω, ω̃〉L̃d =

∫ L

0

∫ 1

0

ω(x, ρ)ω̃(x, ρ)dρdx.
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We put

U(t) = (ϕ, ψ, ω, ϕt, ψt, ωt, η1, η2, η3, z1, z2, z3)T .

So its initial data U0 is given by

U0 = U(0) = (ϕ0, ψ0, ω0, ϕ1, ψ1, ω1, η
0
1, η

0
2, η

0
3, z

0
1 , z

0
2 , z

0
3)T .

The system (2.1) can be formulated in the following abstract linear first-order system:{
Ut = (A+ B)U(t), t > 0,
U(0) = U0,

(2.6)

where the operators A and B are linear and given by

A (ω1, · · · , ω12)T =

(
ω4, ω5, ω6, ω̂7, ω̂8, ω̂9, ω4 − ω7s, ω5 − ω8s, ω6 − ω9s,−

1

τ1

ω10ρ,−
1

τ2

ω11ρ,−
1

τ3

ω12ρ

)T
and

B(ω1, · · · , ω12)T =

(
0, 0, 0,

|µ1|
ρ1

ω4,
|µ2|
ρ2

ω5,
|µ3|
ρ1

ω6, 0, 0, 0, 0, 0, 0

)T
, (2.7)

where

ω̂7 =
k1

ρ1

(ω1x + ω2 + lω3)x +
lk3

ρ1

(ω3x − lω1)− g0
1

ρ1

ω1xx +
1

ρ1

∫ +∞

0

g1(s)ω7xxds−
µ1

ρ1

ω10(1)− |µ1|
ρ1

ω4,

ω̂8 =
k2 − g0

2

ρ2

ω2xx −
k1

ρ2

(ω1x + ω2 + lω3) +
1

ρ2

∫ +∞

0

g2(s)ω8xxds−
µ2

ρ2

ω11(1)− |µ2|
ρ2

ω5

and

ω̂9 =
k3

ρ1

(ω3x − lω1)x −
lk1

ρ1

(ω1x + ω2 + lω3)− g0
3

ρ1

ω3xx +
1

ρ1

∫ +∞

0

g3(s)ω9xxds−
µ3

ρ1

ω12(1)− |µ3|
ρ1

ω6,

where we put

g0
i =

∫ +∞

0

gi(s)ds.

The domains D(B) and D(A) of B and A, respectively, are given by D(B) = H and

D(A) =
{
W = (w1, · · · , w12)T ∈ H, AW ∈ H, ωi+6(0) = 0, ωi+9(0) = ωi+3, i = 1, 2, 3

}
,
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this means that

D(A) =



(ω1, · · · , ω12)T ∈ H, ω7(0) = ω8(0) = ω9(0) = 0, ω10(0) = ω4, ω11(0) = ω5, ω12(0) = ω6

(ω4, ω5, ω6) ∈ H1
0 (]0, L[)× V 2

1 , (ω7s, ω8s, ω9s) ∈ L1 × L2 × L3, (ω10ρ, ω11ρ, ω12ρ) ∈ Ld × L̃2
d

(k1 − g0
1)ω1xx +

∫ +∞

0

g1(s)ω7xxds ∈ L2(]0, L[)

(k2 − g0
2)ω2xx +

∫ +∞

0

g2(s)ω8xxds ∈ V0

(k3 − g0
3)ω3xx +

∫ +∞

0

g3(s)ω9xxds ∈ V0


.

(2.8)

More general, we have D(A0) = H, D(A1) = D(A) and, for n = 2, 3, · · · ,

D(An) =
{
W ∈ D(An−1), AW ∈ D(An−1)

}
.

Therefore, we conclude from (2.2), (2.3), (2.4) and (2.5) that the systems (2.1) and (2.6)

are equivalent.

Remark 2.1 When only two memories are considered, some additional multipliers are

needed to get the stability of (2.1) (section 4). These multipliers generate some boundary

terms depending on ψx(0, t), ψx(L, t), wx(0, t) and wx(L, t). To avoid these boundary terms,

we consider the homogeneous Dirichlet-Neumann boundary conditions for ψ and w (k = 1

in (2.1)). But in this case, the Poincaré’s inequality is not applicable neither for ψ nor

for w. To overcome this problem, we consider a change of variables (as in [20] and [24]).

By integrating on ]0, L[ the second and third equations in (2.1) and using the boundary

conditions with k = 1, we obtain

∂2

∂t2

∫ L

0

ψ dx+
k1

ρ2

∫ L

0

ψ dx+
lk1

ρ2

∫ L

0

w dx+
µ2

ρ2

∂

∂t

∫ L

0

ψ(x, t− τ2) dx = 0 (2.9)

and

∂2

∂t2

∫ L

0

w dx+
l2k1

ρ1

∫ L

0

w dx+
lk1

ρ1

∫ L

0

ψ dx+
µ3

ρ1

∂

∂t

∫ L

0

w(x, t− τ3) dx = 0. (2.10)

Therefore, (2.9) implies that∫ L

0

w dx = − ρ2

lk1

∂2

∂t2

∫ L

0

ψ dx− 1

l

∫ L

0

ψ dx− µ2

lk1

∂

∂t

∫ L

0

ψ(x, t− τ2) dx. (2.11)
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Let τ0 = min{τ2, τ3}, l0 =
√

k1
ρ2

+ l2k1
ρ1

and

h0(t) = −µ2

ρ2

∂2

∂t2

∫ L

0

h2(x, t−τ2) dx−µ2l
2k1

ρ1ρ2

∫ L

0

h2(x, t−τ2) dx+
µ3lk1

ρ1ρ2

∫ L

0

h3(x, t−τ3) dx, t ∈]0, τ0[.

Substituting (2.11) into (2.10) and using the last two boundary conditions in (2.1), we get

∂4

∂t4

∫ L

0

ψ dx+ l20
∂2

∂t2

∫ L

0

ψ dx = h0, t ∈]0, τ0[. (2.12)

Then, solving (2.12) by classical arguments and then substituting into (2.11), we find that∫ L

0

ψ dx = c̃1 cos (l0t) + c̃2 sin (l0t) + c̃3t+ c̃4 +

∫ t

0

∫ s

0

h̃0(y)dyds, t ∈]0, τ0[ (2.13)

and ∫ L

0

w dx =
c̃1

l

(
ρ2l

2
0

k1

− 1

)
cos (l0t) +

c̃2

l

(
ρ2l

2
0

k1

− 1

)
sin (l0t) (2.14)

−1

l
(c̃3t+ c̃4)− 1

l

∫ t

0

∫ s

0

h̃0(y)dyds− ρ2

lk1

h̃0(t)− µ2

lk1

∫ L

0

h2(x, t− τ2)dx, t ∈]0, τ0[,

where c̃1, · · · , c̃4 are real constants and (here Re denotes the real part i2 = −1)

h̃0(t) = Re

[
e−il0t

∫ t

0

e2il0s

∫ s

0

e−il0yh0(y)dyds

]
, t ∈]0, τ0[.

Let

(ψ̄0(x), w̄0(x)) =


(ψ0(x, 0), w0(x, 0)) in case g1 = 0,

(ψ0(x), w0(x, 0)) in case g2 = 0,

(ψ0(x, 0), w0(x)) in case g3 = 0.

Using the initial data of ψ and w in (2.1), we see that

c̃1 =
k1

ρ2l20

∫ L

0

ψ̄0 dx+
lk1

ρ2l20

∫ L

0

w̄0 dx+
µ2

ρ2l20

∫ L

0

h2(x,−τ2)dx,

c̃2 =
k1

ρ2l20

∫ L

0

ψ1 dx+
lk1

ρ2l20

∫ L

0

w1 dx+
µ2

ρ2l20

∫ L

0

∂

∂t
h2(x,−τ2)dx,

c̃3 =

(
1− k1

ρ2l20

)∫ L

0

ψ1 dx−
lk1

ρ2l20

∫ L

0

w1 dx−
µ2

ρ2l20

∫ L

0

∂

∂t
h2(x,−τ2)dx,

c̃4 =

(
1− k1

ρ2l20

)∫ L

0

ψ̄0 dx−
lk1

ρ2l20

∫ L

0

w̄0 dx−
µ2

ρ2l20

∫ L

0

h2(x,−τ2)dx.
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Let, for t ∈]0, τ0[,

ψ̃0(t) =

∫ L

0

ψdx and w̃0(t) =

∫ L

0

wdx,

and for n ∈ N∗ and t ∈]nτ0, (n+ 1)τ0[,

ψ̃n(t) =

∫ L

0

ψdx and w̃n(t) =

∫ L

0

wdx

with

(ψ̃n(nτ0), w̃n(nτ0)) = (ψ̃n−1(nτ0), w̃n−1(nτ0)) and (ψ̃′n(nτ0), w̃′n(nτ0)) = (ψ̃′n−1(nτ0), w̃′n−1(nτ0)).

By induction on n and according to (2.10) and (2.11), we see that ψ̃n and w̃n, n ∈ N∗, are

defined on ]nτ0, (n+1)τ0[ as ψ̃0 and w̃0 (with ψ̃n−1, w̃n−1, ψ̃n−1(nτ0), w̃n−1(nτ0), ψ̃′n−1(nτ0),

w̃′n−1(nτ0),
∫ t
nτ0

and
∫ s
nτ0

instead of h2, h3,
∫ L

0
ψ̄0dx,

∫ L
0
w̄0dx,

∫ L
0
ψ1dx,

∫ L
0
w1dx,

∫ t
0

and∫ s
0

, respectively). Finally, the functions

ψ̂ = ψ̃n and ŵ = w̃n, ∀n ∈ N, ∀t ∈ [nτ0, (n+ 1)τ0[

are the unique two times derivatives solution of the system

∂2

∂t2
ŵ(t) +

l2k1

ρ1

ŵ(t) +
lk1

ρ1

ψ̂(t) +
µ3

ρ1

∂

∂t
ψ̂(t− τ2) = 0, t > 0,

ŵ(t) = − ρ2

lk1

∂2

∂t2
ψ̂(t)− 1

l
ψ̂(t)− µ2

lk1

∂

∂t
ψ̂(t− τ2), t > 0,

∂

∂t
ψ̂(t− τ2) =

∫ L

0

h2(x, t− τ2)dx, t ∈]0, τ2[,

∂

∂t
ŵ(t− τ3) =

∫ L

0

h3(x, t− τ3)dx, t ∈]0, τ3[,

ψ̂(0) =

∫ L

0

ψ̃0dx, ψ̂′(0) =

∫ L

0

ψ1dx,

ŵ(0) =

∫ L

0

w̃0dx, ŵ′(0) =

∫ L

0

w1dx.

Consequentely, the functions

ψ̃ = ψ − 1

L
ψ̂ and w̃ = w − 1

L
ŵ
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satisfy ∫ L

0

ψ̃ dx =

∫ L

0

w̃ dx =

∫ L

0

η̃2 dx =

∫ L

0

η̃3 dx = 0, (2.15)

where
Cases g1 = 0 or g3 = 0 : η̃2(x, t, s) = ψ̃(x, t)− ψ̃(x, t− s) in ]0, L[×R+ × R+,

Cases g1 = 0 or g2 = 0 : η̃3(x, t, s) = w̃(x, t)− w̃(x, t− s) in ]0, L[×R+ × R+.

Therefore, the Poincaré’s inequality

∃ c0 > 0 :

∫ L

0

v2 dx ≤ c0

∫ L

0

v2
x dx, ∀v ∈ H1

0 (]0, L[) ∪ V1 (2.16)

is applicable for ψ̃, w̃, η̃2 and η̃3, provided that ψ̃, w̃ ∈ H1(]0, L[). In addition, (ϕ, ψ̃, w̃)

satisfies the boundary conditions and the first three equations in (2.1) with initial data

ψ0 −
1

L
ψ̂(0), ψ1 −

1

L
ψ̂′(0), w0 −

1

L
ŵ(0)and w1 −

1

L
ŵ′(0),

instead of ψ0, ψ1, w0 and w1, respectively. In the sequel, we work with ψ̃, w̃, η̃2 and η̃3

instead of ψ, w, η2 and η3, but, for simplicity of notation, we use ψ, w, η2 and η3 instead

of ψ̃, w̃, η̃2 and η̃3, respectively.

Now, we assume that

(A1) The function gi is differentiable, nonincreasing and integrable on R+.

(A2) There exists a positive constant k0 such that, for any (ϕ, ψ, ω) ∈ H1
0 (]0, L[)× V 2

1 ,∫ L

0

(
ϕ2
x + ψ2

x + ω2
x

)
dx (2.17)

≤ k0

∫ L

0

(
k2ψ

2
x + k3(ωx − lϕ)2 + k1(ϕx + ψ + lω)2 − g0

1ϕ
2
x − g0

2ψ
2
x − g0

3ω
2
x

)
dx.

(A3) There exist positive constants αi such that

−αigi(s) ≤ g′i(s), ∀s ∈ R+. (2.18)

Let consider the expression

‖(w1, w2, w3)‖2
0 =

∫ L

0

(
(k2 − g0

2)ω2
2x + k1(ω1x + ω2 + lω3)2 + k3(ω3x − lω1)2 − g0

1ω
2
1x − g0

3ω
2
3x

)
dx.
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Thanks to (A2) and Poincaré’s inequality (2.16), ‖·‖0 defines a norm on H0 := H1
0 (]0, L[)×

V 2
1 equivalent to the one ‖ · ‖H0 given by

‖(w1, w2, w3)‖2
H0

=

∫ L

0

(
ω2

1x + ω2
2x + ω2

3x

)
dx; (2.19)

that is, there exist two positive constants l̃1 and l̃2 satisfying

l̃1‖ω‖H0 ≤ ‖ω‖0 ≤ l̃2‖ω‖H0 , ∀ω = (ω1, ω2, ω3) ∈ H0.

Then (H, 〈·, ·〉H) is a Hilbert space, where the inner product 〈·, ·〉H is given by, for W =

(ω1, · · · , ω12)T and W̃ = (ω̃1, · · · , ω̃12)T ,

〈W, W̃ 〉H =

∫ L

0

(
(k2 − g0

2)ω2xω̃2x + k1(ω1x + ω2 + lω3)(ω̃1x + ω̃2 + lω̃3) + k3(ω3x − lω1)(ω̃3x − lω̃1)
)
dx

+

∫ L

0

(
ρ1ω4ω̃4 + ρ2ω5ω̃5 + ρ1ω6ω̃6 − g0

1ω1xω̃1x − g0
3ω3xω̃3x

)
dx+ 〈ω7, ω̃7〉L1 + 〈ω8, ω̃8〉L2

+ 〈ω9, ω̃9〉L3 + τ1|µ1|〈ω10, ω̃10〉Ld + τ2|µ2|〈ω11, ω̃11〉Ld + τ3|µ3|〈ω12, ω̃12〉Ld .

Moreover, D(A) ⊂ H with dense embedding. Finally, D(An) is endowed with the graph

norm

‖W‖D(An) =
n∑
k=0

‖Akw‖H,

where ‖ · ‖H is the norm generated by 〈·, ·〉H. Now, the well-posedness of problem (2.6) is

ensured by the following theorem:

Theorem 2.2 Assume that (A1)-(A3) hold. Then, for any n ∈ N and U0 ∈ D(An), the

system (2.6) has a unique solution satisfying

U ∈
n⋂
k=0

Ck(R+,D(An−k)).

Proof. To prove Theorem 2.9, first, we prove that −A is a maximal monotone operator;

that is Id−A is surjectif and (notice that A is linear)

〈AW,W 〉H ≤ 0, ∀W ∈ D(A).
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Here, Id denotes the identity operator. Let W = (ω1, · · · , ω12)T ∈ D(A). We have

〈AW,W 〉H =

∫ L

0

(
(k2 − g0

2)ω2xω5x − g0
1ω1xω4x − g0

3ω3xω6x + k1(ω1x + ω2 + lω3)(ω4x + ω5 + lω6)
)
dx

+

∫ L

0

(k2(ω3x − lω1)(ω6x − lω4)) dx−
∫ L

0

∫ 1

0

(|µ1|ω10ω10ρ + |µ2|ω11ω11ρ + |µ3|ω12ω12ρ) dρdx

+

∫ L

0

(
k1(ω1x + ω2 + lω3)x + lk3(ω3x − lω1)− g0

1ω1xx +

∫ +∞

0

g1(s)ω7xxds− µ1ω10(1)− |µ1|ω4

)
ω4dx

+

∫ L

0

(
−k1(ω1x + ω2 + lω3) + k2ω2xx − g0

2ω2xx +

∫ +∞

0

g2(s)ω8xxds− µ2ω11(1)− |µ2|ω5

)
ω5dx

+

∫ L

0

(
−lk1(ω1x + ω2 + lω3) + k3(ω3x − lω1)− g0

3ω3xx +

∫ +∞

0

g3(s)ω9xxds− µ3ω12(1)− |µ3|ω6

)
ω6dx

+

∫ L

0

∫ +∞

0

(g1(s)ω7x(ω4 − ω7s)x + g2(s)ω8x(ω5 − ω8s)x + g3(s)ω9x(ω6 − ω9s)x) dsdx.

It is clear that, by integrating by parts with respect to x and using the homogeneous

Dirichlet boundary conditions, we obtain

〈AW,W 〉H = −
∫ L

0

∫ +∞

0

(g1(s)ω7sxω7x + g2(s)ω8xω8sx + g3(s)ω9sxω9x)dsdx

−
∫ L

0

(µ1ω10(1)ω4 + |µ1|ω2
4 + |µ2|ω11(1)ω5 + |µ2|ω2

5 + |µ3|ω12(1)ω6 + |µ3|ω2
6)dx

−
∫ L

0

∫ 1

0

(|µ1|ω10ω10ρ + |µ2|ω11ω11ρ + |µ3|ω12ω12ρ)dpdx.

Using the fact that (because W ∈ D(A) and according to (2.18))

lim
s→+∞

g1(s)ω7x(x, s) = lim
s→+∞

g2(s)ω8x(x, s) = lim
s→+∞

g3(s)ω9x(x, s) = 0

and

ω7x(0) = ω8x(0) = ω9x(0) = 0, ω10(0) = ω4, ω11(0) = ω5, ω12(0) = ω6,

we arrive at, by integrating with respect to s and ρ,

−
∫ L

0

∫ +∞

0

gi(s)ω(6+i)x(x, s)ω(6+i)xs(x, s)dsdx =
1

2

∫ L

0

∫ +∞

0

g′i(s)ω
2
(6+i)x(x, s)dsdx, i = 1, 2, 3

and

−
∫ L

0

∫ 1

0

|µi|ω(i+9)ω(i+9)ρdρdx =
1

2

∫ L

0

|µi|ω2
(i+3)dx−

1

2

∫ L

0

|µi|ω2
(i+9)(1)dx, i = 1, 2, 3.
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On the other hand, Young’s inequality implies that

−
∫ L

0

|µ1|ω10(1)ω4dx ≤
1

2

∫ L

0

|µ1|(ω2
4 + ω2

10(1))dx, −
∫ L

0

|µ2|ω11(1)ω5dx ≤
1

2

∫ L

0

|µ2|(ω2
5 + ω2

11(1))dx

and

−
∫ L

0

|µ3|ω12(1)ω6dx ≤
1

2

∫ L

0

|µ3|(ω2
6 + ω2

12(1))dx.

Therefore

〈AW,W 〉H ≤
1

2

∫ L

0

∫ +∞

0

(
g′1(s)ω2

7x + g′2(s)ω2
8x + g′3(s)ω2

9x

)
dsdx. (2.20)

Because g′ ≤ 0, then 〈AW,W 〉 ≤ 0, which means that A is dissipative.

Notice that, thanks to (2.18) and because g′i ≤ 0 and (ω7, ω8, ω9) ∈ L1 × L2 × L3, we

have ∣∣∣∣∫ L

0

∫ +∞

0

g′i(s)ω
2
(6+i)xdsdx

∣∣∣∣ = −
∫ L

0

∫ +∞

0

g′i(s)ω
2
(6+i)xdsdx

≤ αi

∫ L

0

∫ +∞

0

gi(s)ω
2
(6+i)xdsdx

≤ αi‖ω(6+i)‖2
Li
< +∞, i = 1, 2, 3.

So the integral in (2.20) is well defined.

Next, we shall prove that Id−A is surjective. Indeed, let F = (f1, · · · , f12)T ∈ H, we

will show that there exists W = (ω1, · · · , ω12)T ∈ D(A) satisfying

(Id−A)W = F, (2.21)
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which is equivalent to

ω4 = ω1 − f1, ω5 = ω2 − f2, ω6 = ω3 − f3,

ρ1ω1 −
(
k1 −

∫ +∞

0

g1(s)ds

)
ω1xx + l2k2ω1 − k1ω2x − l(k1 + k2)ω3x

−
∫ +∞

0

g1ω7xxds+ µ1ω10(x, t, 1) + |µ1|ω1 = ρ1(f4 + f1) + |µ1|f1,

ρ2ω2 + k1ω1x −
(
k2 −

∫ +∞

0

g2ds

)
ω2xx + k1ω2 + lk1ω3

−
∫ +∞

0

g2ω8xxds+ µ2ω11(x, t, 1) + |µ2|ω2 = ρ2(f5 + f2) + |µ2|f2,

ρ1ω3 + l(k1 + k2)ω1x + lk1ω2 −
(
k3 −

∫ +∞

0

g3(s)

)
ω3xx + l2k1ω3

−
∫ +∞

0

g3ω9xxds+ µ3ω12(x, t, 1) + |µ3|ω3 = ρ1(f6 + f3) + |µ3|f3,

ω7s + ω7 = f7 + ω1 − f1, ω8s + ω8 = f8 + ω2 − f2, ω9s + ω9 = f9 + ω3 − f3,

ω10 + 1
τ1
ω10p(1) = f10, ω11 + 1

τ2
ω11p(1) = f11, ω12 + 1

τ3
ω12p(1) = f12.

(2.22)

First, we see that the first three equations in (2.22) give aready the components w4, w5 and

w6, and we have (w4, w5, w6) ∈ H1
0 (]0, L[)× V 2

1 if (w1, w2, w3) ∈ H1
0 (]0, L[)× V 2

1 .

Second, we note that the three equations (2.22)7 - (2.22)9 with ω7(0) = ω8(0) = ω9(0) =

0 have the unique solutions

ω7(s) = (1− e−s)(ω1 − f1) + e−s
∫ s

0

eyf7(y)dy, (2.23)

ω8(s) = (1− e−s)(ω2 − f2) + e−s
∫ s

0

eyf8(y)dy (2.24)

and

ω9(s) = (1− e−s)(ω3 − f3) + e−s
∫ s

0

eyf9(y)dy. (2.25)

On the other hand, using Fubini theorem, Hölder’s inequality and noting that f7 ∈ L1, we
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get∫ L

0

∫ +∞

0

g1(s)

(
e−s
∫ s

0

eyf7x(y) dy

)2

ds dx ≤
∫ L

0

∫ +∞

0

e−2sg1(s)

(∫ s

0

ey dy

)∫ s

0

eyf 2
7x(y) dy ds dx

≤
∫ L

0

∫ +∞

0

e−s(1− e−s)g1(s)

∫ s

0

eyf 2
7x(y) dy ds dx

≤
∫ L

0

∫ +∞

0

e−sg1(s)

∫ s

0

eyf 2
7x(y) dy ds dx

≤
∫ L

0

∫ +∞

0

eyf 2
7x(y)

∫ +∞

y

e−sg1(s) ds dy dx

≤
∫ L

0

∫ +∞

0

eyg1(y)f 2
7x(y)

∫ +∞

y

e−s ds dy dx

≤
∫ L

0

∫ +∞

0

g1(y)f 2
7x(y) dy dx = ‖f7‖2

L1
< +∞,

then

s 7→ e−s
∫ s

0

eτf7(τ) dτ ∈ L1,

and therefore, if (w1, w2, w3) ∈ H1
0 (]0, L[) × V 2

1 , (2.23) implies that w7 ∈ L1. Moreover,

w7s ∈ L1 since (2.22)7. Similarly, we get that w8, w8s ∈ L2 and w9, w9s ∈ L3.

Third, the last three equations in (2.22) with ω10(0) = ω4 = ω1 − f1, ω11(0) = ω5 =

ω2 − f2 and ω12(0) = ω6 = ω3 − f3 have the unique solutions

ω10 =

(
ω1 − f1 + τ1

∫ ρ

0

eτ1yf10(y)dy

)
e−τ1ρ,

ω11 =

(
ω2 − f2 + τ2

∫ ρ

0

eτ2yf11(y)dy

)
e−τ2ρ,

ω12 =

(
ω3 − f3 + τ2

∫ ρ

0

eτ3yf12(y)dy

)
e−τ3ρ.

(2.26)

We see that, using Hölder’s inequality and noting that f10 ∈ Ld,∫ L

0

∫ 1

0

(∫ ρ

0

eτ1yf10(y)dy

)2

dρ dx ≤
∫ L

0

∫ 1

0

(∫ ρ

0

e2τ1ydy

)(∫ ρ

0

f 2
10(y)dy

)
dρ dx

≤
∫ L

0

∫ 1

0

(∫ 1

0

e2τ1ydy

)(∫ 1

0

f 2
10(y)dy

)
dρ dx

≤ e2τ1

∫ L

0

∫ 1

0

f 2
10dy dx = e2τ1‖f10‖2

Ld
< +∞,

then

ρ 7→
∫ ρ

0

eτ1yf10(y)dy ∈ Ld,
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and therefore, if (w1, w2, w3) ∈ H1
0 (]0, L[) × V 2

1 , (2.26) implies that w10 ∈ Ld. Moreover,

w10ρ ∈ Ld since (2.22)10. Similarly, we obtain that w11, w11ρ, w12, w12ρ ∈ L̃d.

Finally, we have to prove that there exists (w1, w2, w3) ∈ H1
0 (]0, L[)× V 2

1 satisfying the

fourth, fifth and sixth equations in (2.22), and

(ki − g0
i )ωixx +

∫ +∞

0

gi(s)ω(i+6)xx(s)ds ∈ L2(]0, L[), i = 1, 2, 3, (2.27)

and so we conclude that there exists W ∈ D(A) satisfying (2.21). To do so, using (2.23),

(2.24), (2.25) and (2.26), we see that the fourth, fifth and sixth equations in (2.22) are

equivalent to 
(ρ1 + l2k2 + |µ1|)ω1 − k1ω2x − l(k1 + k2)ω3x − l1ω1xx =

∼
f1,

(ρ2 + k1 + |µ2|)ω2 + k1ω1x − l2ω2xx + lk1ω3 =
∼
f2,

(ρ1 + l2k1 + |µ3|)ω3 + l(k1 + k2)ω1x + lk1ω2 − l3ω3xx =
∼
f3,

(2.28)

where

∼
f1 = ρ1(f4 + f1) + |µ1| f1 + µ1f4 +

∫ +∞

0

g1(s)e−s
∫ s

0

ey(f7(y)− f1)xxdyds− µ1τ1e
−τ1ρ

∫ ρ

0

eτ1yf10(y)dy,

∼
f2 = ρ2(f5 + f2) + |µ2| f2 + µ2f5 +

∫ +∞

0

g2(s)e−s
∫ s

0

ey(f8(y)− f2)xxdyds− µ2τ2e
−τ2ρ

∫ ρ

0

eτ2yf11(y)dy,

∼
f3 = ρ1(f6 + f3) + |µ3| f3 + µ3f6 +

∫ +∞

0

g3(s)e−s
∫ s

0

ey(f9(y)− f3)xxdyds− µ3τ3e
−τ3ρ

∫ ρ

0

eτ3yf12(y)dy

and 

l1 = k1 −
∫ +∞

0

g1(s)e−sds,

l2 = k2 −
∫ +∞

0

g2(s)e−sds,

l3 = k3 −
∫ +∞

0

g3(s)e−sds.

Firstly, notice that li ≥ ki − g0
i > 0 (according to (A2)). Then we can easily prove that

the operator

P

 ω1

ω2

ω3

 =

 (ρ1 + l2k2 + |µ1|)ω1 − k1ω2x − l (k1 + k3)ω3x − l1ω1xx

(ρ2 + k1 + |µ2|)ω2 + k1ω1x − l2ω2xx + lk1ω3

(ρ1 + l2k1 + |µ3|)ω3 + l (k1 + k3)ω1x + lk1ω2 − l3ω3xx


is self-adjoint linear positive definite operator. Therefore, multiplying the three equations

in (2.28) by v1 ∈ H1
0 (]0, L[) and v2, v3 ∈ V1, respectively, integrating by parts with respect
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to x and using the boundary conditions, we obtain that the variational formulation of (2.28)

is of the form

a((w1, w2, w3)T , (v1, v2, v3)T ) = L(v1, v2, v3)T , ∀(v1, v2, v3)T ∈ H1
0 (]0, L[)× V 2

1 , (2.29)

where a is a given bilinear symetric and coercive form on H1
0 (]0, L[) × V 2

1 and L is a

given linear and continuous form on H1
0 (]0, L[) × V 2

1 , where H1
0 (]0, L[) × V 2

1 is equipped

with the inner product that generates the norm (2.19). Hence, applying the Lax-Milgram

theorem, we deduce that (2.29) has a unique solution (ω1, ω2, ω3)T ∈ H1
0 (]0, L[) × V 2

1 .

Then, using classical regularity arguments we conclude that (2.28) has a unique solution

(ω1, ω2, ω3)T ∈ H1
0 (]0, L[)× V 2

1 satisfying (2.27), so (2.23), (2.24) and (2.25) imply that the

fourth, fifth and sixth equations in (2.22) are satisfied. This proves that Id−A is surjective.

Finally, we note that (2.20) and (2.21) mean that −A is a maximal monotone operator.

Then, using Lummer-Phillips theorem, we deduce that A is an infinitesimal generator of

a linear C0-semigroup on H. On the other hand, as the linear operator B is Lipschitz

continuous, it follows that A+B also is an infinitesimal generator of a linear C0-semigroup

on H. Consequently, (2.6) is well-posed in the sense of Theorem 2.1 (see [26] and [38]).
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CHAPTER 3

BRESSE SYSTEM STABILITY IN THE CASE OF THREE

MEMORIES

In this chapter, we inverstigate the asymptotic behaviour of the solution of problem (2.6)

under three infinite memories and homogeneous Dirichlet boundary conditions (k = 0 in

(2.1)) by using the energy method to produce a suitable Lyapunov functional. We assume

the following additional assumption:

(A4) There exist positive constants γi such that

gi(0) > 0 and g′i(s) ≤ −γigi(s), ∀s ∈ R+. (3.1)

We will prove, under (3.1) and a smallness condition on max |µi|, that the solution of (2.6)

decays to zero as t tends to infinity; that is

lim
t−→+∞

‖U(t)‖2
H = 0, (3.2)

and the decay rate of ‖U‖2
H is of exponential type. More precisely, we have the next theorem.

Theorem 3.1 Assume that (A1)-(A4) hold. Then there exists a positive constant µ0 ∈

]0, 1] independent of µi such that, if

3
max
i=1
|µi| < µ0, (3.3)

then, for any U0 ∈ H, there exist positive constants β1 and β2 (depending in a continuous

way on ‖U0‖H) such that the solution of (2.6) satisfies

‖U(t)‖2
H ≤ β2e

−β1t, ∀t ∈ R+. (3.4)
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3.1 Energy calculation

We introduce some notations that we will use in this chapter. We pose:

H = H1
0 (]0, L[)× V 2

1 × L2(]0, L[)× V 2
0 × L1 × L2 × L3 × Ld × L̃2

d,

The spaces Li, Ld, L̃d, V0, V1 are defined in chapter 2, and

U0 = U(0) = (ϕ0, ψ0, ω0, ϕ1, ψ1, ω1, η
0
1, η

0
2, η

0
3, z

0
1 , z

0
2 , z

0
3)T .

U is the solution of the system (2.1), when

U(t) = (ϕ, ψ, ω, ϕt, ψt, ωt, η1, η2, η3, z1, z2, z3)T .

Lemma 3.2 Let U be the solution of the system (2.1), then for all t > 0,

dE(t)

dt
≤ |µ1|

∫ L

0

ϕ2
tdx+ |µ2|

∫ L

0

ψ2
t dx+ |µ3|

∫ L

0

ω2
t dx+

1

2

∫ L

0

∫ +∞

0

g′1(s)η2
1xdsdx

+
1

2

∫ L

0

∫ +∞

0

g′2(s)η2
2xdsdx+

1

2

∫ L

0

∫ +∞

0

g′3(s)η2
3xdsdx,

Proof. Assume that (A1) − (A4) are satisfied and let U0 ∈ D(A), so that all the calcu-

lations below are justified. We start our proof by providing a bound on the derivative of

the energy functional E assoociated with the solution of (2.6) corresponding to U0 defined by

E(t) =
1

2
‖U(t)‖2

H =
1

2

{∫ L

0

[
(k2 − g◦2)ψ2

x − g◦1ϕ2
x − g◦3ω2

x + k1(ϕx + ψ + lω)2
]
dx

+

∫ L

0

[
k3(ωx − lϕ)2 + ρ1ϕ

2
t + ρ2ψ

2
t + ρ1ω

2
t

]
dx+ 〈η1, η1〉L1 + 〈η2, η2〉L2 + 〈η3, η3〉L3

+ τ1|µ1|〈z1, z1〉Ld + τ2|µ2|〈z2, z2〉Ld + τ3|µ3|〈z3, z3〉Ld
}
.

(3.5)

Multiplying the first equation of (2.1) by ϕt, the second one by ψt, and the third one by

ωt, performing an integration by parts and using (2.6), (2.7) and (2.20), we obtain

E ′(t) ≤ |µ1|
∫ L

0

ϕ2
tdx+ |µ2|

∫ L

0

ψ2
t dx+ |µ3|

∫ L

0

ω2
t dx+

1

2

∫ L

0

∫ +∞

0

g′1(s)η2
1xdsdx

+
1

2

∫ L

0

∫ +∞

0

g′2(s)η2
2xdsdx+

1

2

∫ L

0

∫ +∞

0

g′3(s)η2
3xdsdx,

(3.6)
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where (′) denotes the devivative when the function has only one variable. The inequality

(3.6) shows that E ′ is not negative in general because of the presence of delays, and therefore

the system (2.6) is, in general, not necessarly dissipative with respect to E. In order

to continue the proof of Theorem 3.1, we need the next Lemmas, where some classical

functionals are used (see, for example [14], [20] and [32]).

3.2 Main lemmas

Lemma 3.3 The functional

I1(t) = −ρ1

∫ L

0

ϕt

∫ +∞

0

g1(s)η1dsdx

satisfies, for any δ > 0, there exists cδ > 0 such that

I ′1(t) ≤ −ρ1(g0
1 − δ)

∫ L

0

ϕ2
tdx+ δ

∫ L

0

(ϕ2
x + ψ2

x + ω2
x)dx

+ cδ

∫ L

0

∫ +∞

0

[
g1(s)η2

1x − g′1(s)η2
1x

]
dsdx+ δ|µ1|2

∫ L

0

z2
1(1)dx.

(3.7)

Proof. First, noticing that

∂

∂t

∫ +∞

0

g1(s)η1ds = ∂t

∫ t

−∞
g1(t− s)(ϕ(t)− ϕ(s))ds

=

∫ t

−∞
g′1(t− s)(ϕ(t)− ϕ(s))ds+

(∫ t

−∞
g1(t− s)ds

)
ϕt;

(3.8)

that is

∂

∂t

∫ +∞

0

g1(s)η1ds =

∫ +∞

0

g′1(s)η1ds+ g0
1ϕt. (3.9)

Similarly

∂

∂t

∫ +∞

0

g2(s)η2ds =

∫ +∞

0

g′2(s)η2ds+ g0
2ψt (3.10)

and

∂

∂t

∫ +∞

0

g3(s)η3ds =

∫ +∞

0

g′3(s)η3ds+ g0
3ωt (3.11)
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Second, using Young’s and Hölder’s inequalities, we get, for any λ > 0, there exists cλ > 0

such that, for any u ∈ L2(]0, L[) and η ∈ {ηi, ηix}, i = 1, 2, 3,∣∣∣∣∫ L

0

u

∫ +∞

0

gi(s)ηdsdx

∣∣∣∣ ≤ λ

∫ L

0

u2dx+ cλ

∫ L

0

∫ +∞

0

giη
2dsdx. (3.12)

Similarly ∣∣∣∣∫ L

0

u

∫ +∞

0

g′i(s)ηdsdx

∣∣∣∣ ≤ λ

∫ L

0

u2dx− cλ
∫ L

0

∫ +∞

0

g′i(s)η
2dsdx. (3.13)

By differentiating I1 and using the first equation in (2.1), we get

I ′1(t) = −k1

∫ L

0

(ϕx + ψ + lω)x

(∫ +∞

0

g1(s)η1ds

)
dx− lk3

∫ L

0

(ωx − lϕ)

(∫ +∞

0

g1(s)η1ds

)
dx

+

∫ L

0

(∫ +∞

0

g1(s)ϕxx(x, t− s)ds
)(∫ +∞

0

g1(s)η1ds

)
dx+

∫ L

0

µ1ϕt(x, t− τ)

(∫ +∞

0

g1(s)η1ds

)
dx

− ρ1

∫ L

0

ϕt

(∫ +∞

0

g′1(s)η1ds

)
dx− ρ1

∫ L

0

ϕt(g
0
1ϕt)dx,

using (2.2) and integrating by parts, we obtain

I ′1(t) ≤ k1

∫ L

0

(ϕx + ψ + lω)

(∫ +∞

0

g1(s)η1xds

)
dx− lk3

∫ L

0

(ωx − lϕ)

(∫ +∞

0

g1(s)η1ds

)
dx

+

∫ L

0

(∫ +∞

0

g1(s)η1xds

)2

dx− g0
1

∫ L

0

ϕx(x, t)

(∫ +∞

0

g1(s)η1x(x, t, s)ds

)
dx

+

∫ L

0

µ1ϕt(x, t− τ)

(∫ +∞

0

g1(s)η1ds

)
dx− ρ1

∫ L

0

ϕt

(∫ +∞

0

g′1(s)η1ds

)
dx− ρ1

∫ L

0

ϕt(g
0
1ϕt)dx.

Applying Poincaré’s, Cauchy-Schwarz and Young’s inequalities, we get

I ′1(t) ≤ −ρ1g
0
1

∫ L

0

ϕ2
tdx+ δ

∫ L

0

(
ϕ2
x + ψ2

x + ω2
x

)
dx

− cδ
∫ L

0

∫ +∞

0

g′1(s)η2
1xdsdx+ cδ

∫ L

0

(∫ +∞

0

g1(s)η1xds

)2

dx

− g0
1

∫ L

0

ϕx

∫ +∞

0

g1(s)η1x(x, t, s)dsdx+

∫ L

0

(µ1ϕt(x, t− τ))

∫ +∞

0

g1(s)η1dsdx.

(3.14)

Ones again, applying Cauchy-Schwarz and Young’s inequalities to the last two terms in

(3.14), we find

I ′1(t) ≤ −ρ1(g0
1 − δ)

∫ L

0

ϕ2
tdx+ δ

∫ L

0

(
(ϕx + ψ + lω)2 + ϕ2

x

)
dx

+ cδ

∫ L

0

∫ +∞

0

[
g1(s)η2

1x − g′1(s)η2
1x

]
dsdx+ δ|µ1|2

∫ L

0

z2
1(1)dx,

(3.15)

whiche gives (3.7).
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Lemma 3.4 The functionals

I2(t) = −ρ2

∫ L

0

ψt

∫ +∞

0

g2(s)η2dsdx and I3(t) = −ρ1

∫ L

0

ωt

∫ +∞

0

g3(s)η3dsdx

satisfy, for any δ > 0, there exists cδ > 0 such that

I ′2(t) ≤ −ρ2(g0
2 − δ)

∫ L

0

ψ2
t dx+ δ

∫ L

0

(
ϕ2
x + ψ2

x + ω2
x

)
dx

+ cδ

∫ L

0

∫ +∞

0

[
g2(s)η2

2x − g′2(s)η2
2x

]
dsdx+ δ|µ2|2

∫ L

0

z2
2(1)dx

(3.16)

and

I ′3(t) ≤ −ρ1(g0
3 − δ)

∫ L

0

ω2
t dx+ δ

∫ L

0

(
ϕ2
x + ψ2

x + ω2
x

)
+ cδ

∫ L

0

∫ +∞

0

[
g3(s)η2

3x − g′3(s)η2
3x

]
dsdx+ δ|µ3|2

∫ L

0

z2
3(1).

(3.17)

Proof. As for (3.7).

Lemma 3.5 The functional

I4(t) =

∫ L

0

(ρ1ϕϕt + ρ2ψψt + ρ1ωωt)

satisfies, for any δ > 0, there exists cδ > 0 such that

I ′4(t) ≤
∫ L

0

(
ρ1ϕ

2
t + ρ2ψ

2
t + ρ1ω

2
t

)
dx+ cδ

3∑
i=1

∫ L

0

∫ +∞

0

gi(s)η
2
ixdsdx

−
∫ L

0

[
k1(ϕx + ψ + lω)2 + k3(ωx − lϕ)2 + k2ψ

2
x − g0

1ϕ
2
x − g0

2ψ
2
x − g0

3ω
2
x

]
dx

+ cδ

3∑
i=1

|µi|2
∫ L

0

z2
i (1)dx+ δ

∫ L

0

(ϕ2
x + ψ2

x + ω2
x)dx.

(3.18)

Proof. By exploiting equations of (2.1) and integrating by parts, we get

I ′4(t) ≤
∫ L

0

(
ρ1ϕ

2
t + ρ2ψ

2
t + ρ1ωt

)
dx− k1

∫ L

0

(ϕx + ψ + lω)2dx (3.19)

− k3

∫ L

0

(ωx − lϕ)2dx+ g0
1

∫ L

0

ϕ2
xdx− (k2 − g0

2)

∫ L

0

ψ2
xdx+ g0

3

∫ L

0

ω2
xdx− µ1

∫ L

0

z1(1)ϕ(t)dx

− µ2

∫ L

0

z2(1)ψ(t)dx− µ3

∫ L

0

z3(1)ω(t)dx−
∫ L

0

ϕx

∫ +∞

0

g1(s)η1xdsdx

−
∫ L

0

ψx

∫ +∞

0

g2(s)η2xdsdx−
∫ L

0

ωx

∫ +∞

0

g3(s)η3xdsdx.
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Using Poincaré’s, Young’s and Hölder’s inequalities for the last three terms of (3.19), we

get, for all δ > 0, there exists a positive constant cδ such that

−
∫ L

0

ϕx

∫ +∞

0

g1(s)η1xdsdx−
∫ L

0

ψx

∫ +∞

0

g2(s)η2xdsdx−
∫ L

0

ωx

∫ +∞

0

g3(s)η3xdsdx

≤ δ

2

∫ L

0

(ϕ2
x + ψ2

x + ω2
x)dx+ cδ

3∑
i=1

∫ L

0

∫ +∞

0

gi(s)η
2
ixdsdx.

(3.20)

Again, using Young’s and Poincaré’s inequalities, we arrive at

− µ1

∫ L

0

z1(1)ϕ(t)dx− µ2

∫ L

0

z2(1)ψ(t)dx− µ3

∫ L

0

z3(1)ω(t)dx

≤ δ

2

∫ L

0

(ϕ2
x + ψ2

x + ω2
x) + cδ

∫ L

0

3∑
i=1

|µi|2z2
i (1)dx.

(3.21)

Inserting (3.20) and (3.21) into (3.19), we find (3.18).

Lemma 3.6 The functionals

I5(t) =

∫ L

0

∫ 1

0

e−2τ1ρz2
1dρdx, I6(t) =

∫ L

0

∫ 1

0

e−2τ2ρz2
2dρdx

and

I7(t) =

∫ L

0

∫ 1

0

e−2τ3ρz2
3dρdx

satisfy

I ′5(t) ≤ −2e−2τ1

∫ L

0

∫ 1

0

z2
1dρdx+

1

τ1

∫ L

0

(
ϕ2
t − e−2τ1z2

1(1)
)
dx, (3.22)

I ′6(t) ≤ −2e−2τ2

∫ L

0

∫ 1

0

z2
2dρdx+

1

τ2

∫ L

0

(
ψ2
t − e−2τ2z2

2(1)
)
dx (3.23)

and

I ′7(t) ≤ −2e−2τ3

∫ L

0

∫ 1

0

z2
3dρdx+

1

τ3

∫ L

0

(
ω2
t − e−2τ3z2

3(1)
)
dx. (3.24)

Proof. Using (2.5), the derivative of I5 entails

I ′5(t) = 2

∫ L

0

∫ 1

0

e−2τ1ρz1z1tdρdx = − 2

τ1

∫ L

0

∫ 1

0

e−2τ1ρz1z1ρdρdx

= − 1

τ1

∫ L

0

∫ 1

0

e−2τ1ρ
∂

∂ρ
z2

1dρdx.

(3.25)
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Then, by integrating by parts with respect to ρ, we get

I ′5(t) = − 1

τ1

∫ L

0

[
e−2τ1ρz2

1

]ρ=1

ρ=0
− 2

∫ L

0

∫ 1

0

e−2τ1ρz2
1dρdx

=
1

τ1

∫ L

0

(
z2

1(0)− e−2τ1z2
1(1)

)
dx− 2

∫ L

0

∫ 1

0

e−2τ1ρz2
1dρdx.

(3.26)

Therefore, using z1(t, 0) = ϕt(t), (3.26) can be rewritten as

I ′5(t) = −2

∫ 1

0

e−2τ1ρ

∫ L

0

z2
1dρdx+

1

τ1

∫ L

0

ϕ2
t (t)dx−

e−2τ1

τ1

∫ L

0

z2
1(1)dx, (3.27)

which gives (3.22), since e−2τ1ρ ≥ e−2τ1 , for any ρ ∈]0, 1[. The proof of (3.23) and (3.24) is

identical to the one of (3.22).

Now, let ε1, ε2, ε3 > 0 and

F = ε1E(t) + ε2(I1 + I2 + I3) + I4 + ε3(|µ1|I5 + |µ2|I6 + |µ3|I7) (3.28)

By combining (3.6), (3.7), (3.16), (3.17), (3.18), (3.22), (3.23) and (3.24) with δ =
1

ε22
and

using (2.1) and (3.1), we obtain

F ′(t) ≤ −ρ1

[
ε2g

0
1 −

1

ε2
− ε3|µ1|

ρ1τ1

− 1

] ∫ L

0

ϕ2
tdx− ρ2

[
ε2g

0
2 −

1

ε2
− ε3|µ2|

ρ2τ2

− 1

] ∫ L

0

ψ2
t dx

− ρ1

[
ε2g

0
3 −

1

ε2
− ε3|µ3|

ρ1τ3

− 1

] ∫ L

0

ω2
t dx+

(ε1
2
− cε2

) 3∑
i=1

∫ L

0

∫ +∞

0

g′i(s)η
2
ixdsdx

−
(

1− k0

ε22
− 3k0

ε2

)∫ L

0

[
k1(ϕx + ψ + lω)2 + k3(ωx − lϕ)2 + k2ψ

2
x − g0

1ϕ
2
x − g0

2ψ
2
x − g0

3ω
2
x

]
dx

− 2ε3

∫ L

0

∫ 1

0

3∑
i=1

|µi|e−2τiz2
i dρdx−

[
−cε2|µ1|2 +

ε3|µ1|
τ1

e−2τ1 − 1

ε2
|µ1|2

] ∫ L

0

z2
1(1)dx

−
[
−cε2 |µ2|2 +

ε3|µ2|
τ2

e−2τ2 − 1

ε2
|µ2|2

] ∫ L

0

z2
2(1)dx−

[
−cε2 |µ3|2 +

ε3|µ3|
τ3

e−2τ3 − 1

ε2
|µ3|2

] ∫ L

0

z2
3(1)dx

+ ε1

∫ L

0

[
|µ1|ϕ2

t + |µ2|ψ2
t + |µ3|ω2

t

]
dx.

(3.29)
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We put

c1 = ε2g
0
1 −

1

ε2
− 1, c2 = ε2g

0
2 −

1

ε2
− 1, c3 = ε2g

0
3 −

1

ε2
− 1, c4 = 1− 3k0

ε2
,

c5 = c1 −
ε3|µ1|
ρ1τ1

, c6 = c2 −
ε3|µ2|
ρ2τ2

, c7 = c3 −
ε3|µ3|
ρ1τ3

, c8 = c4 −
k0

ε22
,

c9 =
3

min
i=1
{2ε3e−2τi − τi}, c10 = −

(
cε2 +

1

ε2

)
|µ1|2, c11 = c10 +

ε3|µ1|
τ1

e−2τ1 ,

c12 = −
(
cε2 +

1

ε2

)
|µ2|2, c13 = c12 +

ε3|µ2|
τ2

e−2τ2 , c14 = −
(
cε2 +

1

ε2

)
|µ3|2,

c15 = c14 +
ε3|µ3|
τ3

e−2τ3 .

Using (A2), (3.5) and (3.6), we get from (3.29) that

F ′(t) ≤ −c8

∫ L

0

[k1(ϕx + ψ + lω)2 + k3(ωx − lϕ)2 + k2ψ
2
x − g0

1ϕ
2
x − g0

2ψ
2
x − g0

3ω
2
x]dx

−
∫ L

0

[
ρ1c5ϕ

2
t + ρ2c6ψ

2
t + ρ1c7ω

2
t

]
dx−

3∑
i=1

∫ L

0

∫ 1

0

τi|µi|z2
i dsdx−

3∑
i=1

∫ L

0

∫ +∞

0

gi(s)η
2
ixdsdx

−
∫ L

0

(
c11z

2
1(1) + c13z

2
2(1) + c15z

2
3(1)

)
dx+

(ε1
2
− cε2

) 3∑
i=1

∫ L

0

∫ +

0

g′i(s)η
2
ixdsdx

+ ε1

∫ L

0

(
|µ1|ϕ2

t + |µ2|ψ2
t + |µ3|ω2

t

)
dx− c9

∫ L

0

∫ 1

0

3∑
i=1

|µi|z2
i .

(3.30)

On the other hand, by the definition of E, I1, ..., I7, we have, using again Poincaré’s, Hölder’s

and Young’s inequalities,

|I1| ≤ ρ1

∫ L

0

|ϕt|
∫ +∞

0

g1(s)|η1|dsdx

≤ ρ1

2

∫ L

0

ϕ2
tdx+

ρ1

2

∫ L

0

(∫ +∞

0

g1ds

)(∫ +∞

0

g1η
2
1ds

)
dx

≤ ρ1

2

∫ L

0

ϕ2
tdx+

ρ1c0g
0
1

2

∫ L

0

∫ +∞

0

g1(s)η2
1xdsdx ≤ c18E(t),

(3.31)

where c0 is the Poincaré’s constant. Similarly, we have, for some positive constants (c19, c20, c21),

|I2| ≤ c19E(t), |I3| ≤ c20E(t), |I4| ≤ c21E(t), (3.32)

|µ1||I5| = |µ1|
∫ 1

0

∫ L

0

e−2τ1ρz2
1dxdρ ≤ |µ1|

∫ 1

0

∫ L

0

z2
1dxdρ ≤

2

τ1

E(t). (3.33)
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Similarly

|µ2||I6| ≤
2

τ2

E(t) and |µ3||I7| ≤
2

τ3

E(t). (3.34)

Using (3.28) and (3.31)-(3.34), we find that

|F (t)− ε1E(t)| ≤ c22E(t),

where

c22 = ε2(c18 + c19 + c20) + c21 + 2ε3

(
1

τ1

+
1

τ2

+
1

τ3

)
.

Therefore

(ε1 − c22)E(t) ≤ F (t) ≤ (ε1 + c22)E(t). (3.35)

Now, we choose carefully the constants ε1, ε2 and ε3 to get suitable values of ci (i = 1, ..., 15).

First, we choose ε2 big enough so that

ε2 > max

{
3k0,

3
max
i=1

1 +
√

1 + 4g0
i

2g0
i

}
and

1

ε22
+

3

ε2
<

1

k0

(3.36)

to get c1, c2, c3, c4, c8 > 0. Second, we choose ε1 large enough such that

ε1 > max

{
2cε2 , ε2(c18 + c19 + c20) + c21 +

(
1

τ1

+
1

τ2

+
1

τ3

)
3

max
i=1

τie
2τi

}
, (3.37)

which implies that ε1
2
− cε2 > 0 and ε1 − ε2(c18 + c19 + c20)− c21 > 0. Third, let us put

M0 =
ε1 − ε2(c18 + c19 + c20)− c21

2

(
1

τ1

+
1

τ2

+
1

τ3

) , M1 = min{ρ1τ1c1, ρ2τ2c2, ρ1τ3c3}, M2 = min

{
ρ1c1

ε1
,
ρ2c2

ε1
,
ρ1c3

ε1

}
,

M3 =

(
1

ε2
+ cε2

)
3

max
i=1

τie
2τi , M4 =

1

ε1

3
max
i=1

1

τi
and M5 =

1

2

3
max
i=1

τie
2τi .

Notice that the constants M0, · · · ,M5 are positive and fixed thanks to the choices of ε1 and

ε2.

Now, assuming that |µ1|, |µ2| and |µ3| are small enough such that (3.3) holds with

µ0 = min

{
1,
M0

M3

,
M1

M5

,
M2

M4M5 + 1
,

M2

M3M4 + 1
,

√
M1

M3

}
(3.38)
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and choosing ε3 such that

min{M5,M3
3

max
i=1
|µi|} < ε3 < min

{
M0,

M1

max3
i=1 |µi|

,
1

M4

(
M2

max3
i=1 |µi|

− 1

)}
. (3.39)

The condition (3.3) and the choice of µ0 imply that ε3 exists and c5, c6, c7, c9, c11, c13, c15, ε1−

c22 > 0. Moreover, (3.30) implies that

F ′(t) ≤ −c8

∫ L

0

[k1(ϕx + ψ + lω)2 + k2(ωx − lϕ)2 + k2ψ
2
x − g0

1ϕ
2
x − g0

2ψ
2
x − g0

3ω
2
xdx] (3.40)

−c16

∫ L

0

(ρ1ϕ
2
t + ρ2ψ

2
t + ρ1ω

2
t )dx−

3∑
i=1

∫ L

0

∫ 1

0

τi|µi|z2
i dρdx−

3∑
i=1

∫ L

0

∫ +∞

0

gi(s)η
2
ixdsdx

since g′i ≤ 0, where

c16 = min

{
c5 −

ε1|µ1|
ρ1

, c6 −
ε1|µ2|
ρ2

, c7 −
ε1|µ3|
ρ1

}
,

which is a positive constant according to the choice of µ0. Therefore, using the definition

of E and (3.40),

F ′(t) ≤ −c17E(t), (3.41)

where c17 = min {2c16, 2c8, 2}. Finally, we conclude from (3.35) and (3.41) that F ∼ E and

F ′(t) ≤ −c17E(t) ≤ −c23F (t),

where c23 = c17
ε1+c22

. By integrating the above inequality, we get (3.4), for any U0 ∈ D(A),

since F ∼ E. The density of D(A) in H and the continuity of β1 and β2 with respect to

‖U0‖H imply that (3.4) is satisfied, for any U0 ∈ H.
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CHAPTER 4

BRESSE SYSTEM STABILITY IN THE CASE OF TWO

MEMORIES

4.1 Introduction

In this section, we study the stability of (2.1) under the homogeneous Dirichlet-Neumann

boundary conditions (k = 1 in (2.1)) with two infinite memories acting on the second and

third equations

ρ1ϕtt − k1(ϕx + ψ + lw)x − lk3(wx − lϕ) + µ1ϕt(x, t− τ1) = 0,

ρ2ψtt − k2ψxx + k1(ϕx + ψ + lw) +

∫ +∞

0

g2(s)ψxx(x, t− s)ds+ µ2ψt(x, t− τ2) = 0,

ρ1wtt − k3(wx − lϕ)x + lk1(ϕx + ψ + lw) +

∫ +∞

0

g3(s)wxx(x, t− s)ds+ µ3wt(x, t− τ3) = 0,

ϕ(0, t) = ψx(0, t) = wx(0, t) = ϕ(L, t) = ψx(L, t) = wx(L, t) = 0,

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x),

ψ(x,−t) = ψ0(x, t), ψt(x, 0) = ψ1(x),

w(x,−t) = w0(x, t), wt(x, 0) = w1(x),

ϕt(x, t− τ1) = h1(x, t− τ1), ψt(x, t− τ2) = h2(x, t− τ2), wt(x, t− τ3) = h3(x, t− τ3)
(4.1)
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or on the first and third equations

ρ1ϕtt − k1(ϕx + ψ + lw)x − lk3(wx − lϕ) +

∫ +∞

0

g1(s)ϕxx(x, t− s)ds+ µ1ϕt(x, t− τ1) = 0,

ρ2ψtt − k2ψxx + k1(ϕx + ψ + lw) + µ2ψt(x, t− τ2) = 0,

ρ1wtt − k3(wx − lϕ)x + lk1(ϕx + ψ + lw) +

∫ +∞

0

g3(s)ωxx(x, t− s)ds+ µ3wt(x, t− τ3) = 0,

ϕ(0, t) = ψx(0, t) = wx(0, t) = ϕ(L, t) = ψx(L, t) = wx(L, t) = 0,

ϕ(x,−t) = ϕ0(x, t), ϕt(x, 0) = ϕ1(x),

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x),

w(x,−t) = w0(x, t), wt(x, 0) = w1(x),

ϕt(x, t− τ1) = h1(x, t− τ1), ψt(x, t− τ2) = h2(x, t− τ2), wt(x, t− τ3) = h3(x, t− τ3)
(4.2)

or on the first and second equations

ρ1ϕtt − k1(ϕx + ψ + lw)x − lk3(wx − lϕ) +

∫ +∞

0

g1(s)ϕxx(x, t− s)ds+ µ1ϕt(x, t− τ1) = 0,

ρ2ψtt − k2ψxx + k1(ϕx + ψ + lw) +

∫ +∞

0

g2(s)ψxx(x, t− s)ds+ µ2ψt(x, t− τ2) = 0,

ρ1wtt − k3(wx − lϕ)x + lk1(ϕx + ψ + lw) + µ3wt(x, t− τ3) = 0,

ϕ(0, t) = ψx(0, t) = wx(0, t) = ϕ(L, t) = ψx(L, t) = wx(L, t) = 0,

ϕ(x,−t) = ϕ0(x, t), ϕt(x, 0) = ϕ1(x),

ψ(x,−t) = ψ0(x, t), ψt(x, 0) = ψ1(x),

w(x, 0) = w0(x), wt(x, 0) = w1(x),

ϕt(x, t− τ1) = h1(x, t− τ1), ψt(x, t− τ2) = h2(x, t− τ2), wt(x, t− τ3) = h3(x, t− τ3).
(4.3)

We consider systems (4.1)-(4.3) in the case where the speeds of wave propagations satisfy
S1 = S2 in case (4.1),

S2 = S1 in case (4.2),

S3 = S1 in case (4.3).

(4.4)

We will prove that the solution of (2.6) decays exponentially to zero as t tends to infinity.

More precisely, we have this theorem.
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Theorem 4.1 Assume that (A1)-(A4) and (4.4) are satisfied such that
g0

3 is small enough in case (4.1),

l < 2k1√
k2k3

and g0
1 and g0

3 are small enough in case (4.2),

g0
1 is small enough in case (4.3).

(4.5)

Then there exists a positive constant µ0 ∈]0, 1] independent of µi such that, if (3.3) is

satisfied, then (3.4) holds.

Proof. The proof is similar to the one of Theorem 3.1. We will also follow the proof given

in [20] concerning the case where no delay is present in (4.1)-(4.3) (that is (µ1, µ2, µ3) =

(0, 0, 0)). As for (3.5) and (3.6), we define the energy functional E by

E(t) =
1

2
‖U(t)‖2

H (4.6)

=
1

2



∫ L

0

((k2 − g◦2)ψ2
x − g◦3ω2

x + k1(ϕx + ψ + lω)2 + k3(ωx − lϕ)2 + ρ1ϕ
2
t + ρ2ψ

2
t + ρ1ω

2
t )dx

+〈η2, η2〉L2 + 〈η3, η3〉L3 + τ1|µ1|〈z1, z1〉Ld + τ2|µ2|〈z2, z2〉Ld + τ3|µ3|〈z3, z3〉Ld in case (4.1),∫ L

0

(k2ψ
2
x − g◦1ϕ2

x − g◦3ω2
x + k1(ϕx + ψ + lω)2 + k3(ωx − lϕ)2 + ρ1ϕ

2
t + ρ2ψ

2
t + ρ1ω

2
t )dx

+〈η1, η1〉L1 + 〈η3, η3〉L3 + τ1|µ1|〈z1, z1〉Ld + τ2|µ2|〈z2, z2〉Ld + τ3|µ3|〈z3, z3〉Ld in case (4.2),∫ L

0

((k2 − g◦2)ψ2
x − g◦1ϕ2

x + k1(ϕx + ψ + lω)2 + k3(ωx − lϕ)2 + ρ1ϕ
2
t + ρ2ψ

2
t + ρ1ω

2
t )dx

+〈η1, η1〉L1 + 〈η2, η2〉L2 + τ1|µ1|〈z1, z1〉Ld + τ2|µ2|〈z2, z2〉Ld + τ3|µ3|〈z3, z3〉Ld in case (4.3),

and we get (similarly to (3.6))

E ′(t) ≤



∫ L

0

(|µ1|ϕ2
t + |µ2|ψ2

t + |µ3|ω2
t )dx+

1

2

∫ L

0

∫ +∞

0

(g′2(s)η2
2x + g′3(s)η2

3x)dsdx in case (4.1),∫ L

0

(|µ1|ϕ2
t + |µ2|ψ2

t + |µ3|ω2
t )dx+

1

2

∫ L

0

∫ +∞

0

(g′1(s)η2
1x + g′3(s)η2

3x)dsdx in case (4.2),∫ L

0

(|µ1|ϕ2
t + |µ2|ψ2

t + |µ3|ω2
t )dx+

1

2

∫ L

0

∫ +∞

0

(g′1(s)η2
1x + g′2(s)η2

2x)dsdx in case (4.3).

(4.7)

In order to continue the proof of Theorem 4.1, we need the Lemmas.

4.2 Main lemmas

Lemma 4.2 We use the functionals defined in Lemma 3.2, Lemma 3.3, and Lemma 3.4

and the corresponding estimates and the next Lemmas as follows.
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I1(t) (from Lemma 3.3) in cases (4.2) and (4.3) with the estimate (3.15).

I2(t) (from Lemma 3.4) in cases (4.1) and (4.3) with the estimate (3.16).

I3(t) (from Lemma 3.4) in cases (4.1) and (4.2) with the estimate (3.17).

Proof. The proof is identical to the one given in Lemmas 3.3 and 3.4.

Lemma 4.3 The functional

I4(t) =

∫ L

0

(ρ1ϕϕt + ρ2ψψt + ρ1ωωt) dx in cases (4.1)-(4.3)

satisfies, for any δ0, γ0 > 0, there exists cδ0 , cγ0 > 0 such that

I ′4(t) ≤
∫ L

0

(
ρ1ϕ

2
t + ρ2ψ

2
t + ρ1ω

2
t

)
dx−

∫ L

0

[
k1(ϕx + ψ + lω)2 + k3(ωx − lϕ)2 + k2ψ

2
x

]
dx

+ cγ0

3∑
i=1

|µi|2
∫ L

0

z2
i (1)dx+ (δ0 + γ0)

∫ L

0

(ϕ2
x + ψ2

x + ω2
x)dx

+



∫ L

0

(g0
2ψ

2
x + g0

3ω
2
x)dx+ cδ0

∫ L

0

∫ +∞

0

(
g2(s)η2

2x + g3(s)η2
3x

)
dsdx in case (4.1),∫ L

0

(g0
1ϕ

2
x + g0

3ω
2
x)dx+ cδ0

∫ L

0

∫ +∞

0

(
g1(s)η2

1x + g3(s)η2
3x

)
dsdx in case (4.2),∫ L

0

(g0
1ϕ

2
x + g0

2ψ
2
x)dx+ cδ0

∫ L

0

∫ +∞

0

(
g1(s)η2

1x + g2(s)η2
2x

)
dsdx in case (4.3).

(4.8)

Proof. The proof is identical to the one given in Lemma 3.4.

Lemma 4.4 In this Lemma we use the same functionals that defined in part 3 Lemma 3.5

.

Proof. The proof is identical to the one given in Lemma 3.5.

Lemma 4.5 The functionals

I8(t) = ρ2

∫ L

0

(ϕx + ψ + lω)ψtdx+
k2ρ1

k1

∫ L

0

ψxϕtdx−
ρ1

k1

∫ L

0

ϕt

∫ +∞

0

g2(s)ψx(t− s)dsdx

in case (4.1)

I9(t) = −ρ2

∫ L

0

(ϕx + ψ + lω)ψtdx−
k2ρ1

k1

∫ L

0

ψxϕtdx+
ρ2

k1

∫ L

0

ψt

∫ +∞

0

g1(s)ϕx(t− s)dsdx

in case (4.2)
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and

I10(t) = −ρ1

∫ L

0

(ϕx + ψ + lω)ωtdx−
k3ρ1

k1

∫ L

0

(ωx − lϕ)ϕtdx+
ρ1

k1

∫ L

0

ωt

∫ +∞

0

g1(s)ϕx(t− s)dsdx

in case (4.3)

satisfy, for any ε0, ε1, ε2, δ0, γ0 > 0, there exist cδ0 , cγ0 , cε0 > 0 such that

I ′8(t) ≤ −k1

∫ L

0

(ϕx + ψ + lω)2dx+

(
δ0 +

lk3ε1
2k1

(k2 − g0
2)

)∫ L

0

(ωx − lϕ)2dx

+ δ0

∫ L

0

ϕ2
tdx+

lk3

2ε1k1

(k2 − g0
2)

∫ L

0

ψ2
xdx+

∫ L

0

(
3ρ2

2
ψ2
t +

l2ρ2

2
ω2
t

)
dx

+

(
ρ2 −

k2ρ1

k1

)∫ L

0

ψtϕxtdx+ cδ0

∫ L

0

∫ +∞

0

(g2(s)− g′2(s))η2
2xdsdx

+ γ0

∫ L

0

(ϕ2
x + ψ2

x + ω2
x)dx+ cγ0

∫ L

0

(
|µ1|2z2

1(1) + |µ2|2z2
2(1)

)
dx,

(4.9)

I ′9(t) ≤
(
k1 + δ0 +

g0
1ε1
2

)∫ L

0

(ϕx + ψ + lω)2dx+
lk2k3ε2

2k1

∫ L

0

(ωx − lϕ)2dx

+
g0

1

2ε1

∫ L

0

ϕ2
xdx+

lk2k3

2ε2k1

∫ L

0

ψ2
xdx+ (δ0 − ρ2 + ε0)

∫ L

0

ψ2
t + cε0

∫ L

0

ω2
t dx

+

(
k2ρ1

k1

− ρ2

)∫ L

0

ψtϕxtdx+ cδ0

∫ L

0

∫ +∞

0

(g1(s)− g′1(s))η2
1xdsdx

+ γ0

∫ L

0

(ϕ2
x + ψ2

x + ω2
x)dx+ cγ0

∫ L

0

(
|µ1|2z2

1(1) + |µ2|2z2
2(1)

)
dx

(4.10)

and

I ′10(t) ≤
(
lk1 + δ0 +

lg0
1ε1
2

)∫ L

0

(ϕx + ψ + lω)2dx− lk2
3

k1

∫ L

0

(ωx − lϕ)2dx

+
lg0

1

2ε1

∫ L

0

ϕ2
xdx+ cε0

∫ L

0

(ϕ2
t + ψ2

t )dx+ (−lρ1 + δ0 + ε0)

∫ L

0

ω2
t dx

+ ρ1

(
k3

k1

− 1

)∫ L

0

ψtϕxtdx+ cδ0

∫ L

0

∫ +∞

0

(g1(s)− g′1(s))η2
1xdsdx

+ γ0

∫ L

0

(ϕ2
x + ψ2

x + ω2
x)dx+ cγ0

∫ L

0

(
|µ1|2z2

1(1) + |µ3|2z2
3(1)

)
dx.

(4.11)

Proof. First, notice that

∂

∂t

∫ +∞

0

g1(s)ϕx(t− s)ds = ∂t

∫ t

−∞
g1(t− s)ϕx(s)ds = g1(0)ϕx(t) +

∫ t

−∞
g′1(t− s)ϕx(s)ds
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= −
∫ +∞

0

g′1(s)ϕx(t)ds+

∫ +∞

0

g′1(s)ϕx(t− s)ds = −
∫ +∞

0

g′1(s)η1xds. (4.12)

Similarly

∂

∂t

∫ +∞

0

g2(s)ψx(t− s)ds = −
∫ +∞

0

g′2(s)η2xds. (4.13)

By exploiting the first two equations in (4.1), integrating by parts and using the boundary

conditions and (4.13), we find

I ′8(t) = −k1

∫ L

0

(ϕx + ψ + lω)2dx+

(
ρ2 −

k2ρ1

k1

)∫ L

0

ψtϕxtdx+ ρ2

∫ L

0

ψ2
t dx

+ ρ2l

∫ L

0

ωtψt(x, t)dx+
lk3

k1

(k2 − g0
2)

∫ L

0

(ωx − lϕ)ψxdx+
ρ1

k1

∫ L

0

ϕt

∫ +∞

0

g′2(s)η2xdsdx

+
lk3

k1

∫ L

0

(ωx − lϕ)

∫ +∞

0

g2(s)η2xdsdx−
∫ L

0

µ2(ϕx + ψ + lω)ψt(x, t− τ2)dx

− k2

k1

∫ L

0

µ1ψx(x, t)ϕt(x, t− τ1)dx+
1

k1

∫ L

0

µ1ϕt(x, t− τ1)

∫ +∞

0

g2(s) [ψx(x, t)− η2x(x, t)] dsdx.

By applying Hölder’s and Young’s inequalities to the last seven terms of the above equality,

we deduce (4.9). Similarly, using (4.12) and the first two equations in (4.2), and the first

and third equations in (4.3), we get

I ′9(t) = k1

∫ L

0

(ϕx + ψ + lω)2dx− g0
1

∫ L

0

(ϕx + ψ + lω)ϕxdx+

(
k2ρ1

k1

− ρ2

)∫ L

0

ψtϕxtdx

− ρ2

∫ L

0

ψ2
t dx− ρ2l

∫ L

0

ωtψt(x, t)dx−
lk2k3

k1

∫ L

0

(ωx − lϕ)ψxdx

− ρ2

k1

∫ L

0

ψt

∫ +∞

0

g′1(s)η1xdsdx+

∫ L

0

(ϕx + ψ + lω)

∫ +∞

0

g1(s)η1xdsdx

+

∫ L

0

µ2(ϕx + ψ + lω)ψt(x, t− τ2)dx+
k2

k1

∫ L

0

µ1ψx(x, t)ϕt(x, t− τ1)dx

− 1

k1

∫ L

0

µ2ψt(x, t− τ2)

∫ +∞

0

g1(s) [ϕx(x, t)− η1x(x, t)] dsdx

and

I ′10(t) = lk1

∫ L

0

(ϕx + ψ + lω)2dx− lg0
1

∫ L

0

(ϕx + ψ + lω)ϕxdx+ ρ1

(
k3

k1

− 1

)∫ L

0

ωtϕxtdx

− lk2
3

k1

∫ L

0

(ωx − lϕ)2dx−
∫ L

0

(
lρ1ω

2
t + ρ1ψtωt −

lρ1k3

k1

ϕ2
t

)
dx− ρ1

k1

∫ L

0

ωt

∫ +∞

0

g′1(s)η1xdsdx

+ l

∫ L

0

(ϕx + ψ + lω)

∫ +∞

0

g1(s)η1xdsdx+

∫ L

0

µ3(ϕx + ψ + lω)ωt(x, t− τ3)dx

+
k3

k1

∫ L

0

µ1(ωx − lϕ)ϕt(x, t− τ1)dx− 1

k1

∫ L

0

µ3ωt(x, t− τ3)

∫ +∞

0

g1(s) [ϕx(x, t)− η1x(x, t)] dsdx.
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Then, by proceeding as for (4.9), we deduce (4.10) and (4.11).

Lemma 4.6 The functionals

I11(t) = −ρ1k3

∫ L

0

(ωx − lϕ)

∫ x

0

ωt(y, t)dydx− ρ1k1

∫ L

0

ϕt

∫ x

0

(ϕx + ψ + lω)(y, t)dydx in case (4.1),

I12(t) = I11(t) in case (4.2) and I13(t) = −I11(t) in case (4.3).

Satisfy, for any ε0, δ0, γ0, δ1, δ2, δ3 > 0, there exists cε0 , cδ0 , cγ0 > 0 such that

I ′11(t) ≤k2
1

∫ L

0

(ϕx + ψ + lω)2dx+

(
k3g

0
3δ1

2
+ δ0 − k2

3

)∫ L

0

(ωx − lϕ)2dx

+ (−ρ1k1 + ε0)

∫ L

0

ϕ2
tdx+ cε0

∫ L

0

(ψ2
t + ω2

t )dx+
k3g

0
3

2δ1

∫ L

0

ω2
xdx

+ cγ0

∫ L

0

(|µ1|2z2
1(1) + |µ3|2z2

3(1))dx+ γ0

∫ L

0

(ϕ2
x + ψ2

x + w2
x)

2dx+ cδ0

∫ L

0

g3(s)η2
3xdsdx,

(4.14)

I ′12(t) ≤
(
k2

1 +
k1g

0
1δ2

2
+ δ0

)∫ L

0

(ϕx + ψ + lω)2dx+

(
k3g

0
3δ3

2
+ δ0 − k2

3

)∫ L

0

(ωx − lϕ)2dx

+ ε0

∫ L

0

ψ2
t dx+ cε0

∫ L

0

(ϕ2
t + ω2

t )dx+
k1g

0
1

2δ2

∫ L

0

ϕ2
xdx+

k3g
0
3

2δ3

∫ L

0

ω2
xdx

+ cγ0

∫ L

0

(|µ1|2z2
1(1) + |µ3|2z2

3(1))dx+ γ0

∫ L

0

(ϕ2
x + ψ2

x + w2
x)

2dx

+ cδ0

∫ L

0

∫ +∞

0

(g1(s)η2
1x + g3(s)η2

3x)dsdx

(4.15)

and

I ′13(t) ≤
(
−k2

1 +
k1g

0
1δ1

2
+ δ0

)∫ L

0

(ϕx + ψ + lω)2dx+ k2
3

∫ L

0

(ωx − lϕ)2dx

+ (ε0 − ρ1k3)

∫ L

0

ω2
t dx+ cε0

∫ L

0

(ϕ2
t + ψ2

t )dx

+
k1g

0
1

2δ1

∫ L

0

ϕ2
xdx+ cγ0

∫ L

0

(
|µ1|2z2

1(1) + |µ3|2z2
3(1)

)
dx

+ γ0

∫ L

0

(ϕ2
x + ψ2

x + w2
x)

2dx+ cδ0

∫ L

0

∫ +∞

0

g1(s)η2
1xdsdx.

(4.16)

Proof. By exploiting the first and third equations in (4.1), integrating by parts and using
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the boundary conditions, we get

I ′11(t) =k2
1

∫ L

0

(ϕx + ψ + lω)2dx+ lρ1k3

∫ L

0

ϕt

∫ x

0

ωt(y, t)dydx+ ρ1k3

∫ L

0

ω2
t dx− ρ1k1

∫ L

0

ϕ2
tdx

− k2
3

∫ L

0

(ωx − lϕ)2dx− ρ1k1

∫ L

0

ϕt

∫ x

0

(ψt(y, t) + lωt(y, t))dydx+ k3g
0
3

∫ L

0

(ωx − lϕ)ωxdx

− k3

∫ L

0

(ωx − lϕ)

∫ +∞

0

g3(s)η3xdsdx+ k3

∫ L

0

(ωx − lϕ)

∫ x

0

µ3ωt(x, t− τ3)dydx

+ k1

∫ L

0

µ1ϕt(x, t− τ1)

∫ x

0

(ϕx + ψ + lω)dydx.

(4.17)

Noting that the functions

x→
∫ x

0

ψt(y, t)dy, x→
∫ x

0

ωt(y, t)dy, x→
∫ x

0

ωt(x, t− τ3)dy and x→
∫ x

0

(ϕx + ψ + lω)dy

vanish at 0 and L, then, applying Poincaré’s inequality, we find∫ L

0

(∫ x

0

ωt(x, t− τ3)dy

)2

dx ≤ c0

∫ L

0

ω2
t (x, t− τ3)dx,

∫ L

0

(∫ x

0

ωt(y, t)dy

)2

dx ≤ c0

∫ L

0

ω2
t dx,∫ L

0

(∫ x

0

(ϕx + ψ + lω)dy

)2

dx ≤ c0

∫ L

0

(ϕx + ψ + lω)2dx,

∫ L

0

(∫ x

0

ψt(y, t)dy

)2

dx ≤ c0

∫ L

0

ψ2
t dx.

By applying Young’s inequality in (4.17), and recalling the last equations, we obtain (4.14).

Similarly we find (4.15) and (4.16).

Lemma 4.7 Let

I14(t) =


0 in cases (4.1) and (4.3),

ρ2

∫ L

0

ψx

∫ x

0

ψt(y, t) dy dx in case (4.2).

(4.18)

Then, for any γ0, δ1 > 0, there exits cγ0

I ′14(t) ≤ −ρ2

∫ L

0

ψ2
t dx+

(
k1δ1

2
+ k2

)∫ L

0

ψ2
x dx (4.19)

+
k1c0

2δ1

∫ L

0

(ϕx + ψ + lw)2 dx+ γ0

∫ L

0

ψ2
xdx+ cγ0|µ2|2

∫ L

0

z2
2(1)dx

in case (4.2), and I ′14(t) = 0 in cases (4.1) and (4.3).

Proof. By exploiting the second equation in (4.2), integrating by parts and using the

boundary conditions, we get

I ′14(t) =

∫ L

0

(
−ρ2ψ

2
t + k2ψ

2
x

)
dx− k1

∫ L

0

ψx

∫ x

0

(ϕx(y, t) + ψ(y, t) + lw(y, t)) dy dx (4.20)
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−µ2

∫ L

0

ψx

∫ x

0

ψt(y, t− τ2)dy dx

in case (4.2), and I ′14(t) = 0 in cases (4.1) and (4.3). Now, noting that the function

x 7→
∫ x

0

(ϕx(y, t) + ψ(y, t) + lw(y, t)) dy and x 7→
∫ x

0

ψt(y, t− τ2)dy

vanishes at 0 and L (because of (2.15)), then, applying Poincaré’s and Young’s inequalities

to the last two integrals in (6.76), we conclude (6.75).

Let N, N1, N2, N3, N4, N5 ≥ 0 and, for i = 1, 2, 3 (corresponding to (4.1), (4.2) and (4.3),

respectively),

Fi = NE+I7+i+N2I14+N3I10+i+N4I4+N5(|µ1|I5+|µ2|I6+|µ3|I7)+N1

∑
j∈{1,2,3}\{i}

Ij. (4.21)

Using (3.1), (4.4), (6.47) and the definition of E, and choosing the constantsN1, N2, N3, N4, δj

and εj as in [20]-proof of Theorem 3.2 (for (4.1)-(4.3) with µ1 = µ2 = µ3 = 0), we find, for

some positive constants c1, · · · , c7,

F ′i (t) ≤ −c1E(t) +NE ′(t)− c2

∑
j∈{1,2,3}\{i}

∫ L

0

∫ +∞

0

g′j(s)η
2
jx(s)dsdx

+ (c3 − c4N5)
3∑
i=1

∫ L

0

∫ 1

0

|µi|z2
i dρdx+

3∑
i=1

∫ L

0

(cγ0|µi| − c5N5)|µi|z2
i (1)dx

+ c6γ0

∫ L

0

(ϕ2
x + ψ2

x + ω2
x)dx+ c7N5

∫ L

0

(
|µ1|ϕ2

t + |µ2|ψ2
t + |µ3|ω2

t

)
dx.

(4.22)

Thanks to (2.17) and (3.3) (so µ0 ≤ 1), we can take 0 < γ0 <
c1

2k0c6
, and then we choose

N5 ≥ max
{
c3
c4
,
cγ0
c5

}
to conclude from (4.7) and (4.22) that, for some positive constants c8

and c9,

F ′i (t) ≤ −c8E(t) +

(
N

2
− c2

) ∑
j∈{1,2,3}\{i}

∫ L

0

∫ +∞

0

g′j(s)η
2
jx(s)dsdx

+ (N + c9)

∫ L

0

(|µ1|ϕ2
t + |µ2|ψ2

t + |µ3|ω2
t )dx.

(4.23)

On the other hand, as for (3.35), there exists a positive constant c10 not depending on µi

such that

(N − c10)E(t) ≤ Fi(t) ≤ (N + c10)E(t), (4.24)
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then by choosing N > max{2c2, c10}, we deduce from (4.23) and (4.24) that Fi ∼ E and,

for some positive constant c11,

F ′i (t) ≤ −c8E(t) + c11
3

max
i=1
|µi|

∫ L

0

(ρ1ϕ
2
t + ρ2ψ

2
t + ρ1ω

2
t )dx.

By assuming that (3.3) holds with µ0 = min
{

1, c8
2c11

}
, we find, for some positive constant

c12,

F ′i (t) ≤ −c12E(t). (4.25)

Finally, we conclude from (4.24) and (4.25) that

F ′i (t) ≤ −c12E(t) ≤ −c13Fi(t),

By integrating the above inequality, we get (3.4), for any U0 ∈ D, since Fi ∼ E.

The density of D(A) ∈ H and the continuity of β1 and β2 with respect to ‖U0‖H imply that

(3.4) is satisfied, for any U0 ∈ H (as in chapter 3).
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CHAPTER 5

BRESSE SYSTEM STABILITY IN THE CASE OF ONE

MEMORY ON THE SECOND EQUATION

In this chapter, we study the stability of (2.1) (with k = 1) when only one infinite memory

is acting on the second equation; that is g1 = g3 = 0. To simplify the notations, let us

denote g2 and η2 by g and η, respectively. So we have the system

ρ1ϕtt − k1(ϕx + ψ + lw)x − lk3(wx − lϕ) + µ1ϕt(x, t− τ1) = 0,

ρ2ψtt − k2ψxx + k1(ϕx + ψ + lw) +

∫ +∞

0

g(s)ψxx(x, t− s)ds+ µ2ψt(x, t− τ2) = 0,

ρ1wtt − k3(wx − lϕ)x + lk1(ϕx + ψ + lw) + µ3wt(x, t− τ3) = 0,

ϕ(0, t) = ψx(0, t) = wx(0, t) = ϕ(L, t) = ψx(L, t) = wx(L, t) = 0,

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x),

ψ(x,−t) = ψ0(x, t), ψt(x, 0) = ψ1(x),

w(x, 0) = w0(x), wt(x, 0) = w1(x),

ϕt(x, t− τ1) = h1(x, t− τ1), ψt(x, t− τ2) = h2(x, t− τ2), wt(x, t− τ3) = h3(x, t− τ3).

(5.1)

Theorem 5.1 Assume that (A1)-(A4) and (3) are satisfied, and l and max3
i=1 |µi| are

small enough. Then (3.4) holds.
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Proof. The proof is similar to the ones given in the previous two sections. First, as for

(3.5) and (3.6), the energy functional

E(t) =
1

2
‖U(t)‖2

H =
1

2

∫ L

0

[
(k2 − g◦)ψ2

x + k1(ϕx + ψ + lw)2 + k3(wx − lϕ)2
]
dx

+
1

2

∫ L

0

[
ρ1ϕ

2
t + ρ2ψ

2
t + ρ1w

2
t

]
dx+

1

2

∫ L

0

∫ +∞

0

g(s)η2
xdsdx

+
1

2

∫ L

0

∫ 1

0

(τ1|µ1|z2
1 + τ2|µ2|z2

2 + τ3|µ3|z2
3)dρdx

(5.2)

satisfies

E ′(t) ≤ |µ1|
∫ L

0

ϕ2
tdx+ |µ2|

∫ L

0

ψ2
t dx+ |µ3|

∫ L

0

w2
t dx+

1

2

∫ L

0

∫ +∞

0

g′(s)η2
xdsdx. (5.3)

Lemma 5.2 The functional I2 defined in Lemma 3.4 satisfies (3.16).

Proof. The proof is identical to the one of Lemma 3.4.

Lemma 5.3 The functional

I1(t) = −
∫ L

0

(ρ1ϕϕt + ρ2ψψt + ρ1wwt)

satisfies, for any δ0 > 0, there exists cδ0 > 0 such that

I ′1(t) ≤−
∫ L

0

(
ρ1ϕ

2
t + ρ2ψ

2
t + ρ1w

2
t

)
dx− cδ0

∫ L

0

∫ +∞

0

g′(s)η2
xdsdx+ cδ0

3∑
i=1

|µi|2
∫ L

0

z2
i (1)dx

+

∫ L

0

[
k1(ϕx + ψ + lw)2 + k3(wx − lϕ)2 + (k2 − g0)ψ2

x

]
dx+ δ0

∫ L

0

(ϕ2
x + ψ2

x + w2
x)dx.

(5.4)

Proof. By exploiting equations of (5.1) and integrating by parts, we get

I ′1(t) = −
∫ L

0

(
ρ1ϕ

2
t + ρ2ψ

2
t + ρ1w

2
t

)
dx+ k1

∫ L

0

(ϕx + ψ + lw)2dx+ k3

∫ L

0

(wx − lϕ)2dx

+ (k2 − g0)

∫ L

0

ψ2
xdx+ µ1

∫ L

0

z1(1)ϕdx+ µ2

∫ L

0

z2(1)ψdx

+ µ3

∫ L

0

z3(1)wdx+

∫ L

0

ψx

∫ +∞

0

g(s)ηxdsdx.

(5.5)

Using Poincaré’s, Young’s and Hölder’s inequalities for the last four term of (5.5) and

exploiting (3.1), we find (5.4).
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Lemma 5.4 The functionals I5, I6 and I7 defined in Lemma 3.6 satisfy (3.22), (3.23) and

(3.24).

Proof. See the proof of Lemma 3.6.

Lemma 5.5 The functional

I3(t) = ρ2

∫ L

0

(ϕx + ψ + lw)ψtdx+
k2ρ1

k1

∫ L

0

ψxϕtdx−
ρ1

k1

∫ L

0

ϕt

∫ +∞

0

g(s)ψx(t− s)dsdx,

satisfies, for any δ0, ε0, ε1, ε2 > 0, there exist cδ0 , cε0 > 0 such that

I ′3(t) ≤− k1

∫ L

0

(ϕx + ψ + lw)2dx+

(
δ0 +

lk2k3ε1
2k1

+
lk3g

0ε2
2k1

)∫ L

0

(wx − lϕ)2dx+ δ0

∫ L

0

ϕ2
tdx

+

(
lk2k3

2ε1k1

+
lk3g

0

2ε2k1

)∫ L

0

ψ2
xdx+

∫ L

0

(
cε0ψ

2
t + ε0w

2
t

)
dx− cδ0

∫ L

0

∫ +∞

0

g′(s)η2
xdsdx

+ δ0

∫ L

0

(ϕ2
x + ψ2

x + w2
x)dx+ cδ0

∫ L

0

(
|µ1|2z2

1(1) + |µ2|2z2
2(1)

)
dx.

(5.6)

Proof. By exploiting the first two equations in (5.1), integrating by parts, using (4.13) and

the boundary conditions (see the proof of Lemma 4.5), applying (3.12), (3.13) and Young’s

and Poincaré’s inequalities, and exploiting (3) and (3.1), we deduce (5.6).

Lemma 5.6 The functional

I4(t) = −ρ1k3

∫ L

0

(wx − lϕ)

∫ x

0

wt(y)dydx− ρ1k1

∫ L

0

ϕt

∫ x

0

(ϕx + ψ + lw)(y)dydx,

satisfies, for any ε0, δ0 > 0, there exist cε0 , cδ0 > 0 such that

I ′4(t) ≤k2
1

∫ L

0

(ϕx + ψ + lw)2dx− k2
3

∫ L

0

(wx − lϕ)2dx+ cε0

∫ L

0

ψ2
t dx+ ρ1k3

∫ L

0

w2
t dx

+ (−ρ1k1 + ε0)

∫ L

0

ϕ2
t dx+ δ0

∫ L

0

(ϕ2
x + ψ2

x + w2
x)dx+ cδ0

∫ L

0

(
µ2

1z
2
1(1) + µ2

3z
2
3(1)

)
dx.

(5.7)

Proof. By exploiting the first and third equations in (5.1), integrating by parts and using

(2.15) and the boundary conditions, we get
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I ′4(t) = ρ1k3

∫ L

0

w2
t dx− ρ1k1

∫ L

0

ϕ2
t dx+ k2

1

∫ L

0

(ϕx + ψ + lw)2 dx

− k2
3

∫ L

0

(wx − lϕ)2 dx− ρ1

∫ L

0

ϕt

∫ x

0

(k1ψt(y) + l(k1 − k3)wt(y)) dy dx

+ µ3k3

∫ L

0

(wx − lϕ)

∫ x

0

z3(y, 1)dydx+ µ1k1

∫ L

0

z1(1)

∫ x

0

(ϕx + ψ + lw)(y)dydx.

(5.8)

Noting that the functions

x 7→
∫ x

0

ψt(y) dy, x 7→
∫ x

0

z3(y, 1) dy and x 7→
∫ x

0

(ϕx + ψ + lw)(y) dy

vanish at 0 and L (because of (2.15)), then, applying (2.16), we have∫ L

0

(∫ x

0

ψt(y) dy

)2

dx ≤ c0

∫ L

0

ψ2
t dx,

∫ L

0

(∫ x

0

z3(y, 1) dy

)2

dx ≤ c0

∫ L

0

z2
3(1) dx

(5.9)

and ∫ L

0

(∫ x

0

(ϕx + ψ + lw)(y) dy

)2

dx ≤ c0

∫ L

0

(ϕx + ψ + lw)2 dx. (5.10)

By applying Young’s and Poincaré’s inequalities for the last three terms in (5.8), recalling

(5.9) and (5.10), and exploiting (3), we conclude (5.7).

Lemma 5.7 Let

I8(t) = −ρ1

∫ L

0

(ϕx + ψ + lw)wt dx−
k3ρ1

k1

∫ L

0

(wx − lϕ)ϕt dx.

Then, for any ε0, δ0 > 0, there exist cε0 , cδ0 > 0 such that

I ′8(t) ≤ lk1

∫ L

0

(ϕx + ψ + lw)2 dx− lk2
3

k1

∫ L

0

(wx − lϕ)2 dx+ cε0

∫ L

0

ψ2
t dx (5.11)

+

∫ L

0

(
lρ1k3

k1

ϕ2
t + (−lρ1 + ε0)w2

t

)
dx+δ0

∫ L

0

(ϕ2
x+ψ

2
x+w

2
x)dx+cδ0

∫ L

0

(µ2
1z

2
1(1)+µ2

3z
2
3(1))dx.

Proof. Using the first and third equations in (5.1), integrating by parts and using the

boundary conditions, we find

I ′8(t) = lk1

∫ L

0

(ϕx + ψ + lw)2 dx− lk2
3

k1

∫ L

0

(wx − lϕ)2 dx+ ρ1

(
k3

k1

− 1

)∫ L

0

ϕxtwt dx

−lρ1

∫ L

0

w2
t dx+

lk3ρ1

k1

∫ L

0

ϕ2
t dx− ρ1

∫ L

0

ψtwt dx+ µ3

∫ L

0

(ϕx + ψ + lw)z3(1) dx

+k3µ1
k1

∫ L

0

(wx − lϕ)z1(1) dx.
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By applying Young’s and Poincaré’s inequalities for the last three terms of the above equal-

ity and using (3), we obtain (5.11).

Lemma 5.8 Let

I9(t) = −ρ2

∫ L

0

ψx

∫ x

0

ψt(y) dy dx.

Then, for any δ0, δ2 > 0, there exists cδ0 > 0 such that

I ′9(t) ≤ ρ2

∫ L

0

ψ2
t dx+

(
k1

2δ2

+ g0 + δ0 − k2

)∫ L

0

ψ2
x dx+ cδ0µ

2
2

∫ L

0

z2
2(1) dx

+ c0k1δ2
2

∫ L

0

(ϕx + ψ + lw)2 dx− cδ0
∫ L

0

∫ +∞

0

g′(s)η2
x ds dx.

(5.12)

Proof. By exploiting the second equation in (5.1), integrating by parts and using the

boundary conditions, we find

I ′9(t) = ρ2

∫ L

0

ψ2
t dx+

(
g0 − k2

) ∫ L

0

ψ2
x dx−

∫ L

0

ψx

∫ +∞

0

g(s)ηx ds dx

+ k1

∫ L

0

ψx

∫ x

0

(ϕx + ψ + lw)(y) dy dx+ µ2

∫ L

0

ψx

∫ x

0

z2(y, 1) dy dx.

(5.13)

Noting that the function

x 7→
∫ x

0

(ϕx + ψ + lw)(y) dy and x 7→
∫ x

0

z2(y, 1) dy

vanishes at 0 and L (because of (2.15)), then, applying (2.16), we have
∫ L

0

(∫ x

0

(ϕx + ψ + lw)(y) dy

)2

dx ≤ c0

∫ L

0

(ϕx + ψ + lw)2 dx,∫ L

0

(∫ x

0

z2(y, 1) dy

)2

dx ≤ c0

∫ L

0

z2
2(1) dx.

(5.14)

Then, application of Young’s and Poincaré’s inequalities and (3.12) for the last three terms

in (5.13), and use of (5.14) yield (5.12).

Let µ0 := max3
i=1 |µi|, N,N1, · · · , N6 be positive constants that will be fixed later and

F := NE +N1I2 +N2I4 +N3I8 +N4I1 +N5I9 + I3 +N6(|µ1|I5 + |µ2|I6 + |µ3|I7). (5.15)

Then, by combining (3.16), (3.22), (3.23), (3.24), (5.3), (5.4), (5.6), (5.7), (5.11) and (5.12),

and using (2.17), (3.1) and the definition of E, we obtain

F ′(t) ≤
∫ L

0

(
l1ϕ

2
t + l2ψ

2
t + l3w

2
t + l4ψ

2
x + l5(wx − lϕ)2 + l6(ϕx + ψ + lw)2

)
dx (5.16)
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+
(
N
2
− c(N1, N4, N5, δ0)

) ∫ L

0

∫ +∞

0

g′(s)η2
x ds dx+

(
δ0c(N1, N2, N3, N4, N5) + µ0c(N,N6)

)
E(t)

+ ε0c(N2, N3)

∫ L

0

(
ϕ2
t + w2

t

)
dx+ c(N2, N3, ε0)

∫ L

0

ψ2
t dx dx

− N6c(τ1, τ2, τ3)

∫ L

0

∫ 1

0

(
τ1|µ1|z2

1 + τ2|µ2|z2
2 + τ3|µ3|z2

3

)
dρ dx

+
(
µ0c(δ0, N1, N2, N3, N4, N5)−N6c(τ1, τ2, τ3)

) ∫ L

0

(
|µ1|z2

1(1) + |µ2|z2
2(1) + |µ3|z2

3(1)
)
dx,

where

l1 = −ρ1k1N2 − ρ1N4 +
lρ1k3N3

k1

, l2 = −ρ2g
0N1 − ρ2N4 + ρ2N5,

l3 = −lρ1N3−ρ1N4+ρ1k3N2, l4 = −
(
k2 −

k1

2δ2

)
N5+k2N4+

lk2k3

2k1ε1
+g0

(
N5 −N4 +

lk3

2k1ε2

)
,

l5 = −k2
3N2−

lk2
3N3

k1

+k3N4+
lk2k3ε1

2k1

+
lk3g

0ε2
2k1

and l6 = −k1+k2
1N2+lk1N3+k1N4+

c0k1δ2N5

2
.

At this point, as in [5], we choose carefully the constants N, Ni, δi and εi to get suitable

values of li.

First, we choose

N3 = δ1 = 1, ε1 =
k3

k2

, ε2 =
k3

2g0
, δ2 =

k1

k2 − g0
, N4 = k3N2 and N5 = 4k3N2

(from (2.17), we see that k2 − g0 > 0); thus, the constants li take the forms
l1 = −ρ1(k1 + k3)N2 + lρ1k3

k1
, l2 = −ρ2(g0N1 − 3k3N2),

l3 = −lρ1, l4 = −(k2 − g0)k3N2 + l
k1

(
k22
2

+ (g0)2
)
,

l5 = − lk23
4k1

< 0, l6 = −k1

(
1−

(
k1 + k3 + 2c0k1k3

k2−g0

)
N2

)
+ lk1.

Now, we choose N2 > 0 so small that

1−
(
k1 + k3 +

2c0k1k3

k2 − g0

)
N2 > 0,

then, take ε0 = 1
2c(N2,N3)

lρ1, and put
l̃1 := l1 + ε0c(N2, N3) = −ρ1(k1 + k3)N2 + lρ1

(
1
2

+ k3
k1

)
,

l̃2 := l2 + c(N2, N3, ε0),

l̃3 := l3 + ε0c(N2, N3) = − lρ1
2
< 0.
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Next, we assume that l > 0 is small enough such that

l̃1 < 0, l4 < 0 and l6 < 0.

After that, we pick N1 > 0 very large so that l̃2 < 0. Then we find that

l̂ := 2 max

{
1

ρ1

l̃1,
1

ρ2

l̃2,
1

ρ1

l̃3,
1

k2 − g0
l4,

1

k3

l5,
1

k1

l6

}
< 0.

Choosing δ0 > 0 small enough and N6 large enough so that

l̂ + δ0c(N1, N2, N3, N4, N5) < 0 and − 1

2

(
l̂ + δ0c(N1, N2, N3, N4, N5)

)
−N6c(τ1, τ2, τ3) ≤ 0.

Consequently, we obtain from (5.16), for some positive constants c1, c2, c3,

F ′(t) ≤ −
(
c1 − µ0c(N)

)
E(t) +

(
N

2
− c2

)∫ L

0

∫ +∞

0

g′(s)η2
x dsdx (5.17)

+(µ0c2 − c3)

∫ L

0

(
|µ1|z2

1(1) + |µ2|z2
2(1) + |µ3|z2

3(1)
)
dx.

On the other hand, we deduce from the definition of E and Ii that there exists a positive

constant c4 (independent of µ0 and N) satisfying

|N1I1 +N2I7 +N3I8 +N4I2 +N5I9 + I6 +N6(|µ1|I3 + |µ2|I4 + |µ3|I5)| ≤ c4E(t),

therefore

(N − c4)E ≤ F ≤ (N + c4)E.

Then, choosing N > max{2c2, c4}, assuming that µ0 is small enough such that

µ0 < min

{
c1

c(N)
,
c3

c2

}
and noting that g′ ≤ 0, we get that F ∼ E and, for some positive constant γ1,

F ′(t) ≤ −γ1F (t). (5.18)

By integrating (5.18) and using the equivalence F ∼ E, we conclude (3.4).
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CHAPTER 6

UNIFORM AND WEAK STABILITY OF BRESSE SYSTEM

WITH ONE INFINITE MEMORY IN THE SHEAR ANGLE

DISPLACEMENT

This chapter presents a full copy of the paper [5], we consider a Bresse system in one-

dimensional open bounded interval subjected to homogeneous Dirichlet-Neumann-Neumann

boundary conditions and with the presence of one infinite memory acting on the shear angle

equation. Precisely, we are concerned with the following problem:

ρ1ϕtt − k1(ϕx + ψ + lw)x − lk3(wx − lϕ) = 0,

ρ2ψtt − k2ψxx + k1(ϕx + ψ + lw) +

∫ +∞

0

g(s)ψxx(x, t− s) ds = 0,

ρ1wtt − k3(wx − lϕ)x + lk1(ϕx + ψ + lw) = 0,

ϕ(0, t) = ψx(0, t) = wx(0, t) = ϕ(L, t) = ψx(L, t) = wx(L, t) = 0,

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x),

ψ(x,−t) = ψ0(x, t), ψt(x, 0) = ψ1(x),

w(x, 0) = w0(x), wt(x, 0) = w1(x),

(6.1)

where (x, t) ∈]0, L[×R+, g : R+ → R+ is a given function, and L, l, ρi and ki are positive

constants. The integral term in system (6.1) represents the infinite memory, and the state

(unknown) is

(ϕ, ψ, w) :]0, L[×]0,+∞[→ R3.

Our objective is to establish the well-posedness and the asymptotic stability of this problem

in terms of the growth of g at infinity and the speeds of wave propagations given by (2).
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The Bresse system is known as the circular arch problem and is given by the following

equations:

ρ1ϕtt = Qx + lN + F1, ρ2ψtt = Mx −Q+ F2, ρ1wtt = Nx − lQ+ F3,

with

N = k0(wx − lϕ), Q = k(ϕx + lw + ψ) and M = bψx,

where ρ1, ρ2, l, k, k0 and b are positive physical constants, N, Q and M denote, respec-

tively, the axial force, the shear force and the bending moment, and w, ϕ and ψ represent,

respectively, the longitudinal, vertical and shear angle displacements. Here

ρ1 = ρA, ρ2 = ρI, k0 = EA, k = k′GA, b = EI and l = R−1

such that ρ, E, G, k′, A, I and R are positive constants and denote, respectively, the

density, the modulus of elasticity, the shear modulus, the shear factor, the cross-sectional

area, the second moment of area of the cross-section and the radius of curvature. Finally,

F1, F2 and F3 are the external forces defined in ]0, L[×]0,+∞[.

Our goal in this chapter is to study the well-posedness and asymptotic stability of system

(6.1) in terms of the arbitrary growth at infinity of the kernel g and the speeds of wave

propagations (2). We prove that the systems is well-posed and its energy converges to zero

when time goes to infinity and provide two general decay estimates: a uniform stability

estimate under (5), and another weak stability result in general. Our results generalize

those of [11] and allow a wider class of relaxation functions. See Remark 6.6 below.

The proof of the well-posedness is based on the semigroup theory. For the stability

estimates, we use the energy method and an approach introduced by the present authors

in [21] and [22].

This chapter is organized as follows. In section 1, we prove the well-posedness of (6.1).

In section 2, we present our stability results. The proof of our uniform and weak decay

estimates are given, respectively, in sections 3 and 4.

66



CHAPTER 6. UNIFORM AND WEAK STABILITY OF BRESSE SYSTEM WITH
ONE INFINITE MEMORY IN THE SHEAR ANGLE DISPLACEMENT

6.1 Well-posedness

In this section, we discuss the well-posedness of (6.1) using the semigroup approach. Fol-

lowing the method of [10], we consider the functional

η(x, t, s) = ψ(x, t)− ψ(x, t− s) in ]0, L[×R+ × R+. (6.2)

This functional satisfies
ηt + ηs − ψt = 0 in ]0, L[×R+ × R+,

ηx(0, t, s) = ηx(L, t, s) = 0 in R+ × R+,

η(x, t, 0) = 0 in ]0, L[×R+.

(6.3)

Let η0(x, s) = η(x, 0, s),

U0 =
(
ϕ0, ψ0, w0, ϕ1, ψ1, w1, η

0
)T
, (6.4)

U = (ϕ, ψ,w, ϕt, ψt, wt, η)T (6.5)

and

g0 =

∫ +∞

0

g(s) ds. (6.6)

Then the system (6.1) takes the following abstract form:{
Ut = AU,
U(t = 0) = U0,

(6.7)

where A is the linear operator defined by

AU =



ϕt

ψt

wt

k1ρ1ϕxx − l2k3ρ1ϕ+ k1ρ1ψx + lρ1(k1 + k3)wx

−k1ρ2ϕx + 1ρ2 (k2 − g0)ψxx − k1ρ2ψ − lk1ρ2w + 1ρ2

∫ +∞

0

gηxx ds

−lρ1(k1 + k3)ϕx − lk1ρ1ψ + k3ρ1wxx − l2k1ρ1w

ψt − ηs


.

Let

L2 =

{
v : R+ → H1

∗ (]0, L[),

∫ L

0

∫ +∞

0

gv2
x ds dx < +∞

}
(6.8)
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and

H = H1
0 (]0, L[)×

(
H1
∗ (]0, L[)

)2 × L2(]0, L[)×
(
L2
∗(]0, L[)

)2 × L2, (6.9)

where

L2
∗(]0, L[) =

{
v ∈ L2(]0, L[),

∫ L

0

v dx = 0

}
(6.10)

and

H1
∗ (]0, L[) =

{
v ∈ H1(]0, L[),

∫ L

0

v dx = 0

}
. (6.11)

The domain D(A) of A is defined by

D(A) =
{
V = (v1, · · · , v7)T ∈ H, AV ∈ H, v7(0) = 0, ∂xv2(0) = ∂xv3(0) = 0, (6.12)

∂xv2(L) = ∂xv3(L) = 0, ∂xv7(·, 0) = ∂xv7(·, L) = 0
}

;

that is, according to the definition of H and A,

D(A) =
{

(v1, · · · , v7)T ∈ H, (v1, · · · , v6)T ∈ H1
0 (]0, L[)×

(
H1
∗ (]0, L[)

)2×H1
0 (]0, L[)×

(
H1
∗ (]0, L[)

)2
,

v1, v3 ∈ H2(]0, L[),
(
k2 − g0

)
∂xxv2 +

∫ +∞

0

g∂xxv7 ds ∈ L2
∗(]0, L[), ∂sv7 ∈ L2,

v7(0) = 0, ∂xv2(0) = ∂xv3(0) = ∂xv2(L) = ∂xv3(L) = 0, ∂xv7(·, 0) = ∂xv7(·, L) = 0
}
.

More generally, for n ∈ N,

D(An) =


H ifn = 0,

D(A) ifn = 1,{
V ∈ D(An−1), AV ∈ D(An−1)

}
ifn = 2, 3, · · · .

Remark 6.1 As in [20], by integrating on ]0, L[ the second and third equations in (6.1),
and using the boundary conditions, we get

∂tt

(∫ L

0

ψ dx

)
+
k1

ρ2

∫ L

0

ψ dx+
lk1

ρ2

∫ L

0

w dx = 0 (6.13)

and

∂tt

(∫ L

0

w dx

)
+
l2k1

ρ1

∫ L

0

w dx+
lk1

ρ1

∫ L

0

ψ dx = 0. (6.14)

Therefore, (6.13) implies that∫ L

0

w dx = − ρ2

lk1

∂tt

(∫ L

0

ψ dx

)
− 1

l

∫ L

0

ψ dx. (6.15)
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Substiting (6.15) into (6.14), we get

∂tttt

(∫ L

0

ψ dx

)
+

(
k1

ρ2

+
l2k1

ρ1

)
∂tt

(∫ L

0

ψ dx

)
= 0. (6.16)

Let l0 =
√

k1
ρ2

+ l2k1
ρ1

. Then, solving (6.16), we find∫ L

0

ψ dx = c̃1 cos (l0t) + c̃2 sin (l0t) + c̃3t+ c̃4, (6.17)

where c̃1, · · · , c̃4 are real constants. By combining (6.15) and (6.17), we get∫ L

0

w dx = c̃1

(
ρ2l

2
0

lk1

− 1

l

)
cos (l0t) + c̃2

(
ρ2l

2
0

lk1

− 1

l

)
sin (l0t)−

c̃3

l
t− c̃4

l
. (6.18)

Let
(ψ̃0(x), w̃0(x)) = (ψ0(x, 0), w0(x)).

Using the initial data of ψ and w in (6.1), we see that

c̃1 = k1
ρ2l20

∫ L

0

ψ̃0 dx+
lk1

ρ2l20

∫ L

0

w̃0 dx,

c̃2 = k1
ρ2l30

∫ L

0

ψ1 dx+
lk1

ρ2l30

∫ L

0

w1 dx,

c̃3 =
(

1− k1
ρ2l20

)∫ L

0

ψ1 dx−
lk1

ρ2l20

∫ L

0

w1 dx,

c̃4 =
(

1− k1
ρ2l20

)∫ L

0

ψ̃0 dx−
lk1

ρ2l20

∫ L

0

w̃0 dx.

Let

ψ̃ = ψ − 1

L
(c̃1 cos (l0t) + c̃2 sin (l0t) + c̃3t+ c̃4) (6.19)

and

w̃ = w − 1

L

(
c̃1

(
ρ2l

2
0

lk1

− 1

l

)
cos (l0t) + c̃2

(
ρ2l

2
0

lk1

− 1

l

)
sin (l0t)−

c̃3

l
t− c̃4

l

)
. (6.20)

Then, from (6.17) and (6.18), one can check that∫ L

0

ψ̃ dx =

∫ L

0

w̃ dx = 0, (6.21)

and, hence, ∫ L

0

η̃ dx = 0, (6.22)

where
η̃(x, t, s) = ψ̃(x, t)− ψ̃(x, t− s) in ]0, L[×R+ × R+.
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Therefore, Poincaré’s inequality

∃ c0 > 0 :

∫ L

0

v2 dx ≤ c0

∫ L

0

v2
x dx, ∀v ∈ H1

∗ (]0, L[) (6.23)

is applicable for ψ̃, w̃ and η̃, provided that ψ̃, w̃ ∈ H1(]0, L[). In addition, (ϕ, ψ̃, w̃) satisfies
the boundary conditions and the first three equations in (6.1) with initial data

ψ0 −
1

L
(c̃1 + c̃4), ψ1 −

1

L
(l0c̃2 + c̃3),

w0 −
1

L

(
c̃1

(
ρ2l

2
0

lk1

− 1

l

)
− c̃4

l

)
and w1 −

1

L

(
c̃2l0

(
ρ2l

2
0

lk1

− 1

l

)
− c̃3

l

)
instead of ψ0, ψ1, w0 and w1, respectively. In the sequel, we work with ψ̃, w̃ and η̃ instead
of ψ, w and η, but, for simplicity of notation, we use ψ, w and η instead of ψ̃, w̃ and η̃,
respectively.

Now, to prove the well-posedness of (6.7), we make the following hypothesis:

(H1) The function g : R+ → R+ is differentiable, non-increasing and integrable on R+

such that there exists a postive constant k0 such that, for any

(ϕ, ψ, w)T ∈ H1
0 (]0, L[)×

(
H1
∗ (]0, L[)

)2
,

we have

k0

∫ L

0

(
ϕ2
x + ψ2

x + w2
x

)
dx ≤

∫ L

0

((
k2 − g0

)
ψ2
x + k1(ϕx + ψ + lw)2 + k3(wx − lϕ)2

)
dx.

(6.24)

Moreover, there exists a positive constant β such that

− βg(s) ≤ g′(s), ∀s ∈ R+. (6.25)

Remark 6.2 1. It is evident that (6.24) implies that

k0

∫ L

0

(
ϕ2
x + ψ2

x + w2
x

)
dx ≤

∫ L

0

(
k2ψ

2
x + k1(ϕx + ψ + lw)2 + k3(wx − lϕ)2

)
dx. (6.26)

On the other hand, thanks to (6.23) applied for ψ and w, and Poincaré’s inequality

∃ c̃0 > 0 :

∫ L

0

v2 dx ≤ c̃0

∫ L

0

v2
x dx, ∀v ∈ H1

0 (]0, L[) (6.27)
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applied for ϕ, there exists a positive constant k̃0 such that, for any

(ϕ, ψ, w)T ∈ H1
0 (]0, L[)×

(
H1
∗ (]0, L[)

)2
,

we have∫ L

0

(
k2ψ

2
x + k1(ϕx + ψ + lw)2 + k3(wx − lϕ)2

)
dx ≤ k̃0

∫ L

0

(
ϕ2
x + ψ2

x + w2
x

)
dx. (6.28)

Thus, from (6.26) and (6.28), we deduce that the right hand side of the inequality (6.26)
defines a norm on H1

0 (]0, L[)× (H1
∗ (]0, L[))

2
equivalent to the natural norm of (H1(]0, L[))

3
.

2. As in [20], we conclude from (6.24) that

k0 + g0 − k2 ≤ 0. (6.29)

Indeed, for the choice ϕ = w = 0, (6.24) gives

(
k0 + g0 − k2

) ∫ L

0

ψ2
x dx ≤ k1

∫ L

0

ψ2 dx, ∀ψ ∈ H1
∗ (]0, L[).

This inequality implies, for ψ(x) = cos (λx) − 1
λL

sin (λL) and λ ∈]0,+∞[ (notice that
ψ ∈ H1

∗ (]0, L[)),

(
k0 + g0 − k2

)(
L− 1

2λ
sin (2λL)

)
≤ k1

λ2

(
L+

1

2λ
sin (2λL)− 2

λ2L
sin2 (λL)

)
, ∀λ > 0.

By letting λ go to +∞, we deduce (6.29).

According to Remark 6.2, we notice that, under the hypothesis (H1), the sets L2 and H

are Hilbert spaces equipped, respectively, with the inner products that generate the norms,

for v ∈ L2 and V = (v1, · · · , v7)T ∈ H,

‖v‖2
L2

=

∫ L

0

∫ +∞

0

gv2
x ds dx (6.30)

and

‖V ‖2
H =

∫ L

0

((
k2 − g0

)
(∂xv2)2 + k1(∂xv1 + v2 + lv3)2 + k3(∂xv3 − lv1)2

)
dx (6.31)

+

∫ L

0

(
ρ1v

2
4 + ρ2v

2
5 + ρ1v

2
6

)
dx+ ‖v7‖2

L2
.

Now, a simple computation implies that, for any V = (v1, · · · , v7)T ∈ D(A),

〈AV, V 〉H =
1

2

∫ L

0

∫ +∞

0

g′(∂xv7)2 ds dx. (6.32)
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Since g is non-increasing, we deduce from (6.32) that

〈AV, V 〉H ≤ 0. (6.33)

This implies that A is dissipative. Notice that, according to (6.25) and the fact that g is

non-increasing, we see that, for v ∈ L2,∣∣∣∣∫ L

0

∫ +∞

0

g′v2
x ds dx

∣∣∣∣ = −
∫ L

0

∫ +∞

0

g′v2
x ds dx

≤ β

∫ L

0

∫ +∞

0

gv2
x ds dx

≤ β‖v‖2
L2

< +∞,

so the integral in the right hand side of (6.32) is well defined.

Next, we follow the proof given in [20] to prove that Id−A is surjective, where Id is the

identity operator. Let F = (f1, · · · , f7)T ∈ H. We seek the existence of V = (v1, · · · , v7)T ∈

D(A), a solution of the equation

(Id−A)V = F. (6.34)

The first three equations in (6.34) take the form
v4 = v1 − f1,

v5 = v2 − f2,

v6 = v3 − f3.

(6.35)

Using (6.35), the last equation in (6.34) is equivalent to

∂sv7 + v7 = v2 + f7 − f2. (6.36)

By integrating (6.36) and using the fact that v7(0) = 0 (from (6.12)), we get

v7(s) = (1− e−s)(v2 − f2) + e−s
∫ s

0

eτf7(τ) dτ, (6.37)

We see that, from (6.35), if (v1, v2, v3) ∈ H1
0 (]0, L[) × (H1

∗ (]0, L[))
2
, then (v4, v5, v6) ∈

H1
0 (]0, L[) × (H1

∗ (]0, L[))
2
. On the other hand, using Fubini theorem, Hölder’s inequality
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and noting that f7 ∈ L2, we get∫ L

0

∫ +∞

0

g(s)

(
e−s
∫ s

0

eτ∂xf7(τ) dτ

)2

ds dx

≤
∫ +∞

0

e−2sg(s)

(∫ s

0

eτ dτ

)∫ s

0

eτ (∂xf7(τ))2 dτ ds dx

≤
∫ L

0

∫ +∞

0

e−s(1− e−s)g(s)

∫ s

0

eτ (∂xf7(τ))2 dτ ds dx

≤
∫ L

0

∫ +∞

0

e−sg(s)

∫ s

0

eτ (∂xf7(τ))2 dτ ds dx

≤
∫ L

0

∫ +∞

0

eτ (∂xf7(τ))2

∫ +∞

τ

e−sg(s) ds dτ dx

≤
∫ L

0

∫ +∞

0

eτg(τ)(∂xf7(τ))2

∫ +∞

τ

e−s ds dτ dx

≤
∫ L

0

∫ +∞

0

g(τ)(∂xf7(τ))2 dτ dx

≤ ‖f7‖2
L2

< +∞,

then

s 7→ e−s
∫ s

0

eτf7(τ) dτ ∈ L2,

and therefore (6.37) implies that v7 ∈ L2. Moreover, ∂sv7 ∈ L2 by (6.36). So, to prove that

(6.34) admits a solution V ∈ D(A), it is enough to show that

∂xv7(·, 0) = ∂xv7(·, L) = 0 (6.38)

and (v1, v2, v3) exists and satisfies the required regularity and boundary conditions in D(A);

that is

(v1, v2, v3)T ∈
(
H2(]0, L[) ∩H1

0 (]0, L[)
)
×H1

∗ (]0, L[)×
(
H2(]0, L[) ∩H1

∗ (]0, L[)
)2
, (6.39)

(
k2 − g0

)
∂xxv2 +

∫ +∞

0

g∂xxv7 ds ∈ L2
∗(]0, L[) (6.40)

and

∂xv2(0) = ∂xv3(0) = ∂xv2(L) = ∂xv3(L) = 0. (6.41)

Let us assume that (6.38)-(6.41) hold. Multiplying the fourth, fifth and sixth equa-

tions in (6.34) by ρ1ṽ1, ρ2ṽ2 and ρ1ṽ3, respectively, integrating their sum over ]0, L[, using
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the boundary conditions (6.38) and (6.41), and inserting (6.35) and (6.37), we get that

(v1, v2, v3) solves the variational problem

a1

(
(v1, v2, v3)T , (ṽ1, ṽ2, ṽ3)T

)
= ã1

(
(ṽ1, ṽ2, ṽ3)T

)
, (6.42)

for any (ṽ1, ṽ2, ṽ3)T ∈ H1
0 (]0, L[)× (H1

∗ (]0, L[))
2
, where

a1

(
(v1, v2, v3)T , (ṽ1, ṽ2, ṽ3)T

)
(6.43)

=

∫ L

0

(k1(∂xv1 + v2 + lv3)(∂xṽ1 + ṽ2 + lṽ3) + k3(∂xv3 − lv1)(∂xṽ3 − lṽ1)) dx

+

∫ L

0

(
ρ1v1ṽ1 + ρ2v2ṽ2 + ρ1v3ṽ3 + (k2 − g̃0)∂xv2∂xṽ2

)
dx,

g̃0 =

∫ +∞

0

e−sg(s) ds and

ã1

(
(ṽ1, ṽ2, ṽ3)T

)
=

∫ L

0

(ρ1(f1 + f4)ṽ1 + ρ2(f2 + f5)ṽ2 + ρ1(f3 + f6)ṽ3) dx

+ (g0 − g̃0)

∫ L

0

∂xf2∂xṽ2 dx

−
∫ L

0

(∫ +∞

0

e−sg(s)

∫ s

0

eτ∂xf7(τ) dτ ds

)
∂xṽ2 dx.

(6.44)

We note that, as before, using again Fubini theorem, Hölder’s inequality and the fact that

f7 ∈ L2,∫ L

0

(∫ +∞

0

e−sg(s)

∫ s

0

eτ∂xf7(τ) dτ ds

)2

dx

≤
∫ L

0

(∫ +∞

0

e−sg(s)

∫ s

0

eτ |∂xf7(τ)| dτ ds
)2

dx

≤
∫ L

0

(∫ +∞

0

eτ |∂xf7(τ)|
∫ +∞

τ

g(s)e−s ds dτ

)2

dx

≤
∫ L

0

(∫ +∞

0

eτg(τ)|∂xf7(τ)|
∫ +∞

τ

e−s ds dτ

)2

dx

≤
∫ L

0

(∫ +∞

0

g(τ)|∂xf7(τ)| dτ
)2

dx

≤
∫ L

0

(∫ +∞

0

g(τ) dτ

)(∫ +∞

0

g(τ)(∂xf7(τ))2 dτ

)
dx

≤ g0‖f7‖2
L2

< +∞,
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which implies that

x 7→
∫ +∞

0

e−sg(s)

∫ s

0

eτ∂xf7(τ) dτ ds ∈ L2(]0, L[).

On the other hand, g̃0 ≤ g0 < k2 (by (6.29)). Then, by virtue of (6.24) and (6.28), we have

a1 is a bilinear, continuous and coercive form on(
H1

0 (]0, L[)×
(
H1
∗ (]0, L[)

)2
)
×
(
H1

0 (]0, L[)×
(
H1
∗ (]0, L[)

)2
)
,

and ã1 is a linear and continuous form on H1
0 (]0, L[) × (H1

∗ (]0, L[))
2
. Consequently, using

the Lax-Milgram theorem, we deduce that (6.42) has a unique solution

(v1, v2, v3)T ∈ H1
0 (]0, L[)×

(
H1
∗ (]0, L[)

)2
.

Therefore, using classical elliptic regularity arguments, we conclude that the forth, fifth

and sixth equations in (6.34) are satisfied with (v1, v2, v3)T satisfying (6.39) and (6.41),

and, using (6.35) and (6.37), v7 satisfies (6.38) and (6.40). Thus, we deduce that (6.34)

admits a unique solution V ∈ D(A), and then Id−A is surjective.

The operator −A is then linear maximal monotone, and D(A) is dense in H. Finally,

thanks to the Hille-Yosida theorem (see [38]), we deduce from (6.33) and (6.34) that A

generates a C0-semigroup of contractions in H. This gives the following well-posedness

results of (6.7) (see [26] and [38]).

Theorem 6.3 Assume that (H1) holds. For any n ∈ N and U0 ∈ D(An), (6.7) has a
unique solution

U ∈ ∩nk=0C
n−k (R+;D

(
Ak
))
. (6.45)

6.2 Stability

In this section, we study the stability of (6.7), where the obtained two (uniform and weak)

decay rates of solution depend on the speeds of wave propagations (2) and the growth of g

at infinity characterized by the following additional hypothesis:

(H2) Assume that g(0) > 0 and there exists a non-increasing differentiable function

ξ : R+ → R∗+ such that

g′(s) ≤ −ξ(s)g(s), ∀s ∈ R+. (6.46)

We start by considering the case where the speeds of wave propagations (2) satisfy (5).
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Theorem 6.4 Assume that (H1), (H2) and (5) are satisfied such that

l is small enough. (6.47)

Let U0 ∈ H be such that

ξ ≡ constant or sup
s∈R+

∫ L

0

(
η0
x(x, s)

)2
dx < +∞. (6.48)

Then there exist constants β0 ∈]0, 1] and α1 > 0 such that, for all α0 ∈]0, β0[, the solution
of (6.7) satisfies

‖U(t)‖2
H ≤ α1

(
1 +

∫ t

0

(g(s))1−α0 ds

)
e
−α0

∫ t

0

ξ(s) ds
+α1

∫ +∞

t

g(s) ds, ∀t ∈ R+. (6.49)

When (5) does not hold, we prove the following weaker stability result for (6.7).

Theorem 6.5 Assume that (H1), (H2) and (6.47) are satisfied. Let U0 ∈ D(A) be such
that

ξ ≡ constant or sup
s∈R+

max
k=0,1

∫ L

0

(
∂ks η

0
x(x, s)

)2
dx < +∞ (6.50)

and
S1 = S3. (6.51)

Then there exists a positive constant α1 such that

‖U(t)‖2
H ≤

α1

(
1 +

∫ t

0

ξ(s)

∫ +∞

s

g(τ) dτ ds

)
∫ t

0

ξ(s) ds

, ∀t > 0. (6.52)

Remark 6.6 1. If (6.46) holds with ξ ≡ constant, then (6.49) and (6.52) give, respec-
tively, for some positive constants d1 and d2,

‖U(t)‖2
H ≤ d1e

−d2t, ∀t ∈ R+ (6.53)

and

‖U(t)‖2
H ≤

d1

t
, ∀t > 0. (6.54)

So this particular case includes the results of [11]. The estimates (6.53) and (6.54) give the
best decay rates which can be obtained from (6.49) and (6.52), respectively.

2. When ξ ≡ constant, condition (6.46) implies that g converges exponentially to zero
at infinity. However, when ξ 6= constant, condition (6.46) allows s 7→ g(s) to have a decay

rate arbitrarly close to
1

s
at infinity, which represents the critical limit, since g is integrable

on R+. For specific examples of g satisfying (6.46), and the corresponding decay rates given
by (6.49) and (6.52), see [21] and [22].
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To prove (6.49) and (6.52), we will consider suitable multipliers and construct appropriate

Lyapunov functionals satisfying some differential inequalities, for any U0 ∈ D(A) and

t ∈ R+; so all the calculations are justified. By integrating these differential inequalities,

we get (6.49) and (6.52), for any U0 ∈ D(A). By simple density arguments (D(A) is dense

in H), (6.49) remains valid, for any U0 ∈ H.

We will use c, throughout the rest of this thesis, to denote a generic positive constant

which depends continuously on the initial data U0 and the fixed parameters in (6.1), (6.23)

and (6.27), and can be different from step to step. When c depends on some new constants

y1, y2, · · · , introduced in the proof, the constant c is noted cy1 , cy1,y2 , · · · .

Let us consider the energy functional E associated to (6.7) defined by

E(t) =
1

2
‖U(t)‖2

H. (6.55)

From (6.7) and (6.32), we see that

E ′i(t) =
1

2

∫ L

0

∫ +∞

0

g′η2
x ds dx. (6.56)

Recalling that g is non-increasing, (6.56) implies that E is non-increasing, and consequently,

(6.7) is dissipative.

6.3 Proof of uniform decay

First, we consider the following functional:

I(t) = −ρ2

∫ L

0

ψt

∫ +∞

0

g(s)η ds dx. (6.57)

Lemma 6.7 For any δ0 > 0, there exists cδ0 > 0 such that

I ′(t) ≤ −ρ2 (g0 − δ0)

∫ L

0

ψ2
t dx+ δ0

∫ L

0

(
ψ2
x + (ϕx + ψ + lw)2

)
dx

+ cδ0

∫ L

0

∫ +∞

0

(g(s)− g′(s)) η2
x ds dx.

(6.58)

Proof. First, we note that

∂t

∫ +∞

0

g(s)η ds = ∂t

∫ t

−∞
g(t− s)(ψ(t)− ψ(s)) ds

=

∫ t

−∞
g′(t− s)(ψ(t)− ψ(s)) ds+

(∫ t

−∞
g(t− s) ds

)
ψt;
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that is

∂t

∫ +∞

0

g(s)η ds =

∫ +∞

0

g′(s)η ds+ g0ψt. (6.59)

Second, using Young’s and Hölder’s inequalities, we get the following inequality: for all

λ > 0, there exists cλ > 0 such that, for any v ∈ L2(]0, L[) and η̂ ∈ {η, ∂xη},∣∣∣∣∫ L

0

v

∫ +∞

0

g(s)η̂ ds dx

∣∣∣∣ ≤ λ

∫ L

0

v2 dx+ cλ

∫ L

0

∫ +∞

0

g(s)η̂2 ds dx. (6.60)

Similarly, ∣∣∣∣∫ L

0

v

∫ +∞

0

g′(s)η̂ ds dx

∣∣∣∣ ≤ λ

∫ L

0

v2 dx− cλ
∫ L

0

∫ +∞

0

g′(s)η̂2 ds dx. (6.61)

Now, direct computations, using the first equation in (6.1), integrating by parts and using

the boundary conditions and (6.59), yield

I ′(t) = −ρ2g
0

∫ L

0

ψ2
t dx+

∫ L

0

(∫ +∞

0

g(s)ηx ds

)2

dx

+ (k1 − g0)

∫ L

0

ψx

∫ +∞

0

g(s)ηx ds dx

+k1

∫ L

0

(ϕx + ψ + lw)

∫ +∞

0

g(s)η ds dx

− ρ2

∫ L

0

ψt

∫ +∞

0

g′(s)η ds dx.

Using (6.60) and (6.61) for the last three terms of this equality, Poincaré’s inequality (6.23)

for η, and Hölder’s inequality to estimate(∫ +∞

0

g(s)∂xη ds

)2

,

we get (6.58).

Lemma 6.8 Let

J(t) = ρ2

∫ L

0

(ϕx + ψ + lw)ψt dx+
k2ρ1

k1

∫ L

0

ψxϕt dx

− ρ1
k1

∫ L

0

ϕt

∫ +∞

0

g(s)ψx(t− s) ds dx.
(6.62)
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Then, for any δ0, ε0, ε1, ε2 > 0, there exist cδ0 , cε0 > 0 such that

J ′(t) ≤ −k1

∫ L

0

(ϕx + ψ + lw)2 dx+

(
δ0 +

lk2k3ε1
2k1

+
lk3g

0ε2
2k1

)∫ L

0

(wx − lϕ)2 dx

+ δ0

∫ L

0

ϕ2
t dx+

(
lk2k3

2k1ε1
+
lk3g

0

2k1ε2

)∫ L

0

ψ2
x dx+

∫ L

0

(
cε0ψ

2
t + ε0w

2
t

)
dx

+
(
k2ρ1
k1
− ρ2

)∫ L

0

ψxtϕt dx+ cδ0

∫ L

0

∫ +∞

0

(g(s)− g′(s))η2
x ds dx.

(6.63)

Proof. First, notice that

∂t

∫ +∞

0

g(s)ψx(t− s) ds = ∂t

∫ t

−∞
g(t− s)ψx(s) ds

= g(0)ψx(t) +

∫ t

−∞
g′(t− s)ψx(s) ds

= −
∫ +∞

0

g′(s)ψx(t) ds+

∫ +∞

0

g′(s)ψx(t− s) ds;

that is

∂t

∫ +∞

0

g(s)ψx(t− s) ds = −
∫ +∞

0

g′(s)ηx ds. (6.64)

Now, by exploiting the first two equations in (6.1), integrating by parts, using (6.64) and

the boundary conditions, we get

J ′(t) = −k1

∫ L

0

(ϕx + ψ + lw)2 dx+

(
k2ρ1

k1

− ρ2

)∫ L

0

ψxtϕt dx+ ρ2

∫ L

0

ψ2
t dx

+ ρ2l

∫ L

0

ψtwt dx+
lk3

k1

(
k2 − g0

) ∫ L

0

(wx − lϕ)ψx dx

+ ρ1
k1

∫ L

0

ϕt

∫ +∞

0

g′(s)ηx ds dx+
lk3

k1

∫ L

0

(wx − lϕ)

∫ +∞

0

g(s)ηx ds dx.

By applying (6.60), (6.61) and Young’s inequality for the last four terms of the above

equality, we deduce (6.63).

Lemma 6.9 Let

K(t) = −ρ1

∫ L

0

(ϕx + ψ + lw)wt dx−
k3ρ1

k1

∫ L

0

(wx − lϕ)ϕt dx. (6.65)

Then, for any ε0 > 0, there exists cε0 > 0 such that

K ′(t) ≤ lk1

∫ L

0

(ϕx + ψ + lw)2 dx− lk2
3

k1

∫ L

0

(wx − lϕ)2 dx+ cε0

∫ L

0

ψ2
t dx

+

∫ L

0

(
lρ1k3

k1

ϕ2
t + (−lρ1 + ε0)w2

t

)
dx+ ρ1

(
k3

k1

− 1

)∫ L

0

wtϕxt dx.

(6.66)
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Proof. Using the first and third equations in (6.1), integrating by parts and using the

boundary conditions, we find

K ′(t) = lk1

∫ L

0

(ϕx + ψ + lw)2 dx− lk2
3

k1

∫ L

0

(wx − lϕ)2 dx+ ρ1

(
k3

k1

− 1

)∫ L

0

ϕxtwt dx

− lρ1

∫ L

0

w2
t dx+

lk3ρ1

k1

∫ L

0

ϕ2
t dx− ρ1

∫ L

0

ψtwt dx.

By applying Young’s inequality for the last term of the above equality, we obtain (6.66).

Lemma 6.10 Let

P (t) = −ρ1k3

∫ L

0

(wx − lϕ)

∫ x

0

wt(y, t) dy dx

− ρ1k1

∫ L

0

ϕt

∫ x

0

(ϕx + ψ + lw)(y, t) dy dx.

(6.67)

Then, for any ε0, δ1 > 0, there exists cε0 > 0 such that

P ′(t) ≤ k2
1

∫ L

0

(ϕx + ψ + lw)2 dx− k2
3

∫ L

0

(wx − lϕ)2 dx+ cε0

∫ L

0

ψ2
t dx

+
(
−ρ1k1 + ε0 + lρ1|k3−k1|δ1

2

)∫ L

0

ϕ2
t dx+ ρ1

(
k3 +

c̃0l|k3 − k1|
2δ1

)∫ L

0

w2
t dx.

(6.68)

Proof. By exploiting the first and third equations in (6.1), integrating by parts and using

(6.21) and the boundary conditions, we get

P ′(t) = +ρ1k3

∫ L

0

w2
t dx− ρ1k1

∫ L

0

ϕ2
t dx+ k2

1

∫ L

0

(ϕx + ψ + lw)2 dx

− k2
3

∫ L

0

(wx − lϕ)2 dx− ρ1

∫ L

0

ϕt

∫ x

0

(k1ψt(y, t) + l(k1 − k3)wt(y, t)) dy dx.

(6.69)

Noting that the functions

x 7→
∫ x

0

ψt(y, t) dy and x 7→
∫ x

0

wt(y, t) dy

vanish at 0 and L (because of (6.21)), then, applying (6.27), we have∫ L

0

(∫ x

0

ψt(y, t) dy

)2

dx ≤ c̃0

∫ L

0

ψ2
t dx (6.70)
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and ∫ L

0

(∫ x

0

wt(y, t) dy

)2

dx ≤ c̃0

∫ L

0

w2
t dx. (6.71)

By applying Young’s inequality for the last term in (6.69), and recalling (6.70) and (6.71),

we conclude (6.68).

Lemma 6.11 Let

R(t) = −
∫ L

0

(ρ1ϕϕt + ρ2ψψt + ρ1wwt) dx. (6.72)

Then, for any δ0 > 0, there exists cδ0 > 0 such that

R′(t) ≤
∫ L

0

((
k2 + δ0 − g0

)
ψ2
x + k1(ϕx + ψ + lw)2 + k3(wx − lϕ)2

)
dx

−
∫ L

0

(
ρ1ϕ

2
t + ρ2ψ

2
t + ρ1w

2
t

)
dx+ cδ0

∫ L

0

∫ +∞

0

g(s)η2
x ds dx.

(6.73)

Proof. By exploiting the first three equations in (6.1), integrating by parts and using the

boundary conditions, we find

R′(t) =

∫ L

0

((
k2 − g0

)
ψ2
x + k1(ϕx + ψ + lw)2 + k3(wx − lϕ)2

)
dx

−
∫ L

0

(
ρ1ϕ

2
t + ρ2ψ

2
t + ρ1w

2
t

)
dx+

∫ L

0

ψx

∫ +∞

0

g(s)ηx ds dx.

By applying (6.60) for the last term in this equality, we arrive at (6.73).

Lemma 6.12 Let

D(t) = −ρ2

∫ L

0

ψx

∫ x

0

ψt(y, t) dy dx. (6.74)

Then, for any δ0, δ2 > 0, there exists cδ0 > 0 such that

D′(t) ≤ ρ2

∫ L

0

ψ2
t dx+

(
k1

2δ2

+ g0 + δ0 − k2

)∫ L

0

ψ2
x dx

+ c̃0k1δ2
2

∫ L

0

(ϕx + ψ + lw)2 dx+ cδ0

∫ L

0

∫ +∞

0

g(s)η2
x ds dx.

(6.75)

Proof. By exploiting the second equation in (6.1), integrating by parts and using the

boundary conditions, we find

D′(t) = ρ2

∫ L

0

ψ2
t dx+

(
g0 − k2

) ∫ L

0

ψ2
x dx−

∫ L

0

ψx

∫ +∞

0

g(s)ηx ds dx

+ k1

∫ L

0

ψx

∫ x

0

(ϕx(y, t) + ψ(y, t) + lw(y, t)) dy dx.

(6.76)
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Noting that the function

x 7→
∫ x

0

(ϕx(y, t) + ψ(y, t) + lw(y, t)) dy

vanishes at 0 and L (because of (6.21)), then, applying (6.27), we have∫ L

0

(∫ x

0

(ϕx(y, t) + ψ(y, t) + lw(y, t)) dy

)2

dx ≤ c̃0

∫ L

0

(ϕx + ψ + lw)2 dx. (6.77)

Then, application of Young’s inequality and (6.60) for the last two terms in (6.76), and use

of (6.77) yield (6.75).

Let N, N1, N2, N3, N4, N5 > 0 and

F := NE +N1I +N2P +N3K +N4R +N5D + J. (6.78)

Then, by combining (6.58), (6.63), (6.66), (6.68), (6.73) and (6.75), we obtain

F ′(t) ≤
∫ L

0

(
l1ϕ

2
t + l2ψ

2
t + l3w

2
t + l4ψ

2
x + l5(wx − lϕ)2 + l6(ϕx + ψ + lw)2

)
dx (6.79)

+ NE ′(t) + cN1,N4,N5,δ0

∫ L

0

∫ +∞

0

(g(s)− g′(s)) η2
x ds dx

+ δ0cN1,N4,N5

∫ L

0

(
ψ2
x + (ϕx + ψ + lw)2 + (wx − lϕ)2 + ϕ2

t + ψ2
t

)
dx

+
(
k2ρ1
k1
− ρ2

)∫ L

0

ψxtϕt dx+N3ρ1

(
k3

k1

− 1

)∫ L

0

wtϕxt dx

+ ε0cN2,N3

∫ L

0

(
ϕ2
t + w2

t

)
dx+ cN2,N3,ε0

∫ L

0

ψ2
t dx,

where

l1 = −ρ1k1N2 − ρ1N4 +
lρ1|k3 − k1|δ1N2

2
+
lρ1k3N3

k1

, l2 = −ρ2g
0N1 − ρ2N4 + ρ2N5,

l3 = −lρ1N3 − ρ1N4 + ρ1

(
k3 +

lc̃0|k3 − k1|
2δ1

)
N2,

l4 = −
(
k2 −

k1

2δ2

)
N5 + k2N4 +

lk2k3

2k1ε1
+ g0

(
N5 −N4 +

lk3

2k1ε2

)
,

l5 = −k2
3N2−

lk2
3N3

k1

+k3N4+
lk2k3ε1

2k1

+
lk3g

0ε2
2k1

and l6 = −k1+k2
1N2+lk1N3+k1N4+

c̃0k1δ2N5

2
.

Using (6.24), (6.31), (6.55) and (6.56), we get from (6.79) that

F ′(t) ≤
∫ L

0

(
l1ϕ

2
t + l2ψ

2
t + l3w

2
t + l4ψ

2
x + l5(wx − lϕ)2 + l6(ϕx + ψ + lw)2

)
dx (6.80)
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+ δ0cN1,N4,N5E(t) + (N − cN1,N4,N5,δ0)E
′(t) + cN1,N4,N5,δ0

∫ L

0

∫ +∞

0

g(s)η2
x ds dx

+
(
k2ρ1
k1
− ρ2

)∫ L

0

ψxtϕt dx+N3ρ1

(
k3

k1

− 1

)∫ L

0

wtϕxt dx

+ ε0cN2,N3

∫ L

0

(
ϕ2
t + w2

t

)
dx+ cN2,N3,ε0

∫ L

0

ψ2
t dx.

At this point, we choose carefully the constants N, Ni, δi and εi to get suitable values of li.

First, let us take

N3 = δ1 = 1, ε1 =
k3

k2

, ε2 =
k3

2g0
, δ2 =

k1

k2 − g0
, N4 = k3N2, N5 = 4k3N2;

thus, the li’s take the forms

l1 = −ρ1(k1 + k3)N2 + lρ1

(
|k1−k3|

2
N2 + k3

k1

)
,

l2 = −ρ2(g0N1 − 3k3N2),

l3 = −lρ1

(
1− c̃0|k1−k3|

2
N2

)
,

l4 = −(k2 − g0)k3N2 + l
k1

(
k22
2

+ (g0)2
)
,

l5 = − lk23
4k1

< 0,

l6 = −k1

(
1−

(
k1 + k3 + 2c̃0k1k3

k2−g0

)
N2

)
+ lk1.

Now, we choose N2 > 0 so small that

1− c̃0|k1 − k3|N2 > 0, 1−
(
k1 + k3 +

2c̃0k1k3

k2 − g0

)
N2 > 0,

then, take ε0 = 1
2cN2,N3

lρ1, so that we have
l̃1 = l1 + ε0cN2,N3 = −ρ1(k1 + k3)N2 + lρ1

(
1
2

+ |k1−k3|
2

N2 + k3
k1

)
,

l̃2 = l2 + cN2,N3,ε0 ,

l̃3 = l3 + ε0cN2,N3 = − lρ1
2

(1− c̃0|k1 − k3|N2) < 0.

Next, we recall (6.47) to select l > 0 small enough such that

l̃1 < 0, l4 < 0, l6 < 0.

After that, we pick N1 > 0 very large so that l̃2 < 0. Then we find that

l̂ := 2 max

{
1

ρ1

l̃1,
1

ρ2

l̃2,
1

ρ1

l̃3,
1

k2

l4,
1

k3

l5,
1

k1

l6

}
< 0
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and, using (6.31) and (6.55),∫ L

0

(
l̃1ϕ

2
t + l̃2ψ

2
t + l̃3w

2
t + l4ψ

2
x + l5(wx − lϕ)2 + l6(ϕx + ψ + lw)2

)
dx+ δ0cN1,N4,N5E(t)

(6.81)

≤ l̂
2

∫ L

0

(
ρ1ϕ

2
t + ρ2ψ

2
t + ρ1w

2
t + k2ψ

2
x + k3(wx − lϕ)2 + k1(ϕx + ψ + lw)2

)
dx+ δ0cN1,N4,N5E(t)

≤ (l̂ + δ0cN1,N4,N5)E(t) + l̂g0

2

∫ L

0

ψ2
x dx−

l̂

2

∫ L

0

∫ +∞

0

g(s)η2
x ds dx

≤ (l̂ + δ0cN1,N4,N5)E(t)− l̂
2

∫ L

0

∫ +∞

0

g(s)η2
x ds dx.

Finally, we take δ0 > 0 small enough so that

l̂ + δ0cN1,N2,N5 < 0.

Consequently, we obtain from (6.80) and (6.81), for some positive constants c, c̃1,

F ′(t) ≤ −c̃1E(t) + (N − c)E ′(t) + c

∫ L

0

∫ +∞

0

g(s)η2
x ds dx

+
(
k2ρ1
k1
− ρ2

)∫ L

0

ψxtϕt dx+N3ρ1

(
k3

k1

− 1

)∫ L

0

wtϕxt dx.

(6.82)

Now, we estimate the integral of gη2
x in (6.82).

Case ξ ≡ constant. From (6.46), we have

ξ(t)

∫ L

0

∫ +∞

0

g(s)η2
x ds dx =

∫ L

0

∫ +∞

0

ξg(s)η2
x ds dx

≤ −
∫ L

0

∫ +∞

0

g′(s)η2
x ds dx,

then, using (6.56), we find

ξ(t)

∫ L

0

∫ +∞

0

g(s)η2
x ds dx ≤ −2E ′(t). (6.83)

Case ξ 6= constant. Following the arguments of [21] and [22], and using (6.46) and

the fact that ξ is non-increasing, we get

ξ(t)

∫ L

0

∫ t

0

g(s)η2
x ds dx ≤

∫ L

0

∫ t

0

ξ(s)g(s)η2
x ds dx

≤ −
∫ L

0

∫ t

0

g′(s)η2
x ds dx,
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then, recalling (6.56), we obtain

ξ(t)

∫ L

0

∫ t

0

g(s)η2
x ds dx ≤ −2E ′(t). (6.84)

On the other hand, the definition of E, (6.24) and the fact that E is non-increasing imply

that ∫ L

0

ψ2
x(x, t) dx ≤ cE(0).

Therefore ∫ L

0

η2
x dx =

∫ L

0

(
η0
x(x, s− t) + ψx(x, t)− ψx(x, 0)

)2
dx

≤ c

(
E(0) + sups∈R+

∫ L

0

(
η0
x(x, s)

)2
dx

)
.

Then, using the boundedness condition on η0 in (6.48), we deduce that

ξ(t)

∫ L

0

∫ +∞

t

g(s)η2
x ds dx ≤ cξ(t)

∫ +∞

t

g(s)ds. (6.85)

Hence, by combining (6.84) and (6.85), we find

ξ(t)

∫ L

0

∫ +∞

0

g(s)η2
x ds dx ≤ −2E ′(t) + cξ(t)

∫ +∞

t

g(s)ds. (6.86)

Finally, multiplying (6.82) by ξ(t) and combining with (6.83) and (6.86), we get for the

two previous cases, for some c̃2 > 0,

ξ(t)F ′(t) ≤ −c̃1ξ(t)E(t) + cξ(t)

∫ +∞

t

g(s)ds+ (N − c)ξ(t)E ′(t)− c̃2E
′(t)

+
(
k2ρ1
k1
− ρ2

)
ξ(t)

∫ L

0

ψxtϕt dx+N3ρ1

(
k3

k1

− 1

)
ξ(t)

∫ L

0

wtϕxt dx.

(6.87)

On the other hand, from (6.24), (6.31) and (6.55), we deduce that there exists a positive

constant γ (independent of N) satisfying

|N1I +N2P +N3K +N4R +N5D + J | ≤ γE,

which, combined with (6.78), implies that

(N − γ)E ≤ F ≤ (N + γ)E. (6.88)
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Choosing N so that

N ≥ c and N > γ,

noting that E ′ ≤ 0 and using (6.87) and (6.88), we deduce that F ∼ E and

F̃ ′(t) ≤ −c̃1ξ(t)E(t) + ch(t) + ξ′(t)F (t)

+
(
k2ρ1
k1
− ρ2

)
ξ(t)

∫ L

0

ψxtϕt dx+N3ρ1

(
k3

k1

− 1

)
ξ(t)

∫ L

0

wtϕxt dx,
(6.89)

where

F̃ = ξF + c̃2E and h(t) = ξ(t)

∫ +∞

t

g(s)ds.

From (6.88) and the relation 0 ≤ ξ(t)F (t) ≤ ξ(0)F (t), we see that

c̃2E ≤ F̃ ≤ (c̃2 + ξ(0)(N + γ))E. (6.90)

Therefore, (6.89) implies that, for any α0 ∈]0, β0[, where β0 = min
{

1, c̃1
c̃2+ξ(0)(N+γ)

}
,

F̃ ′(t) ≤ −α0ξ(t)F̃ (t) + ch(t)

+
(
k2ρ1
k1
− ρ2

)
ξ(t)

∫ L

0

ψxtϕt dx+N3ρ1

(
k3

k1

− 1

)
ξ(t)

∫ L

0

wtϕxt dx,
(6.91)

Since the last two terms in (6.91) vanish (thanks to (5)), then (6.91) implies that

∂t

eα0

∫ t

0

ξ(s) ds
F̃ (t)

 ≤ ce
α0

∫ t

0

ξ(s) ds
h(t).

Therefore, by integrating over [0, T ] with T ≥ 0, we get

F̃ (T ) ≤ e
−α0

∫ T

0

ξ(s) ds

F̃ (0) + c

∫ T

0

e
α0

∫ t

0

ξ(s) ds
h(t)dt

 ,

which implies, according to (6.90), that

E(T ) ≤ ce
−α0

∫ T

0

ξ(s) ds

1 +

∫ T

0

e
α0

∫ t

0

ξ(s) ds
h(t) dt

 . (6.92)

Since

e
α0

∫ t

0

ξ(s) ds
h(t) =

1

α0

∂t

eα0

∫ t

0

ξ(s) ds

∫ +∞

t

g(s) ds,
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then, by integration by parts, we obtain

∫ T

0

e
α0

∫ t

0

ξ(s) ds
h(t) dt

=
1

α0

eα0

∫ T

0

ξ(s) ds ∫ +∞

T

g(s) ds−
∫ +∞

0

g(s) ds+

∫ T

0

e
α0

∫ t

0

ξ(s) ds
g(t) dt

 .

Consequently, combining with (6.92), we arrive at

E(T ) ≤ c

e−α0

∫ T

0

ξ(s) ds
+

∫ +∞

T

g(s) ds



+ ce
−α0

∫ T

0

ξ(s) ds ∫ T

0

e
α0

∫ t

0

ξ(s) ds
g(t) dt.

(6.93)

On the other hand, (6.46) implies that

∂t

eα0

∫ t

0

ξ(s) ds
(g(t))α0

 = α0(g(t))α0−1(ξ(t)g(t) + g′(t))e
α0

∫ t

0

ξ(s) ds
≤ 0,

and, hence,

e
α0

∫ t

0

ξ(s) ds
(g(t))α0 ≤ (g(0))α0 .

Therefore, ∫ T

0

e
α0

∫ t

0

ξ(s) ds
g(t) dt ≤ (g(0))α0

∫ T

0

(g(t))1−α0 dt. (6.94)

Finally, (6.55) and (6.94) give (6.49).

6.4 Proof of weak decay

In this section, we treat the case when (3) does not hold but (6.51) holds. In this case, the

last term in (6.91) vanishes. So we need to estimate(
k2ρ1

k1

− ρ2

)
ξ(t)

∫ L

0

ψxtϕt dx
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using the following system resulting from differentiating (6.1) with respect to time t:

ρ1ϕttt − k1(ϕxt + ψt + lwt)x − lk3(wxt − lϕt) = 0,

ρ2ψttt − k2ψxxt + k1(ϕxt + ψt + lwt) +

∫ +∞

0

g(s)ψxxt(x, t− s) ds = 0,

ρ1wttt − k3(wxt − lϕt)x + lk1(ϕxt + ψt + lwt) = 0,

ϕt(0, t) = ψxt(0, t) = wxt(0, t) = ϕt(L, t) = ψxt(L, t) = wxt(L, t) = 0.

(6.95)

System (6.95) is well posed for initial data U0 ∈ D(A) thanks to Theorem 6.3, where

Ut ∈ C(R+;H). Let U0 ∈ D(A) and Ẽ be the energy of (6.95) defined by

Ẽ(t) =
1

2
‖Ut(t)‖2

H. (6.96)

Similarly to (6.56), we have

Ẽ ′(t) =
1

2

∫ L

0

∫ +∞

0

g′η2
xt ds dx ≤ 0; (6.97)

so Ẽ is non-increasing. We use an idea introduced in [14] to get the following lemma.

Lemma 6.13 For any ε > 0, there exists cε > 0 such that∣∣∣∣(k2ρ1

k1

− ρ2

)∫ L

0

ψxtϕt dx

∣∣∣∣ ≤ cε

∫ L

0

∫ +∞

0

g(s)η2
xt ds dx+ εE(t)− cεE ′(t). (6.98)

Proof. We have, by the definition of η,(
k2ρ1
k1
− ρ2

)∫ L

0

ψxtϕt dx = 1
g0

(
k2ρ1
k1
− ρ2

)∫ L

0

ϕt

∫ +∞

0

g(s)ηxt ds dx

+ 1
g0

(
k2ρ1
k1
− ρ2

)∫ L

0

ϕt

∫ +∞

0

g(s)ψxt(t− s) ds dx.
(6.99)

Using (6.60) and (6.55), we get, for all ε > 0,∣∣∣∣ 1
g0

(
k2ρ1
k1
− ρ2

)∫ L

0

ϕt

∫ +∞

0

g(s)ηxt ds dx

∣∣∣∣ ≤ ε
2
E(t)

+ cε

∫ L

0

∫ +∞

0

g(s)η2
xt ds dx.

(6.100)

On the other hand, by integrating with respect to s and using the definition of η, we obtain∫ L

0

ϕt

∫ +∞

0

g(s)ψxt(t− s) ds dx = −
∫ L

0

ϕt

∫ +∞

0

g(s)∂s(ψx(t− s)) ds dx

=

∫ L

0

ϕt

(
g(0)ψx(t) +

∫ +∞

0

g′(s)ψx(t− s) ds
)
dx

= −
∫ L

0

ϕt

∫ +∞

0

g′(s)ηx ds dx.
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Therefore, using (6.61) and (6.56),∣∣∣∣ 1

g0

(
−k2ρ1

k1

− ρ2

)∫ L

0

ϕt

∫ +∞

0

g(s)ψxt(t− s) ds dx
∣∣∣∣ ≤ ε

2
E(t)− cεE ′(t). (6.101)

Inserting (6.100) and (6.101) into (6.99), we obtain (6.98).

Now, using (6.51), combining (6.91) and (6.98), and choosing ε small enough, we find

F̃ ′(t) ≤ −cξ(t)E(t) + ch(t)− cξ(t)E ′(t)

+ cξ(t)

∫ L

0

∫ +∞

0

g(s)η2
xt ds dx.

(6.102)

On the other hand, using the boundedness condition on η0 in (6.50), we have (as for (6.83)

and (6.86))

ξ(t)

∫ L

0

∫ +∞

0

g(s)η2
xt ds dx ≤ −cẼ ′(t) + ch(t). (6.103)

Hence, combining (6.102) and (6.103), we have(
F̃ (t) + cẼ(t) + cξ(t)E(t)

)′
≤ −cξ(t)E(t) + ch(t), (6.104)

since ξ is nonincreasing. Therefore, by integrating on [0, T ] and using the fact E is non-

increasing, we get

cE(T )

∫ T

0

ξ(t) dt ≤ F̃ (0) + cẼ(0) + cξ(0)E(0) + c

∫ T

0

h(t) dt,

which gives (6.52), since (6.55).
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In the conclusion we give some general comments, issues and open problems.

1. Some extensions of our results to the distributed time delays case can be obtained;

that is when µiyi(x, t) (yi ∈ {ϕt, ψt, wt}) is replaced by∫ +∞

0

fi(s)yi(x, t− s) ds,

where fi : R+ → R is given function. For Timoshenko system with distributed time

delay, see [17], where the stability was proved also when S1 6= S2. Similarily, the

constant time delay τi can be replaced by a time-varying delay τi(t). In case of wave

equation, see [34], [36] and [35].

2. The stability results of this work can be generalized to finite memories

∫ t

0

instead of

infinite ones

∫ +∞

0

. Applications of our approach to some specific coupled Bresse-heat

and Bresse-wave systems can be also presented.

3. It is interesting to consider the case where only one infinite memory is considered on

the first or third equation in (2.1). This question will be the focus of our attention

in a future work. When no time delay is considered, the stability was treated in [11],

[22] and [16].

4. The class of relaxation functions gi that converge exponentially to zero at infinity is

the simplest standard one considered in the literature. Looking for the largest possible

class of gi was not amoung the objectives of our work. But it is possible to consider
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larger class of gi than the one satisfying (2.18) and (3.1), and get general stability

estimate (with smaller decay rates than the exponential one given in this work). For

this issue, we refer the readers to [17] and [23] in case of Timoshenko beams (in the

presence of time delay or not), and to [16], [19] and [20] in case of Bresse system

(without time delay).

5. Our results hold true if the Dirichlet-Dirichlet-Dirichlet boundary conditions are re-

placed by some mixed Dirichlet-Neumann ones.

6. One of the interesting question related to our results is proving the stability of our

systems in the whole space R (instead of ]0, L[).

7. When (3) and (4.4) do not hold (which is more interesting from the physical point

of view), proving the stability results given in sections 4 and 5 seems a delicate

question (even for the simpler Timoshenko-type systems with time delay [17]), since

the second energy E2 = 1
2
‖Ut‖2

H (used in the literature in case µ1 = µ2 = µ3 = 0) is

not necessarily nonincreasing due to the terms depending on µi, these terms can not

be absorbed by E itself even if µ0 is supposed small enough.
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Laboratoire de Mathématiques et Applications de Metz. 2007/8.

[10] C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech.

Anal., 37 (1970), 297-308.

[11] M. De Lima Santos, A. Soufyane and D. Da Silva Almeida Júnior, Asymptotic

behavior to Bresse system with past history, Quart. Appl. Math., 73 (2015),

23-54.

[12] L. H. Fatori and R. N. Monteiro, The optimal decay rate for a weak dissipative

Bresse system, Appl. Math. Lett., 25 (2012), 600-604.
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