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INTRODUCTION

The partial differential equation is an equation ivolving an unknown function of tow or
mor variable and certain of its partial derivatives . Then is very important for solution
of the phisical problem in all the domain. We survay the Galerkin approximation in
stochastic case for elliptic PDEs. Our work is broken down into four chapters:

Chapter 1:In this chapter, we difinie the basis diffenition in general of partial differential
equation and the elliptic of partial defirential eqeation .

Chapter 2: In this chapter we stady the problem elliptic of partial differential equation
using the teste function , and survay the existence and uniqueness of elliptic PDE .
Chapter 3: In the last chapter,we stady the Galerkin Method and approximation of elliptic
problem .

Chapter 4: In the last chapter,replece the space V with a nouther boundary space V" for

stady the stochastic Galerkin approximation .
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CHAPTER 1

INTRODUCTION TO THE DETERMINISTIC

PARTIAL DIFFERENTIAL EQUATIONS

The partial differential equation is very important for stady the physical problemes in all

the domain ,in this chapter surveys the principal of partial differential equation .

1.1 Definition of partial differential equations

Let D be a domain in R%, where d € N, (D C R?).

Definition 1.1.1 A partial differential equation PDE is an equation compound of tow or



mor variable.An has expression of the forme:

F(D"u(z), D" u(z), ........ , Du(z),u(x),xz) = 0(z € D). (1.1)

for F:R™ xR ' x . xR!'xRx D —R.
Whene u is function continue and unknown accepte K derivation in wich u : D — R,

D is open subset of RY.

Definition 1.1.2 We can divid the partial differential equation in tow division . The firste

18 lineair PDE and the second s non lineare .

Example 1.1.1 We give some examples

1. Laplace equation (linear):

A= Uy, =0 (1.2)
i=1
2. Lineare transport equation:
Ut > Vg, =0 (1.3)
i=1
3. Nonlineare Poisson equation.:
— Au = f(u) (1.4)

In thise chapter we stady the lineare PDE .

Definition 1.1.3 The order of PDE is the order of hidhest partial derivative in the equa-
tion . A general firste order PDE has the forme F(Du(x),u(z),z) = 0 and a general
second order PDE has the forme F(D*u(x), Du(x),u(z),z) =0 .



1.2 Classification of partial differential equations

Definition 1.2.1 We say the partial differential equation (PDE) is linear if:

Z ao () D = f(x) (1.5)

lo| <K

and homogenous if f = 0.

Definition 1.2.2 The PDE is quaslinear if an expression of the forme:

la|=K

Z ao(2) D% 4 ag(D* ", ..., Du,u, z) = 0. (1.7)

1.3 Second-order of partial differential equations

Definition 1.3.1 We say PDE linear for second order in domaine D C R® and is un-

known function u : D — R, a equation for forme :

Z ] (‘fxz(@x] +) bi(a) 8§;f)+ g(z)u(z) = f(z)onD. (1.8)

Where A(z) = a;j(x) is symitric such that a;;(z) = aji(x) ,x = (1,22, ....,x4) , and .For

f,g and b are given function on D .

Definition 1.3.2 Second order of the parrtial diffential equation are usually divided into

three types : hyparbolic , parabolic , elliptic :



O hyperbolic if all eigenvaleues of th matriz A(x) are non zro and of the same signe,

except one of oppositive signe .

® parabolic if all eigenvaleues of th matrix A(z) are of the same signe and a zero

eigenvalue .

® clliptic if all eigenvaleues of th matriz A(x) are non zero and of the same signe .

(Spcial case ) Consider a general partial differential equation of second order for the forme

0?u(x)

0x?

O*u(x)

0*u(x)
e
0xdy

0y?

Az, y) + B(z,y) C(x,y) (1.9)

Where A,B and C are continuous function of x and y only possessing partial derivatives
definid in some domain D

Second order PDE are usually divided into three types : hyparbolic , parabolic , elliptic:

® hyperbolic at a point (z,y) in domain D if B*> — 4ac > 0 .

® parabolic at a point (x,y) in domain D if B> — 4ac =0 .

® clliptic at a point (x,y) in domain D if B*> — 4ac < 0 .
o o

solition: A=1,B=0,C0=1, B* — 4ac = —4(1 — z)
if x=1 — parabolic
if t=<1 — elliptic

if t=>1 — hyparbolic



1.4 Presentation one problem of elliptic type

Let D C RY | The elliptic forme of the second order of partial differential equation given

by :

Lu=-Y aij(:z:)g:ég +)° bi(x)f?;g) +g(z)u(z) = f(z) on D (1.11)

i

Where L is operator ,and eigeuvalues of the matriz A(x) are non zero and of the same

SLgn.

Definition 1.4.1 We say the equation (1.11) is elliptic or coercive if there existe a con-

stant 8 > 0 such that

n

D ()6 >0 ) (1.12)

1,j=1

fO'I”f: (51,52, ...... ,fd) € R.

Definition 1.4.2 Let D C RY |, we consider the Dirichlets boundary for elliptic PDE

(the boundary - value problem ) of the forme :

—V(a(x)Vu(x)) = f(x) ,x € D
(1.13)

u(z) =0on 0D

Ju(x) Ju(x)
9o B

boundary of domain .

Where Vu(x) = ( I, and f is given function on D and OD be the

Definition 1.4.3 Elliptic equation are solved in domain D subject to certain boundary
condition at the boundary 0D .The boundary condition are typically of Dirichlet, Neu-
mann, or Robin types. The system of discretization equation always together the values of

D at all grid points withe Q) and at the boundary.

10



CHAPTER 2

INTRODUCTION TO THE STOCHASTIC
ELLIPTIC PARTIAL DIFFERENTIAL

EQUATION

Let (0, F, P) is a probability space , we difinie in this space the elliptic problem and using

the teste function ¢ for written the variation formulation of elliptic PDE .

11



2.1 Variational formulation

Definition 2.1.1 Let D a domain ,D C R? and (Q,F,P) is a space probability . The

genral variational formulation for the stochastiqu elliptic partial deffirntial equation

—V(a(z,w)Vu(z,w)) = f(z) ,z € D andw € Q

(2.1)
u(z,w) =0o0n 9D
Definition 2.1.2 (Assumption:)
O f(x) is a given deterministic function :
& L(D) such that | f = ([ 1 £ do)? (22)
O a(z, w) be a uniformuly bounded and positive satisfies.
0 < tmin(z,w) < a(r,w) < Az (T, w) < 00 (2.3)

where a(x,w) € L>(D) such that || a ||r~(p) = Supzepa(x)

We write the probleme variational formulation equation for multiply the equation (2.1)

with the function ¢(x,w) € CX(D) be teste function and intgrat over D

/D V. (0, ) Vu(z, )6 (z, ) )dz = /D F(@)6(z, w)dz (2.4)

and integration by parts :

/Da(x,w)Vu(x,w).ngﬁ(x,w)dx—/DV.(¢(x,w)a(x,w)Vu(x,w))dx:/Df(a:)qb(x,w)dx
(2.5)

12



and we have ¢(x,w) =0 on 0D

/DV.(gb(x,w)a(x,w)Vu(x,w))dx:/ (¢p(x,w)a(x,w)Vu(z,w))nds (2.6)

oD

Now , the weak formulation (or variational formulation) is given by

/D a(z,w)Vu(z, ). Vé(z,w)ds _/ F(2)p(z, w)de (2.7)

for any solution u to (2.1) satisfies the variational problem

a(u, ) = £() (2.8)
Foru eV = L*Q, H}(D)) , where :
L*(Q,Hy(D)) =u: Qv+ H&(D);/Q I u ||z (py AP < o0 (2.9)
and
| u ||L2(Q,H3(D)): Bl u ||H3(D)] (2.10)

Then , the equation (2.8) , we can written with the forme :

E[/ a(x,w)Vu(z,w).Vo(r,w)dz] = / f(z)p(z, w)dx] (2.11)
D
The variational probleme to boundary -value probleme of (2.1) is given by

Findu € L*(Q,H) (D)) =V
(2.12)

a(u, ¢) = €($), Ve € L*(Q, Hy(D))

Where the bilinear forme a(.,.) : V- x V. ——= R and the linear forme ¢ : V +—— R are

13



definded by :
a(u, p) = E[/D a(x,w)Vu(z,w).Vo(r,w)dr] (2.13)

and

/ f(z)o(z, w)dz] (2.14)

2.2 Existnce an uniqueness of elliptic differential equa-
tion

Definition 2.2.1 We have assumption (2.1.2) then equation (2.12) have a unique solu-
tion u € L*(Q, H} (D))

Proof.

O Let p €V = (L*(Q, H{(D))) ,and definie the norme

|6 llv=Il & ll 2@,z 0n=Ell 23p))2 (2.15)

We Know the a(.,.) is bounded on' V x V| satisfies

| a(x, ¢) |=| E[/ a(z,w)Vu(x,w)Ve(r,w)dr] | (2.16)

D

<l a =0 ([ Vuler,)Vo(z,w)do). .17

fora € L™ such that || a || (D)= SUP,ep @ < e E( [ Vu(z, w)dz)E( [ Vo(z, w)dx)(2.18)
< tmaz || v | 2130 | @ | 22002013 (DY) (2.19)

< Umaz || U ||V|| ¢ ||V

14



forallu,p € V
a(6,8) = E / o(z, $)V (e, ) Vo(z, w)dz) (2.20)

> Qmin || ¢ ||%/
The Cauchy-schwarz inequality gives

) <Il f Iz, opll @ 112,12 (o))

So

| & 2 o)< Kp [l ¢ |lv

From (1), (2) and(3) we proved unique solution of u by using Laz-Meligram theorem. .

Theorem 2.2.1 (Lax-Milgram)

Assume that a : V x V —— R is a bilinear mapping , for wich there existe c@Odénstant

a, 8 >0 such that :
(2.21)

[a(u, @) < allulll o], (u,deV)

and

BllulP<alu,¢), (uweV) (2.22)

Finaly , let f : V —— R be a bounded linear functional on V' . Then there existe a unique

element u € V such that

a(u,d) =< f,¢ > forallp €'V (2.23)

Proof. For each fized element uw € V | the mapping ¢ — a(u, @) is a bounded linear

15



function on V', where the Riesz Representation theorem asserts the existence or a unique

element b € V' satisfying
a(u,d) = (b,¢),9 €V (2.24)

Let us write Au = b whenever (2.17) hold , so that

a(u, ¢) = (Au, ¢), (u, ¢ € V) (2.25)

We first claim A : V —— V is a bounded linear operator . Indeed if \i,\s € R and

u,ug €V, we see for each ¢ € 'V

(A()\lul + /\2’&2), ¢) = a()\lul + )\QU,2> (226)
= )\1&(AU1, qb) + )\QG(AU/Q, gb) (227)
= (MAu, @) + AAus, ) (2.28)

This equality obtains for each ¢ € V', and so A is a linear futhermore
I A "= (Au, Au) = a(u, Au) < o || u ||| Au | (2.29)
Consequently || Au [|[< a || u || and so A is bounded . Next we assert

{Aone -to-one , and R(A)the range of Ais closed in V (2.30)

to proved this , let us compte
B llu < alu,u) = Au,u) <|| Au |l Au ||| u | (2.31)

Hence B || u ||<|| Au || . This enequality easily implies (2.24)

R(A) =V, for if not , then since R(A) is closed , there woold exist a nonzero element

16



b eV with B € R(A)* but this fact in turn implies the contradiction.

Next , we observe once more from the Riesz Representation theorem that
< f,op>=<b,¢p> forallp eV (2.32)
For some element b € V' . We then utilize (2.24) to find u € V satisfying Au =10 . then
a(u, ) = (Au,¢) = (b,¢) =< f,¢ >, (¢ € V) (2.33)

and this is (2.18) .For if both a(u, ¢) =< f,¢ > and a(a, p) =< f,¢ > , then a(u—1, p) =
0,(peV).
We set o =u—1uto find || u—1a|2<alu—au—1a=0).

17



CHAPTER 3

(GALERKIN APPROXIMATION FOR THE

MAIN DETERMINISTIC ELLIPTIC PROBLEM

Let V' a space non finit such that V.= HJ(D) , we replace the space V with a nother finit
-dimensional space V" | for finding the solution . The Galerkin Methode is a projection

methode for numerical solution of partial differential equation .

3.1 Introduction to Galerkin Method

Definition 3.1.1 let V is a Hilbert space such that V = H}(D) , on difinit V* C V for

18



V" = span{¢1, pa, ..., on } (3.1)

Where the function ¢ are bases function of V" .

Definition 3.1.2 The Galerkin approzimation of u, € V" has consider with the forme :

Findu e Vh
(3.2)

a(un, ¢) = £(¢),Vp € V"
Definition 3.1.3 (Approximation) We say the approximation is an approximability prop-

erty if
Vu € V. Iim( inf || u—wup ||yr) =0 (3.3)
uhEVh

Lemme 3.1.1 The Galerkin orthogonality consider of the equation :

an(u — up, o) = 0,Vdpeyn (3.4)

3.2 Generalized Galerkin Method

We know the general equation for Galerkin Methode

Findu e V
(3.5)

a(u, ¢) = £(¢), Vo € V

Then we definit ther in a space V" where it is a family of finite dimentional a;, and £(¢y,) is
a approzimation of a and £(¢) in the space V" . So we write the equation of the Galerkin
Methode for :

Finduy, € V?
(3.6)

an(un, @) = U(dn),Yop € V"

19



Where ay, is a bilinear form defined over V' x V' and £(¢y) is a linear forme defined over

Vvhe

Theorem 3.2.1 Let aj, : V" x Vi —— V" and f € V" . There exists o > 0 such that

an(dn, o) = o || ¢ |2, Vo, € V" (3.7)

There existe a unique solution u, € V" | satisfies :

1 | fn(on)
up || < —sup, —_— 3.8
” h ||— o Py, evh ” vn H ( )
and if u 1s the solution
. v 1 a(bp, dn) — an((bn, dn) | 1 | f(¢n) — fuldn)
u— < nfl(1+ —) + —sup, + —sup,
|| ¢h ” ﬂ( Ck> o DPyevh H (bh H o Pyevh H v H ]
(3.9)
3.3 The linear system
The approzimation problem (3.2) is simply a linear system , with dimV" = N .
Let {p1, 02, ....., on } be a basis function of V" | we can writen the Galerkin solution as :
J
up = Zujgoj (3.10)
j=1

Proof.
For the function ¢; are linearty indepondant if coefficient u; € R to be determined substi-

tutig (3.10) into (3.5) gives

J N
a(z ujpj,v) = Zuja(goj,v) ={(v),Yv e V" (3.11)

Jj=1

20



and setting v = @; gives
J
Zuja(goj,gpi) =), i=1,....J (3.12)
j=1
if we definie the matriz A € R7*’ and the vector b € R’ such that

aij IOJ(QOJ',QOZ'),[)Z‘ :g((pl)ﬂ,,] = 1,....,J (313)

We solving the linear system

e
<
I
S8

(3.14)

Where u = [uy, ...,u )T is a vector and A is a matriz symitric (taill J x J) , and b is a

vector . the equation (8.14) is a linear system hane a unique solution 4 € V" . m

Theorem 3.3.1 Let up, € V" a unique solution , satisfies :

[ up < L e (3.15)
o
iof u 1s the solution of problem , it follows :
.
[l —un < Zinfoeyn || w—on |l (3.16)

with uy, converge to u .

21



CHAPTER 4

(GALERKIN APPROXIMATION FOR THE

STOCHASTIC ELLIPTIC EQUATION

We are studying linear systems that are obtained using the so called stochastic Galerkin

method.

4.1 Truncated Karhune-Loeve exprention

Definition 4.1.1 ( Karhune-Loeve) Let D a domain and a is a random variable such

that a € L*(Q), L*(D)) . We difined p =< a(z) >, = [, &, ..., Eu| is a random variable,

22



and {\., p,} are the set of eigenvalues . The equation of Karhune-Loeve given by :
a(z,w) = p(x) + Z VA& (w) (4.1)
r=1

Where

1

& = \/—)\_r <a(r,w) — p()er(x) >r2(p) (4.2)

Where 1 is the expected value of the diffusion coefficient a , and o is the standard deviation
. Let {\., .} are eigenpairs and eigenfunction of the integral operator linear C such that

C: L*(D) —s L*(D)

(Cor)(x) = /D B, 22)s (£2)dz = Ay (21) (4.3)
Where
B = %C(l’l,ﬂjg) (4.4)
and
& == 1Ar /D (alz,w) — ul(@))gr (2)dz, Ay > 0 (4.5)

Definition 4.1.2 (Truncated Karhune-Loeve) The Truncated Karhune-Loeve is a statis-
tic theorem that represent a stochastic processus as an infinite linear combination of or-

thogonal function ,the cofficient in this theorem are random variable a satisfies :

anlw,w) = ple) + 30V o () (16)

and we can write standard the Truncated Karhune-Loeve with the form :

ani(e,w) = p(@) + 03 V() (4.7)

23



Where o is the standard deviation of a .ap(x,w) is convergencre to a(x,w) as M — oo

Definition 4.1.3 Let £k : QY —— Uk for K : 1,..., M 1is a realvalued random variable .
Given the vecteur € such that € = [£1,&, ... Em]T 1 Q+—T C RM andT =T xTyx...xTy

. We difinit a finit-dimentional noise or (M-dimentional noise) with the function
v(w,€(w)), Yu € L*(Q, Hy(D)) (4.8)

Forxe D andw € €2 .

Let a space L(2, H} (D)) , we replace the space L(Y, HY (D)) with a nouther finit-dimentional

space L,(T', H} (D)) satisfies

LT HY(D)) = {03 D x T B: [ p(o) || o(wy) ooy dy < o) (49)
r
For T' = [a,b] and p(y) is the density of T .

Definition 4.1.4 Let D XTI is a domain , The variational problem to the boundary-value

poblem hase consider the forme :

Find v € LT, Hy(D))
(4.10)

a(u, ) = £(¢), Yo € LA(T, HH(D))

Where
i, &) = / p(y) /D a(z, 4)Vu(z, y) Vo(z, y)dady

and

&@=LM@Lﬂ@WmMMy

For p(y) is the density function of ', Where y = (y1,....yn) € T and T =T _; T such

that 'y, = [—1,1], the weak solution of (4.3) is a function u € L2(T', Hy(D)) on domain

24



DxT.

4.2 Stochastic Galerkin finit element Method

We already have V" C V = H}(D) such that

VI = span = {¢1,02, ..y N} (4.11)

On consider a finit-dimentional subspace SP C Lf)(F) for the form :

SP = span{i1, s, ..., N} (4.12)

Where 1 is a basis function with the space SP , and dim SP = @)
LA, Hy(D)) = L) ® Hy(D) = SP @ V"
So
SP RV = span{pnb; i=1,...,J;i=1,....q}

Where o1 is a basis function with = SP @ Vh = Wh

Definition 4.2.1 (Stochastic Galerkin problem) We write the stochastic Galerkin prob-

lem :

{Fmda € W"a(uy,, ) = 0(¢),Yp € W (4.13)
The weak solution of (4.13) is a function @ € W = SP @ V! | where
h p
Upp = Z Z uij i (@) (y) (4.14)
i=1 j=1
Theorem 4.2.1 (Best approzimation) Let i € L2(T', Hy(D)) and iy, € W is an unique
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solution with the equation (4.13) if ther verifies the next condition

| & — Upy |p= infoey | T —v |E (4.15)

4.3 Orthogonal polynomials

LetD™ a space of all algebric polynomial of degree n , and ' = (—1,1) {pn}tn>0 is a system
of algebric polynomials . The integral function w(z) such that w(x) € T' . So we difine

the space L2 (T') with the expression :
L2(T) = {v: T — R/vis measurable and || v ||o.n< o0} (4.16)

Where
| v [low= (/_ | v(x) | w(x)dz)? (4.17)

1

and

(u,v):/ u(z)v(z)w(r)de (4.18)

1

For allw € L% (T) given by :
u(w,y) = wipi(y) (4.19)
i=0

with
_ (uapi)w
| pi 12,

w; (4.20)

@ is the expension coefficients associated with the family {p;} .

Definition 4.3.1 Let p,u a polynomial approximation , the series {p,} converges in the
L2 (T) . Given by :

| w = pn Jo.o— 05 asn — oo (4.21)
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Where

pou(@,y) = > Wpi(y) (4.22)

Definition 4.3.2 (Stochastic basis function) Let finit -dimensional space SP , we can

written him for tensor produit
SP=S"®SE®....® Sh,, such that, dimS? = (p + 1) forM > 1 (4.23)

consider P! (y;) is a polynomial of degree p , where a; = (o, ...,an) C T C RM | and
vi = (y1,...,ym) C T C RM . There
So

SP = span{P. (y;): a=1,..,p,i=1,..,M} (4.24)

Where PCZ'” (yi) = y;

5P = span{[Y, Pl(y):a=1,.,pi=1 .. M}425)

Definition 4.3.3 (Orthonormal stochastic basis function) Let v € V" ® SP be a vector

ther equiped with an ineer product < .,. >, where
| v ||L§,(F),H5(D)=< U,V >p (4.26)

and we can write :

<00 >,= / p(y)v(y)o(y)dy (4.27)

For p(y) is a density function of & € T, v is a basis function of space V'@ SP < v,v >,
are orthonarmal if there ineer product is equal to zero . Let pzal(y,) s a polynomial , we

can say there are orthonormal with respect to the ineer product < .,. >, on Ve SP .
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4.4 Stochastic Galerkin linear system

Let V" ® SP a space , A is a matrice and u, b is a vector . we can write the linear algebric

system satisfies :

Au=1b (4.28)

Where A = (a;j);; and u = [uy,...,u;] ,b = [by,..,b;] . For the vector u is a solution of
stochastic Galerkin approximation in V" ® SP . And we can write the Galerkin system

(4.28) where :

M
A:G(]@Ko‘i‘ZGr@Kr,b:go@fo (429)

r=1

Ky and K, are matrices :

Kol = /D 00(2)V o () Vb ()l (4.30)
and
Kl = [ a(@)Voi(a) V(o) (431)

Let ¥, (y) = [, Ya, (v) where oy = (ay, ..., o) and || a |;= >, oy < p .The stochastic

martices [G,];; are given by

[Golij =< i(y), ¥;(y) > (4.32)
= [ oy (4.33)
(Gl =< yetbi(y), ¥y (y) > (4.34)
= [ wststu)ay (4:35)

Where [G);; is a diagonal matrice , [G,];; has a must three nonzero element per row ,and

the vector gy and fy are difined via

go =< ¥;(y) > (4.36)
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- [ wstway (4.37)

and

fo= /D F(@)i(x)dz (4.38)

Definition 4.4.1 Let G € R"*™} | and K € R%*"} are tow matrices of the Kronecker

product , given by :

GoK = , (4.39)

1 2

G —
01
1 0

K =
3 —1

then , the Kronecker product of tow matrices G and K is :

1 2 1 0
G K = &

0 1 3 —1

are tow matrices of the Kronecker product , given by :

1 0 1 0
1 x 2 X
3 —1 3 -1
— (4.40)
1 0 1 0
0 x 1 x
3 —1 3 -1
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1 0 2 0
3 -1 6 —2
GoK = (4.41)
00 1 0
0 0 3 -1

So , the matrice G ® K of size 4 x 4. Let D a domain such that D = R? | we write the

elliptic problem with

V-(a(ﬂfl, L2,Y1, 92)-VU(951,332>91, 92)) = f(331,$2)inR2

U(Z‘l, T2, Y1, y2) == OOH8R2

where = (21, 22) € R? and y = (y1,90) € [y = [—1,1]?

The variational is:

Findu € L2(T', Hy(D))
a(u, ¢) = £(¢),Y¢ € LA(T, Hi(D))

Now we can written the problem such that

1 1
&(U, ¢) :/l/lp(ybyQ)/R/Ra<x17x27ylay2)vu<xlax2ay17y2)v¢(x17$27y17y2)dxdy

1 1
Z/ / p(yl)p(?ﬁ)//a(%,I2,y17yz)vu(xlwzay1,y2)v¢(951,$27ylay2)d$1d$2dy1dy2
1Ja R JR

and

1 1
(o) :/_1/_1P(917y2)/R/Rf(ﬂibﬂfzw(xl,xz,yl,yz)dﬂildxzdyldyz
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1l
:/ / P(%)P(W)//f(x1,$2)¢($1,1’2,ylayQ)dflfld@dyldm
—1J-1 RJR

becouse p(y) is independant such that

p(y) = p(y1,y2) = p(y1)p(y2)

The legender polynomial chouse the loi uniforme ,I'; = [—1,1]% | the function dencity
given
1 1
p(y1) = b—a 9
So

R 1 11
a(u, ¢) :/ / Z//a(l’thz;yl,m)VU(ﬂUl,ﬂU%Z/1>ZJ2)V¢($17$27?J1,y2)d$1d$2dyldy2
—1J-1 R JR

and

~ 1ol
14 = - dz;dzedyd
(¢) /1 /14/R/Rf(ﬁﬁl,x2)¢($17$2,y1,y2) 214T24Y14Y2

The linear system

Au

I
S8

we can write with the forme :

a11 A2
up uz ] = (b1 b

Q21 Q22

u = (u1,uz) is a solution of stochactic Galerkin approximation in V" ® SP the linear

system is :
M

A:G0®K0+ZGT®K0,b:go®f0 (442)

r=1
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Ky and K, are matrices :

[Ko]z'j ://ao(xh1’2;y1,y2)v¢z’($17$27yl,y2)v¢j($17$2,yl,y2)dx1d$2dy1d?ﬁ (4-43)
R JR

and

(K, )i ://ar(%,1’2,yh?/2)V¢z‘($1,902,yhyz)v%‘(%,€E2,y1,yz)d$1d$2dy1d?/2 (4.44)
R JR

The stochastic martices [G,];; are given by

(Golij =< Vi(y1,y2), ¥i(y1, y2) > (4.45)
1 1
Z/1 71¢i(91792)¢j(y1,y2)dyld92 (4.46)
(Grlig =< yrbi(y2, 1), ¥ (Y1, y2) > (4.47)
1 1
= /1/1yr(y2ayl)wi(y%yl)wj(ylay2)dyldy2 (4.48)
Where
go =< V;(x1, 2, Yo, Y1) > (4.49)
1 1
:/ / i(21, T2, Yo, y1 )dy1dys (4.50)
1/
and
fo:/R/Rf(ilfl,fﬁz)%(xhﬂ?my2,y1)d$1d3¢2 (4-51)
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APPENDIX A

IMPORTANT NOTATION

A.1 Deflinitions

Definition A.1.1 (Poincaree inequality) Let a bounded D , there existe a constant ¢ such
that

| ullzpy<clu |H01(D) for any u € H}(D)

Definition A.1.2 (Cauchy -schwarze inequality)

Let V' be a Hilbert space . Then

[<wo>[<[[ull][v]
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Definition A.1.3 (Legender Polynomial) Legender Polynomial are a system of complet
and orthogonal polynomial , with a vast numerous application . The first Legender Poly-

nomial are :

1
f5=§@ﬁ—4)
1
}%:§@m4—%ﬁ+ﬁ)

So the equation geniral is :
1 ar

2 n
= —1
2nn dna™ (@ )

n

Definition A.1.4 (Orthogonal relation) Let P,(x) and P, (x) are a polynomiam . The

orthogonal relation easly implies that tow polynomial given by

. T+ 1
For
IL,n=m
(5n,m
0,m #m
f(z) = Z an P ()
n=1
where

an = 2n2—i— ! /11 f(z)P,(x)dz

Definition A.1.5 (0— algebra) Let Q be a non empty set the o— algebra F is a collection

of subset of Q) saticfies condition :
0O ogcF
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O VAc F=— A°c F

(3] V(AZ)ZZI C F disjoin fori=1,2,.... = U;.il A, e F

Definition A.1.6 (Measurable space) Let Q@ # and F be a o— algebra on 2 .We say

(Q,F) a measurable space .

Definition A.1.7 (Measure) Let (2, F) be a measurable space and f : F —— [0, +00] is

a mesurable if it has verifies the condition :
0 f(o)=0

@ For any sequence of disjoint sets A; € F , fori=1,2, ...

FJA) =D (A

i>1 i>1

Definition A.1.8 (Probability space) The probability space is a triple (2, F,P) where

1s the sample space ,F is a Filtration , P is a probability measure on €2 .

Definition A.1.9 (Random variable) Let (2, F,P) is a probability space ,and (R, B(R))

15 a mesurable space . X is a valued variable if X is a mesurable function :
X :(QF)— (R,B(R))

Definition A.1.10 (Stochastic Processus) Let (§2, F,P) is a probability space ,and (R, B(R))
is a mesurable space . The stochastic processus X = (Xi)i<o difinie in (2, F,P) an valued

in (R, B(R)) as a famille of random variable uninterested for the temp t :
X ¢ [0, +00[xQ — R
(t,w) — Xi(w)
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Definition A.1.11 (Random filds) Let (0, F,P) is a probability space , let for a set
D C R, a (real valued) random fild {X(z) : x € D} is a set of real valued random
variable on (Q, F,P) :

X:DxQ—R

Definition A.1.12 (Indipendant) Let (2, F,P) be a probability space and A, B are tow

event such that A, B € F . We say A, B are independant if :

O Tow sub o— algebra Fy, Fy of the o— algebra F are independant if event Fy, Fy are
idependant for all Fy € F, and Fy € Fy

@ The random variable be an independant of the sub-F if

VA € 0(z),VB € F = P(AU B) = P(A)P(B)

® X andY tow random variable are independant if :

YA € 0(z),YB € 0 = P(AU B) = P(A)P(B)

Definition A.1.13 (Ezpectation) Let (Q, F,P) be probabilityspace and X is a random

variable integrable . The expectation of X satisfies

E(X) = /Q X(Q)dP

Definition A.1.14 (Variance) Let (2, F,IP) be probability space and X is a random vari-

able integrable . The variance of X satisfies
var(X) = E[(X — p*)] = B(X?) —
Where n = E(X)
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Definition A.1.15 (covariance)

Let X and 'Y are an integrable positive random variable . The coveriance C(X,Y) of X
LY s
CX.Y) = E[(X — pux)(Y — py)] = E(XY) — pxpy

Definition A.1.16 (Function density) Let (2, F,P) be probability space ,p(x) is the func-

tion density given by

P(X € (a,b)) = Pw € Qs a < X(w) < b}) = Py (a, b) = / p(@)de

Definition A.1.17 (Distrubition function) The cumulative distribution function or the
partitioning function in statistics and probability theory is a function that determines what
is the probability that the value of a random variable is less than or equal to a certain value.

If x is a random variable , its distrubition function is a function
Fx(z)=P(X <x),VzeR

Where P(X < x) is the probability that x is less than or equal to x .

® C*D)={u:D — R | uisk— times continuously differentiable} .

C>®(D)={u: D — R | u is infinity continuously differentiable} .

® H'(D) = {uc L*D) | Vue L*(D)}.

L*D)={u:D—R| [u*(z)dz < c}.
H}(D)={ue H (D) | Vu=0 on dD}.
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Abstract

In this work we study the Galerkin approximation in
stochastic case in bounded subspace Vh and finding the
approximation of solution in this space . We applied it to

the partial differential equation elliptic problem.
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Résume

Dans ce travail, nous étudions l'approximation de Galerkin
dans le cas stochastique dans le sous-espace borné Vh et
trouvons l'approximation de la solution dans cet espace.
Nous I'avons appliqué au probléme elliptique des
équations aux dérivées partielles.
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