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Introduction

The partial differential equation is an equation ivolving an unknown function of tow or

mor variable and certain of its partial derivatives . Then is very important for solution

of the phisical problem in all the domain. We survay the Galerkin approximation in

stochastic case for elliptic PDEs. Our work is broken down into four chapters:

Chapter 1:In this chapter, we difinie the basis diffenition in general of partial differential

equation and the elliptic of partial defirential eqeation .

Chapter 2: In this chapter we stady the problem elliptic of partial differential equation

using the teste function , and survay the existence and uniqueness of elliptic PDE .

Chapter 3: In the last chapter,we stady the Galerkin Method and approximation of elliptic

problem .

Chapter 4: In the last chapter,replece the space V with a nouther boundary space V h for

stady the stochastic Galerkin approximation .
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Chapter 1

Introduction to the deterministic

partial differential equations

The partial differential equation is very important for stady the physical problemes in all

the domain ,in this chapter surveys the principal of partial differential equation .

1.1 Definition of partial differential equations

Let D be a domain in Rd, where d ∈ N, (D ⊂ Rd).

Definition 1.1.1 A partial differential equation PDE is an equation compound of tow or
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mor variable.An has expression of the forme:

F (DKu(x), DK−1u(x), ........, Du(x), u(x), x) = 0(x ∈ D). (1.1)

for F : RdK × RdK−1 × ...× Rd × R×D −→ R.

Whene u is function continue and unknown accepte Kth derivation in wich u : D 7−→ R,

D is open subset of Rd.

Definition 1.1.2 We can divid the partial differential equation in tow division .The firste

is lineair PDE and the second is non lineare .

Example 1.1.1 We give some examples

1. Laplace equation (linear):

4u =
n∑
i=1

uxixi = 0 (1.2)

2. Lineare transport equation:

ut +
n∑
i=1

biuxixi = 0 (1.3)

3. Nonlineare Poisson equation:

−4u = f(u) (1.4)

In thise chapter we stady the lineare PDE .

Definition 1.1.3 The order of PDE is the order of hidhest partial derivative in the equa-

tion . A general firste order PDE has the forme F (Du(x), u(x), x) = 0 and a general

second order PDE has the forme F (D2u(x), Du(x), u(x), x) = 0 .
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1.2 Classification of partial differential equations

Definition 1.2.1 We say the partial differential equation (PDE) is linear if:

∑
|α|<K

aα(x)Dαu = f(x) (1.5)

and homogenous if f = 0.

Definition 1.2.2 The PDE is quaslinear if an expression of the forme:

∑
|α|=K

aα(DK−1u(x), ....., Du(x), u(x), x)Dαu(x) + a0(DK−1u(x), ....., Du(x), u(x), x) = 0.

(1.6)

Definition 1.2.3 The PDE is semilinear if :

∑
|α|=K

aα(x)Dαu+ a0(DK−1u, ....., Du, u, x) = 0. (1.7)

1.3 Second-order of partial differential equations

Definition 1.3.1 We say PDE linear for second order in domaine D ⊂ Rd and is un-

known function u : D −→ R,a equation for forme :

∑
i,j=1

∂

∂xi
(aij(x)

∂u(x)

∂xi∂xj
) +

∑
i

bi(x)
∂u(x)

∂xi
+ g(x)u(x) = f(x)onD. (1.8)

Where A(x) = aij(x) is symitric such that aij(x) = aji(x) ,x = (x1, x2, ...., xd) , and .For

f, g and b are given function on D .

Definition 1.3.2 Second order of the parrtial diffential equation are usually divided into

three types : hyparbolic , parabolic , elliptic :
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¶ hyperbolic if all eigenvaleues of th matrix A(x) are non zro and of the same signe,

except one of oppositive signe .

· parabolic if all eigenvaleues of th matrix A(x) are of the same signe and a zero

eigenvalue .

¸ elliptic if all eigenvaleues of th matrix A(x) are non zero and of the same signe .

(Spcial case ) Consider a general partial differential equation of second order for the forme

:

A(x, y)
∂2u(x)

∂x2
+B(x, y)

∂2u(x)

∂x∂y
+ C(x, y)

∂2u(x)

∂y2
(1.9)

Where A,B and C are continuous function of x and y only possessing partial derivatives

definid in some domain D

Second order PDE are usually divided into three types : hyparbolic , parabolic , elliptic:

¶ hyperbolic at a point (x,y) in domain D if B2 − 4ac > 0 .

· parabolic at a point (x,y) in domain D if B2 − 4ac = 0 .

¸ elliptic at a point (x,y) in domain D if B2 − 4ac < 0 .

∂2φ

∂x2
+ (x+ 1)

∂2φ

∂y2
(1.10)

solition: A=1,B=0,C=1, B2 − 4ac = −4(1− x)

if x=1 −→ parabolic

if x=<1 −→ elliptic

if x=>1 −→ hyparbolic
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1.4 Presentation one problem of elliptic type

Let D ⊂ Rd ,The elliptic forme of the second order of partial differential equation given

by :

Lu = −
∑
i,j=1

aij(x)
∂2u(x)

∂xi∂xj
+
∑
i

bi(x)
∂u(x)

∂xi
+ g(x)u(x) = f(x) on D (1.11)

Where L is operator ,and eigeuvalues of the matrix A(x) are non zero and of the same

sign.

Definition 1.4.1 We say the equation (1.11) is elliptic or coercive if there existe a con-

stant θ > 0 such that
n∑

i,j=1

aij(x)ξiξj ≥ θ | ξ |2 (1.12)

for ξ = (ξ1, ξ2, ......, ξd) ∈ R.

Definition 1.4.2 Let D ⊂ Rd , we consider the Dirichlets boundary for elliptic PDE

(the boundary - value problem ) of the forme :


−∇(a(x)∇u(x)) = f(x) , x ∈ D

u(x) = 0 on ∂D

(1.13)

Where ∇u(x) = (
∂u(x)

∂x1

, ......,
∂u(x)

∂xd
)T , and f is given function on D and ∂D be the

boundary of domain .

Definition 1.4.3 Elliptic equation are solved in domain D subject to certain boundary

condition at the boundary ∂D .The boundary condition are typically of Dirichlet, Neu-

mann, or Robin types.The system of discretization equation always together the values of

D at all grid points withe Ω and at the boundary.
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Chapter 2

Introduction to the stochastic

elliptic partial differential

equation

Let (Ω, F, P ) is a probability space , we difinie in this space the elliptic problem and using

the teste function φ for written the variation formulation of elliptic PDE .
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2.1 Variational formulation

Definition 2.1.1 Let D a domain ,D ⊂ R2,and (Ω,F ,P) is a space probability . The

genral variational formulation for the stochastiqu elliptic partial deffirntial equation


−∇(a(x, ω)∇u(x, ω)) = f(x) , x ∈ D andω ∈ Ω

u(x, ω) = 0 on ∂D

(2.1)

Definition 2.1.2 (Assumption:)

¶ f(x) is a given deterministic function :

f ∈ L2(D) such that ‖ f ‖L2(D)= (

∫
D

| f |2 dx)
1
2 (2.2)

· a(x, ω) be a uniformuly bounded and positive satisfies.

0 ≤ amin(x, ω) ≤ a(x, ω) ≤ amax(x, ω) ≤ ∞ (2.3)

where a(x, ω) ∈ L∞(D) such that ‖ a ‖L∞(D) = supx∈Da(x)

We write the probleme variational formulation equation for multiply the equation (2.1)

with the function φ(x, ω) ∈ C∞c (D) be teste function and intgrat over D

∫
D

∇.(a(x, ω)∇u(x, ω)φ(x, ω))dx =

∫
D

f(x)φ(x, ω)dx (2.4)

and integration by parts :

∫
D

a(x, ω)∇u(x, ω).∇φ(x, ω)dx−
∫
D

∇.(φ(x, ω)a(x, ω)∇u(x, ω))dx =

∫
D

f(x)φ(x, ω)dx

(2.5)
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and we have φ(x, ω) = 0 on ∂D

∫
D

∇.(φ(x, ω)a(x, ω)∇u(x, ω))dx =

∫
∂D

(φ(x, ω)a(x, ω)∇u(x, ω))nds (2.6)

Now , the weak formulation (or variational formulation) is given by

∫
D

a(x, ω)∇u(x, ω).∇φ(x, ω)dx =

∫
D

f(x)φ(x, ω)dx (2.7)

for any solution u to (2.1) satisfies the variational problem

a(u, φ) = `(φ) (2.8)

For u ∈ V = L2(Ω, H1
0 (D)) , where :

L2(Ω, H1
0 (D)) = u : Ω 7−→ H1

0 (D);

∫
Ω

‖ u ‖H1
0 (D) dP <∞ (2.9)

and

‖ u ‖L2(Ω,H1
0 (D))= E[‖ u ‖H1

0 (D)] (2.10)

Then , the equation (2.8) , we can written with the forme :

E[

∫
D

a(x, ω)∇u(x, ω).∇φ(x, ω)dx] = E[

∫
D

f(x)φ(x, ω)dx] (2.11)

The variational probleme to boundary -value probleme of (2.1) is given by


Findu ∈ L2(Ω, H1

0 (D)) = V

a(u, φ) = `(φ),∀φ ∈ L2(Ω, H1
0 (D))

(2.12)

Where the bilinear forme a(., .) : V × V 7−→ R and the linear forme ` : V 7−→ R are
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definded by :

a(u, φ) = E[

∫
D

a(x, ω)∇u(x, ω).∇φ(x, ω)dx] (2.13)

and

`(φ) = E[

∫
D

f(x)φ(x, ω)dx] (2.14)

2.2 Existnce an uniqueness of elliptic differential equa-

tion

Definition 2.2.1 We have assumption (2.1.2) then equation (2.12) have a unique solu-

tion u ∈ L2(Ω, H1
0 (D))

Proof.

¶ Let φ ∈ V = (L2(Ω, H1
0 (D))) ,and definie the norme

‖ φ ‖V =‖ φ ‖L2(Ω,H1
0 (D))= E[| φ2

H1
0 (D)]

1
2 (2.15)

We Know the a(., .) is bounded on V × V , satisfies

| a(x, φ) |=| E[

∫
D

a(x, ω)∇u(x, ω)∇φ(x, ω)dx] | (2.16)

≤‖ a ‖L∞(D)| (
∫
∇u(x, ω)∇φ(x, ω)dx) | (2.17)

for a ∈ L∞ such that ‖ a ‖L∞(D)= supx∈D a ≤ amaxE(
∫
∇u(x, ω)dx)E(

∫
∇φ(x, ω)dx)(2.18)

≤ amax ‖ u ‖L2(Ω,H1
0 (D))‖ φ ‖L2(Ω,H1

0 (D)) (2.19)

≤ amax ‖ u ‖V ‖ φ ‖V
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for all u, φ ∈ V

a(φ, φ) = E(

∫
a(x, φ)∇φ(x, ω)∇φ(x, ω)dx) (2.20)

≥ amin ‖ φ ‖2
V

The Cauchy-schwarz inequality gives

`(φ) ≤‖ f ‖L2(Ω,H1
0 (D))‖ φ ‖L2(Ω,H1

0 (D))

So

‖ φ ‖L2(Ω,H1
0 (D))≤ KP ‖ φ ‖V

From (1) , (2) and(3) we proved unique solution of u by using Lax-Meligram theorem .

Theorem 2.2.1 (Lax-Milgram)

Assume that a : V × V 7−→ R is a bilinear mapping , for wich there existe cØőnstant

α, β > 0 such that :

| a(u, φ) |≤ α ‖ u ‖‖ φ ‖ , (u, φ ∈ V ) (2.21)

and

β ‖ u ‖2≤ a(u, φ) , (u ∈ V ) (2.22)

Finaly , let f : V 7−→ R be a bounded linear functional on V . Then there existe a unique

element u ∈ V such that

a(u, φ) =< f, φ > for all φ ∈ V (2.23)

Proof. For each fixed element u ∈ V , the mapping φ 7−→ a(u, φ) is a bounded linear
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function on V , where the Riesz Representation theorem asserts the existence or a unique

element b ∈ V satisfying

a(u, φ) = (b, φ), φ ∈ V (2.24)

Let us write Au = b whenever (2.17) hold , so that

a(u, φ) = (Au, φ), (u, φ ∈ V ) (2.25)

We first claim A : V 7−→ V is a bounded linear operator . Indeed if λ1, λ2 ∈ R and

u1, u2 ∈ V , we see for each φ ∈ V

(A(λ1u1 + λ2u2), φ) = a(λ1u1 + λ2u2) (2.26)

= λ1a(Au1, φ) + λ2a(Au2, φ) (2.27)

= (λ1Au1, φ) + λ2Au2, φ) (2.28)

This equality obtains for each φ ∈ V , and so A is a linear futhermore

‖ A ‖2= (Au,Au) = a(u,Au) ≤ α ‖ u ‖‖ Au ‖ (2.29)

Consequently ‖ Au ‖≤ α ‖ u ‖ and so A is bounded . Next we assert

{
Aone -to-one , and R(A)the range of Ais closed in V (2.30)

to proved this , let us compte

β ‖ u ‖2≤ a(u, u) = A(u, u) ≤‖ Au ‖ Au ‖‖ u ‖ (2.31)

Hence β ‖ u ‖≤‖ Au ‖ . This enequality easily implies (2.24)

R(A) = V , for if not , then since R(A) is closed , there woold exist a nonzero element
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b ∈ V with B ∈ R(A)⊥ but this fact in turn implies the contradiction.

Next , we observe once more from the Riesz Representation theorem that

< f, φ >=< b, φ > for allφ ∈ V (2.32)

For some element b ∈ V .We then utilize (2.24) to find u ∈ V satisfying Au = b . then

a(u, φ) = (Au, φ) = (b, φ) =< f, φ >, (φ ∈ V ) (2.33)

and this is (2.18) .For if both a(u, φ) =< f, φ > and a(ũ, φ) =< f, φ > , then a(u−ũ, φ) =

0, (φ ∈ V ) .

We set φ = u− ũ to find β ‖ u− ũ ‖2≤ a(u− ũ, u− ũ = 0) .
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Chapter 3

Galerkin approximation for the

main deterministic elliptic problem

Let V a space non finit such that V = H1
0 (D) , we replace the space V with a nother finit

-dimensional space V h , for finding the solution . The Galerkin Methode is a projection

methode for numerical solution of partial differential equation .

3.1 Introduction to Galerkin Method

Definition 3.1.1 let V is a Hilbert space such that V = H1
0 (D) , on difinit V h ⊂ V for

18



V h = span{ϕ1, ϕ2, ...., ϕN} (3.1)

Where the function ϕ are bases function of V h .

Definition 3.1.2 The Galerkin approximation of uh ∈ V h has consider with the forme :


Find u ∈ V h

a(uh, φ) = `(φ),∀φ ∈ V h

(3.2)

Definition 3.1.3 (Approximation) We say the approximation is an approximability prop-

erty if

∀u ∈ V, lim( inf
uh∈V h

‖ u− uh ‖V h) = 0 (3.3)

Lemme 3.1.1 The Galerkin orthogonality consider of the equation :

ah(u− uh, φh) = 0, ∀φh∈V h (3.4)

3.2 Generalized Galerkin Method

We know the general equation for Galerkin Methode


Findu ∈ V

a(u, φ) = `(φ),∀φ ∈ V
(3.5)

Then we definit ther in a space V h where it is a family of finite dimentional ah and `(φh) is

a approximation of a and `(φ) in the space V h . So we write the equation of the Galerkin

Methode for : 
Finduh ∈ V h

ah(uh, φh) = `(φh),∀φh ∈ V h

(3.6)
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Where ah is a bilinear form defined over V h×V h and `(φh) is a linear forme defined over

V h .

Theorem 3.2.1 Let ah : V h × V h 7−→ V h and f ∈ V h .There exists α > 0 such that

ah(φh, φh) ≥ α ‖ φh ‖2, ∀φh ∈ V h (3.7)

There existe a unique solution uh ∈ V h , satisfies :

‖ uh ‖≤
1

α
supvh∈V h

‖ fh(φh)
‖ vh ‖

(3.8)

and if u is the solution

‖ u− φh ‖≤ inf[(1 +
γ

α
) +

1

α
supv∈V h

a(bh, φh)− ah((bh, φh)
‖ φh ‖

+
1

α
supv∈V h

| f(φh)− fh(φh)
‖ vh ‖

]

(3.9)

3.3 The linear system

The approximation problem (3.2) is simply a linear system , with dimV h = N .

Let {ϕ1, ϕ2, ....., ϕN} be a basis function of V h , we can writen the Galerkin solution as :

uh =
J∑
j=1

ujϕj (3.10)

Proof.

For the function φj are linearty indepondant if coefficient uj ∈ R to be determined substi-

tutig (3.10) into (3.5) gives

a(
J∑
j=1

ujϕj, v) =
N∑
j=1

uja(ϕj, v) = `(v),∀v ∈ V h (3.11)
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and setting v = ϕi gives

J∑
j=1

uja(ϕj, ϕi) = `(ϕi), i = 1, ...., J (3.12)

if we definie the matrix A ∈ RJ×J and the vector b ∈ RJ such that

aij = a(ϕj, ϕi), bi = `(ϕi), i, j = 1, ...., J (3.13)

We solving the linear system

Au = b (3.14)

Where u = [u1, ..., uJ ]T is a vector and A is a matrix symitric (taill J × J) , and b is a

vector . the equation (3.14) is a linear system hane a unique solution ũ ∈ V h .

Theorem 3.3.1 Let uh ∈ V h a unique solution , satisfies :

‖ uh ‖≤
‖ f ‖V h

α
(3.15)

if u is the solution of problem , it follows :

‖ u− uh ‖≤
γ

α
infφ∈V h ‖ u− φh ‖ (3.16)

with uh converge to u .
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Chapter 4

Galerkin approximation for the

stochastic elliptic equation

We are studying linear systems that are obtained using the so called stochastic Galerkin

method.

4.1 Truncated Karhune-Loeve exprention

Definition 4.1.1 ( Karhune-Loeve) Let D a domain and a is a random variable such

that a ∈ L2(Ω, L2(D)) . We difined µ =< a(x) >, ξ = [ξ1, ξ2, ..., ξM ] is a random variable,
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and {λr, ϕr} are the set of eigenvalues . The equation of Karhune-Loeve given by :

a(x, ω) = µ(x) +
∞∑
r=1

√
λrϕrξr(ω) (4.1)

Where

ξr =
1√
λr

< a(x, ω)− µ(x)ϕr(x) >L2(D) (4.2)

Where µ is the expected value of the diffusion coefficient a , and σ is the standard deviation

. Let {λr, ϕr} are eigenpairs and eigenfunction of the integral operator linear C such that

C : L2(D) −→ L2(D)

(Cϕr)(x) =

∫
D

B(x1, x2)ϕr(x2)dx = λrϕr(x1) (4.3)

Where

B =
1

σ2
c(x1, x2) (4.4)

and

ξr =
1

σ
√
λr

∫
D

(a(x, ω)− µ(x))ϕr(x)dx, λr > 0 (4.5)

Definition 4.1.2 (Truncated Karhune-Loeve) The Truncated Karhune-Loeve is a statis-

tic theorem that represent a stochastic processus as an infinite linear combination of or-

thogonal function ,the cofficient in this theorem are random variable a satisfies :

aM(x, ω) = µ(x) +
M∑
r=1

√
λrϕrξr(ω) (4.6)

and we can write standard the Truncated Karhune-Loeve with the form :

aM(x, ω) = µ(x) + σ

M∑
r=1

√
λrϕrξr(ω) (4.7)
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Where σ is the standard deviation of a .aM(x, ω) is convergencre to a(x, ω) as M −→∞

.

Definition 4.1.3 Let ξK : Ω 7−→ ΓK for K : 1, ...,M is a realvalued random variable .

Given the vecteur ξ such that ξ = [ξ1, ξ2, ..., ξM ]T : Ω 7−→ Γ ⊂ RM and Γ = Γ1×Γ2×...×ΓM

. We difinit a finit-dimentional noise or (M-dimentional noise) with the function

v(x, ξ(ω)),∀v ∈ L2(Ω, H1
0 (D)) (4.8)

For x ∈ D and ω ∈ Ω .

Let a space L(Ω, H1
0 (D)) , we replace the space L(Ω, H1

0 (D)) with a nouther finit-dimentional

space Lp(Γ, H1
0 (D)) satisfies

Lp(Γ, H
1
0 (D)) = {v : D × Γ 7−→ R :

∫
Γ

p(y) ‖ v(x, y) ‖L2(D) dy <∞} (4.9)

For Γ = [a, b] and p(y) is the density of Γ .

Definition 4.1.4 Let D×Γ is a domain , The variational problem to the boundary-value

poblem hase consider the forme :


Find u ∈ L2

p(Γ, H
1
0 (D))

ã(u, φ) = ˜̀(φ), ∀φ ∈ L2
p(Γ, H

1
0 (D))

(4.10)

Where

ã(u, φ) =

∫
Γ

p(y)

∫
D

a(x, y)∇u(x, y)∇φ(x, y)dxdy

and

˜̀(φ) =

∫
Γ

p(y)

∫
D

f(x)φ(x, y)dxdy

For p(y) is the density function of Γ , Where y = (y1, ..., yn) ∈ Γ and Γ =
∏n

m=1 Γm such

that Γm = [−1, 1], the weak solution of (4.3) is a function ũ ∈ L2
p(Γ, H

1
0 (D)) on domain
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D × Γ .

4.2 Stochastic Galerkin finit element Method

We already have V h ⊂ V = H1
0 (D) such that

V h = span = {ϕ1, ϕ2, ..., ϕN} (4.11)

On consider a finit-dimentional subspace Sp ⊂ L2
p(Γ) for the form :

Sp = span{ψ1, ψ2, ..., ψN} (4.12)

Where ψ is a basis function with the space Sp , and dim Sp = Q

L2
p(Γ, H

1
0 (D)) = L2

p(Γ)⊗H1
0 (D) = Sp ⊗ V h

So

Sp ⊗ V h = span{ϕiψj : i = 1, ..., J ; i = 1, ..., q}

Where ϕψ is a basis function with = Sp ⊗ V h = W hp .

Definition 4.2.1 (Stochastic Galerkin problem) We write the stochastic Galerkin prob-

lem :

{
Findũ ∈ W hpã(uhp, φ) = ˜̀(φ),∀φ ∈ W hp (4.13)

The weak solution of (4.13) is a function ũ ∈ W hp = Sp ⊗ V h , where

uhp =
h∑
i=1

p∑
j=1

uijϕi(x)ψj(y) (4.14)

Theorem 4.2.1 (Best approximation) Let ũ ∈ L2
p(Γ, H

1
0 (D)) and ũhp ∈ W hp is an unique
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solution with the equation (4.13) if ther verifies the next condition

| ũ− ũhp |E= infx∈V | ũ− v |E (4.15)

4.3 Orthogonal polynomials

LetDn a space of all algebric polynomial of degree n , and Γ = (−1, 1) .{pn}n≥0 is a system

of algebric polynomials . The integral function w(x) such that w(x) ∈ Γ . So we difine

the space L2
w(Γ) with the expression :

L2
w(Γ) = {v : Γ −→ R/vis measurable and ‖ v ‖0,w<∞} (4.16)

Where

‖ v ‖0,w= (

∫ 1

−1

| v(x) | w(x)dx)
1
2 (4.17)

and

(u, v) =

∫ 1

−1

u(x)v(x)w(x)dx (4.18)

For all u ∈ L2
w(Γ) given by :

u(x, y) =
∞∑
i=0

ũipi(y) (4.19)

with

ui =
(u, pi)w
‖ pi ‖2

w

(4.20)

ũ is the expension coefficients associated with the family {pi} .

Definition 4.3.1 Let pnu a polynomial approximation , the series {pn} converges in the

L2
w(Γ) . Given by :

‖ u− pnu ‖0,w−→ 0; asn −→∞ (4.21)
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Where

pnu(x, y) =
n∑
i=0

ũipi(y) (4.22)

Definition 4.3.2 (Stochastic basis function) Let finit -dimensional space Sp , we can

written him for tensor produit

Sp = Sp1 ⊗ S
p
2 ⊗ .....⊗ S

p
M , such that, dimSp = (p+ 1)M forM > 1 (4.23)

consider P i
αi

(yi) is a polynomial of degree p , where αi = (α1, ..., αM) ⊂ Γ ⊂ RM , and

yi = (y1, ..., yM) ⊂ Γ ⊂ RM .There

So

Spi = span{P i
αi

(yi) : α = 1, .., p, i = 1, ...,M} (4.24)

Where P i
αi

(yi) = yi

.Sp = span{
∏M

i=1 P
i
αi

(yi) : α = 1, .., p, i = 1, ...,M}(4.25)

Definition 4.3.3 (Orthonormal stochastic basis function) Let v ∈ V h ⊗ Sp be a vector

ther equiped with an ineer product < ., . >p where

‖ v ‖L2
p(Γ),H1

0 (D)=< v, v >p (4.26)

and we can write :

< v, v >p=

∫
Γ

p(y)v(y)v(y)dy (4.27)

For p(y) is a density function of ξi ∈ Γ , v is a basis function of space V h⊗Sp ,< v, v >p

are orthonarmal if there ineer product is equal to zero . Let piαi
(yi) is a polynomial , we

can say there are orthonormal with respect to the ineer product < ., . >p on V h ⊗ Sp .
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4.4 Stochastic Galerkin linear system

Let V h⊗Sp a space , A is a matrice and u, b is a vector . we can write the linear algebric

system satisfies :

Au = b (4.28)

Where A = (aij)ij and u = [u1, ..., uj] ,b = [b1, .., bj] . For the vector u is a solution of

stochastic Galerkin approximation in V h ⊗ Sp . And we can write the Galerkin system

(4.28) where :

A = G0 ⊗K0 +
M∑
r=1

Gr ⊗Kr, b = g0 ⊗ f0 (4.29)

K0 and Kr are matrices :

[K0]ij =

∫
D

a0(x)∇φi(x)∇φj(x)dx (4.30)

and

[Kr]ij =

∫
D

ar(x)∇φi(x)∇φj(x)dx (4.31)

Let ψn(y) =
∏n

i=1 ψαi
(y) where αi = (α1, ..., αn) and ‖ α ‖i=

∑n
i=1 αi ≤ p .The stochastic

martices [Gr]ij are given by

[G0]ij =< ψi(y), ψj(y) > (4.32)

=

∫
Γ

ψi(y)ψj(y)dy (4.33)

[Gr]ij =< yrψi(y), ψj(y) > (4.34)

=

∫
Γ

yrψi(y)ψj(y)dy (4.35)

Where [G0]ij is a diagonal matrice , [Gr]ij has a must three nonzero element per row ,and

the vector g0 and f0 are difined via

g0 =< ψj(y) > (4.36)
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=

∫
Γ

ψj(y)dy (4.37)

and

f0 =

∫
D

f(x)ψi(x)dx (4.38)

Definition 4.4.1 Let G ∈ Rni×ni} , and K ∈ Rnj×nj} are tow matrices of the Kronecker

product , given by :

G⊗K =



[G]11K ........ [G]1ni
K

.

.

.

[G]ni1K ........ [G]nini
K


(4.39)

We have tow matrices G and K of size 2× 2 , given by

G =

1 2

0 1



K =

1 0

3 −1


then , the Kronecker product of tow matrices G and K is :

G⊗K =

1 2

0 1

⊗
1 0

3 −1


are tow matrices of the Kronecker product , given by :

=


1×

1 0

3 −1

 2×

1 0

3 −1


0×

1 0

3 −1

 1×

1 0

3 −1




(4.40)
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G⊗K =



1 0 2 0

3 −1 6 −2

0 0 1 0

0 0 3 −1


(4.41)

So , the matrice G⊗K of size 4× 4 . Let D a domain such that D = R2 , we write the

elliptic problem with


∇.(a(x1, x2, y1, y2).∇u(x1, x2, y1, y2)) = f(x1, x2)inR2

u(x1, x2, y1, y2) = 0on∂R2

where x = (x1, x2) ∈ R2 and y = (y1, y2) ∈ Γ2 = [−1, 1]2

The variational is: 
Findu ∈ L2

p(Γ, H
1
0 (D))

ã(u, φ) = ˜̀(φ),∀φ ∈ L2
p(Γ, H

1
0 (D))

Now we can written the problem such that

ã(u, φ) =

∫ 1

−1

∫ 1

−1

p(y1, y2)

∫
R

∫
R
a(x1, x2, y1, y2)∇u(x1, x2, y1, y2)∇φ(x1, x2, y1, y2)dxdy

=

∫ 1

−1

∫ 1

−1

p(y1)p(y2)

∫
R

∫
R
a(x1, x2, y1, y2)∇u(x1, x2, y1, y2)∇φ(x1, x2, y1, y2)dx1dx2dy1dy2

and

˜̀(φ) =

∫ 1

−1

∫ 1

−1

p(y1, y2)

∫
R

∫
R
f(x1, x2)φ(x1, x2, y1, y2)dx1dx2dy1dy2
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=

∫ 1

−1

∫ 1

−1

p(y1)p(y2)

∫
R

∫
R
f(x1, x2)φ(x1, x2, y1, y2)dx1dx2dy1dy2

becouse p(y) is independant such that

p(y) = p(y1, y2) = p(y1)p(y2)

The legender polynomial chouse the loi uniforme ,Γ2 = [−1, 1]2 , the function dencity

given

p(y1) =
1

b− a
=

1

2

So

ã(u, φ) =

∫ 1

−1

∫ 1

−1

1

4

∫
R

∫
R
a(x1, x2, y1, y2)∇u(x1, x2, y1, y2)∇φ(x1, x2, y1, y2)dx1dx2dy1dy2

and

˜̀(φ) =

∫ 1

−1

∫ 1

−1

1

4

∫
R

∫
R
f(x1, x2)φ(x1, x2, y1, y2)dx1dx2dy1dy2

The linear system

Au = b

we can write with the forme :a11 a12

a21 a22

(u1 u2

)
=

(
b1 b2

)

u = (u1, u2) is a solution of stochactic Galerkin approximation in V h ⊗ Sp the linear

system is :

A = G0 ⊗K0 +
M∑
r=1

Gr ⊗K0, b = g0 ⊗ f0 (4.42)
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K0 and Kr are matrices :

[K0]ij =

∫
R

∫
R
a0(x1, x2, y1, y2)∇φi(x1, x2, y1, y2)∇φj(x1, x2, y1, y2)dx1dx2dy1dy2 (4.43)

and

[Kr]ij =

∫
R

∫
R
ar(x1, x2, y1, y2)∇φi(x1, x2, y1, y2)∇φj(x1, x2, y1, y2)dx1dx2dy1dy2 (4.44)

The stochastic martices [Gr]ij are given by

[G0]ij =< ψi(y1, y2), ψj(y1, y2) > (4.45)

=

∫ 1

−1

∫ 1

−1

ψi(y1, y2)ψj(y1, y2)dy1dy2 (4.46)

[Gr]ij =< yrψi(y2, y1), ψj(y1, y2) > (4.47)

=

∫ 1

−1

∫ 1

−1

yr(y2, y1)ψi(y2, y1)ψj(y1, y2)dy1dy2 (4.48)

Where

g0 =< ψj(x1, x2, y2, y1) > (4.49)

=

∫ 1

−1

∫ 1

−1

ψj(x1, x2, y2, y1)dy1dy2 (4.50)

and

f0 =

∫
R

∫
R
f(x1, x2)ψi(x1, x2, y2, y1)dx1dx2 (4.51)
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Appendix A

Important notation

A.1 Deffinitions

Definition A.1.1 (Poincaree inequality) Let a bounded D , there existe a constant c such

that

‖ u ‖L2(D)≤ c | u |H1
0 (D) for any u ∈ H1

0 (D)

Definition A.1.2 (Cauchy -schwarze inequality)

Let V be a Hilbert space . Then

|< u, v >|≤‖ u ‖‖ v ‖
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Definition A.1.3 (Legender Polynomial) Legender Polynomial are a system of complet

and orthogonal polynomial , with a vast numerous application . The first Legender Poly-

nomial are :

P0 = 1

P1 = x

P2 =
1

2
(3x2 − 1)

P3 =
1

8
(35x4 − 30x2 + 3)

So the equation geniral is :

Pn =
1

2nn

dn

dnxn
(x2 − 1)n

Definition A.1.4 (Orthogonal relation) Let Pn(x) and Pm(x) are a polynomiam . The

orthogonal relation easly implies that tow polynomial given by

< Pm(x), Pn(x) >

∫ 1

−1

Pm(x)Pn(x)dx =
2

2n+ 1
δn,m

For

δn,m


1, n = m

0, n 6= m

f(x) =
∞∑
n=1

anPn(x)

where

an =
2n+ 1

2

∫ 1

−1

f(x)Pn(x)dx

Definition A.1.5 (σ− algebra) Let Ω be a non empty set the σ− algebra F is a collection

of subset of Ω saticfies condition :

¶ ∅ ∈ F
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· ∀A ∈ F =⇒ Ac ∈ F

¸ ∀(Ai)i≥1 ⊂ F disjoin for i = 1, 2, .... =⇒
⋃∞
i=1Ai ∈ F

Definition A.1.6 (Measurable space) Let Ω 6= and F be a σ− algebra on Ω .We say

(Ω,F) a measurable space .

Definition A.1.7 (Measure) Let (Ω,F) be a measurable space and f : F 7−→ [0,+∞[ is

a mesurable if it has verifies the condition :

¶ f(∅) = 0

· For any sequence of disjoint sets Ai ∈ F , for i = 1, 2, ...

f(
⋃
i≥1

Ai) =
∑
i≥1

f(Ai)

Definition A.1.8 (Probability space) The probability space is a triple (Ω,F ,P) where Ω

is the sample space ,F is a Filtration , P is a probability measure on Ω .

Definition A.1.9 (Random variable) Let (Ω,F ,P) is a probability space ,and (R,B(R))

is a mesurable space . X is a valued variable if X is a mesurable function :

X : (Ω,F) 7−→ (R,B(R))

Definition A.1.10 (Stochastic Processus) Let (Ω,F ,P) is a probability space ,and (R,B(R))

is a mesurable space . The stochastic processus X = (Xt)t≤0 difinie in (Ω,F ,P) an valued

in (R,B(R)) as a famille of random variable uninterested for the temp t :

X : [0,+∞[×Ω 7−→ R

(t, ω) 7−→ Xt(ω)

35



Definition A.1.11 (Random filds) Let (Ω,F ,P) is a probability space , let for a set

D ⊂ R , a (real valued) random fild {X(x) : x ∈ D} is a set of real valued random

variable on (Ω,F ,P) :

X : D × Ω 7−→ R

Definition A.1.12 (Indipendant) Let (Ω,F ,P) be a probability space and A,B are tow

event such that A,B ∈ F . We say A,B are independant if :

¶ Tow sub σ− algebra F1,F2 of the σ− algebra F are independant if event F1, F2 are

independant for all F1 ∈ F1 and F2 ∈ F2

· The random variable be an independant of the sub-F if

∀A ∈ σ(x),∀B ∈ F =⇒ P(A ∪B) = P(A)P(B)

¸ X and Y tow random variable are independant if :

∀A ∈ σ(x),∀B ∈ σ =⇒ P(A ∪B) = P(A)P(B)

Definition A.1.13 (Expectation) Let (Ω,F ,P) be probabilityspace and X is a random

variable integrable . The expectation of X satisfies

E(X) =

∫
Ω

X(Ω)dP

Definition A.1.14 (Variance) Let (Ω,F ,P) be probability space and X is a random vari-

able integrable . The variance of X satisfies

var(X) = E[(X − µ2)] = E(X2)− µ

Where µ = E(X)
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Definition A.1.15 (covariance)

Let X and Y are an integrable positive random variable . The coveriance C(X, Y ) of X

, Y is :

C(X, Y ) = E[(X − µX)(Y − µY )] = E(XY )− µXµY

Definition A.1.16 (Function density) Let (Ω,F ,P) be probability space ,p(x) is the func-

tion density given by

P(X ∈ (a, b)) = P({ω ∈ Ω : a < X(ω) < b}) = Px(a, b) =

∫ b

a

p(x)dx

Definition A.1.17 (Distrubition function) The cumulative distribution function or the

partitioning function in statistics and probability theory is a function that determines what

is the probability that the value of a random variable is less than or equal to a certain value.

If x is a random variable , its distrubition function is a function

FX(x) = P(X ≤ x),∀x ∈ R

Where P(X ≤ x) is the probability that x is less than or equal to x .

¶ Ck(D) = {u : D −→ R | u is k − times continuously differentiable} .

C∞(D) = {u : D −→ R | u is infinity continuously differentiable} .

· H1(D) = {u ∈ L2(D) | ∇u ∈ L2(D)} .

L2(D) =
{
u : D −→ R |

∫
D
u2(x)dx <∞

}
.

H1
0 (D) = {u ∈ H1(D) | ∇u = 0 on ∂D} .
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 الملخص

في هذا العمل ، ندرس تقريب جالركن في 

  الحالة العشوائية في الفضاء الجزئي

وإيجاد تقريب الحل في هذه  Vh   المحدود

المساحة. طبقناها على مسألة المعادلة 

 التفاضلية الجزئية.
 

 

Abstract 

In this work we study the Galerkin approximation in 

stochastic case in bounded subspace  Vh  and finding the 

approximation of solution in this space . We applied it to 

the partial differential equation elliptic problem. 

 Key Words 

Galerkin Approximation , Galerkin   problem of  elliptic , stochastic, 

Lax-Meligram theorem ., linear , Truncated Karhune-Loeve , the 

boundary-value ,  The variational problem , Galerkin problem , 

polynomials . 

 

 

 

 

 



. 

Résumé 

Dans ce travail, nous étudions l'approximation de Galerkin 

dans le cas stochastique dans le sous-espace borné  Vh  et 

trouvons l'approximation de la solution dans cet espace. 

Nous l'avons appliqué au problème elliptique des 

équations aux dérivées partielles. 
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