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Abstract

In this thesis , we show the convergence of Euler approximation of the stochastic differential equation

with jumps and we will study the types of convergece of this method and its conditions .

P�lm��

Tbsn�A� TqtKm�� TÌy¶�wK`�� TylRAft�� T� A`ml� r�¤� �Ab§rq� TF�C Y�� �rWtnF T�¤rV±� £@¡ ¨�
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Résumé

Dans cette mémoire, nous verrons à l’étude la convergence de l’application de Euler de l’équation

différential stochastic derivée par la mesure Poisson composée; et nous étudierons les types de

convergence de cétte méthode et ses conditions.



Notations and Concventions

N SDEs: Stochastic Differential Equations

N a.s: almost surely

N N = {0, 1, 2, ...}

N 1A (x): The indicator function of A.

N Rd The d-dimensional Euclidean space where d ∈ N

N SSBE: Splet Step Backward Euler



Key words

Stochastic process, poisson process, compensated poisson process, stochastic deffirential eqaution,

Euler approximation of SDE with jump, strong convergence, weak convergence.



Introduction

Stochastic differential equation with jumps is of great importance, in various fields to get

more accurate results, from that of economics, finance and others. As a historical note;

in [13] for nonlinear SDEs, authors showed that applying MLMC Euler methodto approximate

E[ f (XT )] diverges when the test function f is locally Lipschitz continuous with polynomially

growth. They also proved their tamed Euler method [20] is convergent when it is combined

with MLMC method. Tamed Euler scheme which is an explicit numerical method, later

generalized to the jump-diffusion SDEs in [18]. SSBE method first introduced in [16] as

an implicit method to numerically solve nonlinear diffusion SDEs with one-sided Lipschitz

drift.Then it is improved in [17] for discontinuous drifts. This method elegantly generalized

to jump-diffusion processes in [15]. They also discussed BE method in [14] as a variant of SSBE

scheme. Strong convergence of the Euler scheme for SDEs with locally Lipschitz coefficients

first discussed in [16] for diffusion processes and then modified to jump-diffusion SDEs in

[15] and late in [19] with the aid of Hilbert-Schmidt norm and special class of logarithmic

coefficients. Also in [21], the authors have introduced a explicit Euler scheme for diffusion

SDEs with locally Lipschitz drift and implementing the MLMC algorithm, they price a few

Lipschitz payoffs like spread option. Now;in this work we study the convergence of the Euler

approximation of stochastic differential equations with jump. In the first chapter we will

present the basic theorems of stochastic process and Poisson process stochastic, then in the

second chapter we study the Stochastic integrale with respect to Poisson measur, and in

the third chapter we study the stochastic differential equation with jump . In the fourth

chapter, we discuss an explanation of Euler’s implicit method (back-ward Euler method) for

a stochastic differential equation with jump and in the last chapter we study the types of

convergence of this method and the conditions for that.
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Chapter 1 Introduction to Poisson stochastic processes

1.1 Filtred probability space

1.1.1 Filtration

Definition 1.1.1. Let F be a trube. An increasing family of subtrubes of F in the sense of inclussion

is a filtration i.e Fs ⊂ Ft; ∀s ≤ t

1.1.2 Right continuous Filtration

Definition 1.1.2. A filtration is said to be a right continuous filtration if

Ft = Ft+ = ∩Fs; tq t ∈ R+

1.1.3 A complet Filtration

Definition 1.1.3. Let (Ω,F ,P) be a probability space, when F (0) containes the null sets then F (t) is

a complet filtration

1.1.4 Standard filtration

Definition 1.1.4. Let F be a filtration, we say that F has the usual condition if F is a completed and

right continuous.

1.1.5 Filtred probability space

Definition 1.1.5. We have (Ω,F ,P) be a probability space, then we can call this space by filtred proba-

bility space if when we equipe it with the filtration F, and we write (Ω,F ,F,P)

1.2 Stochastic process

Let Xt be a random variable indexed by time t ∈ [0;T ].

We define X (w, t) a collection of Xtwhere :

X : Ω× T → (E, εT )

(w, t)→ Xt (w)

N For fixed t ∈ [0;T ], the function 7−→ Xt (w) is a real random variable.

N For fixed w , the function :w 7−→ Xt (w) is the trajectory of the processes X associated withw

We call X a stochastic process.
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Chapter 1 Introduction to Poisson stochastic processes

1.2.1 Characteristic of Stochastic process

LetX = Xt t ∈ [0, T ]

¶ The n dimensional distrubution function

We have a Stochastic process X, then the n-dimensional distrubution function of the process X is

giving by ∀n ∈ N ∀tk ∈ [0, T ] , k = 1, 2, 3, ..., n

FXt1
,Xt2

,...,Xtn
(x1, x2, ..., xn) = P [Xt1 ≤ x1, ..., Xtn ≤ xn] , ∀xk ∈ R, n ∈W

· The n dimensional density function

We have FXt1
,Xt2

,...,Xtn
(x1, x2, ..., xn) dimensional distrubution function of stochastic process X,

when FXt1 ,Xt2 ,...,Xtn
has a partial deriatives then fXt1 ,Xt2 ,...,Xtn

(x1, x2, ..., xn) = ∂n

∂x1,∂x2,...,∂xn
FXt1 ,Xt2 ,...,Xtn

(x1, x2, ..., xn)

¸ The trend function

X is a stochastic process when ∀t ∈ [0, T ] , E (Xr) exists, then the trend function is giving by

m (t) = E (Xr)

¹ The variance function

X is a stochastic process, then

V ar (X) = V ar (Xr) = E
(
X2
r

)
− (E (Xr)× E (Xr)) = E

(
X2
r

)
− (m (t))

2

º The covariance function

X is a stochastic process, then the covariance function of process X is : ∀r, t ∈ [0, T ]

Cov (Xr, Xt) = E (Xr, Xt)− E (Xr)× E (Xt)

= E (Xr, Xt)−m (r)m (t)

1.3 Classification of stochastic process

1.3.1 Continuous process

Definition 1.3.1. Let Xt = {Xt, t ∈ T} , T ⊂ [0,+∞[ be a stochastic process, it is continuous if for any

w ∈ Ω the trajectory t 7−→ Xt (w) is continuous.

1.3.2 Mesurable process

Definition 1.3.2. Let X be a stochastic process , we say that X is measurable,if

(X (w, t) : Ω× [0;T ] , E ⊗B ([0;T ])) 7−→ (E, ε) is measurable.

1.3.3 Adapted process to a filtration F

Definition 1.3.3. Let X be a stochastic process, we say that the process X is adapted if ∀t ∈ R+, Xt is

Ft-measurable

6



Chapter 1 Introduction to Poisson stochastic processes

1.3.4 Stationarity

Definition 1.3.4. We have X ∈ {Xt, t ∈ [0, T ]} is a stochastic process, if for ∀n ∈ N,∀h > 0,∀ti ∈ [0, T ]

and i = 1, 2, ..., n

FXt1
,Xt2

,...,Xtn
(x1, x2, ..., xn) = FXt1+h

,Xt2+h
,...,Xtn+h

(x1, x2, ..., xn)

then we say in this case: X is a stationar process.

1.3.5 The increments

Definition 1.3.5. [7]

Let X = {Xt, t ∈ [0, T ]} be a stochastic process the increments of X are
(
Xti −Xti−1

)
where; [ti−1, ti] ⊂

[0, T ] , ∀i ∈ N

1.3.6 Independent increments

Definition 1.3.6. Let {Xt, t ∈ [0, T ]} is a stochastic process, where; for ∀s ≤ t, Xt−Xs are independent

increment

1.3.7 Stationary increments

Definition 1.3.7. The process (Xt)t∈N is said it has Stationary increments if for ∀p > 1 and 0 < t1 <

t2 < ... < tp

∀s ≤ t, and h positive constante, the random variable Xt − Xs and , Xt+h − Xs+h have the same

distribution function.

1.3.8 Modification

Definition 1.3.8. We say that Y is a modification of process X if for all t ∈ [0;T ]: (P (Xt = Yt) = 1).

1.3.9 Martingale process

Definition 1.3.9. a process (Xt)t>0 adapted with respect to a filtration (Ft)t>0 and such that for all

t > 0, is called:

N a martingale if for all:

s ≤ t : E (Xt/F ) = Xs

.

Definition 1.3.10. a process (Xt)t>0 adapted with respect to a filtration (Ft)t>0 and such that for all

t > 0, is called:

N a super martingale if for all:

s ≤ t : E (Xt/F ) ≤ Xs

N a sub martingale if for all:

s ≤ t : E (Xt/F ) > Xs

7



Chapter 1 Introduction to Poisson stochastic processes

1.4 Brownian motion

1.4.1 Brownian motion

Definition 1.4.1. We say that a process (Bt)t∈R+
is a Brownian motion with respect to a filtration

(Ft)t∈R+
if:

N The trajectory t 7−→ Bt is continuous.

N (Bt)t∈R+
has stationrry increment.

N For 0 ≤ r ≤ t, the increment (Bt −Bs) ∼ N (0, t− r)

1.5 Weiner process

Definition 1.5.1. Let {Xt}t>0 be a Brownian motion, it is called a standard Brownian motion (Weiner

process) if

1) X0 = 0− as

2) E(X(t)) = 0 , V ar(X(t)) = t

We denote standard Brownian motion by W t>0

1.6 Poisson process

Definition 1.6.1. Let {Xt, t ∈ [0, T ]} be a stochastic process, and λ be a constant We call X apoisson

process if it satisfies :

• X0 = 0 P− as

• For t < s X(s)−X(t) in are independent increment.

• X has a statioanarry increment.

• The increment X(s)−X(t) has a Poisson distribution with parameter λ(s− t).

1.6.1 The characteristic of Poisson process

1.6.2 proposition

Let (Nt)t>0 be a Poisson process, with i intensity λ, then

E (Nt) = V ar (Nt) = λt then

Cov (Nt, Ns) = λmin (t, s)

8



Chapter 1 Introduction to Poisson stochastic processes

Proof. Since Nt has the Poisson distribution then E[Nt] = V ar[Nt] = The covariance value

Cov (Ns, Nt) = E [(Nt − E (Nt)) (Ns − E (Ns))]

= E [NtNs −NtE (Ns)−NsE (Nt) + E (Nt)E (Ns)]

= E [NtNs −Ntλs −Nsλt + λtλs]

= E [NtNs] + E
[
−Ntλs −Nsλt + λ2st

]
= E [NtNs]− 2λ2st+ λ2st

= E [NtNs]− λ2st

E

[
(Nt)

2
+ (Ns)

2 − (Nt −Ns)2

2

]
− λ2st

=
V ar (Nt) + E(Nt)

2
+ V ar (Ns) + E(Ns)

2 − V ar (Nt −Ns)
2

=
−E(Nt −Ns)2

2
− λ2st

=
λt+ (λt)

2
+ λt+ (λs)

2 − λ (t− s)− λ2(t− s)2

2
− λ2st = λmin (t, s) = λs

Definition 1.6.2. Nt>0 be a Poisson process with intensity λ, then the compensated Poisson process

(widetildeNt)t>0of (Nt)t>0 is giving by Ñt = Nt − λt

9
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Chapter 2 stochastic integral with respect to Poisson Random Measure

2.1 Poisson Measure

2.1.1 Random Measure

Definition 2.1.1. Let µ (B,w) : B × Z → R+ ∪ {+∞} a mup, we called a random measure on BZ if it

satisfy this conditions:

1) ∀B ∈ BZ fixed u (B, .) is a real random variable.

2) ∀w ∈ Ω, where w is fixed , u (., w) is

σ-finit measure

Definition 2.1.2. Let µ be a measure on(E, ε). We call µ a σ−finite mesure if :

ther exist φ = {Un}∞n=1 ⊂ BZ ;

N φ = {{Un}∞n=1 = U1, U2, ...

N µ (Ui) <∞

2.1.2 Poisson Random Measure

Definition 2.1.3. A random measure µ (B,w) is called a Poisson random measure on BZ × Ω, if it is

an integer valued, such that:

1) ∀B ∈ BZ =⇒ µ (B, .) is a Poisson distrubutionm with intensity λ(B) where λ (B) = Eµ (B,w).

2) if {B}nj=1 (where {B}nj=1 ⊂ BZ) are disjoint; then {µ (Bj , .)}mj=1 are independent poisson random

variable.

2.1.3 Construction of Poisson measure

Definition 2.1.4. Suppose that v is a measure on (E, ε) ; v (E) <∞, then there exist a Poisson random

measure with mean measure v.

2.2 Compesated Poisson Measure

Definition 2.2.1. Let ξ be a poisson random Measure with mean measure v, the compensated Poisson

random measure of ξ is gevin by;

ξ = ξ − v,

2.2.1 proposition

Let ξ be a compensated poisson random measur , let A1, ..., An are disjoint sets, then the variable

ξ (A1) , ξ (A2) , ..., ξ (An) are independent and verify

E
[
ξ (Ai)

]
= 0 ; var

[
ξ (Ai)

]
= var (Ai)

11



Chapter 2 stochastic integral with respect to Poisson Random Measure

2.3 Stochastic Integral with respect to Brownian motion

2.3.1 Stochastic integral

Simple preditable process

Definition 2.3.1. Let (Ω,F ,P) be a probability space, X = {Xt, t ∈ [0, T ]} be a stochastic process, We

can call X a predictable process if it can be writen as :

Xt = f0 (w) It=0 (t) +

n∑
i=0

fi (w) I(σi,σi+1) (t)

where f ∈ Fσi
and {σi}i=0,..,n is a stopping time, with σ0 = σ

Stochastic Integral of simple predictable process

Definition 2.3.2. A stochastic integral I (y) of a simple predictable process X = {Xt, t ∈ [0, T ]} with

respect to the process stochastic M = {Mt, t ∈ [0, T ]} is given by

T∫
0

XtdMt = f0M0 +

∞∑
n=0

f (w)
(
MTn+1

−MTn

)

2.3.2 The Stochastic Integral with respect to standard Brownian motion

Definition 2.3.3. A Stochastic Integral Ix of simple predictable process X = {Xt, t ∈ [0, T ]} with respect

to the standard Brownian motion is given by :

Ix =

∫ T

0

xt dWt =

n∑
i=0

fi(w) (WTi+1 −WTi) ,

where Ti ≤ t < Ti+1 ; i = 1, ..., n

2.4 Stochastic integral with respect to Poisson measure

predictable process

Definition 2.4.1. Let X = {Xt, t ∈ [0, T ]} be a stochastic process, the predictable process given by:

X : Ω× [0, T ]×Rd → R

X (t, r) =

n∑
i=1

ci1Aj
(t) 1[Ti,Ti−1]

∑
cj1Aj

× 1[Ti,Ti−1]

=

n∑
i

m∑
j

ϕij1[Ti,Ti+1] (t)× 1Aj
(t)

where n,m ∈ N, {Ti}i=1,2,3,...,n are necessary partition of [0, T ] , (Aj)j=1,2,...,n are dejoint of Rd and

φij ∈ Fij measurable random variable are bounded variable whose valued at Ti

12



Chapter 3 stochastic Differential Equation with jumps

The stochastic integral of X with respect to poisson measur

Definition 2.4.2. The stochastic integral of X with respect to poisson measurξ defined by:

t∫
0

∫
Rd

X (t, r) ξ (dt, dr) =

n∑
i

m∑
j

ϕijξ ((Ti+1, Ti+1)Aj)

=

n∑
i

m∑
j

ϕij
(
ξTi+1 (Aj)− ξTi (Aj)

)

2.4.1 Compensated Poisson random measure

The stochastic integral with respect compensated Poisson process

Definition 2.4.3. Let X be a stochastic process and ξ be compensated Poisson process the stochastic

integral of X with respect to ξ̃ is defined by:

t∫
0

∫
Rd

X (t, r) ξ̃ (dt, dr) =

n∑
i

m∑
j

ϕij ξ̃ ((Ti+1, Ti+1)Aj)

=

n∑
i

m∑
j

ϕij

(
ξ̃Ti+1 (Aj)− ξ̃Ti (Aj)

)

13
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Chapter 3 stochastic Differential Equation with jumps

3.1 Prelimineris of stochastic differential equation

3.1.1 Stochastic differential equation derived by Broiwnian motion

The solution of a stochastic differential equation

Definition 3.1.1. We have (3.1) is a SDEs then

N X is a solution of (3.1) if X satisfies (3.1)

N (X,w) is a weak solution of (3.1) if ∀t > 0 (X,w) satisfies (3.1)

N (X,w) is a strong solution of (3.1) if ∀t > 0 (X) is Fw adapted, where FWt is the filtration

generated by Wt.

3.2 Stochastic differential equation derived by Poisson process

Definition 3.2.1. Let X = {Xt, t > 0} be a process stochastic, N = {Nt, t > 0} be a Poisson process;

then, the stochastic differential equation derived by Poisson process defined by:dXt = f (t,Xt) dt+ g (t, st) dNt

X0 = x0 ∈ Rd

3.3 The Stochastic differential equation with respect to Poisson

random measure

(Ω,F ,F,P) be a filtred probability space, and (Ω,F ) be measurable space, and let b, σ : [0, T ]×Rd −→ R

are mesurable function, W = {Wt, t > 0} is a Brownian motion, the stochastic differential equation with

respect to Poisson random measure is given by:

dXt = f (t,Xt) dt+ g (t,Xt) dwt −
∫
t

h (t,Xt)Nrdtdr

Xr =

∫ t

0

f (t,Xs) ds+

∫ t

0

g (s,Xs) dws +

∫
z

h (s,Xs) (ds, dr)

3.4 The Stochastic differential equation with respect to com-

pensated Poisson random measure

Definition 3.4.1. Let X = {Xt, t > 0} be a stochastic process, W = {Wt, t > 0} be a Brownian motion

and ξ̃ be a compensated Poisson random process measure, b, σ : [0,∞] × Rd × Ω × Rd are a measurable

and F adapted, c : [0,∞] × Rd × Ω × Z −→ Rd a simple predictable process. The stochastic differential

equation with respect to compensated Poisson random measur is defined by that:

dXt = X0 + b (s,Xs, w) ds+ σ (s,Xs, w) dws +

∫
z

c (s,Xs, z, w) ξ̃ (ds, dz) , t > 0
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Chapter 4 Euler Approximation of SDES with Jumps

4.1 Euler Approximation of SDE

....

4.1.1 The Euler methode

The splet step backward Euler methode (or implicit Euler methode) is one of most basic numerical

methode for the solution of SDEs: Let: dXt = f (t,Xt) dt+ g (t,Xt) dWt

X0 = 0
(4.1)

be a SDEs; where: f : Rn → Rn , g : Rn → Rn , Wt is a brownian motion, then (4.1) is equivalent to:

Xt = X0 +

T∫
0

f (s,Xs) ds+

T∫
0

g (s,Xs) dws (4.2)

where the integral is an Ito integral and Xt is a random variable for each t ∈ [0;T ].

Now we define an approximation solution on the bourded time interval t ∈ [0;T ], with ∆t = T
N , N

is the number of subintervals, the approximation values are

X0, X1, X2, ..., XN

to the point respectivelly

0 = t0 ≺ t1 ≺ t2 ≺ ... ≺ tN = T

The Euler methode in this case take the form

dXi+1 = Xi + f (ti, Xi) ∆ti + g (ti, Xi) ∆wi; i = 1, ..., N

Here Xi is the approximation to X (tn) for tN = N∆t; and ∆wi = w (ti+1)− w (ti).

we can write (4.2) as:

Xt+1 = Xi +

ti+1∫
ti

f (s,Xs) ds+

ti+1∫
ti

g (s,Xs) dWs (4.3)

4.2 Euler approximation of SDE with jumps

Let:

dX(t) = f(X(t)) dt+ g(X(t−)) dW (t) + h(X(t)) dN(t−); t > 0 (4.4)

be a jump diffusion Itô Stochastic deferential equation;

Where

X(0−) = X0 ; X(t−) = lim
s→t−

X(S) ;

and

f : Rn −→ Rn g : Rn −→ Rn × Rn h : Rn −→ Rn

18



Chapter 4 Euler Approximation of SDES with Jumps

and w(t) is a m dimensional Brownian motion ; andN(t) is a scalar Poisson process with intensity λ.

We consider the case f, g, h ∈ c1, f satisfies a one sided Lipchitz condition

< x− y, f(x)− f(y) >≤ x|x− y|2, ∀x, y ∈ Rn (4.5)

and g, h satisfy global Lipchitz condition

|g(x)− f(y)|2 ≤ Lh|x− y|2; ∨ x, y ∈ Rn (4.6)

Where < −, . > denotes the scalar product, |.| denotes both the Euclidient vector norm, and the frobinius

matrix norm. Let

| < f(x), x > | ≤ 1

2
|f(0)|2 + (x+

1

2
)|x| (4.7)

|g(x)|2 ≤ 2|g(0)|2 + 2Lg|x|2 (4.8)

|h(x)|2 ≤ 2|h(0)|2 + 2Lh|x|2 (4.9)

be linear growth bounds.

for a ∆t > 0 the constant step size; there is the split- step backward Euler method

f 4.4 witch defined by Y0 = X(0−) and

X∗n = Xn + f(X∗n) (4.10)

Xn+1 = X∗n + g(X∗n)∆Wn + h(X∗n)∆Nn (4.11)

Where Yn is the approximation to X(tn), for tn = n∆t,

With

∆Wn = W (tn+1)−W (tn); (4.12)

and

∆Ñn = N(tn+1)−N(tn); (4.13)

Where 4.12 and 4.13 representing the increments of the Brownian motion and the Poisson process re-

spectively.

Compensated split- step back ward Euler method

Let

Ñ(t) = N(t)− λ (4.14)

be a compensated Poisson process; and we define

(4.15)

the jump- diffusion Ito SDE 4.4 is equivalent to:

dX(t) = f(X(t−))dt+ g(X(t−))dW (t) + h(X(t−))dÑ(t) (4.16)

19
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Where fλ satisfies a one sided Lipchitz condition with larger constant, that is

< x− y, f(x)− f(y) >≤ (µ+ λ
√
Lh)|x− y|2; ∀x, y ∈ Rn. (4.17)

then; the compensated split- step back -ward Euler method is defined by: Y0 = X(0−) and

X∗n = Xnfλ(X∗n)∆t (4.18)

Xn+1 = X∗ng(X∗n)∆Wn + h(X∗n)∆Ñn (4.19)

Where ∆Ñn = Ñ(tn+1)− Ñ(tn).
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Chapter 5 Approximation of SDEs with jumps

Definition 5.0.1. suppore that f, g, h satisfy the local lipchitz condition :

That is for som p > 2 , there is a constant A , such that :

E sup
0≤t≤T

|X(t)|p ≤ A; (5.1)

and

E sup
0≤t≤T

|X(t)|p ≤ A (5.2)

then

lim
4t→0

E sup
0≤t≤T

|X(t)−X(t)|2 = 0 (5.3)

Where

X̃(t) = X0 +

∫ t

0

fλ(X(s−))ds+

∫ t

0

g(X(s−))dw(s) +

∫ t

0

h(X(s−))dÑ(s) ∀t ∈ [tn, tn+1[; (5.4)

is the piecewise linear interpolant and ; the piecewise constante interpolant of the CEM solution y(t) .

5.1 Strong Convergence of the split step backward Euler meth-

ods

Let:

y∗ = yn + f(y∗n)4t (4.15)

be an equation for SSBE , and it (4.15) has a unique solution , with probability one , for all 4tu < 1

Definition 5.1.1. We define F : Rn −→ Rn by F4t(x) = y wher F is integrated function , then such

that ∀4t ∈ (0,4t∗);∃y, where we consider 4t∗ =
1

|u|
for SSBE

Now we define :

f4t(x) = f(F4t(x)); g4t(x) = g(F4t(x))

h4t(x) = h(F4t(x)) . (5.7)

Let f satisfies (4.2) , then f4t satisfies an analogues one-sided lipschitz condition uniformaly in 4t ∈

(0,4t∗)

We assume that f, g satisfie the globaly lipshitz condition (4.5) , (4.6) for g4t and f4t where 4t ∈ (0,4t∗)

the SSBE in (4.7) ; (4.8) is equivalent to the explicit Euler Margama method :

Xn+1 = Xn + f4t(Xn)4t+ g4t(Xn)4wn + h4t(X4n
)4Nn (5.5)

applied to the SDE

dX4t(t) = f4t(X4t(t
−))dt+ g4t(X4t(t

−))dw(t) + h4t(X4t(t
−))dN(t);X4t(0

−) = X0 (5.6)

proposition

We assume that (∗), (4.2), (4, 3), (4, 3∗)

(∗) f, g, h ∈ C1

(4.2) < x− y, f(x)− f(y) >≤ µ|x− y|2;∀x, y ∈ R2
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(4, 3) |g(x)− g(y)| ≤ Lg|x− y|2;∀x, y ∈ R2

(4, 3∗) |h(x)− h(y)| ≤ Lh|x− y|2;∀x, y ∈ R2

for all p > 2 ; ∃ ; C = C(P, T ) constent , such that ; for SDE (5.9)

E sup
0≤t≤T

|X4t|p ≤ c(1 + E|X0|p) ∀4t ∈ (0,4t∗)

Definition 5.1.2. We assume that (∗), (4, 2), (4, 3), (4, 3∗) and (4, 17)

then lim
4t→0

E sup0≤t≤T |X4t(t)−X(t)|2 = 0 where X(t) is the solution of (4,1) ; and X4t(t) is the solution

of (5,9).

Definition 5.1.3. We define a ccontunuous time extension X∆t of the SSBE methode usine the fact

that is equivalent to the explicit Euler methode applied to (5.6)

Suvh that, for s ∈ [0,∆t] we define:

X∆t (tn + s) = Xn + sf∆ (Xn) + J∆t (Xn) ∆xn (s) + h∆t (Xn) ∆Nn (s) (5.7)

Where ∆wn (s) = w (tn + s)− w (tn)

∆Nn (s) = N (tn + s)−N (tn)

Definition 5.1.4. We assume that (4.1∗), (4, 2), (4, 3), (4, 3∗), (4, 17) ; for p > 2 ; ∃C = C(P, T ) Cst

such that for SSBE in (4.7) , (4.8) :

E sup
0≤n4t≤T

|Xn|2p ≤ C; ∀4t < 4t∗

Definition 5.1.5. We assume that (4.1∗), (4, 2), (4, 3), (4, 3∗), (4, 17)

for all p > 2 , ∃C = C(P, T ) CST ; such that ; for the SDE (5.9) :

E sup
0≤t≤T

|X4t(t)|p ≤ C(1 + E|X0|p)

Definition 5.1.6. Assume that, the assumption (∗), (4.2), (4.3), (4.3)∗, (4.17) detective, then the con-

tinuous thme extension X∆t (t) in (5.7) of the SSBE methode (4.7), (4.8) satisfies

lim
∆t→0

sup
06t6T

∣∣X∆t (t)−X (t)
∣∣2 = 0

Proof. Definition(5.2.2) and definition (5.2.5) allow us to invoke definition (5.2.7) in order to control

the diference

lim
∆t→0

sup
06t6T

∣∣X∆t (t)−X (t)
∣∣2

. Definition(5.2.3) and the triangle inequality complete the proof.

5.2 Strong convergence with strong order

Definition 5.2.1. [6] Let {X (t) , t ∈ [0, T ]} the Euler approximation on a time discritization (t)∆ of a

stochastic process {X (t) , t ∈ [0, T ]};

We say that the process X converge strongly to X with strong order of convergence γ > 0 if

E
[
‖X (T )−X (T )‖2

]
≤ c∆2γ

for some c > 0; where c independent on ∆.
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5.3 Weak convergence of the Euler approximation

Definition 5.3.1 ([11]). Let

X (t) = X (0) +

t∫
0

a (s,X (s)) ds+

t∫
0

b (s,X (s)) ds+

t∫
0

c (s,X (s) , θ) ξ̃ (dθ, ds) (5.8)

be a stochastic differential equattion, where t ∈ [0, T ] is a Brownian motion N is a poisson martingale

measure.

We define

X = {X (t) , t ∈ [0, T ]} as an Ito process with jump, which it is the weak solution of (5.8)

Let

Y (t) = Y (0) +

t∫
0

a (tis, (τis) , 0) ds

+

t∫
0

b (τis, Y (s) , θ) ξ̃ (dθ, ds)

−
t∫

0

∫
Γ

c (τis, Y (τis) , θ)π (dθ)ds

be the Euler approximation of X, where a, b are cofficient function, c is a piecewise constant, and

(τ)δ = (τi)i∈N , N = {0, 1, 2, ...} is the time discretization of the interval [0, T ] with maximum step size δ.

We say that Y converge with weak order k > 0 ver X, cst k for polynomial g satisfie:

|Eg (X (T ))− Eg (Y (T ))| ≺ kJk

5.4 Main theorem (weak order convergence of Euler approxi-

mation) [11]

Let the time discritization (τ)J include all jump times of p̃ where p̃ ≤ T

The Euler Sheme in this case given by:

X−i+1 = Xi + a (τi, Xi) ∆τi + b (τi, Xi) ∆W̃ (τi)

−
∫
Γ

c (τi, Xi, θ)π (dθ) ∆τi

where Xi+1 = X−i+1 +
t∫

0

c
(
τi, X

−
i+1, θ

)
p̃ (dθ, {τi+1}) with Xi = Xi (τi) and X−i+1 = X

(
τ−i+1

)

24



Chapter 5 Approximation of SDEs with jumps

We denote

∂βxu =

(
∂

∂x1

)β1

...

(
∂

∂xd

)βd

u

β = (β1, ..., βd) ∈ Nd

x =
(
x1, ..., xd

)
∈ Rd

∂xu =
(
∂βxu

)
|β|=l

|β| = β1 + ...+ βd

∂ltu =

(
∂

∂t

)l
u, l ∈ N

H l
T be the space of continuous functions u on [0, T ]×Rd possessing continuous deriatives ∂rt ∂

s
xu,∀2r+s ≺ 1

where l ∈ L = (0, 1) ∪ (1, 2) ∪ (1, 3)

We define B (t, x) = b (t, x) b(t, x)
T
,∀ (t, x) ∈ [0, T ]×Rd and ‖C‖lT =

(∫
Γ

(
|c (., ., ∂)|lT

)2

π (dθ)

) 1
2

,∀l ∈

L then the main theorem is:

Theoreme 5.4.1. Let be given th Euler approximation Y with respect to time discreptization (τ)J ; J ∈

(0, 1); we assume

(B (t, x) , ξ, ξ) > µ|ξ|2

with fixed µ > 0, for all t ∈ [0, T ] and x, ξ ∈ Rd;

α, β ∈ H l
T , ‖C‖

(l)
T ≺ ∞, g ∈ H

2+l

with l ∈ L = (0, 1) ∪ (1, 2) ∪ (2, 3) is uniformaly bounded ∂xl for l ∈ (2, 3) the it holds

|Eg (XT )− Eg (YT )| 6 KJK(l)

with

K (l) =



l

2
, forl ∈ (0, 1)

1

3− l
, forl ∈ (1, 2) , andKindependanton

1, forl ∈ (2, 3) lorδ

and x (T, x) = g (x)

Note that; if α, β are holder continuous, ‖C‖lT ≺ ∞ g is given more twice continuously differentiable,

then we have a positive weak order of convergence

To prepare the proof of Theorem 5.1 we need some auxiliary results. Let us introduce the diffusion

operator

Lt =
1

2

d∑
i,j=1

Bi,j∂2
xi,xj

+

d∑
i=1

ai∂xi .

We consider the following Cauchy problem

(∂t + Lt)u(t, x) = f(t, x) (5.9)

in [0, T ]×<d with

u(T, x) = g(x), (5.10)
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x ∈ <d.

For given f ∈ H`
T there exists under the conditions of Theorem 5.1 a unique solution u ∈ H2+`

T of the

Cauchy problem (5.9)-(5.10) and we have for some constant q̂. which does not depend on f and g, the

estimate, see Ladyzhenskaya. Solonnikov & Uraltseva (1967), p. 31 .

|u|(2+`)
T ≤ q̂

(
|g|(2+`) + |f |(`)T

)
(5.11)

A similar result holds also for the corresponding integro partial differential equation which we formulate

in the following proposition.

Proposition 5.4.1. Under the assumptions of Theorem 5.1 there exists for f ∈ H`
T a unique solution

u ∈ H2+`
T of the Cauchy problem (

∂t + L̂t +At

)
u = f (5.12)

in (0, T )×<d with

u(T, x) = g(x) (5.13)

x ∈ <d, where

L̂tu(t, x) = Ltu(t, x)−
d∑
i=1

∫
Γ

ci(t, x, θ)∂xiu(t, x)Π(dθ)

and

Atu(t, x) =

∫
1

(u(t, x+ c(t, x, θ))− u(t, x))Π(dθ)

and we have the estimate

|u|(2+`)
T ≤ C

(
|g|(2+`) + |f |(`)T

)
(5.14)

with a constant C not depending on g and f .

Lemma 5.4.1. Let us assume that the condition (2.4) holds. Then there exists a constant K such that

for each g ∈ H`
T with ` ∈ L and s ∈ [0, T ] one has

E
(
g (s, Ys−)− g

(
τis , Yτis

)
| F̃τis

)
≤ K|g|(`)T δκ(`).

5.5 Weak convergence with weak order

Theoreme 5.5.1. [6] {Y (t) , t ∈ [0, T ]} the Euler approximation on a time discritization (t)∆ of a

stochastic process {X (t) , t ∈ [0, T ]};

We say Y converge weakly with weak order of convergence β, if for some smooth enough function g

we have that;

[g (Y (T ))− g (Y (T ))] ≤ c∆β

for some c > 0 with does not dpnd on ∆
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CONCLUSION

The dynamics of financial and economic quantities are often described by sto-

chastic differential equations (SDEs). In order to capture the dynamics observed

it is important to model also the impact of event-driven uncertainty. Events

such as corporate defaults, operational failures, market crashes or governmental

macroeconomic announcements cannot be properly modelled by purely continu-

ous processes. Therefore, SDEs of jump-diffusion type receive much attention in

financial and economic modelling, and this method SSBE is an example for estimates

some of this problems and work of give an approximate solutions for them.

Therefore, these methods must be developed and continued to be studied to achieve

better and more accurate results.



APPENDIX A

APPENDIX: POISSON RANDOM

VARIABLE
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Appendix

A.1 Probability space

The Trube

Definition A.1.1. to define concept of trube we combaine tow composentes: Ω: be a nonempty set.

F be a set of subsets of Ω. So, we say F is a trube if it satisfies these condition:

N F 6= ∅

N ∀ A,B ∈ F needed Ac ∈ F

N ∀ (An)n≥0 ∈ F needed ∪i>1An ∈ , So now, we can name this couple

(Ω,F )

is a measurable space.

Measurable space

Definition A.1.2. Let Ω 6= ∅ and F be a σ-fild on Ω. We call (Ω,F ) a measurable space .

Measure

Definition A.1.3. Let (Ω,F ) measurable space the function µ : F → [0,∞[ is a measure if it has

following properties:

• µ(∅) = 0

• for any sequence of disjoint sets Ai ∈ F , for i=1,2,....

µ(∪i>1Ai) =
∑
i>1

µ(Ai).

Measure space

Definition A.1.4. to define a measuable application we need:

in order to define a measuable application we need:
√

Qualitive application X : E −→ H
√

tow

measurable space (,F ) and γ,B the application f :−→ γ) is a measurable application if the inverce set

image of the set A in γ is a measurable sent is a measurable set in ; i.e. f−1(A) = {(A), A ∈}

The probability measur

Definition A.1.5. (,F , µ) is a measire space, we call µ a probability measir if it satisfie the folowing

codition:

N µ : F −→ [0, 1]

N µ(∅)0 and µ()
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Probability space

Definition A.1.6. the concepte of probability space is composed of three other notion : Ω is a set , F is

a σ - algebra; and a probability measire P . So that P is on the space (Ω,F ); and we call that (Ω,F ,P)

a probability space.

Positive measur

Definition A.1.7. ∅ a nonemptyset, F is an Algebra on Ω, i.e. F satisfies this three condition:

N F ) 6= ◦ ∅

N ∀ A, B ∈ F nedeed (A
⋃
B) ∈ F and we have {Mnn>1} is a sequence of sets intersected by tow by

tow empty, then it iss a positive measure if it satisfies the follow:

f(∪n>1Mn) =
∑
n>1

f(Mn)

measured space

Definition A.1.8. Now, after definitoin 1 and 3, we have (,F ), and we can call the triplrs (,F , µ) a

Measure space.

Measurable application

probability space

Definition A.1.9. Let Ω = R the Borel σ-fild is the σ-fild generated by all open subset.

We call B(R).

A.1.1 Random variable and some characteristic

Randon variable

Definition A.1.10. Let (Ω,F ,P) and (φ,H , u) be a probability spaces X is a measurable function usit

then :

X : (Ω, F, P ) −→ (φ,H) ; X is a random variable.

Real random variable

Definition A.1.11. if for any c ∈ φ {w ∈ Ω, ε(c) ≤ c} ∈ F

if φ = R ; H = B(R) So X is a real random variable.

Distribution function

Definition A.1.12. Let X ∈ R, the function

Fx(X) = P (X ≤ x), ∀X ∈ R

is called Distribution function of a random variable X
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Independence

Definition A.1.13. We say that this random variable : X1, X2, · · · , Xn are independent if:

P (X1 ≤ x1, X2 ≤ x2, · · · , Xn ≤ xn) = P (X1 ≤ x1)× P (X2 ≤ x2)× · · · × P (Xn ≤ xn)

The integral random variable

Definition A.1.14. Let (Ω,F ,P) be a space, and let X be a random variable in this space:

ã if
∫

Ω
|Xw|kP(w) <∞ then X is integrable

ã k = 2 ⇐⇒ X a square integral

Expectation

Definition A.1.15. Let X a real random variable, defined on a probability space (,F ,P), then the

expectation of X is giving by

E (X) =

∫
Ω

X (w)P (dx) =

∫
X (w) dP (w) =

∫
Ω

XdP

The conditional expectation

Definition A.1.16. we have (Ω,F ,P) be a probability space, and X is itegrabale random variable where

E(X) <∞ and G ⊂ F then E (X/G) = y : Ω −→ R is a function, we call it the condition expectation if

statisfying: E (X/G) is itegrabale∫
A
E (X/G) (w) p (w) =

∫
A
X (w) p (dw) ∀A ∈ G

The variance of an itegrabale random variable

Definition A.1.17. Let X be an itegrabale random variable the variance of X is given by:

V ar (X) = E (X − E (X))
2

= E
(
X2
)
− E (X)

2

The covariance of an itegrabale random variable

Definition A.1.18. we have two itegrabale random variable the variance of X is going by:

Cov (X,Y ) = E (X.Y )− E (X) .E (Y )

conditional Expectation

Definition A.1.19. Let X be a real integrable random variable in (,F ,P) and let E be a σ-algebra, then∫
Ω

E (X/Θ) (w) =

∫
A

X (w) dP (w) , ∀A ∈ E
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A.1.2 Continuous and discrete random variable

Continuous random variable

Definition A.1.20. We have X is a random variable, if it take its variable in continuosly interval, then

X is a continuous random variable

Let X a random variable, we say x is a continous random variable, if its valeurs are in a contiuous

integral.

The density function of continuous random variable

Definition A.1.21. Let X a continous random variable, to obtain the density function [fx] give dFx(x)
dx ,

for exemple standard Berournien motion density function of a normale random variable with expectation

µ, and variance σ2 is giving by

fµ,r (x) =
1√

2πr2
exp

{
− (x− r)2

2π2

}

The expectation of continuous random variable

Definition A.1.22. The expectation of a random variable with a continuous distrubution is giving by

E (X) =
∑

xiP {X = xi} =

∫ +∞

−∞
xfx (x) dx

A.1.3 Discret random variable

discret random variable

Definition A.1.23. we have X in a random variable, then X is a distrubution random a variable if

there values are finite

Probability mass function

Definition A.1.24. Let X be a random variable, with X = x1, x2, ..., xn and for ∀i, αi = P (X = xi) > 0;

then the function xi 7−→ Px (xi) = αi is called the mass function of the variable X

The expectation of a discret random variable

Definition A.1.25. Let X be a discret random variable, whose expectation is giving by

E (X) =
∑

xiP {X = xi} i ∈ N, x ∈

A.1.4 Multidimensional random variable and some caracteristique

Let us discus the n-dimensional case,
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Multidimensional random variable

Definition A.1.26. We have (Ω,F ,P) is probability space and (Rn, B(Rn)) is a measurable space,

(X1, X2, · · · , Xn) are random variables.

The multidimensional random variable is a measurable function, where

X : (Ω,F ,P) −→ (Rn, B(Rn))

w −→ X = (X1(w), X2(w), · · · , Xn(w))

Distribution function of multidimensional random variable

Definition A.1.27. Let X = (x1, ..., xn) ∈ Rn, the function

F (x1, ..., xn) = P (x1 ≤ x1, ..., xn) ,∀X = (x1, ..., xn) ∈ Rn

is called Distrubution on function of a random vector X

A.1.5 The expectation of multidimensional random variable

Definition A.1.28. we have X a multidimensional random variable, the expectation of X is giving by:

E (X) = E


x1

...

xn

 =


E (x1)

...

E (xn)



A.1.6 The covariance of a multidimensional random variable

Definition A.1.29.

E (X − E (X)) = (X − E (X)) = E
[
(X − E (X)) (X − E (X))

T
]

=


V ar (x1) Cov (x1, x2) · · · Cov (x1, xn)

V ar (x2)

. . .

Cov (xn, x1) V ar (xn)



A.1.7 Propreties of the distrubution function

Definition A.1.30. N The Distrubution function F (x1, x2, ..., xn) has the folowing properties:

1) F (−∞, x1, x2, ..., xn) = lim
x1→∞,...,xn→∞

F (x1, x2, ..., xn) = 1

2) F (x1, x2, ..., xn) is increasing and right continuous in each xi ∈ Rn, i = 1, ..., n

3) ∀ (x1, ..., xn) , (y1, ..., yn) ∈ Rn, ∆ (x1, ..., xn, y1, ..., yn) = P (xi 6 xi 6 yi) , 1 6 i 6 n
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A.2 The Poisson real random variable and some caracteristic

The Poisson random variable

Definition A.2.1. Let X real random variable, X is suite a low of poisson if it is satisfaine P (X = k) =

e−λ λ
k

k! with x = {0, 1, 2, ..., n} and (x) = λ, V ar (x) = λ, so we can write X ∼ P (λ).

sums of poisson distrubution random variables

Definition A.2.2. We have Xi, i = 1, ..., n a real random variable, when Xi ∼ P (λ) ; i = 1, ..., n then
n∑
i=1

Xi = P

(
n∑
i=1

λi

)

Poisson spliting

Definition A.2.3. We have X is real random variable, Yk, k ∈ N;P (Yk = j) = Pj then ∀j = 1, 2, ..., n

and X and Yk are independent then Zj =
X∑
k=1

11{Yk=j} ⇒ Zj are indepndent random variable which

Xi ∼ P (λpi)∀i = 1, 2, ...

A.3 Poisson and Gaussien random variables as control models

and practical applications

Poisson distribution

Definition A.3.1. X is a real random variable, if X has a poisson distrubution it is defined by

λ � 0, PP (B) = exp (−λ)
∑ λn

n!
1X∈B

where λ > 0

A Gaussien distrubution

Definition A.3.2. The Gaussien (or normal ) distrubution with parametres m and r > 0, [N (m, r)]

which has support on R and is giving by

Pg (B) =

∫
B

(2πr)
− 1

2 exp

(
|x−m|2

2r

)
dx

where r = σ2

A Gaussien random variable

Definition A.3.3. Let X be a random variable, X is a normal distrubution of a random variable, or a

Gaussien random variable of the caracteristic function f (X) = E (X) = m, V ar (X) = σ2
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