KASDI MERBAH UNIVERSTY OUARGLA
Faculty of Mathematics and Material

DEPARTEMENT OF MTHEMATICS
MASTER

Mathematics

Option : Probability and Statistics

By : Aiméene BOUARAGUIA

THEME

Optimality conditions for stochastic control problems of jump diffusions

Before the jury

Mouhamed KOUIDRI MCA OUARGLA UNIVERSTY Chairman
Said ZIBAR MCA OUARGLA UNIVERSTY Examiner
Brahim MANSOUL MAA OUARGLA UNIVERSTY Supervisor

June 2022




Contents

Thanks 4
Introduction 5
1 Reminder of stochastic calculus 7
L1 Tribe . . o o oo e 7
1.2 Filtrations . . . . . . .. 8
1.3 Measured spaces . . . . . . . . .. e e e 8
1.3.1 Measurability . . . . . .. . 9
1.4 Random variable . . . . .. ... . 9
1.5 Stochastic process . . . . . . . . . . e 10
1.6 Brownian Motion . . . . . . . . . . e 11
1.7 Expectation . . . . . . . .. 12
1.8 Conditional expectation . . . . . . . . . . . .. ... 12
1.9 Martingale . . . . . . ..o 13
1.10 Stochastic integral (or Ito6 integral) . . . . . . ... .. ... 14
1.10.1 It0 process . . . . . . o e e e e e 15
1.10.2 Ito formula . . . . . ... 16
1.11 PoisSson process . . . . . . . o v i i i e e e e e e e e 18
1.11.1 Compound poiSSON PIOCESS . . . .« v v v v v v e e e e 19
1.11.2 Compensated poisson process . . . . . . . v v v v v v i i 19

2 General optimality conditions for a relaxed stochastic control problem of
Poisson diffusions 21
2.1 Problem formulation and assumptions. . . . . . .. .. ... 22
2.1.1 Problem of strict controls and relaxed controls . . . . . . ... ... ... 22
2.2 Necessary and sufficient optimality conditions for relaxed controls . . . . . . .. 24
2.2.1 Variational Inequality and Adjoint Equation . . . . . .. ... ... ... 34
2.2.2  Necessary optimality conditions for relaxed controls . . . . . .. ... .. 37



CONTENTS

2.2.3 Sufficient optimality condition for relaxed controls . . . . . . . . ... .. 39
Conclusion 41
Annex 42
Bibliography 44




Thanks

First of all, all praise be to ALLAH for granting me success in my journey, which was finally

crowned with graduation

Thanks for the kind heart that has always been supportive and encouraging, my mother

"SOUAD”

Thanks to my father ,who without him, i wouldn’t have reached what i have achieved

"LAROUSSI”

I also have to express my gratitude to my friends , each in his name, who shared with me
moments and memories together. They were the best support in difficult times and they did

not disappoint me

And without forgetting, of course, my friend who was like our older brother, who has al-

ways been by our side, may ALLAH bless him

"MOUHAMED — BEN — DAFAA”



Introduction

Stochastic optimal control problems have a large number of applications in the fields of eco-
nomics and science and more generally in all the fields using the applications of mathematics,
especially in finance, for example the problems of investment and consumption in a market, the

price stock market fluctuations, etc . . . .

In this work, we are interested in stochastic optimal control problems for systems governed
by stochastic differential equations (SDEs) with jumps, which consists in maximizing a cost

function given by:
J(u(t)) = E M f@ X (@), u(t)dt + g(X(T))

with X (¢) is a solution in t of a controlled system of the following form:

dX (1) =b(t, X (), u(t))dt + o(t, X (t), u(t))dB(t)

+/nfy(t,X(t_),u(t_),z)ﬁ(dt,dz)

where b , o and ~ are given functions, and B(t) is a Brownian motion.

Our objective is to study the sufficient conditions of optimality in the form of the maximum

sufficient principle. We assume that the control domain is necessarily convex.



CONTENTS

We present our work as follows:

The first chapter, we give a brief reminder of the theory of stochastic calculus which allows us

to study the sufficient conditions of optimality for our system.

The second chapter contains the essence of this work, we study the sufficient conditions of

optimality for systems governed by a stochastic differential equation with jumps.




CHAPTER 1

REMINDER OF STOCHASTIC CALCULUS

In this chapter, we will examine the basic concepts of stochastic calculus that we consider

important in our work. Let {2 be a non-empty set.

1.1 Tribe

Definition 1.1. /1] Let A be a set of parts of Q(A C P(QY)), we call tribe (or §-algebra ) if A

verify the following conditions:

1. A is not empty (A # ).

2. A is stable by complement (VB € A: B€ A< B e A).

3. A is stable by countable union (V¥n € N, B,, € A = U,enB,, € A).
With the couple (2, F) is called measurable space.
Proposition 1.1. An intersection of tribes is a tribe.

Example 1.1. Borelian tribe of R (we denote By ), this is the smallest tribe containing all the

open intervals.

Definition 1.2. [1] The tribe generated by a family of subset A on § is the smallest tribe on

Q containing this family, we note §(A), it is the intersection of all tribes containing A.
Example 1.2. §(4) = {Q, ¢, A, A}.

Definition 1.3. We say that & is a subtribe of F & VA€ A: A= Aec F.



1.2. FILTRATIONS

1.2 Filtrations

Definition 1.4. We call filtration on (0, F), a family growing (F;),., that:
Vs,t:0<s<t<oo JFogCFsCF CFoo CF withFoo =0 (UFis0) under tribe of F

e We call natural filtration {]—"tX,t > 0} defined by

FX=0(X,,5<t)

e Filtration is continuous on the right if:

Fi = NeseFs = Fy,.

o A filtration IF = (F),cp is said to satisfy the usual conditions if it is continuous at right

ie F; = Ns<Fs, V¥t € T, and if it complete it is i.e. Fy contains the negligible sets.

1.3 Measured spaces

Let (€2, F) be a measurable space.

Definition 1.5 (Measure). A measure on (Q, F) is a function

p:F — R, = 10,400

such as:
o pu(¢) =0.
o V(A)isen  m(Uierdi) =Y p(A) ifVij el AinNA;=¢.

el

o Vijel p(UierA) <) n(A) ifVijel ANA;j#¢.

el

Definition 1.6. A measured space is a triple (2, F, p) such that (2, F) is a measurable space

and (L 1S @ measure.




1.4. RANDOM VARIABLE

Remark 1.1. If u(Q) = 1; the measure u called probability denoted by P the space (), F, P)

15 called probability space. We call the quadruple (Q,f, (Ft)tzo ;P) filtered probability space.

1.3.1 Measurability

Definition 1.7. Let (2, F) and (E,§) be two measurable spaces, a mapping f : Q — E is said
to be measurable with respect to (F,€) : VA € &,if f~Y(A) € F such that:

FHA) ={w e Q/f(w) € A}.

Definition 1.8 (Negligible set). Let (2, F,u) be a measured space, and E a non-empty set
E € Q. The set E is said to be negligable or p-negligable if:

AB e F/ECB:u(B)=0

1.4 Random variable

Definition 1.9. Let (2, F, P) be a probability space.

A random variable X is a measurable mapping of (£, F) into (R, Bg)

VB € Br, X '(B)={weQ: X(w)eB}eF

Remark 1.2. There are two types of random variables,discrete and continuous:

Definition 1.10 (Law of probability of a r.v). [3[: Let X be a r.v defined on (Q, F, P). The
law of X is the probability Px on (R, Br) defined by:

Px(A) = P{w; X (w) € A} =P (X '(A)) =P(X € A), VA€ By

9



1.5. STOCHASTIC PROCESS

We define the distribution function of the r.v X with:

Fx:R— [0,1]
Zt:P(X:k:),

ViER; Fx(l) = P(X <t)=( =L,

Such that f is density, if

1. Ve € R, f(x) >0 ( f is positive).

). /Rf(x)dx _1,

1.5 Stochastic process

Definition 1.11. A process X; is a family of random variables (X, t € [0,+00[) defined on

the same probability space.

Definition 1.12. A stochastic process X = (X, t € [0,400|) is said to adapted (respected to a
filtration F;) if X; is Fi-measurable for all t.

Definition 1.13 (Continuous trajectory). We say that the process X = (X) has a contin-

teR4

uous trajectory if the map t — X (t,w) is continuous.

Definition 1.14 (Predictable process). We say that a process X = (Xt>teR+ is predictable for

Ay, if Xo is Fo-measurable and X, is Fy_1 -measurable for each t > 0.

Definition 1.15 (Gaussian Process). A stochastic process X = (Xt)te]R+ s a Gaussian process
n

ifVn > 1: Vg, ty,...,t, € Ry, Vag,ay,...,a,: Zaiti s a r.v Gaussian.

i=1

Definition 1.16 (Stationary and independent increment). For 0 < s <t the random variables

X(t) — X (s) are called increments:

10



1.6. BROWNIAN MOTION

1. A stochastic process X = (Xt)teR+ has stationary increment if the distribution of the

random variable X, s — X; does not depend on t.

2. A stochastic process X = (Xt)t€R+ has independent increments if for any sequence

O<ty<ti <...<t,thervXy — Xy, Xy, — X4y,..., Xy, — Xy, , are independent.

1.6 Brownian Motion

Definition 1.17. A stochastic process (B;) with real values is called Brownian motion (or

Wiener process), if it satisfies the following three properties:

1. P(By=0)=1 (certain element).
2. Vs <t increase (B; — By) follows the centered normal distribution of variance (t — s).

3.4 0 <t < ... < t, the increments By, (By, — By,),..., (B, — Bi,_,) independent
(COV ((Btz - Btl) ) (Btl - Bto)) = O) :

4. Outside of a null probability set, the trajectories t — By(w) are continuous.

Remark 1.3. A Brownian motion is said to be standard if:
(0,) BU = 0.
(b) E(B;) =0.

(¢c) E(Bf) =t < VAR (B;) =t.

Definition 1.18. A Brownian motion (By) is a centered Gaussian continuous process of co-

variance t A s = min(t, s).

COV (Bta Bs) =L (BtBs> —E (Bt> E (BS> =E (BtBs) .

11



1.7. EXPECTATION

1.7 Expectation

Definition 1.19. The expectation of a v.a X s defined by the quantity / XdP that we denote
Q

E(X) or E,(X) if one wishes to specify which is the probability used on Q. This quantity may

not exist. To calculate this integral, we pass in the "image space” and we obtain, by definition

of the law of probability.

Axwzém&m

o We say that X is integrable if E(|X|) is finite.

o If X admits a density f, we have E(X) = / zf(x)de.
R

e If X is a discrete v.a then E(X) = Z%‘P(X =x).
i=1

1.8 Conditional expectation

We fix the probability space (2, F, P) and let X be an integrable r.v (E(X) < o0)

1. with respect to event B € F, and let A € F:

P(XNB)

B(X/B) = =5

if P(B) #0
2. with respect to a tribe:

Definition 1.20. Let (2, F, P) be a probability space, and G a subtribe of F. Let X also be a
real r.v defined on (2, F, P), and integrable. Then there ezists a unique r.v, called conditional

expectation of X knowing G, denoted E(X/G), such that:

1. E(X/B) is B— measurable.

2. for all B € G,/

B

mmmwz/xww.

12



1.9. MARTINGALE

3 . with respect to a random variable:

Definition 1.21. We define the conditional expectation of a r.v X (integrable) with respect
to Y being like the conditional expectation of X with respect to the generated tribe §(Y). We
denote it E(X/Y') such that:

1. it is a measurable §(Y) variable.

2. for all B € 5(Y),/

B

E(X/Y)dP:/XdP.

Property 1.1.

1. Linearity: if X and Y € (2, F, P) and Ya,b € R and G a subtribe of F then: E(aX +
bY/G) = aB(X/G) + bE(Y/G)

2. If Y is G-measurable then: E(YX/G) =Y E(X/G).
3. If X is independent of G then: E(X/G) = E(X).
4. If X L G then: E(E(X/G)) = E(X).

5. If X <Y then: E(X/G) < E(Y/B).

6. If Y is independent of X, then: E(Y/X) = E(Y).

7. If X LY then: E(Y/X) =Y.

1.9 Martingale

Let (2, F, P) be a probability space, we give ourselves an increasing sequence {F,}, -, of sub-

tribes of F, and we define a filtered probability space (Q, Fi{Futnso P).

Definition 1.22 (martingale, super-martingale and sub-martingale). : A sequence {X,}, - of

r.v reals is said to be a martingale, under martingale and on martingale if:
L. {Xn}, 5 is Fu-adapted and for all n > 0, E'(|X,,|) < +oo (exists).

2. Foralln >0, F (X,11/F,) = X,,. with:
E (Xn1/Fn) = X, (martingale)
E (Xn41/F,) < X, (super-martingale)
E (Xn41/Fn) > X, (sub-martingale)

13



1.10. STOCHASTIC INTEGRAL (OR ITO INTEGRAL)

Remark 1.4.
(a) If {Xu},5¢ is a F— martingale then ¥n > 0, X,, is measurable F,,-.

(b) The definition of a martingale means that the best forecast of X, .1 expects to find the

information available at constant n..

(¢) If X, is Fn-martingale then E (X, 1) = E(E (X,/F,)) = E (X,).

1.10 Stochastic integral (or It6 integral)

Definition 1.23. The stochastic integral, is a proposed integral with stochastic processes in the

following form:

t
[ as.
0

where {0s,s > 0} is a stochastic process and (By),sq is a Brownian motion.
i Case of staged processes: These are processes of the type:

01? - Z Hil]ti,ti-u](t)
=1

Where m € N,0 < to <t; < ... <t,and 0; € L*(Q, F, P) foralli =0,1,...,n. We

immediately see that 6" is a good process. Then we define:

t n
1 (") = / 02dB, =S 0; (B, — B.)

0 i=0
with

E (I, (6™) =0 and var (I, (")) = E ( /0 t (™) ds)

ii General case: The principle is the same as the Wiener integral, and we apply the
Hilbertian and Gaussian lemmas, so if 6 is a good process, then there exists {6",n > 0}

sequence of staged processes such as:
t

E (/ (6, —eg)st) — 0
0

14




1.10. STOCHASTIC INTEGRAL (OR ITO INTEGRAL)

and

lim E (|1,8) — I, (§")]) — 0.

n—-+o0o

Then according to the limit, we note:
t
L,(9) = / 0sdBs.
0

So check it out:

n—-+o0o

E (I;(0)) =0 and var ([;(0)) = lim var([; (")) =F (/o (6™ ds) :
1. Linearity:

¢ ¢ ¢
/ (chs + K)dBs = c/ 0,dBs + / K,dBs.
0 0 0

2. Zero expectation and isometry:

t
E (/ &st) =0
0

and

t t ths
COoV </ Gsst,/ KSst) =F </ HTKrdr>
0 0 0

3. / 0dB is a continuous square-integrable martingale:

t 2 T
FE ( sup (/ QSst> ) < 4F (/ 93(18) )
te[0;7T] 0 0

1.10.1 1Ito6 process

Definition 1.24. [/] Let (2, F, P) be a probability space equipped with a filtration (Ft),s; and

(Bt) a Brownian motion, we call Ito process a process (X) i @ values in R such that:

t t
Vth:Xt:Xo—i-/ bs(xs)d3+/ 05 (xs) dBs.
0 0

15



1.10. STOCHASTIC INTEGRAL (OR ITO INTEGRAL)

The equivalent differential form.:

dXt = btdt + O‘tch
XU = X.

with
1. Xy is Fy-measurable.

¢
2. (bt)yepo,r @ process adapted to Fy and is called the drift coefficient and / |bs| ds < +o0.
0

3. (O't)te[o;ﬂ a process adapted to F; and is called the coefficient of deffusion and
t
/ o, dB, < 400.
0

1.10.2 1It6 formula

Let (X;)o<,<p be an It6 process, such that:

t t
Xi=x0+ / agds + / o,dB,
0 0

Theorem 1.1 (first Ito’s formula). Suppose that f of class C*(R), such that f' is bounded

stasis almost surely and (By),., 45 a B.M, standard such as:
t 2
E (/ f (Bt)ds) < 00, Vt > 0,
0
So

FB) = B+ [ Fmyax.g [ m)ay,

16



1.10. STOCHASTIC INTEGRAL (OR ITO INTEGRAL)

1
x? we have by (Theorem (1.10.1)): f(z) =z;f’(z) =1 on a :

Example 1.3. Let f(z) = 5
¢ ¢
E </ (B,)” d5> :/ sds
0 0

1
=’ <
5 (0.}

So 1t6’s formula is written in the form:

1 1 t 1 [t

~B?--B>= | B.dB,+ -

5B 550 /0 d S+2/0d5
1 1 t 1 [t
—-B?2=_-pB2 B,dB; —/d
27t T 9 °+/0 ta )

t
2/ B.dB, = B? —t
0

Then

(B —1)

N | —

t
/ B.dBs =
0

Theorem 1.2 (second Ito’s formula). Let f be a function defined on (R, x R) of class C* with

respect to at, and of class C* with respect to x and (Bt),~o @5 a M.B, standard on a:

“(of 2
E(/O (%(S,BS) ds)) < 00,Vt > 0.

taf taf 1 tan
f(t,Bt)—f(O,Bo)+ E(S,Bs)ds—f—/o %(S,BS)dXS—Fﬁ/O W(S,BS)<CZXS,CZXS>.

0

Example 1.4. Given the function f(t,x) = tx, we get

0 0 0?
a—{(t,x) =z, a—i(t,x) =t, a—é(t,x) =0

we have

17



1.11. POISSON PROCESS

E (/Ot(s)st) < 00.

So 1t6’s formula is written in the form:

t ¢ 1 [t
Bt = / Bgds + / sdBg + — / Ods.
0 0 2 Jo

Then
t t
/ sdB, = Btt—/ Bgds
0 0

Proposition 1.2 (integration by parts formula). Let X and Y be two Ité processes, then:

t t
Y, =Y+ / bl (ys) ds +/ ol (ys) dBs
0 t ot
X=Xy + / bs (xs) ds + / o5 (xs) dB;
0 0

t t
X,Y; = XoVe + / X.dY, + / YodX, + (X, Y,
0 0

With:

(X, = /0 ou (22) oL, (ys) ds.

1.11 Poisson process

Definition 1.25. A Poisson process N with parameter A > 0 is a counting process
Vit >0,N;, = Z Lyt <ty
n>1

associated with a family (T,;n € N) with Ty = 0 of va representing the arrival times, such as

the random variables (T,+1 — Ty;n € N) are i.i.d of exponential distribution with parameter \.

18



1.11. POISSON PROCESS

1.11.1 Compound poisson process

Definition 1.26. A Poisson process with intensity A > 0 and jump law vz is a stochastic

process defined by:

where (Z,), is a sequence of i.i.d random variable with values in RY with law vy and N is a

Poisson process with parameter X independent of the sequence (Z,),,.

In other words, a compound Poisson process is a piece wise constant process that jumps at

the jump times of a standard Poisson process, and whose jump sizes are i.i.d. of a given law.

Definition 1.27 (Leap measure of a compound Poisson process). Let (X;),5, be a compound
Poisson process on R with intensity X and jump size distribution f, its jump measure Jx is a

random Poisson measure on R x [0, oo with a intensity measurement:
p(dr x dt) = v(dx)dt = \f(dx)dt.

1.11.2 Compensated poisson process

The measure of a compound Poisson process defines the average number of jumps per unit time.

Definition 1.28. We define the "centered” version of a Poisson process by:

Nt - Nt - )\t
(Nt) is called compensated Poisson process and the deterministic expression (At)i>o is called

compensator of (At)i>o.

Definition 1.29 (Jump measure of a compensated Poisson process). The compensated Poisson

random measure s defined by

19



1.11. POISSON PROCESS

Definition 1.30 (Jump measure of a compensated compound Poisson process). The random

measurement a compensated Poisson process is defined by

Jx(ds x dz) = Jx(ds x dx) — v(dzx)ds,

where Jx(ds x dx) is the random measure of a compound Poisson process, and v(dz)ds its jump

measure.

Theorem 1.3 (It6’s formula for an SDE with jumps). Assume that: X; € R is an Ito-Lévy

process of the form:

dX; = b(t,w)dt + o(t,w)dB, + / Y(t, z,w)N(dt, dz).
R

where :

_ N(dt,dz) —v(dz)dt if |z] < R.
S LR
N(dt,dz) if |2| > R.

for some R € [0, o0].

Let f € C? (R2) and we define Y; = f (¢, X;), of which Y; is an Ito-Lévy process and

5f 5f
E (t, Xt) dt + % (t, Xt) [b (t, Xt> dt +o0 (t, Xt) dBt]

1 52
+ 50% X (1) 55 o

n /| AFEX () +9(02) = F (X (1)

dy, =

(¢, X(t))dt

S x @t >} vd(z)dt
/{f (t, X (t2)) +~(t,2) — f(t,X(t))} N(dt,dz).

Note that:
If R=0 then N = N.
If R = 0o then N = N.

20



CHAPTER 2

(GENERAL OPTIMALITY CONDITIONS FOR A

RELAXED STOCHASTIC CONTROL PROBLEM

OF POISSON DIFFUSIONS

Our goal in this chapter is to derive necessary as well as sufficient optimality conditions for
relaxed controls, where the system is governed by a nonlinear stochastic defferential equation
with Poisson diffusion in the general form. We give the results, in the form of the global
stochastic maximum principle, using only the first order expansion and the associated adjoint
equation.

The problem of relaxed control finds its interest in three essential points.

The first is that we can use the property of convexity of the set of relaxed controls to obtain
the conditions of optimality, without the aid of the second-order expansion and with minimal
assumptions on the coefficients. The second is that the problem of relaxed controls is a gen-
eralization of the strict one. Indeed, if ¢;(da) = §,,(da) is a Dirac measure concentrated at a
single point v; € U, then we obtain a problem strict control as a special case of relaxed control.
The third interest concerns the existence of an optimal solution. To achieve the objective of
this chapter and establish the necessary and sufficient conditions of optimality, we proceed as
follows.

First, we give optimality conditions for relaxed controls. The idea is to use the fact that the
set of relaxed controls is convex. Next, we derive the necessary optimality conditions using the
classical way of the convex perturbation method. More precisely, if we denote u by a relaxed
optimal control and ¢ is any element of R, then with # > 0 and small enough for each ¢ € [0, T,

we can define a perturbed control as follows
gy =+ 0 (g — ) -

We get the variational equation of the state equation, and the following variational inequality
0<J (1) — T ().

21



2.1. PROBLEM FORMULATION AND ASSUMPTIONS

By using the fact that the coefficients b, f and h are linear with respect to the relaxed control
variable, the necessary conditions of optimality are obtained directly in the global form. To close
this part of the chapter, we show under minimal additional assumptions that these necessary

optimality conditions for relaxed controls are also sufficient.

2.1 Problem formulation and assumptions

Let T be a positive real number, U a non-empty set of R* and (Q,F, (F2),,P), a filtered
probability space satisfying the usual conditions for which d-dimensional Brownian motion
W = (Wi)cor) is set. Let n be a fixed (F;) - Poisson process on a fixed non-empty subset © of
R™. We denote by m(d) the characteristic measure of 1 and by N(df, dt) the counting measure
induced by 1. We then define N(df, dt) =: N(d,dt) — m(df)dt. We note that N is a Poisson

martingale measure with characteristic m(df)dt, We assume that (F;) is the P-increased natural

filtration (]:t(W’N)) set par Vi > 0

(]-"t(W’N))ZO(WS,OSSSt)VU{/ [ N 0<s <t aeB©)| VA,
0 A

2.1.1 Problem of strict controls and relaxed controls

Definition 2.1 (Admissibility). An admissible control is called a Fi-adapted process
v=(v) €U such that:

E

sup |vg]*| < oc.
te(0,7

And we further denote by U the set of all admissible strict controls.

For any v, € U, we now consider the stochastic differential equation controlled with a

following jump term:

dxf =b <t7 37115}7 Ut) dt +o (tv .27;}, Ut) th + / f (t7 x:‘/}_ ’ 9’ Ut) N(d97 dt)
o (2.1)

z°(0) =¢

where £ is a random variable Fy-measurable and independent of B such that:
E [|£]°] < o0

with
b:[0,T] xR"xU — R"
0:[0,T] x R" x U = M, xa(R)

f:0,TIxR*x0© xU — R"

22



2.1. PROBLEM FORMULATION AND ASSUMPTIONS

We now consider the cost function to be minimized which defines from ¢/ in R by:

T
10 = |G+ [ttt 22
0
where :
g:R"—=R
h:[0,T] x R" x U — R".

Strict control is said to be optimal if it satisfies

J(u) = inf J(v). (2.3)

velU

Hypothesis H 4:

We assume that:
1. b,0, f,g and h are continuously differentiable and their derivatives are continuous at .
2. by, 0, and f, are bounded by C(1 + |z| + |u]).
3. fis bounded by C'(1 + |z| + |u| + |0]).
4. g, and h, are bounded by C(1 + |z|), with C being a positive constant.

From the hypothesis below, for all v € U, the equation (4.1) with unique strong solution and
moreover the functional J is well defined of I/ has value in R.

The idea to relax the strict control problem defined above is to integrate the set U of strict
controls into a larger category which gives a more topologically adapted structure. In the
relaxed model, the process v value in U is replaced by a process ¢ value in IP(U), where IP(U)

denotes the Probability measure space on U endowed with the stable convergence topology.

Definition 2.2. A relazed admissible control is a process with value in IP(U), progressively
measurable with respect to (Fy), of such that for each t, 1oy - q is F;— measurable, and such
that

E

sup /\a|2qt(da) < 0.
tel0,7] JU

We denote by R the set of relaxzed checks.

Each relaxed control can be disintegrated as q(dt, da) = ¢;(da)dt, where g;(da) is a progres-
sively measurable process with value in a set of probability measures IP(U). The set U is injected
into R of the processes relaxed by the application F' : v € U — F,(dt,da) = 6,,(da)dt € R,

with J, being the atomic measure concentrated at the single point v.
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For all ¢ € R, we consider the relaxed stochastic defential equation for Poisson diffusions

as follows:
,
daf = [ bt addadr+ [ o (tat.a) alda)a,
U

+ 27,0, a) ¢:(da , 24
/@/Uf (t, .0, )q (da)N(db, dt) (2.4)
§

q __
\xO_

The cost function in the relaxed case will be given by:

J(q) =E {g (xd) + /OT/Uh(t,x?,a) q(da)dt| . (2.5)

The relaxed check p is called optimal if it satisfies

J () = nf J(q). (2.6)

qeER

By introducing relaxed controls, the space U is replaced by a larger space IP(U). We gain
the advantage that the space IP(U) is convex. Moreover, the new coefficients of the equation

(2.4) and the cost functional (2.5) are linear with respect to the relaxed control variables.

Remark 2.1. If ¢ = 4, is an atomic measure concentrated at the single point v, € U, then
for allt € [0,T] we has z? = z° and J(q) = J(v).

We then obtain the problem of ordinary controls. Then we conclude that the ordinary control
problem is a special case of the relaxed control problem.

Let us now giwe an example which shows that the existence of a strict optimal control 1s not

assured and we have the existence of a relared optimal.

2.2 Necessary and sufficient optimality conditions for re-
laxed controls

In this section, we study the problem {(2.4),(2.5),(2.6)} and we derive the necessary and
sufficient optimality conditions for relaxed controls; since the set R is convex, then the classical
method to establish the necessary optimality conditions for relaxed controls is to use a convex
variational perturbation method. More precisely, let p be a relaxed optimal control and z*
a solution of (2.1) controlled by p. then, for all ¢ € [0,7], we define the relaxed control

perturbation as

pp = e +e(q — ),
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where € > 0 is small enough and ¢ is an arbitrary element of R. We note by x} is the solution
of (2.4)} associated with p°. By the optimality of p, variational inequality will be given by the

following formula

0<J (1) =T (w) (2.7)
Lemma 2.1. Under the hypothesis H4, we have
ImE | sup |25 — 2#|? (2.8)
=0 fefo,1)

Proof. according to (2.4) we have:

xfz/ /b(t,xs,a s (da) d3+// o (t, 25, a) (da)dBs +/ //f (t,25-,0,a) ui(da)N(db,ds)

xf:/ /b(t,xs,a ps(da) ds+// (t, 2%, a) (da)d By +/ //f (t,a,0,a) us(da)N(db,ds)
0

Then
— o = / / (s, 25, a) ps(da) ds—l—/ / (s,25, a) ps(da)d By
///f s, 25,0, a) ps(da)N(db, ds)
// (s,2% a) ps(da) ds—// (s,2%, a) (da)dBs
/ / / 5,2%0,a) - (da) N (d0, ds)
Then

xg—xyz/ot UUb(s,xs,a) 15 (da) — /Ub(s,xs,am(da)] ds
# [ ][ otstaitin - [ o(o.st0) o) as,
oy [ Ftsai by - [ ' (s.at0.0) )| N (a9, )
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we use the definition of pf = uy + € (g — f1t) ;5 so

xf_xf:/ [/Ub(s 25, a) (pa + € (g5 — ) (da) — /Ub<s,:cg,a>us<da>] ds
VUU 5,25, a) (s + € (qs — M) (da) —/Ua@,xg,a)ﬂs(da)} JB.

+/0 /e{ Uf(s w5, 0,a) (s + £ (g5 — pts) (da)

— Uf (s,2".0,a) (da)} N(db,ds)

xg—x';:/ot {/Ub(s,xi,a),us(da)—/Ub(s,m’s‘,a),us(da)} ds
+s/0t {/Ub(s,:pi,a) (gs — 122) (da)ds
/Ot |:/UO'<S,JZ§,Q) ws(da) — / o (s,z", a) (daps) dBy
[ ][ oo 0o ) 0] s,
[ i eamtan — [ 6s.at.6.0) taw)| was. s
ve [ ][ 7.0 (0= ) )| N(ao.a)

_.|_
<

+

+

According to Young we get :

2
xy — | <6

be s, x5, a) pis(da) — /Ub(saffija)us(da)} ds
/ UU bls x50 ( ><da>} a|
/o VUJ 5, %5, d) ps(da) /[]U(Swé‘,a) us<da)} dB,
+652’/t UU“ (5,23, 0) ><da>} a5.|

{/fsx 0,a) ps(da) — /f S@a,usda)]N(de)

//Uf (s,25,0,a) )(da)] N(df,ds)

62

[e=]

2

+ 62
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Now we use the isometry and according to the expectation we have:

{ / et - [ b(s,xs,a,mda)}

2

2

E|xf ds

+ 6£*F { / b(s,25,a) (qs — pts) (da)} ds
{ [ o [ o6atam)|
+ 6e%E { /U o (8,25 4a) (gs — ps) (da)} " ds
+o [ Uf 5,2%,0,0) py(da) /f 5,20, a) da)”m(dé’)ds
o [ { / f(s,2%,6,a) S)(da)} m(d6)ds
Bl —2f)? < /t [/Ub(s,xt, a) —b(s,a", )] Ms(da)st
#6228 [ [ 0605l — o) ()i
+6E/Ot {/Ua(s,xi,a)—a(s,xg, )] (e ds
+6e2E//|o (5,25, )" g. — | (da)ds
6B [ / £(s ~ f(s, a0, a)} woda| midn)ds

+6€2E/ // 1f (s,25-,0,0)| |gs — ps|* (da)m(dB)ds

But b,0 and f are uniformly Lipshitz with respect to = ; hence :
t
El|x — 2] < / |25 — 2> ds + Ke?

Hence
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Elaf — P < (T - 1)

If e — 0 we get

Ela — ' — 0

By applying the Backholder - Davis-Gendy inequality we obtain the desired result:

lim F
=0 te[0,T)

sup |xt _xt| ]

The proof is done .

m
Lemma 2.2. Let T be the solution of the linear equation (called variational equation)
(
dz, = {/ b, (t, 2, a) pe(da)x, +/ b(t,x}, a)(q(da) — ut(da))} dt
U U
| [ ot i+ [ ot (wlda) - )| aw,
U
\ / / fo (t.21 0, a) p(da)7, N (d6, dt)
w [ 7 st 0.0) (i) - i) (@0, o),
zo =0.
So we have )
g _ M
imE |2 7| =0 (2.9)
e—0 £
Proof. For simplicity, we put
s —at
Xe.=2 - LT (2.10)
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So we have

Xe :é /Ot /Ub(S,xs,a) pi5(da) —/Ub(s,:rs,a) Ms(da)} ds
/t{ Ua(S,xs,a) pE(da) — / (s,2¥,a) us(da)] AW,

/o/@{/f (s,25,0,a) pi(da) — /f s, 2", 0,a) )] N(ds, df)

/bx(s,xs,a s(da) a:sds—/ /O’x s, xt, a) ps(da)zsdWs
U

+

[e=]

+

M= M|

fu (5,240, a) ps(da)T,N(ds, df)

)y Vg

{/ b(s, 2, a)qs(da) /b(s,xfj, ),us(da)] ds

U U

{/b s, xt, a) qs(da) /b(s,xﬁ, )us(da)] dW}
U

//Uf s,2".0,a) qs(da) /f s, 2”0, a) s da)} N(ds,df)

we use the definition of

S

s = e + e (q — ) -

So

X Zé /Ot [/Ub(s,xs,a) (s, € (qs — ps)) (da) — /Ub(s,xs,a) #s(da)} ds
{/UU(S#%G) (15 + € (s, 1)) (da) — / o (s,22,a) ps(da )] dB,
/aUUf(S’xS’Q a) (ps + € (gs — ps)) (da) — /f s, 7.0, a) s da)] N(ds,df)

/bx(s,x’;, [bs damds—/ /O}C s, xt, a) ps(da)zs By
U

t/e/y fa (5,28, 0, a) ps(da)zN(ds, )

{/Ub(é’,xs,a)qs(da)—/Ub(s,g;s,a)us(da)} ds
{/Ua(s,xfi, a) qs(da) — / (s, 2", a) s(da )] B,

|
s~
s—

/f(s,a:s,G a) qs(da) /f s,k 0, a) s da)] N(ds,df)
U
(2.11)
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xi =[] 0500 ) = 50t ) () s

£

o [ b0 (0= ) )] as

+ ! /Ot {/U (s, 25, a)ps(da) — U(S,l’s,CL),Us(da)} dB,

€

+ [ ][ otz - paw)] an.
/ /Uf 5,240, 0) /f 5,204 Ms(da)} N(ds. d)
w [ L] 7m0 = @] s a0
// (5, 7%, a) us daxds—/ /% s.2 a) po(da)idB,
/ / / fo (s, 21,0, a) ps(da)i N(ds, df)
- / [ /U b(s, 2, ) gs(da) — / b(s,xs,ams(da)] ds
_/Ot/GUUf (s, 2%,0, ) ¢ (da) /f s, 2" 0, a) ,us(da)} N(ds, do)

By applying Taylor’s formula with integral residue we get

by (s, + X (a5 —at) ,a) (25 — %) ps (da) dNds

S~
S~
S~

25
|
[

b (5,2 + (a5 — 2t a) (a5 — a) (g — 1) (da) dAds

+
s~
S~
S

™| =

oz (s, 28 + X (25 — b)) a) (x5 — 2¥) ps (da) dNds

_|_

s~
S

\Nc\q\c\c\w

©)

0y (8,25 + A (a5 — af) a) (a5 = 25) (g5 — ps) (da) dAds

+
T

[y

fo (s, 2t + X (25 —2t),0,a) (25 — o) ps (da) dA ds

+

_I_

S— —
cd

( (
/ fo (5,2 + A (a5 — 2%) 0, 0) (a5 — ) (s — ps) (da) ds dm(N)

—
-

by (s, 2H 4+ X (2§ — a),a) Tsps (da) dN\ds

t
t
t
t

1

o (8,2 4+ N (25 — %), a) Tops (da) dN ds

H_

H_
— o — o S — Y —,

~+

H_

fo (8,25 — X (2h — 2%) ,0,a) Tops (da) ds dm(N)

TS —
S

(2.12)
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Moving to the expectation and by applying young’s inequality; Cauchy - Schwartz and the

isometry, we get

t pl
E\Xf]2<3E// /]bx (s, 2" + X (25 — "), a) X{|” ps(da)dAds
+3E/ / /|ax s, 2"+ NS — 2P), a) XF)? ps(da)dds

+?’E/// /|fz<s’x5+A(fL‘§—frf?),a)XfFusdadmdAds
0 e J0 U

+3E |05 ]?

But b, 0, and f, are continuous and bounded, hence

t
E|X:] < CE/ |X2|?ds + KE |05 ]?
0

By applying the dominated convergence theorem ; we obtain

t
E |zt <KE|J:§|2/ ed
0
t

1
< KE|af)? {—ecs}
c

< E|os]? [ — 1}2

0

Moving to the limit

lim [of]* = 0.
e—0

The proof is completed . O
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Lemma 2.3. Let j be a relazed optimal control minimizing the cost function J in R and ¥

1s an optimal trajectory. Then, for all ¢ € R, we can write:

0 < Eg, (+) &) +E/0T/uhx (t, 2t a) jtm(da)dt+E/0t/Jh(t,xf,a) (s — 1) (da)dt

Proof. we have:

J(q)=E {gw (zd) + /OT/hx t,xf, a)q da)dt}
J(u) = B lgw (att) + /0 ' / b (6,28 0) i da)dt}
JWQZE%@@+Aﬁ/mt@,MMM@

According to variational inequality :
0<J(p) = J(p)

we get :

0<FE [ / / (t,25,a) u; da)dt} {gw (xf) —i—/OT/uhx (t,z}, a) py(da)dt

then:

0< Elg(a5) — g (@) + = / [ it (0= ) (dap
/ /{h (t,xf,a) — h(t, 2}, a)} p(da)dt
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by applying Taylor’s development with residus integral on h and ¢ then we get

0 < Blgn (o + Ao — ) (a5 — ) ax] + < [ ' [ (ta5,0) (= ) G
—|—/Ot/01/uhx (t, o + A (xf — '), a) (af — ') pe(da)dAdt
celf g (a4 A (a5 )] s Elgc (e 2]

t 1 ¢
+ / / /hx (t,x) + X (xf —2') ,a) (z7 — xf') Ty (da)dAdt £ E/ hy (t, x5, a) Ty (da)dt
0o Jo Ju 0

hence

¢ T
0 < Elg, (2%) Zr] + E/ he (t, 2, a) Zyp(da)dt + E/ /h (t, x4, a) (¢ — pe) (da)dt + p°
0 0 u

with

1
po= E/ 9a (@ + A (27 — 27)) 27dA
0
t 1
+ E/ /hx (t, 2 + X (zf — 2)) , a) (z7 — o) 25 pe(da)d\dt
0 JO U
1
+FE {/ Ty (2 + A (25 — x‘jﬁ))} — gz (2h) Zpd
0

t 1
+ / / /hx (t,xf + X (xf —2') ,a) — hy (8,2}, a) Ty (da)dAdl
0 JO u

by applying Cauchy-Shwartz inequality and since the coeffcients b,, o, and f, are bounded

and continuous and by the dominated convergence theorem, we get

. 52_
lim B |p|" =0
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Finally we obtain

0 < Elg, (25) Zr —|—E// (t,x}, a xtutdadt—i—E// (t, 2} a) (e — q¢) (da)dt
]

2.2.1 Variational Inequality and Adjoint Equation

In this sub-section, we introduce the adjoint process which allows us to obtain the variational
inequality of (?7): The linear terms in (??) can be treated as follows. Let ® be the fundamental

solution of the linear equation

(dCI)t /b (t, x4, a )@tut(da)dt—k/az (t, z}, @) Dypuy(da)dW,
U

< //f .0, a) Dypiy(da) N (d6, dt),

|y =1,

This equation being linear with bounded coefficients, then it admits a unique and strong solu-

tion. Moreover the solution @ is invertible and its inverse ¥ verify the following equation:

(d\IJt = /U 0. (t, 2, a) Wok (t, 2, a) uy(da)dt

—/b (t, x, )\Iftut(da)dt—/UUx (t, 2}, a) Uy (da)dW,
/ /fw L 0,0) U, S (£, 2,0, a) u(da) N (d6), dt)

+/@/fo t,xt’ﬂ,O,a) U, (da) N (db, dt),

Wy =1,

\

Also, ® and W verify

E +E | sup |¥,)°| < . (2.13)

te[0,7

sup |c1)t ’2
te[0,7)

34
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We introduce the three processes

B = W2y (2.14)
T
X = g, (¢) +/ / Orhy, (t, 2, a) py(da)dt (2.15)
o Ju
t
Y, ::]E[X/]—"t]—/ /cbjhx (£, 2", a) ja(da)ds. (2.16)
o Ju

We use (2.14), (2.15), and (2.16), to get

Since g, and h, are bounded, then by (2.13), X is square integrable. Therefore, the process
(E [X/Fi])iso is a square-integrable martingale with respect to to the natural filtration of the

Brownian motion W. Then, by Itd’s representation theorem, we have
t t
Y, = E[X] + / QudW, — / / [®%h, (5, 2%, a) pa(da)] ds,
0 0o Ju

T
with @ is an adaptet process such as IE/ |Qt]2 dt < oo.
0

By applying Itd’s formula on (5; and following it on (3;Y; and using (?7), we can rewrite the

inequality (?7) as

T
0<E / H (6,2 o pl', PELQE(B)) — H (1 2y pl', PE.QL(6))] dt
0

where the Hamiltonian H is defined as [0,7] x R” x P(U) x R" x M, »q4(R) x R" to value
in R by

35
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H(tvl'taqut?PtaQt(e)) = h(t,xt,a) qt(da) —i—/ptb(t,xt,a) qt(da)
U

Po (t, x4, a) q(da)

_|_

q\q\

+/ F(t 20 .0.0) Ou(0) gy (da)m(d6),

U

@

and (p, P*, Q"(0)) is an adapted process triple given by

P =Y, p" € £ ([0, T);R")

Pl'=U;Q; — / plot (t,at, a) p(da), P* € £ ([0, T); R™%) (2.17)
U

Z//pi‘fx 20, a) pi(da), Q4(8) € £2 ([0,T) x ©;R")
e JU

and the process () satisfies

T
/ Q. dW, =& {@i}gi zh) +/ /(D hy (t, 2} a ut(da)dt/}"t]
0o Ju

T
—-E {@*Tgx zh) —|—/ /CID hy (t, 2, a ut(da)dt]
o Ju

The process p* is called the adjoint process and the formulas (2.15), (2.16) and (2.17) are

given explicitly by

T
Py =E [\I/t@}gm (xh) +/ / U, dh, (s,2, a) ps(da)ds/Fi| .
¢ Ju

By applying It6’s formula on the adjoint process p* in (2.17), we obtain the adjoint equa-

tion, which is linear backward SDE, given by
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—dp} =H, (t, 2}, q, P/, P!, Q) (0)) dt — Pl'dW,

/ Qi ()N (do, dt), (2.18)

Pr = g (7).

\

2.2.2 Necessary optimality conditions for relaxed controls

From the variational inequality, we can now state the necessary optimality conditions for the

relaxed control problem {(2.4),(2.5), (2.6)}.

Theorem 2.1 (Necessary optimality conditions for relaxed controls). Let u be a relazed optimal
control minimizing the functional J in R and i denoted the corresponding optimal trajectory.

Then, there is a triple of adapted process
(p", P*,Q"(0)) € £2 ([0, T};R™) x £2 ([0, T]; R™%) x £*([0,T] x ©;R")

solution of backward SDE (2.18) such that

%(t xtnu’tvpt7f)t‘quéL(9)) = lnf H<t xtaprta‘Ptu?QéL(e))‘ (219)

q:€P(U)

Proof. From the variational inequality, we have

T
O S E/ [H (taxétaqtaptvpt'ua L(Q)) _H(taxgaﬂtaptwpt'u’ L(G))] dt
0

Let t € [0,T]. For € > 0, we define the relaxed control

_ qgs on [t,t+¢],

qs; =
lts  otherwise.

Being obvious that ¢° is an element of R. So, by applying the previous inequality with ¢
and dividing by e, we get
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1 t+e
t

In addition, let ¢ tend to 0, we find

0 S E [H (tvxf7 qtan? Ptﬂa Q?(@)) - H (ta x#a Mt,pf; Ptua Qf(e))] .

Let A be an arbitrary element of o— algebra F;, and

T = qla+ plo_a.

It is clear that m € R. By applying the previous inequality on 7, we find

0 S E [114 {% (ta .%'f, %Pfa Ptu7 Qf(e)) —H (thg?y't?pga Ptu7 Qf(e))}] 7VA € JT:f

which implies that

O S E[H (tavaqtapfvpﬁﬂ é‘(@)) _H(taxgautapfypt“a fft(e)) /ft} .

The inner quantity of conditional expectation is F;— measurable, and that completes the proof.
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2.2.3 Sufficient optimality condition for relaxed controls

In this paragraph, we will study when the necessary condition (2.19) becomes sufficient.

Theorem 2.2 (Sufficient optimality condition for relaxed controls). We assume that the func-
tions g(.) and H (t, ., G, pe, Pr, Q¢(0)) are conver. Then u is an optimal solution of the problem
{(2.4),(2.5),(2.6)} if it satisfies (2.19).

Proof. Let u be an element of R (candidate to be optimal) and ¢ any element of R. For all

q € R, we have

J(n) = J(q) =E g (27) — g (27)]

+E/OT [/Uh(t,zvf,a)u(da) —/Uh(t,:lrf?a)q(da)} dt

Since g is convex, we have

~NR
VAN
Ne)
8
8
ST
2
ST
|
8
N

g(ar) —g(x

Note that pl. = g, (¢), so we can write

J(pn) — J(q) <E [py (af — 27)]

+]E/OT [/Uh(t,xf,a),u(da)—/Uh(t,xf,a)q(da)} dt

Applying 1t6’s formula to p} () — ), we get

T
j(ILL) - j(Q) S E/ [H (tv xfnutapg? ]Dtuv Q?(e)) - H (tv 1’?7 qtapga Ptqa Q?(Q))] dt
0

T
_E / Ho (8,2, i, plt, PP QU(0)) (2 — 2 dit
0

39
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As H is convex on z and linear on u, so by using Clarke’s Generalized Gradient for H possibly

at (x4, 1) and necessary optimality condition (2.19), is followed

0 2 H (t7 mfa ,uhpfftv Ptu7 Q?(e)) - H (t7 mga qtap(tlv Ptq> Qg(e))

- HJ: (t7 xfa Ntapgv Pt'ua Qf(e)) (xéi - ZE?)

Combining the two previous inequalities, we get

The proof is completed.
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Conclusion

In this work, a stochastic optimal control problem for systems governed by differential equations
with jumps and controlled coefficients has been discussed. Sufficient optimality conditions have

been proved by convex perturbation techniques.
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Annex

Lemma 2.4. (Gronwall’s lemma)

Let 7' > 0 and u a positive bounded function on [0; 7] . We assume that are constants a > 0

and b > 0 which for all ¢t € [0;T] , we get
t
u(t) <a+ b/ u(s)ds
0

then

Vi e [0;T], wu(t) < a/t exp(bs)ds

Lemma 2.5. (Bulkholder-Davis-Gendy inequality)

for all stop times T , we get:

2

E

sup
te[0;7

/O ' f(s)aB,

<ce [ 17era]

where C' s a positive constant

Proposition 2.1. (Holder inequality)

1 1
If p,q > 1 such as — 4+ — =1, then :
P q

gl < [[fllzllgll Lo

Proposition 2.2. (Cauchy-Schwartz inequality)

It’s a particular case of Holder inequality when p=q =2 , we get :

1Fglle < If1l2llgll2
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2.2. NECESSARY AND SUFFICIENT OPTIMALITY CONDITIONS FOR RELAXED
CONTROLS

Theorem 2.3. (Taylor Young’s development )

Let f: I —— R ben — 1 times differentiable , (n € N) and a,z € I , then :

f™(a)

n!

f(2) = f(a) + f'(a)(z —a) + f2—@<x Pt

(r—a)"+o(lz —al™)

Theorem 2.4. (Taylor’s development with residus integral)

Let f: I —— R be n+ 1 times differentiable , (n € N) and a,z € I , then :

f™(a)

n!

f(l"):f(a)+f’(a)(:n—a)+%(ﬁ)(x—a)2+...+

v Pt (g
(r—a)" + /a ]ZnT;)')(x — )"t
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Abstract

We consider a stochastic control problem where the system is governed by a non
linear stochastic differential equation with jumps. The control is allowed to enter
into both diffusion and jump terms. By only using the first order expansion and the
associated adjoint equation, we establish necessary as well as sufficient optimality
conditions of controls for relaxed controls, who are a measure-valued processes.

Keywords: Jump diffusion - Stochastic maximum principle - Strict control -
Relaxed control - Adjoint equation - Variational inequality

Résumé

On considére un probleme de contrdle stochastique ou le systéme est gouverné par
une équation différentielle stochastique non linéaire avec sauts. Le contrble est
autorisé a entrer a la fois en termes de diffusion et de saut. En n'utilisant que
I'expansion du premier ordre et I'équation adjointe associée, on établit I'optimalité
nécessaire ainsi que suffisante conditions de contréles pour les contrdles relaxes, qui
sont des processus a valeur de mesure.

Mots clés :Diffusion par sauts - Principe du maximum stochastique - Contréle strict
- Contréle relaxé - Equation adjointe - Inégalité variationnelle
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