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General introduction 

General introduction 

The manufacture by removal of material is the subject of many studies because it I one of 

the most used processes in the mechanical industries. As a result, manufacturing technologies are 

constantly evolving to maintain their high levels of performance and their ability to meet new 

industrial demands in terms of quality and productivity. 

With industrial and technological growth, the use of hard materials is increasing in various 

sectors, so the extraction of these materials becomes very difficult and expensive. Thus, it is 

necessary to replace traditional machines with modern ones [37]. 

Recently, the mechanical industries have placed a strong demand on unconventional 

manufacturing processes that can be used to produce high-strength and durable materials. Electro-

erosion (EDM) is a non-traditional technology that removes materials from a part through a series 

of electrical sparks that form between the part and the cutting tool in the presence of a dielectric 

liquid. 

EDM is one of the most important manufacturing processes for using solid materials that 

are difficult to use with traditional methods. Currently, EDM is the most appropriate method to 

treat these materials. 

The formation of EDM sparks is a common treatment procedure, in which the spark between 

the electrode and the workpiece melts the material locally during the EDM process. The insulating 

fluid then expels the partially melted material [7]. 

The complex mechanisms of the EDM processing process make it difficult (experimentally) 

to determine the formula that links the process input parameters to the machining performance. It 

is possible to solve by modelling the process. This solves parameter selection problems and 

reduces the cost of the process. 

The brief is divided into three chapters: 

The first chapter is a bibliographical overview of the EDM process and the variables that 

influence it. 

The second chapter presents the different modelling methods: multiple linear regression, 

simple linear regression and the method of response surfaces. These methods will then be used in 

the third chapter to model machining performance 

The third chapter deals with the presentation, discussion and comparison of the different 

results obtained from the three modelling systems. The results found will be confirmed and 

validated by confirmation tests. 
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Chapter I Background 

I.1 Introduction 

Non-traditional machining processes are called advanced manufacturing processes since 

they are established in modern industries. These machining processes utilize various energies such 

as mechanical, thermal, electrical or chemical or combinations of these energies to remove extra 

material. In addition, non-traditional machining processes do not use sharp cutting tools. 

Traditional machining processes such as turning, drilling, shaping and milling are not proper 

techniques to machine extremely hard and brittle materials. Traditional machining processes may 

have many difficulties in machining such materials. In machining extremely hard and brittle 

materials, conventional processes may not be feasible, satisfactory or economical due to the 

following characteristics: 

• The tool is harder than work piece.  

• There is a direct mechanical contact between the tool and the work piece.  

• It is difficult to machine complicated shapes and obtain close tolerances. 

Thus, non-conventional processes are applied instead of conventional methods for 

extremely hard and brittle materials [1]. 

 
Figure I.1 Classification of Non-traditional Process Machining [1] 
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In this chapter we will present a bibliographic synthesis. After some definitions and a 

brief historical introduction, we will present the physical phenomenon of basis of the machining 

process. 

I.2    Electrical discharge machining (EDM)  

The history of EDM Machining Techniques goes as far back as the 1770s when it was 

discovered by an English Scientist. However, Electrical Discharge Machining was not fully 

taken advantage of until 1943 when Russian scientists learned how the erosive effects of the 

technique could be controlled and used for machining purposes [4]. 

While EDM is commonly thought as a slow manufacturing process, improvements in 

computer science and measuring and analyzing instruments, combined with constant research 

of the process, have made possible a better understanding of the material removal process. This 

has resulted in the enhancement of the machining process, improving machining times, surface 

quality and widening the application fields. This way, in recent years, EDM has become a 

competitive solution in a wide range of part jobs [5]. 

 

Figure I.2 EDM solutions 

I.6.3 Definition 

 Electric discharge machining (EDM) is defined as the removal of material by electric 

discharges between two electrodes (workpiece and tool) in a dielectric fluid. The material 

removal takes place by non-stationary electric discharges (sparks) which are separated from 

each other both spatially and temporally [2]. 

The material removal mechanism is a very complex phenomenon which involves many 

physical processes. Figure I.3 shows a scheme of the removal mechanism. A detailed 

explanation of EDM process [5]. 
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Chapter I Background 

 

Figure I.3 Scheme of the material removal mechanism [5]. 

I.3   Principle of EDM 

Electrical discharge machining is a process that uses electrical discharge from an 

electrode to erode an electrically conductive material, as a result, it is possible to erode or burn 

the shape of the electrode into the workpiece. 

 

Figure I.4 Electrical discharge machining principle 

EDM spark erosion is the same as having an electrical short that burns a small hole in a 

piece of metal it contacts. With the EDM process both the workpiece material and the electrode 

material must be conductors of electricity. The EDM process can be used in two different ways:  

a. A preshaped or formed electrode (tool),usually made from graphite or copper, is 

shaped to the form of the cavity it is to reproduce. The formed electrode is fed 

vertically down and the reverse shape of the electrode is eroded (burned) into the 

solid workpiece. 
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b.  A continuous-travelling vertical-wire electrode, the diameter of a small needle 

or less, is controlled by the computer to follow a programmed path to erode or 

cut a narrow slot through the workpiece to produce the required shape [6]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.5 Set up of Electric discharge machining 

The drawing is a schematic of a typical EDM system, an EDM system is comprised of a 

generator, also known as a power supply, a servo system (servo and servo control), a dielectric 

tank, and filtration system. 

The workpiece is placed in the dielectric tank and affixed to a metal plate in the tank, the 

tank is filled with a hydrocarbon dielectric fluid (such as kerosene), which ionizes in the 

presence of an electrical field, the dielectric fluid breaks down electrically, after a short 

ionization period, assuming the electrical field intensity is high enough, the electrical field is 

created by applying a voltage between the electrode and the workpiece. 

The servo system maintains the appropriate separation of the electrode and workpiece as 

determined by the the operator setting the desired gap voltageon the EDM generator. 

The gap voltage feeds back to the servo control system so that the proper separation of 

the electrode and workpiece may be maintained [3]. 

I.4    Electrical discharge machining mechanism 

The material removal mechanism of the EDM process is the most is the conversion of 

electrical energy into thermal energy. During the machining process, sparks are produced 
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between the part and the tool. The erosion being produced by electric shocks, the electrode and 

the part must be electrically conductors [7]. 

EDM machining is performed in a dielectric liquid between the electrodes a voltage 

which is greater than breakdown voltage, fixed by the insulating power of the dielectric and the 

distance of the electrodes, three phases are observed: 

I.4.1    Initiation of the discharge 

Called the ionization phase under the action of the electric field, it is formed by ionization 

dielectric, a conductive channel between the two electrodes. 

Ionization occurs where the electric field reaches an intensity maximum. This ionization 

phase corresponds to the dielectric rupture and lasts only a very short time (10 to 100 ns) 

compared to the discharge. 

The conductor channel consists of a plasma, gas that undergoes very high temperature 

ionization (3,000 to 12,000 K). This plasma consists of metal atoms evaporated at the 

electrodes, M ions and electrons. These particles are created by violent shocks to atoms raised 

to high temperatures, this high temperature resulting from the heating itself of the medium 

caused by the shocks between particles and atoms [8]. 

 

 

 

 

 

 

 

 

Figure I.6 Ionization [8] 

I.6.3 Discharge phase  

I.4.2    Discharge phase 

During the discharge phase (Figure I.7), a high current flow through the plasma channel 

and produces high temperature on the electrode surfaces. This creates very high pressure inside 

the plasma channel creating a shock wave distribution within the dielectric medium. The plasma 

channel keeps continuously expanding and with it the temperature and current density within 

the channel decreases. Plasma channel diameter stabilizes when a thermal equilibrium is 

established between the heat generated and the heat lost to evaporation, electrodes and the 

dielectric. This enlarged channel is still under high pressure due to evaporation of the liquid 
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dielectric and material from the electrodes. The evaporated material forms a gas bubble 

surrounding the plasma channel. During this phase, high energy electrons strike the workpiece 

and the positively charged ions strike the tool (for negative tool polarity). Due to low response 

time of electrons, smaller pulses show higher material removal from the anode whereas, longer 

pulses show higher material removal from the cathode [8]. 

 
Figure I.7 Discharge phase [8]. 

I.4.3    Interval phase 

The plasma channel de-ionizes when power to the electrodes is switched off. The gas 

bubble collapses and material is ejected out from the surface of the electrodes in the form of 

vapors and liquid globules. 

 The evaporated electrode material solidifies quickly when it comes in contact with the 

cold dielectric medium and forms solid debris particles which are flushed away from the 

discharge gap.  

Some of the particles stay in the gap and help in forming the particle bridges for the next 

discharge cycle. Power is switched on again for the next cycle after sufficient de-ionization of 

dielectric has occurred. The steps in the phase are shown in Figure I.8 

 

Figure I.8 Interval phase [8] 



 

 

9 

 

Chapter I Background 

I.5   Electrical discharge machining types 

Before getting to know EDM machine, start with understanding the type of EDM 

machine, EDM can be divided into three common types: wire EDM, sinker EDM, and hole 

drilling EDM. 

I.5.1    Wire Cutting Electrical Discharge Machining 

The use of thin wires to cut objects can also be referred to as wire erosion, wire burning 

EDM. In this type, the wire is used as an electrode, and the wire is continuously fed from the 

automatic feed with the spool during processing. If you need to carry out the cutting process in 

the middle of the object, you can use the small hole to drill the EDM to punch the object, then 

pass the wire through the hole, further electric discharge machining, the wire can be fixed by 

the diamond guide, the liquid is used Ionized water, while wires are usually made of brass  or  

copper [9]. 

Wire-cutting EDM is commonly used when low residual stresses are desired, because it 

does not require high cutting forces for removal of material. If the energy/power per pulse 

isrelatively low (as in finishing operations), little change in the mechanical properties of a 

material is expected due to these low residual stresses, although material that hasn't been stress 

relieved can distort in the machining process. Due to the inherent properties of the process, wire 

EDM can easily machine complex parts and precision components out of hard conductive 

materials [4]. 

 

Figure I.9 line diagram of wire cut EDM process 
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I.5.2     Sinker Discharge Machining 

The sinker EDM, also known as a die, traditional EDM or Ram EDM. The use of die 

EDM allows the user to produce complex shapes. This method requires the electrode (usually 

made of graphite or copper) to be pre-machined into the desired shape and then the electrode is 

sunk into the article to form a negative of its original shape [9]. 

In the Sinker EDM Machining process, two metal parts submerged in an insulating liquid 

are connected to a source of current which is switched on and off automatically depending on 

the parameters set on the controller. When the current is switched on, an electric tension is 

created between the two metal parts. If the two parts are brought together to within a fraction 

of an inch, the electrical tension is discharged and a spark jumps across. Where it strikes, the 

metal is heated up so much that it melts. Sinker EDM, also called cavity type EDM or volume 

EDM consists of an electrode and workpiece submerged in an insulating liquid such as, more 

typically, oil or, less frequently, other dielectric fluids. The electrode and workpiece are 

connected to a suitable power supply. The power supply generates an electrical potential 

between the two parts. As the electrode approaches the workpiece, dielectric breakdown occurs 

in the fluid, forming a plasma channel, and a small spark jump [9]. 

These sparks usually strike one at a time because it is very unlikely that different 

locations in the inter-electrode space have the identical local electrical characteristics which 

would enable a spark to occur simultaneously in all such locations. These sparks happen in huge 

numbers at seemingly random locations between the electrode and the workpiece. As the base 

metal is eroded, and the spark gap subsequently increased, the electrode is lowered 

automatically by the machine so that the process can continue uninterrupted. Several hundred 

thousand sparks occur per second, with the actual duty cycle carefully controlled by the setup 

parameters [9]. 

 

Figure I.10 Line diagram of sinker EDM machining 
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I. 

I.5.3     Hole Drilling Electric Discharge Machining 

Drilling EDM, this process is used for drilling, and the EDM is capable of machining 

very small deep holes compared to conventional drilling methods. Besides, EDM drilling does 

not require any debarring. During this process, the electrodes are tubular and the dielectric fluid 

is fed through the electrodes themselves. 

Usually, each conductive material can be processed by electrical discharge machining. 

Common materials include metals or metal alloys such as hardened steel, titanium, and 

composites. Typically, the electrodes for the electrospray EDM are made of copper or graphite. 

The main factors affecting the determination of the electrode material are the conductivity of 

the electrode and its corrosion resistance. The advantage of graphite is that it is easier to process 

than copper. However, copper has high electrical conductivity and strength. Brass is a copper 

and zinc alloy commonly used for wire EDM or small tubular electrodes. In contrast to the 

electrodes used for sinking, the wires used for EDM do not have to have good electrical 

resistance properties because new wires are continuously fed during the cutting process [9]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.11 Hole drilling electric discharge machining 

I.6   EDM applications  

The applications of electro-discharge machining (EDM) reside mainly in the mould and 

die industry, mainly when they are too hard to machine (with conventional techniques such as 

milling or turning).  
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This section presents some of the EDM applications commonly found in the industry. It 

includes also other experimental interests offering a possible expansion of applications EDM. 

1.6.1   Injection Molding 

Achieving the right dimension, depth, and shape of a mold is usually dependent on EDM. 

It is the major injection molding process used by mold manufacturers. Wire EDM is the main 

type used in this case. 

Since injection molding requires various delicate and complex workpieces, this is usually 

the best method to use. Moreover, it often produces high precision and fine EDM surface finish 

[11]. 

 

Figure I.12 Injection molding by EDM procedure [11] 

I.6.2    Small hole drilling 

Electrical discharge machining is a quick and unique way to create accurate deep small 

holes drilling in materials, regardless of their hardness. 

The hole drilling process involves using a brass electrode tube to channel the electrical 

discharges onto the material. This helps to create holes of various small dimensions. The 

exciting thing is that it can make holes on inclined faces and other challenging positions [11]. 

 

https://www.sciencedirect.com/science/article/abs/pii/0020735779900064
https://www.sciencedirect.com/science/article/abs/pii/0020735779900064
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Figure I.13 Small hole drilling [11] 

I.6.3 Die casting 

EDM is also very suitable for die-making applications. Manufacturing highly tailored 

dies require extreme accuracy. These dies feature sharp internal corners, deep ribs, and other 

intricate features. 

Also, dies are often made from very hard steel alloys. These alloys are usually harder to 

machine with traditional methods. The hard steel alloys may require finishing prior to heat 

treatment, which may reduce the accuracy of details. Therefore, employing the EDM process 

is more appropriate [11]. 

 
Figure I.14 Die casting application [11] 

I.7   Parameters affecting electro erosion machining 

Many attempts have been made by researchers to optimize these process parameters such 

as discharge current (Ip), activation time of pulses (Tone), pulse downtime (Toff) and open 

circuit voltage (V) for minimize SR and EWR and simultaneously improve the MRR. In 

general, the machining parameters are selected based on the experience of the operator or data 

provided by EDM machine manufacturers. When such information is used in electric discharge 

machining, machining performance is not consistent. The data provided by manufacturers 

regarding parameter settings does not are useful only for the most commonly used steels. The 

optimization of the parameters of EDM process becomes difficult due to the greater number of 

machining variables and slight changes in a single parameter significantly affect the process. 

The important parameters affecting the machining process can be divided into two categories, 

the electrical and non-electric parameters they are classified in the figure I.15 [7]. 

https://www.rapiddirect.com/blog/use-of-steel-guide-for-custom-prototyping/
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Figure I.15 EDM parameters [7] 

I.7.1    Electrical parameters 

The main electrical parameters are the discharge voltage, the discharge, pulse duration 

and interval, polarity, The discharge voltage is related to a spark gap and the breaking force of 

the dielectric fluid. The voltage at vacuum before increase of electric shock [7]. 

a) Spark On-time (pulse time or Ton) 

The duration of time (μs) the current is allowed to flow per cycle. Material removal is 

directly proportional to the amount of energy applied during this on-time. This energy is really 

controlled by the peak current and the length of the on-time. 

b) Spark Off-time (pause time or Toff) 

The duration of time (μs) between the sparks (that is to say, on-time). This time allows 

the molten material to solidify and to be wash out of the arc gap. This parameter is to affect the 

speed and the stability of the cut. Thus, if the off-time is too short, it will cause sparks to be 

unstable. 

c) Arc gap (or gap) 

The Arc gap is distance between the electrode and workpiece during the process of EDM. 

It may be called as spark gap. Spark gap can be maintained by servo system. 
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d) Discharge current (current Ip) 

Current is measured in amp Allowed to per cycle.Discharge current is directly 

proportional to the Material removal rate. 

e) Duty cycle (τ) 

It is a percentage of the on-time relative to the total cycle time. This parameter is 

calculated by dividing the on-time by the total cycle time (on-time pulse off-time). 

Ton

Ton Toff
 =

+
                                                                                                                       (I.1) 

f) Voltage (V) 

It is a potential that can be measure by volt it is also affect to the material removal rate 

and allowed to per cycle. Voltage is given by in this experiment is 50 V. [4]. 

I.7.2    Non – Electrical parameters 

a) Electrode rotation 

This is the speed of rotation of cylindrical or tool electrodes disk, measured in rpm. 

Generally, the rotation axis of the tool electrode is normal on the surface of the part and depends 

on the shape of the tool electrode. The increase in the tool’s electrode speed generates a higher 

centrifugal force which results in a faster removal of debris from the machining space, 

improving stability and machining performance. 

b) Rinsing pressure 

Rinsing the dielectric during the sparking process has a negative effect on the EDM 

performance measures. Lonardo and Bruzzone revealed that the rinsing during the draft 

operation affected the MRR and TWR, while in the finish, it influenced the SR. The rinsing 

rate also influences the density of cracks and the recast layer, which can be minimized by 

obtaining an optimal rinsing rate. 

c) Tool geometry  

La géométrie de l'outil est liée à la forme des électrodes de l'outil, à savoir carré, 

rectangle, cylindrique, circulaire, etc. Le rapport longueur / diamètre de tout matériau façonné. 

En cas d'électrode à disque rotatif, le rapport devient épaisseur / diamètre. L'outil ayant moins 

de rapport d'aspect a donné une valeur plus élevée d’EWR. 
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d) Tool material (electrode) 

Engineering materials with thermal conductivity and a melting point more can be used 

as a tool material for the EDM process. Copper, the graphite, copper-tungsten, silver tungsten, 

graphite and brass are some tool electrode materials (electrode) used in the EDM. [7]. 

I.8   Literature review 

An in-depth study of the literature was carried out for the various works on the 

improvement of the quality of the surfaces machined by EDM  

T. R. Ablyaz and D. A. Borisov (2017) [12] Evaluate the influence of the surface roughness 

of the electrode tool on the productivity in electric discharge machining of 38Х2Н2МА steel 

by means of laboratory experiments, they used electrode tools with different roughness of the 

working surface, The machining time is determined on the basis of monitoring of the machine 

time of the Smart CNC. The machining depth is measured by means of a Carl Zeiss Contura 

G2 instrument. Each experiment is repeated three times, as a result, Ablyaz & Borisov reach a 

conclusion that In the finishing of 38Х2Н2МА steel by electric discharge machining (code 

E13), there is no need to use electrode tools with surface microprojections shorter than 1.1 μ

m in order to ensure that the roughness of the machined surface corresponds to microprojections 

of height 1.1–1.6 μm, also the manufacture of electrode tools with microprojections shorter 

than 1.1 μm on the working surface is uneconomical. 

Y.S. Liao & al. (2004) [23] designed a pulse generator circuit by removing the high voltage 

discharge of the original circuit. They found that a generator circuit DC pulse of positive 

polarity can provide a better surface roughness. They have done an experiment by varying 

different parameters such as voltage, current, capacity, appropriate values were chosen and a 

roughness of area of 0.22 μm is obtained. 

Rebelo & al. (2000) [24] submitted an experimental study on the effect of EDM on material 

removal rate (MRR) and surface quality during machining high-strength copper/beryllium 

alloys. The processing parameters for rough, finishing and micro-finishing or polishing regimes 

were analyzed. 

J.C. Rebelo et al. (1998) [25] conducted an experiment on the ROBOFORM 200 - 

«Charmilles» using martensitic steel as a workpiece. They varied the time and current. Many 

experimental techniques have been used to assess surface integrity. They found that the 

penetration and depth of cracks in the recast layer increase with the current, a white layer of 

cementation formed at the white layer and various heat-affected areas have been observed, as a 

function of the machining energy. The residual stress of a tensile nature is equally determined. 
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Boujelbene et al. (2009) [26] conducted experiments on two landfill machines to obtain a high 

surface condition and other aspects of machining. By making experiments, they discovered that 

when the discharge energy increased, the pulse increased, the surface became rougher and the 

thickness of the white layer increased. This happens because of the melting and re-melting of 

the material. 

Payal (2008) [27] studied the effect of material removal parameters on the roughness of surface 

(Ra) for structural analysis of affected surfaces. Work on tools in copper, brass and dielectric 

fluid with kerosene as graphite electrode were made on a tool steel N-31. A detailed analysis 

of the structural features with machined surface scanning electron microscope (SEM) and 

optical microscope was performed using the Electroerosion Machining (EDM) mode by surface 

micrography, understanding that the mass surface samples melted have been removed from 

different electrode mist. 

Lin & al. (2008) [28] studied the effect of discharge energy on the machining of cemented 

carbide using an electrolytic copper electrode. The EDM machining parameters have been 

varied in order to explore the effects of the electric discharge on machining characteristics, such 

as MRR, EWR and roughness of the surface. In addition, the effects of electric discharge energy 

on the affected layers thermically, surface cracks and machining debris have also been 

determined. 

The experimental results show that MRR increases with the energy density of electric discharge. 

K.M. Patel & al. (2007) [29] studied the machining characteristics, integrity of the surface and 

material removal mechanism of Al2O3-SiCw-Tic with EDM. They have concluded that the 

surface roughness and reclining layer increased with the current and time the pulse. The 

material is removed due to melting and evaporation by dissociation and, to some extent, current 

oxidation and decomposition reduced and higher current thermal spelling. 

Hwa -Teng Lee et al. (2004) [30] experimented and found that the value of MRR and surface 

roughness increased with increasing current values pulsed, but after certain values, MRR and 

Ra decreased due to dilation electric plasma. The pulse current affects the surface crack density 

while the pulse duration influences the degree of crack opening. The residual stress induced by 

the drilling of holes increases with the increasing values of the pulsed current and the pulsed 

time. 

Avinash Sarode & al. (2016) [31] evaluated the effect of the material and geometry of 

electrode in EDM performance for OHNS steel dies. In this experiment the EDM machine and 

the copper and brass electrodes were used for the machining of 48 x 48 x 8 mm OHNS steel 

parts. Input current, time pulse and duty cycle are considered as input parameter and MRR, 
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EWR and surface roughness are considered output parameters. They have concluded that 

copper is the best electrode material because it gives a better state of surface area, high MRR 

and less wear of the electrodes, while the brass is close to Statistical Analysis of Variance 

(ANOVA) is conducted to identify the significant process parameters. 

Muthuramalingam & al. (2015) [32] presented modelling of the process and the influence of 

the parameters of the electrical process: the shape of the impulses and discharge energy on 

performance measures such as material removal rate, surface roughness and electrode wear rate. 

Based on the results of examination, it was observed that the efficiency of the machining 

process can be improved by the parameters of the electrical process, and only less attention has 

been paid to the improvement of these parameters. 

Subramanian Gopalakannan & al. (2012) [33] evaluated the effect of materials in electrodes: 

copper, copper-tungsten and graphite on 316 electric discharge machining L and stainless steel 

17-4 PH. The input parameter was peak current (Ip). They have observed that the copper 

electrode gives the best MRR than the graphite, while the copper tungsten gives the lowest 

MRR value. Copper-tungsten offers electrode wear relatively low. Graphite and copper 

electrodes produce surface roughness comparatively high. 

Harpuneet Singh (2012) [34] evaluated the effect of copper, chromium and on the machining 

of an EN-31 steel on an electric discharge machine using positive polarity. Kerosene is used as 

a dielectric. Input parameters considered are: current and pulse time and output parameters are: 

MRR, TWR, the hardness and roughness of the surface. The results indicate that the electrodes 

surface roughness and better hardness, while the copper-chromium electrodes offer a better 

MRR with less tool wear. The material removal rate is best for chromed copper at all values of 

pulsed current. The surface roughness increases with increasing current for aluminum electrode. 

Janmanee & al (2010) [35] evaluated the effect of different electrode materials in electric 

discharge machining. The materials used for the electrode were graphite, the copper-graphite 

and copper-tungsten. The machine used in this study is the machine CNC FORM-2-LC and 

input parameters are: discharge current, downtime pulse, open circuit time, electrode polarity 

and output parameters were MRR, EWR, Ra. Graphite electrode gives the best MRR and the 

best Ra but with a high EWR. 

Zhang et al. (1997) [36] proposed an empirical model, using both the tip and pulse time, for 

ceramic machining. They realized that the discharge current had a greater effect on the MRR; 

while time Impulse has more influence on Ra and the white layer. 
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I.9    Conclusion 

In this chapter we have presented the principle of the machining process by EDM and 

we have focused on the different parameters of this process. We presented also a bibliographical 

synthesis on the work dealing with the problem of selection of EDM machining parameters. 
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II.1 Introduction 

As an important subject in the statistical design of experiments, the Response Surface 

Methodology (RSM) is a collection of mathematical and statistical techniques useful for the 

modeling and analysis of problems in which a response of interest is influenced by several 

variables and the objective is to optimize this response (Montgomery 2005). For example, the 

growth of a plant is affected by a certain amount of water x1 and sunshine x2. The plant can grow 

under any combination of treatment x1 and x2. Therefore, water and sunshine can vary 

continuously. When treatments are from a continuous range of values, then a Response Surface 

Methodology is useful for developing, improving, and optimizing the response variable. In this 

case, the plant growth y is the response variable, and it is a function of water and sunshine. It can 

be expressed as [15]: 

y = f (x1, x 2) + e                                                                                                            (II.1) 

II.2 Surface response method 

Response Surface Methodology, RSM (also known as Response Surface Modeling) is a 

technique to optimize the response(s) when two or more quantitative factors are involved. The 

dependent variables are known as responses, and the independent variables or factors are primarily 

known as the predictor variables in response surface methodology [13]. 

The objective of Response Surface Methods (RSM) is optimization, finding the best set of 

factor levels to achieve some goal. This lesson aims to cover the following goals. 

The text has a graphic depicting a response surface method in three dimensions, though 

actually it is four-dimensional space that is being represented since the three factors are in 3-

dimensional space the the response is the 4th dimension [14]. 

 

Figure I1. 1 The sequential nature of RMS [14] 
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II.2.1     Principal of surface response method 

In the general case, the response surface is called the geometric representation of the 

response from a random spatial-temporal physical process to stimuli variables. The property 

studied, or answer Y, then results from the transfer by an explicit response function, or function of 

system input variables, changing the values of these variables resulting in a change in the value of 

the response function. 

Experimental models of surfaces of response take into account the choice of stimuli 

variables, the definition of periods observation and error calculation. Input variables, stimuli 

representative of the phenomenon, are noted Xi (i = 1, . . ., n), and are also called basic variables 

of the phenomenon. 

They are characterized by a set of statistical information noted θj (j = 1, . . , p) (functions 

independent or correlated distribution, normalized moments, ...). In the general case, the Xi 

variables are spatio-temporal processes, called stochastic reduced to vectors random when 

determining time and space indices. 

This transfer of stimuli variables can be represented by the diagram in figure II.2. 

 

 

Figure II. 2 Diagram of a transfer function 

In general, the explicit form of this transfer function as a function of the base is unknown, 

and the search for an approximation, called the response function,becomes necessary. Most often, 

it belongs to a family of linear or non-linear usual functions, characterised by parameters  

 ( 1....,1)ky k =                                                                                                                  (II.2) 

The response function can therefore be formally written as shown in Figure II.3 

 

 

 

 

 

 

 

 

 

Figure II. 3 Formal expression of the response function  
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II.2.2   Surface response methodology steps 

1) To determine the factor levels that will simultaneously satisfy a set of desired 

specifications, 

2) To determine the optimum combination of factors that yields a desired response and 

describes the response near the optimum. 

3) To determine how a specific response is affected by changes in the level of the factors over 

the Specified levels of interest. 

4) To achieve a quantitative understanding of the system behavior over the region tested. 

5) To predict product properties throughout the region, even for a factor combinations not 

actually run. 

6) To find the conditions necessary for process stability (insensitive spot). 

Figure II. 4 Steps in Response Surface Methodology (RSM) 
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II.2.3   First order model 

• Analysis of a First-Order Response Surface  

The relationship between the response variable y and independent variables is unknown. In 

general, the low-order polynomial model is used to describe the response surface f. The polynomial 

models are usually a sufficient approximation in a small region of response surface. Therefore, 

depending on the approximation of unknown function f, either first-order or second-order models 

are employed [16]. 

Furthermore, the approximating function f is a first-order model when the response is a 

linear function of independent variables. The first-order model with N experimental runs is 

carrying out on q design variables and a single response y as follows: 

2

0

1 1

q q

i i ii i ij ij

i i

y x x x x   
= =

+ + + +=                                                                                            (II.3) 

The response y is a function, f, of the design variables x1, x2,…,xq, plus the experimental 

error. The first-order model is a multiple-regression model and β i ’s are regression coefficients.  

First-order model is used to describe flat surfaces with or without tilted surfaces. This model 

is not suitable for analyzing maximum, minimum, and ridge lines. Using first-order model 

approximation of f is reasonable when f is not too curved in that region and the region is not too 

big. First-order model is assumed to be an adequate approximation of the true surface in a small 

region of the x’s (Montgomery 2005). Moreover, first-order model indicates which way is up and 

down in the response. The method of steepest ascent is a procedure in which the algorithm follows 

the direction to move to increase response the most, which is used to identify a maximum. The 

method of steepest descent consists in taking the direction of the most quickly decrease in the 

response, which is used to identify the minimum [16].  
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• Designs for Fitting the First-Order Mode 

The design of response surface models starts with the estimation of parameters, pure error, 

and lack of fit. Also, the experimenter needs to design a model that is efficient. Therefore, 

estimation of variances has to be taken into consideration. The orthogonal first-order designs 

minimize the variance of the regression coefficients β k . A first-order design is orthogonal if the 

off-diagonal elements of the (X´X) matrix are all zero (Montgomery 2005). The orthogonal first-

order designs includes 2q factorial with center points and 2q-k fraction with resolution III or 

greater [16]. 

II.2.4   Second-Order Model 

a) Analysis of a Second-Order Response Surface 

When there is a curvature in the response surface the first-order model is insufficient. 

Therefore, second-order model is useful in approximating a portion of the true response surface 

with curvature. The second-order model includes all the terms in the first-order model, and 

quadratic and cross product terms. It is usually represented as : 

    i i iy ax b = + +                                                                                                                 (II.3) 

The second-order models illustrate quadratic surfaces such as minimum, maximum, ridge, 

and saddle. If there exits an optimum then this point is called stationary point. The stationary point 

is the combination of design variables where the surface is at either a maximum or a minimum in 

all directions. If the stationary point is a maximum in some direction and minimum in another 

direction, then the stationary point is a saddle point (Oehlert 2000). The graphical visualization is 

very helpful in understanding the second-order response surface as it shown in Figure 3.2. 

Specifically, contour plots can help characterize the shape of the surface and locate the optimum 

response roughly [16]. 

b) Designs for Fitting the Second-Order Model 

The most popular design for fitting the second-order model is Central Composite Design 

(CCD). It consists of factorial point (from a 2q design and 2q-k fraction with resolution V or 

greater), central point, and axial points. CCD often develops through a sequential experimentation. 

When the first-order model shows an evidence of lack of fit,then axial points can be added to 

quadratic terms and with more center points to develop CCD. The number of center points m at 

the origin and the distance α of the axial runs from the design center are two parameters in the 

CCD design [16]. 

There are a couple of ways of choosing α and m. First, CCD can run in incomplete blocks. 

A block is a set of relatively homogeneous experimental conditions so that an experimenter divides 
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the observations into groups that are run in each block. An incomplete block design can be 

conducted when all treatment combinations cannot be run in each block. In order to protect the 

shape of the response surface, block effects need to be orthogonal to treatment effects. This can be 

done by choosing the correct α and m in factorial and axial blocks [16]. 

Also, α and m can be chosen so that the CCD is not blocked. If the precision of the estimated 

response surface at some point x depends only on the distance from x to the origin, not on the 

direction, then the design is said to be rotatable (Oehlert 2000). The rotatable design provides equal 

precision of estimation of the surface in all directions. The choice of α will make the CCD design 

rotatable by using eitherα = 2q/4 for the full factorial or α = 2(q−k)/4 for a fractional factorial [16]. 

In addition to CCD, Box-Behnken design can also be used for designing response surfaces. 

This model is a combination of 3q factorials with incomplete block designs [17]. 

 
Figure II. 5 Two Variables CCF Design [17] 

II.3 Linear regression   

Regression is one of the most well-known and applied statistical methods for the analysis 

of quantitative data. It is used to link a quantitative variable to one or more other quantitative 

variables in the form of a model. If we are interested in the relationship between two variables, we 

will speak of simple regression by expressing one variable as a function of the other. If the 

relationship is between one variable and several other variables, it is called multiple regression. 

The implementation of a regression imposes the existence of a cause-effect relationship between 

the variables taken into account in the model. 
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The term regression is due to Galton (1886) who then observed the influence of the size of 

individuals (persons) on their weight. Linear regression is probably the most used statistical 

method by practitioners of all disciplines: the search for a link between two or more characters is 

a very common approach in medicine. in psychology. in physics, in economics ...etc. 

Linear regression (or linear models) is a statistical tool used to study the presence of a 

relationship between a dependent variable y (quantitative and conti- nu) and one or more 

independent variables x1, x2, ..., xp (qualitative and/or quantitative) [18].  

II.3.1 Simple linear regression 

Simple linear regression is a statistical technique used to explain and explain and express a 

random variable y according to a variable x and is used to predict future y values based on x .To 

describe a linear relationship between two quantitative variables or to predict y for a given value 

of x, we use a regression line: 

    i i iy ax b = + +                                                                                                                      (II.5) 

Since any statistical model is only an approximation (we hope the best possible!!), there is 

always an error, noted in the model, because the linear link is not never perfect. If there were a 

perfect linear relationship between y and x, the error term would still be equal to 0, and all the 

variability of y would be explained by the independent variable x [18]. 

• The hypotheses relating to this model:  

H1: ( )   0,E i I =                                                                                                                       (II.6) 

H2:
2( ) , ( , ) 0,Var i i Cov i j i =    =                                                                                             (II.7)     

• Parameter Estimation: 

The estimation of the regression parameters is written: 

 i iy b ax= +                                                                                                                      (II.8)              

We look for 𝑏̂ and 𝑎̂  in this equiation which minimalizes the Mean square error 2

1

n

i

i=

 this 

method is called Moinder ordinary square we write: 

 2

1

( . ) min
n

i

i

a b
=

=                                                                                                             (II.9)                          

 .a b  are estimated by: 

1

2 2
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i i

i
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=
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=

−
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
  ,  b y ax= −                                                                                            (II.10) 
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• The confidence interval: 

Except the assumption that the residues are Gaussian (normal) which means 2(0, )i N   

 we have: 

2
2

2

( 2)
2n

n S



−
 −


                                                                                                                   (II.11) 

1
var( )

n

a a
T

a

−
−                                                                                                                       (II.12) 

  

This one allows to test the hypotheses of millity of a parameter dexes as well as of build confidence 

intervals of a and b at the confionce level (1 )−  . 

So, the confionce interval of a is  
/2 /2

2 2var( ); var( )n na t a a t a 

− − − +  , with  /2

2nt


−
 : 

is order fractile (1 / 2)−  for the law of student. 

The same thing with the interval of b we have:  

2
2

2
( 2) 2n

S
n 






− −                                                                                                                   (II.13) 

• Model Significance Test:  

Analysis of the quality of the model to evaluate the quality of fit of the model the coefficient of 

determination R2 is used to define the equation of analysis of variance following: 

SCT SCE SCR= +                                                                                                                   (II.14) 

Where: 

2

1

( )
n

i

i

SCT y y
=

= −   (Sum of total squares)                                                                              (II.15) 

2

1

( )
n

i

i

SCE y y
=

= −  (Sum of squares explained)                                                                      (II.16) 

2 2

1 1

( )
n n

i i i

i i

SCR y y 
= =

= − =   (Sum of residual squares)                                                             (II.17) 

 

Therefore, the quality of the model is measured by a quantity called coefficient of determination 

D where:  

1
SCE SCR

D
SCT SCT

= = −                                                                                                                 (II.18) 

This quantity indicates the y percentages explained by x. 

• Model Validation Test: 



 

28 

 

Chapter II Modelling methods 

This test measures the total contribution of x on the determination of y donations this cos we want 

tests the mortgage 

0

1

; 1

; 1

H a

H a

=



                                                                                                                                (II.19) 

The variability indicators are summarized in the variance analysis table below: 

 

Table 1 Validation Test of Variance Analysis Table [18] 

Source 
Degrees of 

freedom 
Sum of squares 

Sum of average 

squares 
Stat of Fisher 

Model 
1  
 

SSM  SSM  
2cal

SSM
F

S
=  

Error 2n−  SSR  
2

2

SSR
S

n
=

−
 / 

Total 1n −  SST  
2

1

SST
S

n
=

−
 / 

 

We accept 𝐻0 if:  

 
1

(1, 2)cal nF f −

−  

Where:  

1

(1, 2)nf −

−  is the order fractile  (1 )−  the law of (1, 2)n −  freedom of expression. 

• The forecast: 

One of the aims of the regression is to forecast, that is to say to predict the variable to explain y in 

the presence of a new value of the explanatory variable x. Therefore xn+1 a new value, for which 

we want to predict 1ny + . The model is always the same: 

1 1 2 1 1n n ny x  + + += + +                                                                                                       (II.24) 

With: 1( )nE  +  and, 1var( ) 0n + = , 1( , ) 0n iCov  + =  for 1,....,i n= . It is natural to predict the 

corresponding value via the adjusted model: 

1 2 1 11 n nny x  + ++ = + +                                                                                                            (II.25) 

Two types of errors will tarnish our prediction: the first is due to non-birth from "n+1, the second 

to the uncertainty on the estimators [18]. 
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II.3.2. Multiple linear regression 

Multiple linear regression is a generalization of linear regression for its purpose is to study and 

model the relationship between an explained variable ( )y  and several variables explanatory notes 

1 2( , ,...., )nx x x . 

The model of the RLM is written in the form  

10 1 ...
pi i p i iy b b x b x = + + + +                                                                                                     (II.26) 

So the matrix form as a result: 

01 111 12 1

2 22 2 221 1

1 2
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.....1
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n
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n nnn n nn

by x x x

y x xx b
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

      
      
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      
      
 

     

 

With:     
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y
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y
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 
 
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22 221

1 2

1 .....

.....1

... .... .............
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x x x
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 
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 
 
 
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 and 

1

2

...

n








 
 
 =
 
 
 

 

The X matrix is the matrix of explanatory variables; Y is observed: it is the vector of the data 

corresponding to the variable to be explained; but i is unknown (it is even to be estimated and test): 

it is the vector of the coeficients of the linear relation. On its side, the vector «residues are not 

observed [18] 

• Estimation of parameters: using the MCO method, calculate the statistic   

0 1( , ,.... )t

nb b b =                                                                                                            (II.27) 

 For minimizing the amount 
t  , so: 

1( )t tX X X Y −=                                                                                                                   (II.28) 

• properties of the estimators: 

( ) 0E  =  (unbiased estimator)                                                                                                (II.29) 

2 1var( ) ( )tX X  −=                                                                                                                 (II.30) 

cov( , ) 0  =                                                                                                                             (II.31) 
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II.3.3 Parameters of regression line  

We start by recognizing that the response will vary even for constant values of the 

predictor, and model this fact by treating the responses yiyi as realizations of random variables 

 2( , )iY N i                                                                                                                (II.32) 

With means μi depending on the values of the predictor xixi and constant variance σ2 

The simplest way to express the dependence of the expected response μiμi on the 

predictor xixi is to assume that it is a linear function, say 

 i ix  = +                                                                                                                  (II.33) 

This equation defines a straight line. The parameter α is called the constant or intercept, 

and represents the expected response when xi = 0. (This quantity may not be of direct interest if 

zero is not in the range of the data.) The parameter β is called the slope, and represents the 

expected increment in the response per unit change in xi [19]. 

You probably have seen the simple linear regression model written with an explicit error 

term as: 

i i iY x  = + +                                                                                                                        (II.34) 

It may be of interest to note that in simple linear regression the estimates of the constant 

and slope are given by:  

a y x= −   and  
2

( )( )

( )

x x y y

x x


− −
=

−




                                                                                   (II.35) 

II.3.4 Measuring the Goodness of Fit of a Linear Regression 

A definite advantage of the least square’s criterion is to provide an estimation of the fit 

quality of a regression model based on the decomposition of the variance of the dependent variable 

[20]. 

We can indeed consider that the information provided by a variable Y  on a set of individuals 

1... ...i N  is proportional to the amount of deviation that exists between the different 1Y  values.... nY

If all the values were equal, the information would be null, whereas it would be higher the more 

the values differ. Applying the least squares criterion, we will therefore consider that the amount 

of total information contained in a variable Y is proportional to its variance 2( )Y  [20]. 

We can then break down this amount of total information (Y variance) into two 

complementary quantities: the one that can be reconstituted from the knowledge of variable X  

(variance of the estimated Y values) and that which cannot be reconstructed from the knowledge 

of X  (variance of the regression residues).  In total, the following relationship can be defined:  
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( )Var Y                      =           
*( )Var Y aX b= +           +                ( )Var                          (II.36) 

Total information   =          Modelled information    +     Residual information 

The quality of the adjustment therefore corresponds to the ratio between the total 

information on Y and the information actually reconstituted from the knowledge provided by 

variable X . This quality of adjustment varies between 0  ( X does not provide any forecast 

element on100 ) and 100  (knowledge of the values of X makes it possible to fully predict the 

values of Y ) and depends on the intensity of the correlation between X  and Y  [20]. 

Fit quality = 
* 2( ) / ( ) [ ( , )Var Y Var Y r X Y=  =determination coefficient                             (II.37) 

II.3.5. Analysis of residues from linear regression  

The residual for each observation is the difference between predicted values 

of y  (dependent variable) and observed values of y  [21]. 

 
Figure II.6 Residuals 

Residual = actual y value − predicted y value 

i i ir y y= −                                                                                                                                 (II.38) 

Having a negative residual means that the predicted value is too high, similarly if you have 

a positive residual, it means that the predicted value was too low. The aim of a regression line is 

to minimise the sum of residuals [21]. 

 

Knowing that: 

i i ir y y= −                                                                                                                                 (II.39) 

https://www.ncl.ac.uk/webtemplate/ask-assets/external/maths-resources/statistics/descriptive-statistics/variables.html#Types_of_Variable
https://www.ncl.ac.uk/webtemplate/ask-assets/external/maths-resources/statistics/regression-and-correlation/simple-linear-regression.html#Least_Squares_Regression_Line.2C_LSRL
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and knowing that the regression line has the equation: 

i iy a bx= +                                                                                                                               (II.40) 

 

We calculate the residual of an observation as follows: 

( )i i i i ir y y y a bx= − = − +                                                                                                         (II.41) 

II.3.6. Analysis of variance  

 Analysis of Variance (ANOVA) consists of calculations that provide information about 

levels of variability within a regression model and form a basis for tests of significance. The basic 

regression line concept, DATA = FIT + RESIDUAL, is rewritten as follows 

( ) ( ) ( )i i i iy y y y y y− = − + −                                                                                                     (II.42) 

The first term is the total variation in the response y, the second term is the variation in mean 

response, and the third term is the residual value. Squaring each of these terms and adding over all 

of the n observations gives the equation [22]. 

2 2 2( ) ( ) ( )i i i iy y y y y y− = − + −                                                                              (II.43) 

This equation may also be written as SST = SSM + SSE, where SS is notation for sum of 

squares and T, M, and E are notation for total, model, and error, respectively [22]. 

The square of the sample correlation is equal to the ratio of the model sum of squares to the 

total sum of squares: 

2 /r SSM SST=                                                                                                                        (II.44) 

This formalizes the interpretation of r² as explaining the fraction of variability in the data 

explained by the regression model [22]. 

The sample variance sy² is equal to  

2( ) / ( 1) /iy y n SST DFT− − =                                                                                           (II.45) 

The total sum of squares divided by the total degrees of freedom (DFT) 

For simple linear regression,  

The MSM (mean square model) = 2( ) / (1) /iy y SSM DFM− =                                          (II.41)  

since the simple linear regression model has one explanatory variable x [22]. 

The corresponding MSE (mean square error) = ( ) / ( 2) /i iy y n SSE DFE− − =                 (II.46)   

         The estimate of the variance about the population regression line 
2( )  

ANOVA calculations are displayed in an analysis of variance table, which has the following 

format for simple linear regression: 

http://www.stat.yale.edu/Courses/1997-98/101/correl.htm
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Table II.2 analysis of variance table [22]. 

Source Degrees of freedom Sum of squares Mean square F 

Model 1  
2( )iy y−  /SSM DFM  /MSM MSE  

Error 2n−  
2( )i iy y−  /SSE DFE   

Total 1n −  
2( )iy y−  /SST DFT   

 

II.4 Conclusion 

At the end of this chapter, we identified three modelling systems, surface response method, 

simple linear regression and multiple linear regression. we also know how to model experimental 

data in empirical equations. 
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III.1     Introduction  

In this chapter. We will apply the two methods presented in the previous chapter (RSM 

surface response method, RLM multiple linear regression) to model EDM machining performance: 

material removal rate (MRR) and surface roughness (SR). 

III.2     Experimental data  

Table III.1 summarizes the results of the EDM tests performed by Sahu & al [37]. This work 

is being done in order to study the influence of the parameters of the EDM machining process 

(pulse on time (Ton), pulse off time (Toff), servo voltage (SV) on Material Removal Rate (MRR) 

and Surface roughness (SR). 

Table III.1 Experimental results 

N° 
Ton 

(µs)                 

Toff 

(µs) 

SV 

(volt) 

MRR 

(mm3/min) 

SR 

(µm) 

1 110 45 20 0.220637 1.405 

2 120 45 20 0.448101 2.87 

3 110 55 20 0.227062 1.391 

4 120 55 20 0.407225 3.345 

5 110 45 40 0.157805 1.39 

6 120 45 40 0.371077 1.578 

7 110 55 40 0.14984 1.401 

8 120 55 40 0.306302 1.49 

9 110 45 20 0.22588 1.341 

10 120 45 20 0.45933 3.488 

11 110 55 20 0.210858 1.296 

12 120 55 20 0.427424 3.417 

13 110 45 40 0.16485 1.368 

14 120 45 40 0.331006 1.62 

15 110 55 40 0.159317 1.433 

16 120 55 40 0.31628 1.599 

17 110 50 30 0.202971 1.404 

18 120 50 30 0.38827 2.367 

19 115 45 30 0.286261 1.494 

20 115 55 30 0.283548 1.519 

21 115 50 20 0.331577 2.276 

22 115 50 40 0.215709 1.387 

23 115 50 30 0.266409 1.469 

24 115 50 30 0.266356 1.535 

25 115 50 30 0.254277 1.516 

26 115 50 30 0.245908 1.492 

27 115 50 30 0.294183 1.564 

28 115 50 30 0.285822 1.475 
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III.3     Presentation of the prediction system 

Two methods were used (multiple linear regression, and surface response method) to predict 

EDM machining performance based on the three and parameters entered (Figure III.1). In the Pulse 

on time (Ton) modelled system, Pulse off Time (Toff), Voltage (Volt) is considered input, while 

the material removal rate (MRR) and surface roughness (SR) are considered output. 

Figure III.1 Prediction system 

 

III.3.1   Limit values for parameters and machining performance 

The table below groups the input and output parameter limit values for the modelling 

systems used. 

Table III.2 Limit values for inputs and outputs 

Variable Nature Min Max 

Ton (µs) Input 110 120 

Toff (µs) Input 45 55 

V (V) Input 20 40 

MRR (𝑚𝑚3/𝑚𝑖𝑛) Output 0.14984 0.448101 

SR (µm) Output 1.296 3.488 

 

 

29 115 50 30 0.283582 1.555 

30 115 50 30 0.279677 1.399 
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III.4     Modelling by the Multiple Linear Regression Method 

Linear regression is a method for making predictions or estimates based on existing values. 

From a supervised learning algorithm, a linear relationship is established between the inputs, which 

are pulse on time (Ton), pulse off time (Toff), and voltage (V) and the two outputs (which are the 

material removal rate (MRR) and the surface roughness (SR). 

The multiple linear regression modelling algorithm is implemented by "MATLAB". 

 
Figure III.2 Flowchart representing the multiple linear regression algorithm  

The general form of the empirical equation used for modelling the two outputs (MRR and 

SR) is quadratic. It is given by : 

2 2 2

0 1 1 2 2 3 3 4 1 2 5 1 3 6 2 3 7 1 8 2 9 3
( ) ( ) ( ) ( ) ( ) ( )Y A A X A X A X A X X A X X A X X A X A X A X= + + + + + + + + +                   (III.1) 
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The linear regression here aims to determine the values of the coefficients (A0, A1,…, A9) 

for the material removal rate equation and the values of the coefficients (B0, B1,…, B9) for the 

surface roughness equation. To define the two relationships. 

The modelling is done in the MATLAB software on the basis of the linear regression 

functions used to find the values of the coefficients. 

Importante note : 

In order to value this model, we have to verify two main remarks, which are : 

1. R-squared must be close to 1 (R-squared ≤ 1) 

2. P-value must be close to 0 (P-value ≤ 0) 

If these two remarks are realized, so the model is adequate. 

After downloading the experimental data (see table IV.1), and executing the program we 

obtained the following results. 

III.4.1   Analysis of variation (ANOVA) 

The analysis of variance ANOVA for both outputs (MRR and SR), is given in Tables III.3 

and III.4. 

a) ANOVA for material Removal Rate (MRR)  

Table III.3 Analysis of variance ANOVA for MRR 

 

Number of observations : 30, Error degrees of freedom: 20 

Root Mean Squared Error: 0.0143 

          R-squared: 0.981, 

          Adjusted R-Squared 0.972F-statistic vs.  

          Constant model : 113, 

          p-value = 3.74e-15 

The pValue of the linear model is equal to 3.74e-15. That is, it is less than 0.05 (5%), so the 

model is significant. 

 

b) ANOVA for surface roughness SR  

Table III.4 Analysis of variance ANOVA for SR. 

 SumSq DF MeanSq F Pvalue 

Total 0.21177 29 0.0073023 

112.77 3.7358e-15 Model 0.20767 09 0.023075 

Residual 0.0040925 20 0.00020462 
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Number of observations: 30, Error degrees of freedom: 20 

Root Mean Squared Error: 0.226 

R-squared: 0.917, Adjusted R-Squared 0.88 

F-statistic vs. constant model: 24.6,  

p-value = 6.25e-09. 

The pValue of the linear model is equal to 6.25e-09. That is, it is less than 0.05 (5%), so the 

model is significant. 

III.4.2   Presentation of models 

The execution of our algorithm leads us to find the empirical equations (III.2) and (III.3). 

2

2 2

( , , ) 7.8176 0.14712 0.06563 0.019438

0.00046962( . ) 0.00095628( . ) 1.0179 05( . ) 0.0002759

0.0002 1.4525 05

on off on off

on off on off on

off

MRR T T V T T V

T T T V e T V T

T e V

= − + − +

− + +  −

− −  

                      (III.2)                 

   2

2 2

( , , ) 75.273 2.1637 0.59706

0.012179( . ) 0.22519( . ) 0.0061666( . ) 0.000695

0.00874 3.6674 05

on off on off

on off on off on

off

SR T T V T T V

T T T V T V T

T e V

= + +

+ − + +

− +  

                             (III.3) 

III.4.3   Analysis results 

The curves in Figures III.3 to III.4 show the analysis of linear regression results during 

modelling 

a) Analysis results for material removal rate (MRR) 

The analysis of the results of the modeling of the material removal rate by the multiple linear 

regression method is given by the figures below 

 

 

  

 SumSq DF MeanSq F Pvalue 

Total 12.395 29 0.4274 

24.638 6.2539e-09 Model 11.369   09 1.2633 

Residual  1.0255 20 0.051273 
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Figure III.3 Leverage plot 

Comment 

 From Figure III.3, we note that there is a high leverage point. But this graph does not reveal 

whether it is a point of an outlier. So you have to look for points with a great distance from Cook. 

 
Figure III.4. Cook’s distance plot 

Comment 

There are still two points with a great distance for Cook, but probably one there is only one 

very far point that probably doesn’t affect our model. 
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Figure III.5 Histogram of residuals 

Comment  

 We note that the data are well centered and seem to fit the normal law curve. 

 
Figure III.6 Normal probability plot of residuals  

Comment 

 We note that the data are well centered and appear to fit the normal law curve,the 

relationship between the sample percentiles and theoretical percentiles is not linear; the condition 

that the error terms are normally distributed is not met. 

b) Analysis results for surface roughness (SR) 

The analysis of the tool surface roughness modelling results by the multiple linear regression 

method is given by the figures below. 
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Figure III.7 Leverage plot 

Comment 

 Figure III.7 shows that there are high leverage points. However, this graph does not reveal 

whether the high leverage point is an abnormal value. Therefore, one must search for points with 

a great distance from Cook 

 

FigureIII.8 Cook’s distance plot 

Comment 

There are still four points (04) with a significant distance for Cook, but we can say that these 

points probably do not affect our model. 
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Figure III.9 Histogram of residuals 

Comment  

The previous histogram of residuals suggests that the residuals are normally distributed. We 

can characterize this histogram as having a global maximum at (-0.2 to 0) and local maximum at 

(-0,6 to 0.2). 

 
Figure III.10 Normal probability plot of residuals 

Comment 

The normal probability graph above seems to be good, there are no points far from the 

straight line. 

III.4.4   Confirmation of material removal rate prediction model MRR 

The calculation of model error and accuracy when predicting material removal rate is given 

in Table III.5 
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Table III.5 Model errors and precisionbased on the multiple linearregressionmethod for the 

prediction of materialremoval rate (MRR). 

Trials Ton Toff V MRRexp MRRpred 
Error 

% 

Accuracy 

% 

1 110 45 20 0.22064 0.22719 2.97054 97.0295 

2 120 45 20 0.4481 0.45291 1.07366 98.9263 

3 110 55 20 0.22706 0.22078 2.76836 97.2316 

4 120 55 20 0.40723 0.41891 2.86871 97.1313 

5 110 45 40 0.15781 0.16192 2.60473 97.3953 

6 120 45 40 0.37108 0.34644 6.63975 93.3602 

7 110 55 40 0.14984 0.1526 1.83889 98.1611 

8 120 55 40 0.3063 0.30953 1.05334 98.9467 

9 110 45 20 0.22588 0.22719 0.58044 99.4196 

10 120 45 20 0.45933 0.45291 1.39723 98.6028 

11 110 55 20 0.21086 0.22078 4.70369 95.2963 

12 120 55 20 0.42742 0.41891 1.99261 98.0074 

13 110 45 40 0.16485 0.16192 1.78016 98.2198 

14 120 45 40 0.33101 0.34644 4.66227 95.3377 

15 110 55 40 0.15932 0.1526 4.21901 95.781 

16 120 55 40 0.31628 0.30953 2.13469 97.8653 

17 110 45 30 0.20297 0.19354 4.64877 95.3512 

18 120 45 30 0.38827 0.39866 2.67529 97.3247 

19 115 55 30 0.28626 0.28617 0.03027 99.9697 

20 115 50 30 0.28355 0.2731 3.68523 96.3148 

21 115 50 20 0.33158 0.31778 4.16099 95.839 

22 115 50 40 0.21571 0.23045 6.83509 93.1649 

23 115 50 30 0.26641 0.2731 2.51103 97.489 

24 115 50 30 0.26636 0.2731 2.53142 97.4686 

25 115 50 30 0.25428 0.2731 7.40201 92.598 

26 115 50 30 0.24591 0.2731 11.0572 88.9428 

27 115 50 30 0.29418 0.2731 7.1671 92.8329 

28 115 50 30 0.28582 0.2731 4.45151 95.5485 

29 115 50 30 0.28358 0.2731 3.69678 96.3032 

30 115 50 30 0.27968 0.2731 2.35214 97.6479       
3.54977 96.4502 

 

Accuracy and error study of the multiple linear regression system   

In order to calculate the error of the N 30 tests, we use the next equation 

exp

exp

-
100

pred

i

T T
e

T

 
=  

  

                                                                                                     (III.4) 

expT  : Experimental Temperature.  
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T

pre : Predicted temperature. 

ie : Error rate 

In order to calculate the accuracy of the 30 tests, we use the next equation. 

1
exp

1 exp

-1
100

pred

i

T T
A

N T=

 
=  

  
                                                                                                 (III.5) 

N = 30 tests 

A : Accuracy 

III.4.5   Surface Roughness Prediction Model SR confirmed 

Calculation of model error and accuracy when predicting wear rate of the tool is given in 

Table III.6 

Table III.6 Model errors and precision based on multiple linear regression method for surface 

roughness prediction SR 

  Trials     Ton    Toff      V SRexp SRpred Error % Accuary 

% 

1 110 45 20 1.405 1.357522 3.379246 96.62075 

2 120 45 20 2.87 3.233972 12.68194 87.31806 

3 110 55 20 1.391 1.247356 10.32664 89.67336 

4 120 55 20 3.345 3.193306 4.534936 95.46506 

5 110 45 40 1.39 1.503648 8.176129 91.82387 

6 120 45 40 1.578 1.632098 3.428276 96.57172 

7 110 55 40 1.401 1.400818 0.013005 99.987 

8 120 55 40 1.49 1.598768 7.299852 92.70015 

9 110 45 20 1.341 1.357522 1.232036 98.76796 

10 120 45 20 3.488 3.233972 7.282924 92.71708 

11 110 55 20 1.296 1.247356 3.753364 96.24664 

12 120 55 20 3.417 3.193306 6.546491 93.45351 

13 110 45 40 1.368 1.503648 9.915804 90.0842 

14 120 45 40 1.62 1.632098 0.746802 99.2532 

15 110 55 40 1.433 1.400818 2.245792 97.75421 

16 120 55 40 1.599 1.598768 0.014522 99.98548 

17 110 50 30 1.404 1.323651 5.722863 94.27714 

18 120 50 30 2.367 2.360851 0.25978 99.74022 

19 115 45 30 1.494 1.010675 32.35108 67.64892 

20 115 55 20 1.519 1.915856 26.12616 73.87384 

21 115 50 40 2.276 1.792333 21.25075 78.74925 

22 115 50 30 1.387 1.537776 10.87066 89.12934 

23 115 50 30 1.469 1.537776 4.681824 95.31818 

24 115 50 30 1.535 1.537776 0.180847 99.81915 

25 115 50 30 1.516 1.537776 1.436412 98.56359 

26 115 50 30 1.492 1.537776 3.068097 96.9319 

27 115 50 30 1.564 1.537776 1.676726 98.32327 
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28 115 50 30 1.475 1.537776 4.256 95.744 

29 115 50 30 1.555 1.537776 1.107653 98.89235 

30 115 50 30 1.399 1.537776 9.919657 90.08034       
6.816209 93.18379 

 

III.4.6   Validation of results 

In order to prove the correct functioning of the prediction system of the comparison curves, 

the superimposed curves represent a comparison between the experimental values used for the 

model design and the values predicted by the model for the same machining parameters. 

a) Validation of material removal (MRR) results 

Figure III.11 represents a comparison between the experimental values of the material 

removal rate and those predicted by the model based on the multiple linear regression method. 

 
Figure III.11 Validation of the expected material removal rate by multiple linear 

regression 

The curves in Figure III.11 show agreement between the experimental data and the data 

predicted by the Response Surface Method, demonstrating the proper functioning of the prediction 

system. 

b) Validation of results for surface roughness (SR) 

Figure III. 12 represents a comparison between the experimental surface roughness values 

and those predicted by the model based on the multiple linear regression method. 
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Figure III.12 Validation of the surface roughness predicted by multiple linear regression  

 

Figure III.22 shows that the two curves are similar, that is to say that the method of response 

surfaces can predict the wear rate of the tool correctly within a very specific range of machining 

parameters. 

III.5     Modelling by surface response Method RSM 

Modelling with the Response Surface Method was performed with the software  “Design Expert”. 

a) Suitable models for modelling the material removal rate MRR 

Equation (III.6) was used to adjust the experimental rate data material removal (MRR). As 

indicated in Table III.7 the model suggested by the Response Surface Method is called 2FI (Two 

Factor Interaction). 

Y = C0 + C1 X1 + C2 X 2 + C3 X 3 + C4 ( X1 X 2 ) + C5 ( X1 X 3 ) + C6 ( X 2 X 3 )                                             (III.6) 

Table III.7 Appropriate models for modelling material removal rates 
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b) Appropriate models for surface roughness modelling SR 

Equation (III.7) was used to model the surface roughness (SR) data, equation (III.7) is based 

on the quadratic model (modified quadratic model: removal of the last term 2

9 3
( )D X  As shown in 

Table III.9 the suggested model is Model 2 FI, but its coefficients of determination are low in what 

influence prediction, the quadratic model has an acceptable coefficient of determination, but the 

model is not acceptable. To remedy this problem the last term of the complete quadratic model has 

been removed. 

2 2

0 1 1 2 2 3 3 4 1 2 5 1 3 6 2 3 7 1 8 2
( ) ( ) ( ) ( ) ( )Y D D X D X D X D X X D X X D X X D X D X = + + + + + + + +      (III.7) 

Table III.8 Suitable models for modelling the surface roughness SR 

 
 

Where 
1

X ,
2

X  and 
3

X are the independent variable values. Y  and 'Y  are the response 

variables. 
0

C and 
0

D are constants. 
1

C ,
2

C  ,
3

C ,
1

D , 
2

D  and 
3

D  are the linear coefficients, 
4

C , 
5

C , 

6
C , 

4
D , 

5
D , and 

6
D  are the interactive coefficients. 

7
D ,

8
D are the quadratic coefficients. 

III.5.1   Analysis of variance (ANOVA) 

ANOVA variance analysis for both outputs (MRR and SR) is given in Tables III.10, III.11 

and III.12, III.13 respectively. 

a) ANOVA for MRR 
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Table III.9 ANOVA for material removal rate MRR 

 

Table III.10 Fit statistics for MRR 

 
 

According to the adjustment summary, the multiple linear model is significant for the 

analysis of the material removal rate. The R2 value is 96.75% and the adjusted R2 value is 97.42%. 

This clearly indicates that the regression model provides a good relationship between process 

factors and the response variable. Factors with a P-value less than 5% (i.e., 0.05) 

Factors with a P value of less than 5% (i.e., 0.05) are the most significant. The factor A-

discharge current and C- voltage and AC interaction have a significant effect. Of all the parameters 

the discharge current is the most significant for the MRR. Lack of Fit is also not significant this is 

desirable so MRR modeling is acceptable. 

b) ANOVA for SR 

As shown in the table below (III.11), and according to the adjustment summary, the multiple 

linear model is significant for the analysis of the surface roughness. The R2 value is 97.20% and 

the adjusted R2 value is 95.93%. This clearly indicates that the regression model provides a good 

relationship between process factors and the response variable. 
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Table III.11 ANOVA for surface roughness SR 

 

Table III.12 Fit statistics for surface roughness SR 

 
Factors with a P value less than 5% (i.e., 0.05) are the most significant. The factor A- 

discharge current, B- pulse time A- discharge current and C- voltage, interaction AB and B2 have 

a significant effect. Among all the parameters pulse time and AB interaction have the most 

significant for the SR. Lack of Fit is also not significant this is desirable so MRR modeling is 

acceptable. 

III.5.2   Presentation of models 

 

( , , ) 4.00237 0.039108 0.030085 0.020049

0.000276( . ) 0.000206( . ) 0.000015( . )

on off on off

on off on off

MRR T T V T T V

T T T V T V

= − + + +

− − −                                 (III.8)                 

 2

2 2

( , , ) 101.26054 2.10029 0.093285 0.888708

0.000770( . ) 0.008752( . ) 0.000460( . ) 0.000695

0.001674 0.001648

on off on off

on off on off on

off

SR T T V T T V

T T T V T V T

T V

= + − + +

+ − − +

− +

                           (III.9) 
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III.5.3   Analysis of results 

The curves in Figures III.13 to III.14 show the analysis of multiple linear regression results 

during modelling. 

a) Analysis of results for MRR 

Figure III.13 shows that the normal probability graph for MRR clearly indicates that the 

residues are on a straight line, meaning that the error follows a normal distribution. 

 
Figure III.13 Normal probability diagram for MRR  

Figure III.14 shows the graph of the predicted material removal rate values in relation to the 

experimental values, it shows that the model is well adjusted. 
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Figure III.14 Predicted vs. actual for MRR 

b) Analysis of results for SR 

Figure III.15 shows that the normal probability graph for SR clearly indicates that the 

residues are on a straight line, meaning that the error follows a normal distribution 

 

Figure III.15 Normal probability diagram for SR 
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Figure III.16 shows the graph of the predicted surface roughness relative to the experimental 

values, it shows that the model is well adjusted. 

 
Figure III.16 Predicted vs. actual for SR 

 

III.6     Comparative study between the two modelling methods 

After the detailed study that took place, we were able to model each of the two outputs 

(material removal rate and surface roughness) by two methods. We will now conduct a 

comparative study between the models obtained in order to know the best method to model each 

output. 

III.6.1   Material removal rate MRR 

In order to choose the best method of modelling the rate of material removal 

The comparison was made by calculating the error and the the accuracy of the prediction of 

the material removal rate by each model as shown in Table III.14 
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Table III.13 Errors and Accuracy of Material Removal Rate (MRR) Prediction by Both 

Methods 

  Output predicted by Linear 

regression 

Output predicted by Surface 

response 

trials Error % Accuracy % Errors% Accuracy% 

1 2,970535314 97,02946469 12,58991012 87,41008988 

2 1,073664196 98,9263358 5,800924345 94,19907565 

3 2,768362826 97,23163717 9,514141512 90,48585849 

4 2,868708945 97,13129106 9,704708699 90,2952913 

5 2,60473369 97,39526631 32,8823548 67,1176452 

6 6,639754013 93,36024599 6,224584116 93,77541588 

7 1,838894821 98,16110518 42,11492258 57,88507742 

8 1,053339515 98,94666049 20,73868274 79,26131726 

9 0,580440942 99,41955906 9,976536214 90,02346379 

10 1,397230749 98,60276925 3,214464546 96,78553545 

11 4,703686841 95,29631316 17,93007617 82,06992383 

12 1,992611552 98,00738845 4,520335779 95,47966422 

13 1,780163785 98,21983621 27,20351835 72,79648165 

14 4,662271983 95,33772802 19,0839441 80,9160559 

15 4,219009899 95,7809901 33,66119121 66,33880879 

16 2,13469078 97,86530922 16,92961932 83,07038068 

17 4,648767558 95,35123244 12,85109695 87,14890305 

18 2,675290391 97,32470961 11,81265614 88,18734386 

19 0,030269579 99,96973042 11,62715145 88,37284855 

20 3,685231425 96,31476858 14,82006574 85,17993426 

21 4,160994279 95,83900572 6,907294535 93,09270547 

22 6,835088012 93,16491199 37,5278732 62,4721268 

23 2,511026279 97,48897372 22,20683235 77,79316765 

24 2,531424109 97,46857589 22,23114929 77,76885071 

25 7,402006473 92,59799353 28,03753387 71,96246613 

26 11,05722465 88,94277535 32,39504205 67,60495795 

27 7,16710347 92,83289653 10,6692093 89,3307907 

28 4,45151178 95,54848822 13,90655723 86,09344277 

29 3,696779062 96,30322094 14,80629941 85,19370059 

30 2,352141935 97,64785806 16,40928643 83,59071357 

Model Errors and Accuracy (%) 

Total 3,549765295 96,4502347 17,60993209 82,39006791 

 

 

Comment 

 

Table III.13 clearly shows the advantage of the multiple linear regression method for the 

prediction of material removal rate. So the method of multiple linear regression is recommended 

for the prediction of the removal rate of the material in EDM machining. 
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III.6.2   Surface roughness SR 

In order to choose the best method of modelling the surface roughness, we used the thirty 

confirmatory tests as a basis for the comparison that we will make, and so it will be a good form 

of comparison. The comparison was made by calculating the error and accuracy of the surface 

roughness prediction by each model as shown in Table III.15 

Table III.14 Surface Roughness (SR) prediction errors and accuracy by both methods. 

 

Comment 

 
Output predicted by Linear 

regression 

Output predicted by Surface 

response 

Trials Error% Accuracy% Error% Accuracy% 

1 3,379245552 96,62075445 0,019946619 99,98005338 

2 12,68193728 87,31806272 0,13445122 99,86554878 

3 10,3266427 89,6733573 0,000125809 99,99987419 

4 4,534935725 95,46506428 0,000515695 99,9994843 

5 8,176129496 91,8238705 0,050600719 99,94939928 

6 3,428276299 96,5717237 0,006866286 99,99313371 

7 0,013004996 99,986995 0,013429693 99,98657031 

8 7,299852349 92,70014765 0,065560403 99,9344396 

9 1,232035794 98,76796421 0,026826995 99,97317301 

10 7,282924312 92,71707569 0,066549599 99,9334504 

11 3,753364198 96,2466358 0,073167438 99,92683256 

12 6,546491074 93,45350893 0,020566286 99,97943371 

13 9,915804094 90,08419591 0,067496345 99,93250365 

14 0,746802469 99,25319753 0,019237654 99,98076235 

15 2,245792045 97,75420796 0,042144837 99,95785516 

16 0,014521576 99,98547842 0,007076298 99,9929237 

17 5,722863248 94,27713675 0,106940883 99,89305912 

18 0,259780313 99,74021969 0,046237854 99,95376215 

19 32,35107764 67,64892236 0,002730924 99,99726908 

20 26,12616195 73,87383805 0,011688611 99,98831139 

21 21,25074692 78,74925308 0,068332601 99,9316674 

22 10,87065609 89,12934391 0,075245133 99,92475487 

23 4,68182437 95,31817563 0,046123213 99,95387679 

24 0,180846906 99,81915309 0,001143322 99,99885668 

25 1,436411609 98,56358839 0,013690633 99,98630937 

26 3,068096515 96,93190349 0,029996649 99,97000335 

27 1,676726343 98,32327366 0,017420077 99,98257992 

28 4,256 95,744 0,041867797 99,9581322 

29 1,107652733 98,89234727 0,011733119 99,98826688 

30 9,919656898 90,0803431 0,098466762 99,90153324 

Model Errors and Accuracy (%) 

Total 6,816208717 93,18379128 0,039539316 99,96046068 
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Table III.14 clearly shows the advantage of the Surface response method for the prediction 

of surface roughness. So the method of surface response is recommended for the prediction of the 

surface roughness (SR) in EDM machining. 

III.7     Interactive effects 

a) Interactive effect of discharge pulse off time and pulse time on MRR 

 

Figure III.17 Expected surface roughness variation as a function of pulse on time discharge and 

pulse off time when V=20 (µs) 

Figure (III.17) shows that the material removal rate takes these maximum values for large 

values of the pluse time whatever the values of the pulse off time. 

Also from figure (III.17) it is also clear that the factor affecting the material removal rate is the 

pluse time. The pulse off time also plays a role in modifying the material removal rate but its 

influence is less important than the pluse time 

Pc
Note
justifier le texte
vérifier l'interligne



 

56 

 

Chapter III Results & discussion 

b) Interactive effect of pulse on time discharge and voltage on MRR 

 

Figure III.18 Change in expected material removal rate as a function of pulse on time discharge 

and voltage when Toff=45 µs 

The figure (III.18) shows that the material removal rate takes these maximum values for 

large values of the pluse time and simultaneously with large values of the voltage. 

It is also clear that both factors (pluse time and voltage) affect the material removal rate. 

 

c) Interactive effect of pulse time and voltage on MRR 

 

Figure III.19 Change in expected material removal rate as a function of pulse time and voltage 

when Ton=110 µs 

Figure (III.19) shows that the material removal rate takes these maximum values for small 

values of the voltage whatever the values of the pulse off time. 
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Also from figure (III.19) it is also clear that the factor affecting the material removal rate is 

the voltage. The pulse off time also plays a role in modifying the material removal rate but its 

influence is less important than the voltage. 

 

d) Interactive effect of pulse on time discharge and pulse time on SR 

 
Figure III.20 Variation of the expected surface roughness as a function of pulse on time 

discharge and pulse time when V=20 volt. 

Figure (III.20) shows that the surface roughness reaches maximum values for the low and 

high value of the pulse off time and decreases for the average pulse off time values regardless of 

the pulse time values. 

The most important factor the effect on surface roughness is a pulse off time. 

e) Interactive effect of pulse on time discharge and voltage on SR  
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Figure III.21 Variation of surface roughness as a function of pulse on time discharge and 

voltage when Toff=45 µs. 

Figure (III.21) shows that the surface roughness takes extreme values of large values of the 

pluse time and at the same time with small values of voltage. 

It is also evident that both factors (pluse time and voltage) affect the surface roughness. 

f) Interactive effect of pulse time and voltage on SR  

 
Figure III.22 Expected surface roughness variation as a function of pulse time and voltage when 

Ton=110 µs 

Figure (III.22) shows that the surface roughness reaches these extreme values for the lower 

voltage values and whatever the pulse off time values are. The most influential factor on surface 

roughness is the voltage. The change in surface roughness is also affected by the pulse off time, 

but is less significant than the voltage. 

 

 

Pc
Note
Déplacer le titre a la page précédente



 

 

 

 

 

 

 

 

Conclusion 

 



 

57 

 

Conclusion 

Conclusion 

 

The work carried out as part of this brief has led to a better understanding of the effect of 

different input parameters on the performance of AISI 1095 steel EDM machining. pulse on time 

discharge, pulse time and voltage were considered input variables. The analysis of the effect of 

process parameters on machining performance was carried out by two methods: multiple linear 

regression, the response surface method. The study we undertook concluded that: 

• The methods used in this work can be used to predict the rate of material removal and the 

surface roughness in practice. They are useful as an economical way to increase the 

material removal rate (MRR) and reduce the surface roughness (SR) for EDM machining 

of AISI 1095 steel. 

• Comparison and validation of predicted results with experimental test results confirmed 

the accuracy of the models developed. The multiple linear regression technique and the 

surface response method were better and more accurate (96.45%, 82.39%, respectively) 

than the material removal method. Therefore, both methods can be made economical and 

efficient to predict the performance of EDM machines. 

With regard to surface roughness, the response surface modelling technique was better 

and more accurate than the other two prediction methods (96.45%, 99.96%). 

• All machining parameters directly affect EDM machining performance but in varying 

proportions, depending on the nature of the desired performance. Where the discharge 

current is found to have the greatest effect on the rate of material removal. Although we 

find that pulse on time discharge and voltage have the greatest influence on the surface 

roughness. 
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Abstract 
This work aims to study the effect of EDM machining parameters on the removal rate of 

MRR material and the roughness of machined surfaces during machining. The machining 

parameters taken into account for this study are: pulse time, voltage and pulse downtime. In 

this work, two models are developed to study the effect of these parameters on the machining 

performance. The first model is based on the multiple linear regression technique, the second 

model is based on the response surface method. The results obtained during this study show 

that the developed models have a high prediction accuracy which exceeds 96% in all cases. The 

study concluded that the best model to predict the material removal rate is the model based on 

the multiple linear regression technique, with an accuracy of more than 96.45%. While the 

model based on the response surface method was the best in predicting roughness with an 

accuracy that exceeds 99.96%. The analysis of the results led to the fact that the two most 

influential factors on the machining performance are pulse time and voltage. 

Key words: EDM, Machining Parameters, Multiple Linear Regression, Response Surfaces. 
 

Résumé 
Ce travail vise à étudier l'effet des paramètres d'usinage par électroérosion sur le taux 

d’enlèvement de la matière MRR et la rugosité des surfaces usinées lors de l’usinage. Les 

paramètres d’usinage pris en compte pour cette étude sont : temps d’impulsion, le voltage et le 

temps d’arrêt d'impulsion. Dans ce travail, deux modèles sont développés pour étudier l'effet 

de ces paramètres sur les performances d’usinage. Le premier modèle est basé sur la technique 

de la régression linéaire multiple, le deuxième modèle est basé sur la méthode de surfaces de 

réponses. Les résultats obtenus, lors de cette étude, montrent que les modèles développés ont 

une grande précision de prédiction qui dépasse 96% dans tous les cas. L'étude a conclu que le 

meilleur modèle pour prédire le taux d'enlèvement de la matière est le modèle basé sur la 

technique de régression linéaire multiple, avec une précision de plus de 96,45%. Alors que le 

modèle basé sur la méthode de surfaces de réponses a été le meilleur pour prédire la rugosité 

avec une précision qui dépasse 99.96%. L'analyse des résultats a conduit au fait que les deux 

facteurs les plus influents sur les performances d’usinage sont temps d’impulsion et le voltage. 

Mots clefs: EDM, Paramètres d’usinage, Régression linéaire multiple, Surfaces de réponses. 

 ملخص 
خشونة  يهدف هذا العمل إلى دراسة تأثير عوامل التصنيع عن طريق التفريغ الكهربائي على معدل إزالة المادة و  

و    الجهداسة هي: تيار التفريغ، زمن النبض،  . عوامل التصنيع التي اعتمدت في هذه الدر تصنيعال  عقب  الأسطح المشغلة  

لدراسة تأثير هذه العوامل على أداء التصنيع. تم تطوير النموذج    ينذجو . في هذه الدراسة تم تطوير نمزمن توقف النبض

هرت  الأول باستعمال تقنية الانحدار الخطي المتعدد، فيما تم تطوير النموذج الثاني باستعمال طريقة أسطح الاستجابة. أظ 

تجاوزت   عالية  تنبؤ  دقة  لديها  المطورة  النماذج  أن  الدراسة  هذه  خلال  عليها  المتحصل  الحالات.  96النتائج  جميع  في   ٪

النموذج المطور باستعمال تقنية الانحدار الخطي   المادة هو  إلى أن أفضل نموذج للتنبؤ بمعدل إزالة  الدراسة  وخلصت 

هو    طريقة أسطح الاستجابةالدراسة أيضًا إلى أن النموذج المطور باستعمال    ٪. بينما خلصت96.45المتعدد بدقة تزيد عن  

٪. تحليل النتائج أظهر أن العاملين الأكثر تأثيرًا على    99.96    حيث تجاوزت دقته  بخشونة السطح المشغل الأفضل للتنبؤ  

 والجهد.  زمن النبضأداء عملية التصنيع هما 

المفتاحية:  طريق    الكلمات  عن  أسطح  التصنيع  طريقة  المتعدد،  الخطي  الانحدار  التصنيع،  عوامل  الكهربائي،  التفريغ 
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