O17: Iron chelating activity of dithiolethiones compounds

Zehour RAHMANI^a, Mokhtar SAIDI^a, Messouda DAKMOUCHE^a, Salma CHABIA^a

^a LVPRS, Université de KASDI Merbah, 30000 Ouargla, Algérie

zhor_rahmani@hotmail.com

Abstract:

Transition metal ions have a great importance in the generation of oxygen free radicals in living organisms. Iron exists in two distinct oxidation states; ferrous ion (Fe²⁺) and ferric ion (Fe³⁺). The ferric ion (Fe³⁺) is the relatively biologically inactive form of iron. However, it can be reduced to the active Fe²⁺, depending on the conditions, particularly pH [1], and oxidized back through Fenton type reactions, with production of hydroxyl radicals; or Haber-Weiss reactions with superoxide anions [2]. The production of these radicals can lead to lipid peroxidation, protein modification and DNA damage.

In this study, the chelating of ferrous ions by different dithiolethiones [PDTT ($CH_3SO_4^{-}$)], [PDTT], [TDTT(Γ)], [TDTT($CH_3SO_4^{-}$), [PDTT(Γ)] and Ascorbic Acid was estimated by the phenantroline assay. Phenanthroline can quantitatively form complexes with Fe²⁺.

The results show that The metal scavenging effect of those samples decreased in the order of $[PDTT(CH_3SO_4)] > [PDTT] > Ascorbic Acid > [TDTT(I)] > [TDTT(CH_3SO_4) > [PDTT(I)]$

References:

1-Strlic M, Radovic T, Kolar J, Pihlar B (2002). Anti- and prooxidative properties of gallic acid in Fenton-type systems. J. Agric. Food Chem. 50: 6313–6317.

2-Kehrer JP (2000). The Haber–Weiss reaction and mechanisms of toxicity. Toxicol. 149: 43– 50.