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Abstract 

This work deals with fault diagnosis using machine learning algorithms 

of the inverter used in photovoltaic systems that supply an insulated 

electrical load and how to safely transfer the current to devices. This 

thesis discusses the multicellular inverter and describes how this is 

affected in cases of faults on the load current. And use two modes of 

control In order to compare in terms of functionality under failures, load 

current save and Smoothest, and in terms of accuracy built classification 

model To use sliding mode control mode and exact linearization mode, 

this is for Purpose of comparison in terms of system performance during 

failure And the extent of its impact on the load current by examining the 

shape of its signal And the robustness analysis of the two controls was 

not significantly affected by defects and their explanation. 

Keywords :Machine learning, multi cellular power converter, 

photovoltaic system, sliding mode control, exact linearization control 

 الملخص 

،  استخدام خوارزميات التعلم الآليبمع تشخيص عطل  محول الطاقة، طروحة ه الأتعامل هذت

المستخدم في الأنظمة الكهروضوئية التي توفر حملاً كهربائياً في منا طق معزولة وكيفية نقل 

التيار بأمان إلى الأجهزة. تناقش هذه الرسالة العاكس متعدد الخلايا ويصف كيف يتأثر ذلك في 

في تيار الحمل. واستخدم طريقتين للتحكم من أجل المقارنة من حيث الوظيفة حالات الأعطال 

في ظل حالات الفشل ، وحمل التيار وحفظه ، ومن حيث الدقة ، ونموذج التصنيف المدمج 

لاستخدام وضع التحكم في الوضع المنزلق ووضع الخطي الدقيق ، وهذا لغرض المقارنة من 

ال ومدى تأثيره على تيار الحمل من خلال فحص شكل إشارته حيث من أداء النظام أثناء الأعط

 .ولم يتأثر تحليل متانة الضابطين بشكل كبير بالعيوب وتفسيرها

 التحكم ، الكهروضوئي النظام ، الخلايا متعدد الطاقة محول ، الآلي التعلم :المفتاحية لكلماتا

  الدقيق الخطي التحكم ، المنزلق الوضعب
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Introduction  

Because it is a clean energy source that does not emit any gas and is friendly to the 

environment, solar photovoltaic (PV) energy has recently been in high demand for the 

production of electric power [01]. This has led to a wide development in many areas, such as 

avoiding new electric transportation projects, lowering electric energy bills, and using PV 

energy to provide water in remote areas. In order to convert the direct current (DC) voltage 

produced by photovoltaic panels to alternating current (AC) voltage, the power converter is 

used as an interface between the photovoltaic panels and the electric load. The power 

converter accounts for between 43% and 70% of PV power plant service requests [02]. 

However, when the power converter fails, all of the advantages may be negatively impacted, 

including no water extraction in isolated areas, high costs, increased maintenance intervention 

time, and a significant impact on the reliability of the PV systems [There are a number of 

factors that prevent power converters from functioning properly, particularly power switches 

and flying capacitors. Multicellular power converter control in [03] and [04], a solar PV 

system based on Step-Up Boost converter in order to extract the maximum power from solar 

panels [05], in addition to treating wind energy as in [06], wind turbine converters in [07] and 

[08], the evolution also included the controlling systems using exact linearization control in 

[09] and active filtering in [10] in [11], including the optimization in conversion energy 

efficiency in [12], the contribution of multicellular power converter as mentioned The fault 

diagnosis of a four-level multicellular power converter is included in this thesis. 

The fault diagnosis of a four-level multicellular power converter is included in this thesis. It 

focuses on capacitor failures that cause distortions in the shape of the load current, including 

the appearance of harmonics that affect electric loads by shortening devices' lifespans, 

increasing mechanical vibrations, and overheating machine windings. Depending on the 

environment, these flaws may also result in catastrophic damage. Harmonics are the 

disturbances that cause the signal waveform to spread out. A few of the effects of harmonics 

on electrical installations and equipment include distortions of waveforms that cause 

malfunctions, rises in peak values that cause dielectric breakdowns, which in turn cause 

overheating and additional losses in voltage and current, and a spectral spread that causes 

vibrations and mechanical fatigue. Oversizing, decreased productivity, decreased energy 

efficiency, and increased costs are just a few of the factors that have a significant negative 

impact on the economy. This work proposes fault detection methods for tracing the formation 
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of faults in multicellular power converter systems and identifying the fault's source so that 

faults can be addressed directly without affecting the healthy components. Due to its accuracy 

in automatic classification, such as in [13], the machine learning method has received a lot of 

use. It topped the list of scientific research concerns, medical [14], electrical [15].By 

following the decision tree [16], it will be able to provide us with the correct classification 

through simple symbols that are humanly understandable. It uses algorithms that are similar to 

human thinking to distinguish between types. Classification is achieved by a series of logical 

processes. These are capable of modeling even the most complex problems with high 

efficiency when provided with sufficient data during the model's training [17]. 

 To ensure the effectiveness of this method used in detecting faults regardless of the 

circumstances, two methods were used to control the sliding mode and exact linearization 

mode to determine the extent to which the fault detection algorithm is affected by the control 

model. 

 This thesis consists of three chapters. The first chapter is devoted to the available 

photovoltaic systems, their method of operation, their characteristics, and the method of 

connecting them, their components from the photovoltaic cell, the DC/DC, the inverters 

topologies, and control mode of them. The chapter is also concerned with machine learning 

and its use in classifying faults .In the third chapter, the machine learning method was applied 

to classify the faults of multicellular inverter capacitors for the sliding and exact linearization 

control modes .Finally, we will end with a general conclusion. 
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Chapter 1  

Photovoltaic system 

1.1-Introduction 

In this chapter, we will discuss solar energy and its use in the production of electricity in all 

parts of the world, then we will talk about the photovoltaic system in all its parts, and we will 

focus on the main part of our work, which is the multicellular inverter, the operating principle 

and modes of control. 

1.2-Solar energy 

Due to the growth demand of global energy and adverse effects of conventional energy 

such as pollution caused by fossil fuel and nuclear fission sources, the exploration of the 

renewable energy sources (RES) is increased [17]. Renewable energy, as clean and alternative 

energy, is based on self-renewing energy sources including the solar energy, wind energy, 

wave energy, tidal energy, ocean thermal energy, hydropower, the geothermal energy, and 

biomass energy [18-20]. With increasing concern about the environmental issues, RES are 

paid more and more attention. The growth rate of renewable power installation has exceeded 

that of the fossil fuel and nuclear power capacity combined [21-24]. For example, in 2021, the 

installed renewable power capacity is increased more than 290 GW, mostly are PV which has 

the largest growth rate ever and enhanced the global total to 2,588 GW by the end of year 

[24]. The Renewables Market Report said growth will accelerate to average 305 GW per year 

for 2021 through 2026. By the end of 2026, global renewables capacity will reach 4,800 GW, 

or 60% greater than at end 2020. Renewables will represent about 95% of the new power 

capacity installed worldwide from now through 2026 [25]. 

Since the electricity generated from RES is more cost effective than that from the coal-fired 

power plants [18], it is cheaper to build new wind or PV plants than utilizing existing coal-

fired power plants [19]. Besides, renewables also beat new natural gas power station on cost 

in many locations and has become the cheapest sources of new electricity generation on the 

earth (excluding Antarctica [20]). 
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Among the clean energy technologies, PV has significantly grown in recent years [22],[24]. 

Not only are the efficiencies of the most domestic solar panels low, i.e., around 10-20%, but 

the performance of other components such as inverters and batteries are limited as well. 

Battery, which can provide fast response for balancing the power between the generation and 

consumption [26], is becoming a good candidate for the electrical energy storage system 

(ESS). However, the initial installation costs are still high [27],[28]. 

1.3- The photovoltaic effect 

The solar energy is the energy that comes from the sun; the photovoltaic cells convert that 

energy into electricity. This phenomenon is called the photovoltaic effect [29], the light enters 

a PV cell and imparts enough energy to some electrons (negatively charged atomic particles) 

to free them. A built-in-potential barrier in the cell acts on these electrons to produce a voltage 

(the so-called photo voltage) which can be used to drive a current through a circuit. The figure 

1.1 present the photovoltaic effect [30]. 

 

 

 

 

 

 

Figure 1.1 The photovoltaic effect 

A PV cell is a p-n semiconductor junction fabricated from semiconductor (usually silicon). 

Solar radiation is made up of particles called photons. A photon is characterized by its 

Wavelength (λ) and energy (E): 

𝐸 = ℎ ∗
𝐶

𝛌
                                                     (1.1) 
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Where, 

E: photon energy[J] 

h: Plank’s constant ( 6, 62607004 ∗10-34 [J.s]) 

c: the speed of light (299 792 458 [m/s]) 

λ: wavelength of photon [m] 

For generating a current, the energy of the photon must be greater than the gap of the material 

[31]. 

To get the IV characteristic, a resistive load is used and each time the resistance value is 

changed from very small resistance (Isc, V=0) to very high resistance (I=0, V=Voc). The 

figure 1.2 indicates the IV characteristic for an ideal pv cell. 

 

Figure 1.2: I-V characteristic for an ideal PV cell 

1.4- Influence of irradiance 

The irradiance is an external parameter that depends on the exposure of the cell to the sun; it 

is the most influencing factor on the parameters of the cell. The photo-current is proportional 

to the irradiance and opposed to the diode current. 
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Figure 1.3 : PV and IV characteristic for real PV cell on T=25°C 

By varying the irradiance G, is noticed that the open circuit voltage Voc has a small 

variation, contrary to the short-circuit current Isc which varies a lot in function of the 

irradiance, which causes a huge variation in the power of the photovoltaic cell. 

1.5 Influence of temperature 

Temperature is the second most important parameter influencing the characteristics of the PV 

cell. The figure 1.4 shows IV and PV characteristics for a real PV cells under constant 

irradiance (G= 1000 w/m2): 

 

 

 

 

Figure 1.4: PV and IV characteristic for a real PV cell on G=1000w/m2 

Unlike the variation in irradiance, the variation in temperature mainly affects the open 

circuit voltage Voc . When the temperature increases, the open circuit voltage decreases and 

vice versa. The maximum power is achieved when we have a maximum of irradiance and a 

minimum of temperature. 

 

 



Chapter 01                                                                                                            Photovoltaic system 

 

7 
 
 

1.6-Series connection of photovoltaic cells 

An association of ns cells in series increases the voltage; the cells will be crossed by the same 

current. The output voltage is the addition of every PV cell voltage as can be noticed from the 

next equation and figure 1.5. 

{
𝑉𝑂𝐶 𝑛𝑠 = 𝑛𝑠 ∗ 𝑉𝑂𝐶
𝐼𝑆𝐶 𝑛𝑠 = 𝐼𝑆𝐶

                                             (1.2) 

 

 

 

 

Figure 1.5: IV characteristic for ns PV cells 

1.7-Parallel connection of photovoltaic cells 

On the other side, a parallel association of np cells increases the current provided by the 

generator. A number of cells connected in parallel are under the same voltage. The output 

current is the addition of every PV cell current as presented in the equation (1.3) and the 

figure 1.6. 

{
𝑉𝑂𝐶 𝑛𝑝 = 𝑉𝑂𝐶

𝐼𝑆𝐶 𝑛𝑝 = 𝑛𝑝 ∗ 𝐼𝑆𝐶
                                                    (1.3) 

 

 

 

 

 

Figure 1.6: IV characteristic for np PV cells 
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The operating voltage depends on the configuration of the power supply system, and the 

surface area of the module is variable depending on the constructor. The assembly of the 

modules in series and/or in parallel will make it possible to adjust different voltages and 

powers [32], [33]. 

1.8- Photovoltaic cell equivalent circuit models  

1- The Accurate Model  

The equivalent circuit model of a PV cell is needed in order to simulate its real behavior. One 

of the models proposed in literature is the double exponential model depicted in figure 1. 

Using the physics of p-n junctions, a cell can be modeled as a DC current source in parallel 

with two diodes that represent currents escaping due to diffusion and charge recombination 

mechanisms. Two resistances, Rs and Rp , are included to model the contact resistances and 

the internal PV cell resistance respectively. The values of these two resistances can be 

obtained from measurements or by using curve fitting methods based on the I-V characteristic 

of the cell.  

 

 

 

 

Figure 1.7: Double exponential PV cell model 

The relationship between the PV cell output current and terminal voltage is governed by: 

{
 
 

 
 𝐼 = 𝐼𝑝ℎ − 𝐼𝐷1 − 𝐼𝐷2 −

𝑉+𝐼𝑅𝑆

𝑅𝑃
   

𝐼𝐷1 = 𝐼01 [𝑒𝑥𝑝 (
𝑞(𝑉+𝐼𝑅𝑆)

𝑎𝑘𝑇
) − 1]

𝐼𝐷2 = 𝐼02 [𝑒𝑥𝑝 (
𝑞(𝑉+𝐼𝑅𝑆)

𝑎𝑘𝑇
) − 1]

                                   (1.4) 

Where, 

 Iph  is the PV cell internal generated photocurrent,  
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ID1   and ID2   are the currents passing through diodes D1 and D2, 

a is the diode ideality factor, k is the Boltzmann constant (1.3806503 × 10-23 J/K), 

T is the cell temperature in degrees Kelvin, q is the electron charge (1.60217646 × 10-19 C), 

 I01  and I02 are the reverse saturation currents of each diode respectively. 

2- The Simplest Model 

Assuming that the current passing in diode D2 due to charge recombination is small enough to 

be neglected, a simplified PV cell model can be reached as shown in figure 2.  

  

 

 

Figure 1.8: simplified PV cell model 

This model provides a good compromise between accuracy and model complexity and has 

been used in several previous works. In this case, current  ID2 can be omitted from (1.4) and 

the relation simplifies to:  

𝐼 = 𝐼𝑝ℎ − 𝐼0 [𝑒𝑥𝑝 (
𝑞(𝑉+𝐼𝑅𝑆)

𝑎𝑘𝑇
) − 1] −

𝑉+𝐼𝑅𝑆

𝑅𝑝
                            (1.5) 

It is clear that the relationship between the PV cell terminal voltage and output current is 

nonlinear because of the presence of the exponential term in 1 and 2. The presence of the p-n 

semiconductor junction is the reason behind this nonlinearity. The result is a unique I-V 

characteristic for the cell where the current output is constant over a wide range of voltages 

until it reaches a certain point where it start dropping exponentially [34].  

3-Fill factor 

The fill factor (FF) as expressed in Eq 1.5 may be calculated using the voltage and current at 

MPP, VMPP  and IMPP , the short circuit current (ISC), and the open-circuit voltage (VOC). 
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𝐹𝐹 =
𝐼𝑀𝑃𝑃𝑉𝑀𝑃𝑃

𝐼𝑆𝐶𝑉𝑂𝐶
                                         (1.6) 

It is a broadly utilized indicator of the all-inclusive condition of a solar cell. It is the 

proportion of maximum power (IMPP VMPP) to conceptual maximum power (ISC VOC ), 

which is not achievable. Due to the general series and shunt resistances, as well as the diode 

illustrated in diagram in figure 1.8, the MPP voltage and current are less than the open-circuit 

voltage and short-circuit current, respectively [35].  

1.9-Application for photovoltaic system 

Photovoltaic energy sources may be used in both isolated and grid-connected 

applications as shown in fig 1.9. Battery charging, Water pumping, refrigeration, residential 

power supplies, street lighting, and satellite power systems. telecommunications, heating 

systems, hybrid vehicles, military space, swimming pools, and hydrogen manufacturing are 

all applications for photovoltaic energy sources [36] ,[37] 

Figure 1.9: Application for PV system 
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1.10-Boost converter 

The boost converter is a medium of power transmission to perform energy absorption and 

injection from solar panel to grid-tied inverter. The process of energy absorption and injection 

in boost converter is performed by a combination of four components which are inductor, 

electronic switch, diode and output capacitor. The connection of a boost converter is shown in 

Figure 1.10. The process of energy absorption and injection will constitute a switching cycle. 

In other word, the average output voltage is controlled by the switching on and off time 

duration. At constant switching frequency, adjusting the on and off duration of the switch is 

called pulse-width-modulation (PWM) switching. The switching duty cycle, k is defined as 

the ratio of the on duration to the switching time period. The energy absorption and injection 

with the relative length of switching period will operate the converter in two different modes 

known as continuous conduction mode (CCM) and discontinuous conduction mode (DCM).   

 

 

Figure 1.10 Schematic of boost converter. 

1-Boost Converter Analysis 

For this case, it is considered that the continuous conduction mode.  Continuous 

Conduction Mode  Under CCM, it is divided into two modes. Mode 1 begins when the switch 

SW is turned on at t = 0 as shown in Figure 3. The input current which rises flows through 

inductor L and switch SW. During this mode, energy is stored in the inductor and load is 

supplied by capacitor current. Mode 2 begins when the switch is turned off at  t = kT. The 

current that was flowing through the switch would now flow through inductor L, diode D, 

output capacitor C, and load R as shown in Figure 1.11. The inductor current falls until the 

switch is turned on again in the next cycle. During this time, energy stored in the inductor is 

transferred to the load together with the input voltage. Therefore, the output voltage is greater 

than the input voltage and is expressed as 

𝑉𝑜𝑢𝑡 =
1

1−𝑘
𝑉𝑖𝑛                              (1.7) 
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where Vout  is the output voltage, k is duty cycle, and Vin  is input voltage .  

 

 

 

Figure 1.11 Circuit diagram of boost converter during Mode 1. 

 

 

Figure 1.12 Circuit diagram of boost converter during Mode 2. 

In order to operate the converter in CCM, the inductance is calculated such that the inductor 

current IL lows continuously and never falls to zero as shown in Figure 1.12. Thus, L is given 

by   

𝐿𝑚𝑖𝑛 =
(1−𝑘)2𝑘𝑅

2𝑓
                                            (1.8) 

where Lmin  is the minimum inductance, R is output resistance, and f is the switching frequency 

of switch SW . The output capacitance to give the desired output voltage ripple is given by   

𝐶𝑚𝑖𝑛 =
𝑘

𝑅𝑓𝑉
                                                (1.9) 

Where Cmin  is the minimum capacitance and Vr  is output voltage ripple factor. Vr  can be 

expressed as  

𝑉𝑟 =
∆𝑉𝑜𝑢𝑡

𝑉𝑜𝑢𝑡
                                                          (1.10) 
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Figure 1.13 Boost converter waveforms at CCM. 

1.11-Maximum Power Point Tracking (MPPT)  

A typical solar panel converts only 30 to 40 percent of the incident solar irradiation into 

electrical energy. Maximum power point tracking technique is used to improve the efficiency 

of the solar panel. According to Maximum Power Transfer theorem, the power output of a 

circuit is maximum when the Thevenin impedance of the circuit (source impedance) matches 

with the load impedance. Hence our problem of tracking the maximum power point reduces to 

an impedance matching problem. In the source side we are using a boost convertor connected 

to a solar panel in order to enhance the output voltage so that it can be used for different 

applications like motor load. By changing the duty cycle of the boost converter appropriately 

we can match the source impedance with that of the load impedance [34]. 

 

 

 

 

 

 

Figure 1.14 : Solar panel characteristic showing MPP and operating points A and B 
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Over the years, numerous MPPT algorithms have been proposed to track the 

maximum power of PV panel. Even though these algorithms are proposed for the same 

purpose, they differ tremendously regarding efficiency, tracking speed, steady state 

oscillations, complexity, hardware implementation, track global MPP or not and cost. 

Moreover, each method may work effectively in certain conditions while not in others. For 

instance, some MPPT methods yield better performance under stable irradiance. Conversely, 

under fast change of irradiance the results are found to be unsatisfactory 

 

1-PERTURB AND OBSERVE  

P&O is the most widely used MPPT method due to its simplicity. The P&O operation 

principle is presented by the flowchart in Fig. 1.15. As its name suggests, it works by 

introducing a perturbation (offset) in the PV panel's operating voltage or current according to 

the variation in operating power that is observed using the samples of voltage (V(k)) and 

current (I(k)) (Ishaque et al., 2014). 

The amount of perturbation value ‘offset’ depends upon the nature of the algorithm. It 

can be constant or varying. Pertaining to this fact, two further groups of P&O method are 

available in the literature, namely fixed-step P&O and  variable step P&O methods.  

 

 

 

 

 

Figure 1.15. Flowchart of P&O method. 

1.11.2- Hill Climbing  

The HC method is shown in Fig. 1.16. Its principle operation is like P&O, but the duty cycle 

is perturbed rather than perturbing the current or voltage to update the operating point of the 
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PV panel (Ishaque and Salam, 2013). The HC method periodically adjusts the duty cycle α(k) 

by a fixed perturbation (offset) with the direction of increasing power. The perturbation 

direction is reversed when the change of power is negative. This implies that  the PV system 

is not moving towards the MPP (Ishaque and Salam, 2013). Since it works based on the 

perturbation mechanism, this algorithm can be based on the fixed or variable step. 

Nevertheless, under partial shading condition (PSC), the P-V curve contains several peaks 

(global and local MPPs) (Bayrak et al., 2017). Therefore, based on the principle of P&O and 

HC, they fail to find Global MPP (GMPP) (Ishaque, 2012). 

 

 

 

 

 

Figure 1.16 Basic Flowchart of HC method. 

1.11.3- Incremental Conductance  

The P&O method has two major limitations as mentioned in (Wasynczuk, 1983). (1) Due to a 

fixed amount of perturbation at the steady-state, a small power variation around the MPP is 

always there which contributes to some power losses. (2) Under rapid fluctuations of 

environment, the operating point is most likely to diverge from the true MPP. The INC 

method was proposed in (Wasynczuk, 1983) to circumvent the disadvantage mentioned 

above. The INC is based on the fact that the derivative of (dP/dV) is zero at MPP.  

Hence, the basic idea of INC method is incrementally comparing the instantaneous 

conductance with the ratio of derivative of conductance (Wasynczuk, 1983). The basic flow 

chart of INC algorithm is depicted in Fig. 1.17. [38] 

 

 



Chapter 01                                                                                                            Photovoltaic system 

 

16 
 
 

 

Figure 1.17. The flow chart of INC method [38]. 

1.12-Photovoltaic system topologies 

         Now there are mainly two types of power electronic topologies being used in 

photovoltaic generation field, i.e., single stage topology and two stages topologies. The two 

stages topology is composed of former DC/DC part and latter inverter part. One stage consists 

of the inverter only. The merit of two stages topology lies in the convenience of designing its 

control scheme, but has to burden more power loss than that of single stage [39]. Single stage, 

on the contrary, can achieve relatively higher power efficiency, but the control scheme is 

more complex since the inverter alone must achieve all of the control objectives: grid current 

following, power factor constant and MPPT function [40, 41]. About these two topologies, 

presently there are not many literatures investigating the difference of their design details and 

little conclusion refer to their most suitable applying occasion respectively [42].  

1- Two stages topology 

Commonly, the output voltage of the PV array is not high enough to connect to the grid. 

Moreover, the voltage source inverter (VSI) usually has a voltage-down property, which 

causes the “PV array + Inverter” topology to output a lower voltage, thus two stages topology 

is suggested. This topology adds a voltage-up link part, usually configured as Figure 1.18 The 

DC/DC part often adopts a Boost circuit or some other derived versions, like Buck-boost, 

isolated Boost, etc.[43,44]. Besides voltage-up function, the Boost circuit can also offer a 

more stable input voltage for the inverter. The main advantage of the two stages topology is 
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the flexibility of designing its control scheme since it has a higher freedom degree, i.e. more 

controllable variables, which means  multiple control objectives (MPPT, grid connecting, var 

compensating, active filter etc.) can share by two stages respectively simultaneously [41, 46]. 

 

 

 

 

Figure 1.18: Two stages topology 

2- Single stage topology 

Although two stages topology has advantages in controller design, it also has some 

deficiencies [45, 47]. With the circuit stages increasing, the power loss rises as well that 

makes the holistic energy transferring efficiency decrease; more stages also adds system 

complexity, thereby reduce the system reliability. To enhance system efficiency, system only 

relying on the inverter, i.e. so-called single stage topology has been suggested, as shown in 

Figure 1.19. 

 

 

 

Figure 1.19: Single stages topology 

1.13-inverter topologies for PV system  

1-Centralized converter topology 

In this topology, the PV panels are wired in a single common array (in series and or parallel) 

and the array is connected to a single inverter. This topology is economic due to the small 

number of inverters, but the partial shadowing of the one panel will affect the whole array 

power output. This topology has two kinds of connection: 
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2-Series-connected string converter topology 

Here the array of the PV panels is split to the several strings in series. Losses due to 

electric conductors are important when the voltage is low [48]. This topology is characterized 

by the high voltage and low current, or in other words it allows reduction in the cost of wires, 

decrease in the voltage drops and thus power losses the conductors. Strings are connected one 

by one to inverters with MPPT and the outputs of the inverters are connected to the 

transmission lines. Figure 1.20 shows this topology. 

                When one or several panel is shadowed in a string, other string are not affected and 

irradiance level remains same for other string. Each PV modules is equipped by parallel diode 

to bypasses it if its output voltage is low. The topology is appropriate for installation where 

the irradiance is regularly altered for complete panel string, while irradiation of other panel 

strings is not disturbed. 

3- Multi-string parallel-connected topology 

This topology as shown in the Figure 1.20 is similar to the series connected string 

topology with the difference of having separate inverter and dc-dc converter with MPPT. 

Here the converters are simpler and thus are cheaper and at the time more efficient. Every 

string of the PV panels is connected to dc-dc converter and converters connected to common 

inverter that is in turn connected to the grid. 

The separate MPPT and inverter control reduces the cost of the PV system. The other 

advantage of this topology is that the inverter provides high power rate and the system 

efficiency is higher. 

4-Cascaded dc-dc converters topology 

MPPT function in this topology, as shown in Figure 1.20, is performed for each of the 

PV panels. Each PV module is equipped by its own converter and MPPT controller. 

Converters are then connected in parallel or series; however the series connection is more 

common. In the series connection if a panel is shadowed the converter is gaining maximum 

available power, but other panels are not affected, the output current of each converter must 

have the same value. 
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This topology assures the optimal power generation process and maximal total yield if 

efficiency is not taken into account. 

The cascaded converter topology with central inverter provide better distribution level 

and performance during the partial shadowing and thus is recommended for the building 

integrated photovoltaic. Higher distribution level implies higher number of converters that 

allows better performance and increases the harvested power. 

But the large number of converters decreases the overall efficiency because of the 

decrease of power rate of the converters (and small power rate converters are relatively less 

efficient than high power converter). But this topology is able to reach higher total energy 

than other systems when the shadowing is significant. On the other side centralized and multi 

string inverter topologies are common for the solar plants and roof-top systems, which are not 

affected by surrounding, since high efficiency can be reached at higher power rates. 

To sum up, less distributed systems in case of low irradiation disturbance presents 

higher performance due to higher efficiency that could be achieved relatively easy. Systems 

that are more distributed have better performance in cases of the frequent partial shading close 

to the location of the PV panel and thus can shade the panels partially [49]. 

 

Figure 1.20: Classification of conventional inverters interfaced with grid connected PV 

system, based on the PV-module arrangement (Kouro et al., 2015). 
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5- Three-Phase Inverter Topologies 

Two configurations able to generate three-phase asymmetrical signals are existed. 

These are the three-leg neutral point build by capacitors and the four-leg inverter with a 

controlled neutral point by the fourth leg. Three-phase inverters with neutral point are an 

evolution from the single-phase ones. Three half-bridge single-phase inverters joined together 

can be seen as a three-phase neutral point inverter, see Fig. 1.21, where each output feeds one 

phase. This topology can be used to feed balanced or unbalanced loads. In case of unbalanced 

loads, the sum of the output currents ia , ib , and ic  will not be zero and the neutral current 

will flow in the connection between the neutral point and the mid-point of the capacitive  

divider [50,51,52]. To maintain a symmetrical voltage across the two capacitors an adequate 

power electronic and a voltage stage management are needed, this will not be taken further 

into discussion.  

 

Figure 1.21: Three leg inverter without a neutral point (balanced output). 

The general power electronic topology of the four-legged inverter is shown in Figure. 1.22. 

the goal of the three-phase four-leg Inverter is to supply a desired sinusoidal output voltage 

waveform to the load for all load conditions and transients. Compared with the four leg 

inverter, the three leg inverter has a lower number of semiconductor switches and the control 

function can be built like three individual single line inverters. 

 

Figure 1.22: Three-leg inverter with a neutral point. 
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However the four-leg inverter still have the advantages of higher utilization of the DC link 

voltage, small DC link capacitor as no zero sequence current flow across the DC link 

capacitor and an additional degree of freedom due to the 4th leg [52].   

 

Figure 1.23: Four-leg inverter. 

6--Multilevel inverter topologies  

Nowadays, multilevel inverters are widely used in power industry. It starts from  three  level 

inverter. Voltage unbalance problem is one of the major issue in working of multilevel 

inverter. So to reduce it, there are main three types of multilevel inverter are used. These are 

as follows: 

• Diode-Clamped Multilevel Inverter  

The diode-clamped multilevel inverter is shown in fig.1.24. It requires (m-1) capacitors on dc 

bus to produce m levels of voltage.[53] 

 

 

 

 

 

 

Fig.1.24. Diode-clamped multilevel inverter.[53] 
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It has different features like, high-voltage rating required or blocking diodes, unequal device 

rating and capacitor voltage unbalance.  

Advantages: 

a. High efficiency.  

b. No need of filters to reduce harmonics.  

c. Reactive power flow can be controlled.  

Disadvantages: 

a. For high levels, more number of diodes are required. 

b. Real power flow control for individual converter is difficult. 

• Flying Capacitors Multilevel Inverter  

Figure 7 shows the flying capacitors based multilevel inverter topology. It requires (m-1) 

capacitors on dc bus form level converter.  

Advantages: 

a. Extra ride through capability during power outage.  

b. No need of filters to reduce harmonics. 

c. It gives proper switching combination to balance different voltage levels. 

d. Real and reactive power flow can be controlled.  
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Fig.1.25. Three-level flying capacitor multilevel inverter topology  

7-Multicellular inverter Topology  

The general scheme for three-phase multicellular converter is illustrated in Fig. 1.26 

The multilevel inverter consists of pairs of semiconductor switches separated by floating 

capacitors. The two switches in each pair must always be complementary in order to avoid 

shorting the voltage sources. Each pair of switches represents a switching cell. The principle 

of this topology is to divide the DC bus voltage into several basic voltage sources. The 

operation of each switching cell is similar to a two-level inverter with a voltage source equal 

to v/N (N is the number of cells and vdc dc is the supply voltage) and a current source. The 

maximum voltage of the IGBTs switching are achieved by Vmax= v/N. The first advantage of 

these converters is the reduced volt-dc age requirements on the switches. It is necessary to 

identify all the converter possible states, the voltage across the floating capacitors and the 

converter’s output voltage level for all states (equal to v j /N, j = 1,...N). Multicellular series 

converters also improve the waveform of the output voltage and allow greater flexibility for 

different voltage levels as compared to the NPC structure. 

However, These topologies have received more interest because of the several 

advantage such as small dv/dt stress, small rating of power switches, can be used in high dc 

voltage application low power loss, low voltage stress in power switches and the dc side 

voltage being divided on flying capacitors naturally [54-55]. 
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Figure 1.26:. Multicellular arm having 3 switching cells 

 

 

 

 

 

 

7.1-The Modeling of Multicellular inverter 

The power converter, used in this work, has three cell-multicellular topologies which 

includes floating capacitors. The modeling of this type of converter involves the mathematical 

equations of floating capacitors. In the latter, the instantaneous variations of current and 

voltage are given by equations 1.11 and 1.1 2. 

𝑖𝐶𝑖 = 𝐶𝑖
𝑑

𝑑𝑡
𝑉𝐶𝑖 (1.11) 

𝑑

𝑑𝑡
𝑉𝐶𝑖 =

1

𝐶𝑖
[𝑆(𝑖+1) − 𝑆𝑖]𝑖𝐿 (1.12) 

Si : the switching functions of the multicellular converter. 

iCi : Current of flying capacitor Ci  i=1,2 

VCi : Voltage of flying capacitor Ci 

iL : Load current. 
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The application of Kirchhoff’s law from the mid-point point of Vdc and three-phase 

load gives the following equations. 

𝐿𝐿
𝑑𝑖𝐿
𝑑𝑡

= 𝑉𝑆 − 𝑅𝐿𝑖𝐿 −
𝑉𝑑𝑐
2

 (1.13) 

𝑉𝑆 = 𝑆1[𝑉𝐶1] + 𝑆2[𝑉𝐶2 − 𝑉𝐶1]+𝑆3[𝑉𝑑𝑐 − 𝑉𝐶2] (1.14) 

𝑑𝑖𝐿
𝑑𝑡

=
1

𝐿𝐿
(𝑆1[𝑉𝐶1] + 𝑆2[𝑉𝐶2 − 𝑉𝐶1]+𝑆3[𝑉𝑑𝑐 − 𝑉𝐶2]) − 𝑅𝐿𝑖𝐿 −

𝑉𝑑𝑐
2𝐿𝐿

 (1.15) 

 

With: 

Switching functions S1, S2, and S3 are the input of multicellular converter. 

Flying capacitors C1 and C2 are traversed by a currents iC1, iC2 and the voltages at their 

terminals are VC1, VC2 respectively. 

Vdc: DC voltage source.  

RL: load resistor  

LL: Load inductor 

The nonlinear model of multicellular converter topology used in the photovoltaic 

system is given by equation 1.16. 

[

𝑉̇𝐶1
𝑉̇𝐶2
𝑖̇𝐿̇

] = [

0 0 0
0 0 0

0 0
−𝑅𝐿
𝐿𝐿

] [
𝑉𝐶1
𝑉𝐶2
𝑖𝐿

] +

[
 
 
 
 
 
 
−𝑖𝐿
𝐶1

𝑖𝐿
𝐶1

0

0
−𝑖𝐿
𝐶2

𝑖𝐿
𝐶2

𝑉𝐶1
𝐿𝐿

𝑉𝐶2 − 𝑉𝐶1
𝐿𝐿

𝑉𝑑𝑐 − 𝑉𝐶2
𝐿𝐿 ]

 
 
 
 
 
 

[
𝑆1
𝑆2
𝑆3

]

+ [

0
0

−𝑉𝑑𝑐
2𝐿𝐿

] 

(1.16) 

 

The state space of proposed topology can be expressed by the following equation: 
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𝑥̇ = 𝑓 (𝑥) + 𝑔 (𝑥)𝑢 + 𝐻 (1.17) 

 

With, 

State vector is expressed by x=[VC1, VC2, iL]T  . the reference vector is  

xref=[
𝑉𝑑𝑐

3
,
2𝑉𝑑𝑐

3
, 𝑖𝐿]

T. 

f(x)=[

0 0 0
0 0 0

0 0
−𝑅𝐿

𝐿𝐿

], g(x)=

[
 
 
 
 
−𝑖𝐿

𝐶1

𝑖𝐿

𝐶1
0

0
−𝑖𝐿

𝐶2

𝑖𝐿

𝐶2
𝑉𝐶1

𝐿𝐿

𝑉𝐶2−𝑉𝐶1

𝐿𝐿

𝑉𝑑𝑐−𝑉𝐶2

𝐿𝐿 ]
 
 
 
 

 , u=[𝑆1𝑆2 𝑆3]T input vector,  

 𝐻 = [

0
0

−𝑉𝑑𝑐

2𝐿𝐿

] Constant vector. 

1.14.Conclusion  

In this part, we presented detailed types of the photovoltaic systems and its components, and 

in the last we focused on the use of multicellular topology which the main object of the study. 



Chapter 2.                                                                     Control of Multicellular Power inverter  

 

 27  
 

Chapter 2 

Control of Multicellular Power inverter  

2.1 Introduction 

A nonlinear controlled system is a set of nonlinear equations describing the temporal 

evolution of the constituent variables of the system under the action of a finite number of 

independent variables called inputs or control variables [56], The theory of nonlinear control 

has more than one asset allowing its application in the analysis and the control of the various 

physical systems. Among other things, there are two different ways, often more efficient are 

exact linearization and sliding mode control. The first consists in introducing before and 

around the controlled system non-linear organs so that the whole is linear then to apply on this 

new system one of the policies linear. The drag control brings the point representing the state 

of the system to a surface over which this state slides in a linear behavior and moves towards 

the point desired balance. The chapter ends with the notion of passivity and its applications in 

the control of nonlinear systems [57]. 

2.2. Modeling of the three-cell multicellular inverter 

The instantaneous value model representing one phase of the N-cell multi-cell inverter 

supplying any load is given by the following system of equations: 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑑

𝑑𝑡
𝑣𝐶1 =

1

C
[𝑆2 − 𝑆1]𝑖𝑓

𝑑

𝑑𝑡
𝑣𝐶2 =

1

𝐶
[𝑆3 − 𝑆2]𝑖𝑓

⋮
𝑑

𝑑𝑡
𝑣𝐶𝑁−1 =

1

𝐶
[𝑆𝑁 − 𝑆𝑁−1]𝑖𝑓

𝑑

𝑑𝑡
𝑖𝑓 = −

[𝑆2 − 𝑆1]

𝐿𝑓
𝑣𝐶1 −

[𝑆3 − 𝑆2]

𝐿𝑓
𝑣𝐶2 −⋯−

[𝑆𝑁 − 𝑆𝑁−1]

𝐿𝑓
𝑣𝐶𝑁−1

−
𝑅𝑓
𝐿𝑓
𝑖𝑓 +

𝑆𝑁
𝐿𝑓
𝑉𝑑𝑐 −

𝑉𝑑𝑐
2𝐿𝑓

−
𝑣𝑠
𝐿𝑓

𝑖𝑓 = 𝑖𝑐ℎ − 𝑖𝑠

 2-1 
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[

𝑣𝐶1̇
𝑣𝐶2̇
𝑖𝑓̇

] = [

0 0 0
0 0 0

0 0
−𝑅𝑓
𝐿𝑓

] [

𝑣𝐶1
𝑣𝐶2
𝑖𝑓
] +

[
 
 
 
 
 
 
−(𝑖𝑐ℎ − 𝑖𝑠)

𝐶

(𝑖𝑐ℎ − 𝑖𝑠)

𝐶
0

0
−(𝑖𝑐ℎ − 𝑖𝑠)

𝐶

(𝑖𝑐ℎ − 𝑖𝑠)

𝐶
𝑣𝐶1
𝐿𝑓

𝑣𝐶2 − 𝑣𝐶1
𝐿𝑓

𝑉𝑑𝑐 − 𝑣𝐶2
𝐿𝑓 ]

 
 
 
 
 
 

[

𝑠1
𝑠2
𝑠3
]

+ [

0
0

−𝑉𝑑𝑐
2𝐿𝑓

−
𝑣𝑠
𝐿𝑓

] 

2-2 

The matrix state representation at the instantaneous values of one phase of the three-cell 

multi-cellular inverter applied to the multicellular inverter is given by equation (2- 1).  

From the nonlinear matrix form, we can use the nonlinear controls. In this chapter, we use the 

control by sliding mode then the control by exact linearization  

2.2.1 Sliding mode control  

1 Definition 

Conventional control laws of the PID type are very effective in the case of systems linear with 

constant parameters. For nonlinear systems or systems having parameters not constants, these 

control laws can be insufficient because they are not robust especially when requirements on 

accuracy and other dynamic characteristics of the system are strict [58]. it is necessary to use 

control laws insensitive to the variations of the parameters control laws insensitive to 

parameter variations, disturbances and non-linearity. The control laws known as variable 

structure (CSV) also known as control by sliding mode constitute a solution to these problems 

[59]. In practice, the use of this control technique has long been limited by the oscillations 

linked to the switching of the command and which can occur on the controlled quantities. 

Since then, many solutions have been proposed to reduce these oscillations: increase in 

frequency switching, continuous control in a band around the sliding variety or breakdown of 

the command into a low-frequency DC component and a discontinuous high frequency 

control and the boundary layer method where the component discontinuous of the command 

is replaced in the vicinity of the hyper surface of sliding by a continuous function. In this 
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chapter we will give some basic concepts of variable structure control, and some basic 

concepts of sliding mode theory [58]. 

2. Principle of sliding modes control. 

The principle of control by sliding modes and constraining the system to achieve the given 

surface called the sliding surface, depending on the purposes of the control fixing the 

dynamics in closed loop: it is the mode of convergence. Then by synthesis a discontinuous 

control that allows the trajectories of the system to reach and stay on this surface: it is the 

sliding surface and the movement that occurs along it is called sliding moves. 

  The trajectory in the phase plane consists of three distinct parts[60]: 

1- The “CM” convergence mode: This is the mode during which the variable to be regulated 

moves from any initial point in the phase plane and tends towards the switching surface 

S(x)=0 . This mode is characterized by the control law and the convergence criterion. 

2- The “SM” sliding mode: This is the mode during which the state variable has reached the 

sliding surface and tends towards the origin of the phase plane. The dynamics of this mode is 

characterized by the choice of the sliding surface S(x)=0. 

3- The steady state mode "SSM": This mode is added for the study of the response of the 

system around its point of equilibrium (origin of the phase plane), it is characterized by the 

quality and performances of control. 

 

Fig.2.1: Different convergence modes for state trajectory 

Implementation of the control law can be carried out in three main steps very dependent on 

each other [61]: 



Chapter 2.                                                                     Control of Multicellular Power inverter  

 

 30  
 

 - The choice of surface. 

 - The establishment of the conditions for the existence of convergence. 

- The determination of the control law. 

3. Choice of sliding surface. 

In order to ensure the convergence of a state variable x towards its reference value xref , 

different shapes of the sliding surface have been proposed, each surface has different best 

performance for a given application. In general, we choose a surface not linear. 

 The nonlinear form is a function of the error on the controlled variable, denoted e(x). She is 

given by the equation: 

𝑠(𝑥) = (
𝑑

𝑑𝑡
+ 𝛾)𝑟−1𝑥̃ 2-3 

 

Consider a class of nonlinear systems the surface vector has the same dimension than the 

control vector u. 

𝑥̇ = 𝑓(𝑥, 𝑡) + 𝑔(𝑥, 𝑡). 𝑢  
 

2-4 

 

 

e(x) = 𝑥𝑟𝑒𝑓- x.    is the error between the controlled variable x and its reference 𝑥𝑟𝑒𝑓 

λ: is a positive constant. 

r: is the relative degree. 

4. Convergence and existence conditions. 

The conditions of existence and convergence are the criteria that allow the different dynamics 

of the system to converge towards the sliding surface and stay there, regardless of the 

disturbance. There are two considerations for ensuring the mode of convergence [62]. 
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1. The discrete commutation function: It gives the convergent surface dynamics towards 

zero. 

{
𝑆̇(𝑥) > 0    𝑖𝑓 𝑆(𝑥, 𝑡) < 0

𝑆̇(𝑥) <   0      𝑖𝑓 𝑆(𝑥, 𝑡) > 0
 2.5 

𝑆̇(𝑥). 𝑆(𝑥) < 0 2.6 

 

2. The Lyapunov function: The Lyapunov function is a positive scalar function V(x)>0  for 

system state variables. The control law must decrease this function V(x) < 0. 

We define the Lyapunov function as follows: 

𝑉(𝑥) =
1

2
𝑆𝑇(𝑥). 𝑆(𝑥) 2.7 

 

The derivative of this function is: 

𝑉̇(𝑥) =
1

2
𝑆(𝑥). 𝑆̇(𝑥) 2.8 

 

5 Determination of the control law. 

It is necessary to determine the command necessary to attract the state trajectory towards the 

surface of sliding S(x) =0 and then towards its point of equilibrium while maintaining the 

conditions existence of the sliding mode [63]. 

In the presence of a disturbance, the discontinuous part is essentially intended to check the 

conditions of attractiveness. In this case, the structure of a controller by sliding mode S(x) 

consists of two parts equivalent control (𝑢𝑒𝑞) and discrete control (𝑢𝑛) We write: 
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𝑢 =  𝑢𝑒𝑞  +  𝑢𝑛 2.9 

 

Such as: 

 U𝑒𝑞: The control vector proposed by Utkin, it is used to maintain the variable to be 

controlled on the sliding surface S(𝑥)=0, the equivalent control vector is deduced by 

considering that the derivative of the surface is zero 𝑆(𝑥) =0. It can be interpreted as a status 

return individual playing the role of a control signal applied to the system to be controlled, it 

can be like an average value that the control takes when switching fast between the values 

𝑢𝑚𝑎𝑥 and 𝑢𝑚𝑖𝑛. 

U𝑛: is determined to check the convergence condition. 

To highlight the computation of the order, we consider a system defined in the state space by 

the equation (II.10). This is to find the expression of the control vector U: 

 

𝑆̇(𝑥) =
𝑑𝑆

𝑑𝑡
=
𝑑𝑆

𝑑𝑥

𝑑𝑥

𝑑𝑡
 

 

2.10 

 

This gives the following result: 

 

𝑠̇(𝑥) =
𝑑𝑠

𝑑𝑡
=
𝑑𝑠

𝑑𝑥
[𝑓(𝑥) + 𝑔(𝑥)𝑢𝑒𝑞] +

𝑑𝑠

𝑑𝑥
𝑔(𝑥)𝑢𝑛 2-11 

 

During the sliding mode the sliding surface is null, then, its derivative and the discontinuous 

part are also null. From where, one deduces the expression of the equivalent control vector. 
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𝑢𝑒𝑞 = −[
𝑑𝑠

𝑑𝑥
𝑔(𝑥)]

−1

[
𝑑𝑠

𝑑𝑥
𝑓(𝑥)] 2.12 

 

For the equivalent control to take a finite value, the matrix system must be reversible: 

 

𝑑𝑠

𝑑𝑥
𝑔(𝑥) ≠ 0 2.13 

 

By replacing the equivalent control vector by its expression in equation 2.9, we obtain the 

new expression of the derivative of the surface: 

 

𝑠̇(𝑥) =
𝑑𝑠

𝑑𝑥
𝑔(𝑥)𝑢𝑛 2-14 

 

And the attractiveness condition 𝑆(𝑥). 𝑆̇(𝑥) < 0  becomes: 

 

𝑆(𝑥)
𝑑𝑠

𝑑𝑥
𝑔(𝑥)𝑢𝑛 <  0 2.15 

 

To satisfy the attractiveness condition (the derivative of the sliding surface is negative). 

The sign of Un must be opposite that of  
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The simplest form of the discrete command is the sign function. 

𝑢𝑛 = 𝑘𝑥𝑠𝑖𝑔𝑛 𝑆(𝑥) 2-16 

 

The sign of 𝑘𝑥 must be different from that of   
𝑑𝑠

𝑑𝑥
𝑔(𝑥) 

Fig. 2.2 represents the sign function 

 

 

1

-1

S(x)

SignS(x)

 

Fig. 2.2. Representation of the sign function. 

 

6. Sliding mode control of a multicellular converter: 

Nonlinear state representation of the three-phase multicellular inverter with three cells is in 

the form: 

𝑥̇ = 𝐴𝑥 + 𝐵(𝑥)𝑢 + 𝐻 

 

2-17 

Choose the sliding surface as follows: 
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𝑆(𝑥) = 𝑥 − 𝑥𝑟𝑒𝑓 2-18 

 

With : 

x = [vC1, vC2 , if ]
T  is the state vector, 𝑋𝑟𝑒𝑓 = [

𝑉𝑑𝑐

3
,
2𝑉𝑑𝑐

3
, 𝑖𝑓−𝑟𝑒𝑓 ]

𝑇

 is the reference vector.  

And to verify the convergence condition, choosing the Lyapunov function as follows: 

 

𝑉 =
1

2
𝑆2(𝑥) 2-19 

𝑉̇ = 𝑆(𝑥)𝑆̇(𝑥) 2-20 

The derivative of the sliding surface: 

𝑆̇(𝑥) = 𝑥̇ − 𝑥̇𝑟𝑒𝑓 2-21 

 

By replacing the state form of the multicellular inverter in (II.22): 

𝑆̇(𝑥) = 𝐴(𝑥) + 𝐵(𝑥)𝑢 + 𝐻 − 𝑥̇𝑟𝑒𝑓 2-22 

 

The command is equivalent for the system to slide on the sliding surface where the derivative 

of the sliding surface is zero: 

𝑢𝑒𝑞 = −(𝐵(𝑥))
−1
(𝐴(𝑥) + 𝐻 − 𝑥̇𝑟𝑒𝑓) 2-23 
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The total control vector U is the sum of the two control vectors, equivalent and discontinuous 

as the equation (2-9) indicates it 

By replacing equations (2-9) and (2-23) in equation (2-22), we obtain the equation of the 

derivative of the following sliding surface: 

 

𝑆̇(𝑥) = 𝐵(𝑥)𝑢𝑛 2-24 

 

Then, the derivative of the Lyapunov function which must be negative is given by: 

𝑆(𝑥)𝑆(𝑥)̇ = 𝑆(𝑥)𝐵(𝑥)𝑢𝑛 < 0 2-25 

For the state representation of the multicellular converter  

 

[𝑢𝑛1𝑢𝑛2𝑢𝑛3]
𝑇 

 

2-26 

𝑆(𝑥)𝑆̇(𝑥) = 𝑆(𝑥) [(
−(𝑖𝑐ℎ − 𝑖𝑠)

𝐶
+
𝑣𝑐1
𝐿𝑓
)𝑢𝑛1

+ (
(𝑖𝑐ℎ − 𝑖𝑠)

𝐶
−
(𝑖𝑐ℎ − 𝑖𝑠)

𝐶
+
𝑣𝑐2 − 𝑣𝑐1

𝐿𝑓
)𝑢𝑛2

+ (
(𝑖𝑐ℎ − 𝑖𝑠)

𝐶
+
(𝑣𝑑𝑐 − 𝑣𝑐2)

𝐿𝑓
)𝑢𝑛3] 

2-27 

 

To ensure stability according to Lyapunov's theorem we need 𝑉̇(𝑥) < 0 

So 
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𝑢𝑛1 = −𝑠𝑖𝑔𝑛 [𝑆(𝑥) (
−(𝑖𝑐ℎ − 𝑖𝑠)

𝐶
+
𝑣𝑐1
𝐿𝑓
)] 

 

2-28 

𝑢𝑛2 = −𝑠𝑖𝑔𝑛 [𝑆(𝑥) (
(𝑖𝑐ℎ − 𝑖𝑠)

𝐶
−
(𝑖𝑐ℎ − 𝑖𝑠)

𝐶
+
𝑣𝑐2 − 𝑣𝑐1

𝐿𝑓
)] 2.29 

𝑢𝑛3 = −𝑠𝑖𝑔𝑛 [𝑆(𝑥) (
(𝑖𝑐ℎ − 𝑖𝑠)

𝐶
+
(𝑣𝑑𝑐 − 𝑣𝑐2)

𝐿𝑓
)] 2.30 

 

𝑢𝑛1 = −𝑠𝑖𝑔𝑛 [𝑆(𝑥) (
−(𝑖𝑐ℎ − 𝑖𝑠)

𝐶
+
𝑣𝑐1
𝐿𝑓
)] 

 

2-31 

𝑢𝑛2 = −𝑠𝑖𝑔𝑛 [𝑆(𝑥) (
(𝑖𝑐ℎ − 𝑖𝑠)

𝐶
−
(𝑖𝑐ℎ − 𝑖𝑠)

𝐶
+
𝑣𝑐2 − 𝑣𝑐1

𝐿𝑓
)] 2.32 

𝑢𝑛3 = −𝑠𝑖𝑔𝑛 [𝑆(𝑥) (
(𝑖𝑐ℎ − 𝑖𝑠)

𝐶
+
(𝑣𝑑𝑐 − 𝑣𝑐2)

𝐿𝑓
)] 2.33 

 

2.3 Exact linearization Control mode. 

1. Definition. 

The linear method is one of the nonlinear control methods, Its mechanism of operation is to 

algebraically transform a nonlinear system into a system linear, so that linear control 
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techniques can be applied, After this transformation, all linear correction techniques are used 

[64] [65]. 

The main idea of this method is to make an accurate conversion without going through 

estimates. 

2. Regulation loop and mathematical equations of a multicellular converter  

To know the results of this method, we apply it to the inverter three-celled multicellular. 

Consider the nonlinear multi-input multi-output system presented in the equation 

{
𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝑢 + 𝐻

𝑦 = 𝑑(𝑥)
 2.34 

 

[𝑥1, 𝑥2,  𝑥3, … , 𝑥𝑁]
𝑇 is the state vector. 

[𝑦1, 𝑦2,  𝑦3, … , 𝑦𝑁]
𝑇 is the output vector. 

[𝑢1, 𝑢2,  𝑢3, … , 𝑢𝑁]
𝑇 is the input vector. 

[𝐻1, 𝐻2,  𝐻3, … ,𝐻𝑁]
𝑇 is the disturbing component. 

 

And whose vector representations are: 

𝑓(𝑥) = (
𝑓1(𝑥)
⋮

𝑓𝑛(𝑥)
), 𝑔(𝑥) = (

𝑔1(𝑥)
⋮

𝑔𝑛(𝑥)
), 𝑑(𝑥) = (

𝑑1(𝑥)
⋮

𝑑𝑛(𝑥)
) 

 

The functions f, g and d are considered as smooth functions which are indefinitely derivable 

with respect to each of their arguments 

The idea of exact linearization is to complete the system by introducing a new command 

w such that 𝑢 = 𝑅(𝑥, 𝑤). 



Chapter 2.                                                                     Control of Multicellular Power inverter  

 

 39  
 

 To perform this linear operation, successive derivatives are expressed with the symbol 𝑦𝑖, 

when the inputs start to interfere with the expression of the derivative, we stop the 

differentiation, we set the following equation 

 

 

 

 

Where the new input w is given by the equation 

{
𝑦1
𝑟1 = 𝑤1
⋮

𝑦𝑛
𝑟𝑛 = 𝑤𝑛

 2.36 

 

Where 𝑟𝑖 denotes the smallest derivative so that the entries 𝑢 appear in the 𝑟𝑖è𝑚𝑒 derivative 

of the output 𝑦𝑖. 

The linearized system is given by: 

...w1 y1

...w2 y2

...wn yn

...

 

Using the matrix property    is invertible, the following loops are performed 

𝑢(𝑥) = ∆−1(𝑥)𝑤 − ∆−1(𝑥)∆0(𝑥) − ∆
−1(𝑥)𝐻 2.38 

(
𝑦1
(𝑟1)

⋮

𝑦𝑚
(𝑟𝑚)

) = ∆(𝑥)𝑢 + ∆0(𝑥) + 𝐻 2.35 
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𝑢(𝑥) = ∆−1(𝑥)[𝑤 − 𝐻] − ∆−1(𝑥)∆0(𝑥) 2.39 

 

Where 𝑤 is the new entry to make the system (2-31) linear 

We can write the equation (2.36) in the following form 

𝑢(𝑥) = 𝛼(𝑥) + 𝛽(𝑥)[𝑤 − 𝐻] 2-40 

 

With: 

𝛼(𝑥) = −∆−1(𝑥)∆0(𝑥) 

 

2-41 

𝛽(𝑥) = ∆−1(𝑥) 2.42 

The system represented by equation (2.31) is linear and completely decoupled with the new 

order 𝑤 and is easily orderable using classical techniques of the output return command. 

The overall scheme of this system with the control vector 𝑤 is given in the following figure 

β (x)
w

H α (x)

system
y=x

 

Fig. 2.3. Linearization of the nonlinear system. 
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3. Control by exact linearization of a three-phase multicellular inverter. 

We will study a model with average values with the exact linearization on an inverter three-

phase three-cell multicellular with an R-L load, the condition is given by the equations 

[

𝑉𝑐1̇

𝑉𝑐2̇

𝐼𝑐ℎ̇

] = [

0 0 0
0 0 0

0 0
−𝑅𝑐ℎ
𝐿𝑐ℎ

] [
𝑉𝑐1
𝑉𝑐2
𝐼𝑐ℎ

] +

[
 
 
 
 
 
𝐼𝑐ℎ
𝐶

0 0

0
I𝑐ℎ
𝐶

0

𝑉𝑐1
𝐿𝑐ℎ

𝑉𝑐2
𝐿𝑐ℎ

𝑉𝑑𝑐
𝐿𝑐ℎ]

 
 
 
 
 

[

𝑠1
𝑠2
𝑠3
] + [

0
0

−𝑉𝑑𝑐
2𝐿𝑐ℎ

] 2.42 

The state vector x of the system of each phase is therefore of order three with two voltages of 

the floating capacitors and a load current. 

𝑥1 = 𝑉𝐶1, 𝑥2 = 𝑉𝐶2, 𝑥3 = 𝐼𝑐ℎ,  𝑎 =
1

𝐶
 ,  𝑏0 =

𝑅𝑐ℎ

𝐿𝑐ℎ
 , 𝑏1 =

1

𝑅𝑐ℎ
 

 

For the decoupling of the system (II-42) to be possible, the matrix ∆(𝑥) must be invertible, 

then, the delt  ∆(𝑥) = 𝑎2𝑏1𝑉𝑑𝑐𝑥3
2   is deferent from zero. 

For the matrix ∆(𝑥) to be invertible it is necessary that 𝑉𝑑𝑐 ≠ 0 et 𝑥3 ≠ 0   

 

∆0(𝑥) = (
0
0

−𝑏0𝑥3

) 2.43 

∆−1(𝑥) =

(

 
 
 
 

𝑥1 − 𝑉𝑑𝑐
𝑎𝑉𝑑𝑐𝑥3

 
𝑥2 − 𝑉𝑑𝑐
𝑎𝑉𝑑𝑐𝑥3

1
𝑏1𝑉𝑑𝑐

𝑥1
𝑎𝑉𝑑𝑐𝑥3

𝑥2 − 𝐸
𝑎𝑉𝑑𝑐𝑥3

1
𝑏1𝑉𝑑𝑐

𝑥1
𝑎𝑉𝑑𝑐𝑥3

𝑥2
𝑎𝑉𝑑𝑐𝑥3

1
𝑏1𝑉𝑑𝑐

)

 
 
 
 

 2.44 
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The state feedback can therefore be expressed by 

𝛼(𝑥) = −∆−1(𝑥)∆0(𝑥) =

(

 
 
 
 

𝑏0𝑥3
𝑏1𝑉𝑑𝑐
𝑏0𝑥3
𝑏1𝑉𝑑𝑐
𝑏0𝑥3
𝑏1𝑉𝑑𝑐)

 
 
 
 

 2.45 

 

By applying the state feedback to the system, we obtain the following linearized system 

{

𝑦̇1 = 𝑉̇𝑐1 = 𝑤1
𝑦̇2 = 𝑉̇𝑐2 = 𝑤2
𝑦̇3 = 𝐼𝑐ℎ̇ = 𝑤3

 

 

The nonlinear form   𝑥̇ = 𝐴𝑥 + 𝐵(𝑥)𝑢 + 𝐻 

With : 

x = [vC1, vC2 , if ]
T  is the state vector, 𝑋𝑟𝑒𝑓 = [

𝑉𝑑𝑐

3
,
2𝑉𝑑𝑐

3
, 𝑖𝑓−𝑟𝑒𝑓 ]

𝑇

 is the reference vector.  

A = [

0 0 0
0 0 0

0 0
−𝑅𝑓𝑘
𝐿𝑓𝑘

] 

𝐵(𝑥) =  

[
 
 
 
 
 
 
−(𝑖𝑐ℎ−𝑖𝑠)

𝐶

(𝑖𝑐ℎ−𝑖𝑠)

𝐶
𝑆0

0
−(𝑖𝑐ℎ−𝑖𝑠)

𝐶

(𝑖𝑐ℎ−𝑖𝑠)

𝐶
𝑣𝐶1
𝐿𝑓

𝑣𝐶2 − 𝑣𝐶1
𝐿𝑓

𝑣𝑑𝑐−𝑣𝐶2
𝐿𝑓 ]

 
 
 
 
 
 

 

𝑢 = [𝑆1, 𝑆2, 𝑆3]
𝑇  is the control vector, 𝐻 = [

0
0

−𝑣𝑑𝑐

2𝐿𝑓
−

𝑣𝑠

𝐿𝑓

]  is the constant vector.. 
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The diagram of the control by exact linearization is given in figure 2.4  

 

 

Fig .2.4 Exact linearization of the multicellular inverter. 

2.4 Simulation of a multicellular inverter with the exact linearization control.  

The simulation parameters are: 

  

Floating capacitors 4𝜇𝐹 

DC bus voltage 2000𝑉 

Inductor load 0.4𝑚𝐻 

Resistor load 8Ω 

 

The exact linearization control of the multicellular converter with MATLAB /Simulink is 

presented in the figure (2.5 and 2.6) 
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Fig. 2.5 Simulink of control by exact linearization of the multicellular inverter with Matlab 

 

Fig. 2.6 Scheme of control of the multicellular converter in Matlab 

 

Figure 2.7 presents the voltages of the capacitors and the supply voltage Vdc of the 

multicellular converter. When the load current is varied, the voltages of the capacitors present 

a ripple author of its reference. 

In figure 2.8, the load current always follows the reference in the case of the variation of the 

latter. This proves the robustness of the control by exact linearization against the variation of 

the reference load current. 
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Figure 2.7:the voltages of the capacitors and the supply voltage Vdc of the multicellular 

converter. 
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Fig. 2.8 Three-cell three-phase multi-cellular inverter load current for exact linearization 

control 

2.4.Simulation of a multicellular inverter with the sliding mode control. 

Figure 2.9 presents the sliding mode control of the multicellular inverter. In the sliding mode 

control of the three-cell multi-cellular inverter, the simulation parameters are the same used in 

the exact linearization control. 

Figure 2.11 shows that the capacitor voltages VC1 and VC2 follow their references during 

steady state after a transient state of 0.03s with reduced ripple when the load current change. 

The current of the load ich . In the following figure 2.10 always the reference in the case of the 
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variation of the latter with a. This proves the robustness of the sliding mode control against 

the variation of the current of the load. 

 

 

Fig. 2.9 Simulink the sliding mode control of the multicellular converter with Matlab 

 

 

Figure 2.10: dc and capacitors voltages for sliding mode control 



Chapter 2.                                                                     Control of Multicellular Power inverter  

 

 47  
 

0.02 0.04 0.06 0.08 0.10
Time (s)

-60

0

60
L

o
ad

 c
u

rr
en

t(
A

)

 

Figure. 2.11: sliding mode current load 

2.5 Conclusion 

The closed-loop nonlinear controls of the three-cell multicellular converter made it possible to 

minimize the duration of the transient state, and to minimize the ripple author of the reference 

value of the load current and capacitor voltages. The control by sliding mode presents a better 

robustness than the control by exact linearization. 
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Chapter 3 

Machine Learning Fault Detection 

Methodologies. 

Introduction 

Diagnosing faults in electrical power systems has become a more important topic 

recently, Due to the integration of renewable energy sources with existing systems. Machine 

learning; It is the latest approach that draws attention to the applications of different power 

systems. In this context, the use of machine learning tools is very clear and logical to deal 

with Diagnostic challenges in these systems. In this chapter, we will show differently 

advanced technologies that can automatically identify patterns in data and classify this data 

into different categories, and then use the exposed patterns to predict future data. 

3.2 Types of machine learning 

Machine learning is usually divided into two main types. 

3.2.1 Supervised learning 

Supervised learning refers to a sort of machine learning model that can be trained on a set of 

samples where the desired outputs (or labels) are already known. The models learn from these 

later results and make modifications to their internal parameters to accommodate the input 

data. Once the model is well trained, it can make correct predictions approximately unseen or 

future data. There are two main applications of supervised learning: classification and 

regression. 

Overview of the overall process: 
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Figure 3.1: supervised learning  process 

3.2.2 Unsupervised learning 

When the records used to train are neither classified nor labeled, unsupervised machine 

learning algorithms are used. Unsupervised learning investigates how systems can infer a 

function from unlabeled data to explain a hidden shape. The system does not recognize an 

appropriate output with certainty under any conditions. Instead, it draws inferences about 

what the output should be from datasets. 

3.2.3 Semi-supervised learning 

Semi-supervised learning, where the teacher gives an incomplete training signal: a training set 

with some (often many) of the target outputs missing. We will focus on unsupervised learning 

and data clustering in this blog post. 

3.2.4 Reinforcement learning 

Reinforcement learning employs a positive incentive system for correct behavior and a 

negative reward system for incorrect behavior. As a result, the technique assigns positive 

values to desired activities and negative values to unwanted acts in order to influence the 

agent. This instructs our agent to seek the largest overall reward over the long term in order to 

arrive at the best option. These long-term objectives prevent the agent from stopping there. 

The system eventually learns to avoid bad acts and only do positive ones. Trial and error is 

used to learn through interaction with the environment. 
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3.3 Classification 

In Machine Learning and Statistics, Classification is the problem of identifying to which of a 

set of categories (subpopulations), a new observation belongs, on the basis of a training set of 

data containing observations and whose categories membership is known. 

3.3.1 Types of Classification 

Classification is of two types: 

3.3.1.1 Binary Classification 

When we have to categorize given data into 2 distinct  classes. Example – On the basis 

of given health conditions of a person, we have to determine whether the person has a certain 

disease or not [66]. 

 

 

 

 

 

 

Figure 3.2: example of Binary classification representation 

3.3.1.2 Multiclass Classification 

The number of classes is more than 2. For Example – On the basis of data about 

different species of flowers, we have to determine which specie does our observation belongs 

to. 
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Figure 3.3: example of Multiclass classification representation 

3.4-Dataset 

3.4.1- Learning data in supervised and unsupervised learning 

In supervised learning, experts classify the data and teach the model precisely what it 

needs to discover. For example, in the area of spam detection, the input is any text, and the 

label makes it apparent if the message is spam. Supervised learning is stronger since we don’t 

allow the model draw its own inferences from data beyond the limitations labeled with our 

labels. 

In unsupervised Learning, people feed the model raw, unlabeled data, and the model 

finds patterns in the data. For example, recognizing the level of similarity or difference 

between two data samples based on common features extracted. This helps the model make 

inferences and come to conclusions, such as separating similar images or grouping them into 

clusters. 

3.4.1.1 Training Data 

Training data refers to the initial data set passed to the machine learning model, on 

which the model is trained. Humans learn best from examples, and machines also need a set 

of data to learn patterns from it. In most cases, the training data contains input: annotation 

pairs collected from various sources that are used to train the model to perform a specific task 

with a high level of accuracy. They may consist of raw data (images, texts, or sound) 

containing annotations such as bounding boxes, labels, or links. Machine learning algorithms 

learn annotations from training data to handle new, unlabeled data in the future. All training 
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methods start with the collection of raw data from various sources. Raw data can be of any 

kind: text, images, sounds, videos, etc. 

However, to tell the model what to look for in this data, we must add .These 

annotations help us to regulate learning by verifying that the model focuses on the features we 

specify, instead of making conclusions from other related (but not conditioned) data items. 

Table 3.1:  Data in supervised vs unsupervised learning 

 Labeled data Unlabeled data 

Supervised data x  

Unsupervised data  x 

Hybrid model that includes supervised learning x x 

 

All incoming data must have an appropriate label to allow the machine to move in the 

direction of what the forecast should look like. Such a processed dataset can be obtained using 

humans, and sometimes other ML models that are accurate enough for reliable labeling. Once 

the labeled dataset is ready to be passed to the AI, the training phase begins .On it, the model 

tries to identify important features that are common to all the examples that we have assigned 

labels. For example, if we segmented several cars in the imagery, then she will understand 

that wheels, rear-view mirrors and door handles are features that correlate with a car. The 

models continually test themselves on the validation data set produced before the training 

process. After the model is completed, the last check is performed on the test dataset (a set 

that the model has never seen before); this gives us insight into the performance of the model 

on relevant new examples. 

The training data includes the training, validation, and test datasets. The more training 

data we have, the more accurate the model will be. 

3.4.1.2 Labeled Data 

Labeled data is data supplemented with labels/classes containing meaningful 

information. Here are some examples of labeled data: images tagged with cat/dog, 

emails/messages tagged as spam, stock market price predictions (labeled as future state), 

nodule malignancy with polygon highlighting, audio files with information about what words 
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are spoken in them. Accurately labeled data allows the machine to recognize patterns 

according to the task, so it is widely used in solving complex problems. 

3.4.2 Datasets for training, validation and testing 

No AI model can be trained and tested on the same data. The estimate of the model 

will be biased, because the model is being tested on what it already knows. This is analogous 

to giving students the same questions in an exam that they have already answered in class. 

This way we don’t know if the student remembered the answers or really understood the 

topic. The same rules apply to machine learning models. 

Here are their percentages of data volumes: 

 

 

 

 

Figure3.4: training data needs 

Training data - at least 60% of the data must be used for training. Validation data - a 

sample (10%-20%) of the total data set used for validation and periodically checked against 

the model during training. This validation dataset should be a representative sample of the 

training dataset. Test data - This dataset is used to test the model after it has been fully 

trained. It is separated from both the training set and the validation set. After training and 

validation, the model is tested on the test set. The data in the test set should look exactly like 

the real data will look after the model is deployed. There can be multiple test sets in a shared 

dataset each test set can be used to check if the model has trained enough for a specific 

application scenario. 

3.4.3 Data Quantitative Requirements 

We need to have at least 1000 training examples for every possible class in our 

scenario. If we utilize 10% of the data as our test set, we should be able to assess class 

correctness with a margin of error of at least 1%.For reference, 1000 examples is a sufficient 

data set. 10000 is a great data set, 100 thousand-1 million is an excellent data set. High-
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quality models are trained on large amounts of training data, and for good reason – modern 

neural network architectures work great because they are able to store many weights 

(parameters) efficiently. However, if we don’t have much training data, then we can only use 

a fraction of the potential of our model. The size of the data set also depends on the scope of 

our problem and the variance of each class. However, if we require a generic human 

recognizer then a collection of 10,000 instances will only represent just a portion of the 

differences in sizes, positions, look, and clothing styles. Therefore, a class with high variance, 

such as "human", requires much more training data. 

3.4.4 Improving the Quality of Training Data 

The high quality of dataset markup is required for the machine learning model to 

operate correctly. The term “qualitative data” refers to cleaned data that contains all the 

attributes that model training depends on. The consistency and correctness of the labeled data 

may be used to rate the quality .here is 4 characteristics of qualitative data for training ML 

models: 

1. Relevance - The data set should contain only those features that provide meaningful 

information to the model. Identifying important features is a complex task that requires 

knowledge of the area and a clear understanding of which features should be considered and 

which should be eliminated. 

2. Consistency - Similar examples should have similar labels, ensuring that the dataset is 

homogeneous. 

3. Uniformity - The values of all attributes must be comparable across all data. Irregularities 

or the presence of outliers in datasets adversely affect the quality of training data. 

4. Comprehensiveness - The dataset must include enough parameters or characteristics to 

ensure that no edge situations are missing. The dataset should contain enough samples of 

these edge cases so that the model can learn them as well. 

3.4.5 Metrics in classification problems Metrics are used in machine learning tasks to 

measure the quality of models and compare different algorithms, and their selection and 

analysis is an essential element of a data scientist’s job. We’ll look at several quality criteria 

in classification issues and talk about what matters when picking a metric and what may go 

wrong. 
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3.4.5.1 Accuracy, precision, recall and specificity.  

An important concept needs to be introduced to describe these metrics in terms of 

classification errors, the confusion matrix .Suppose we have two classes and an algorithm that 

predicts whether each object belongs to one of the classes, then the classification error matrix 

will look like this: 

Here, is the response of the algorithm on the object, and is the true label of the class on 

this object. Thus, there are two types of classification errors: False Negative (FN) and False 

Positive (FP). 

 

Figure 3.5: the classification error matrix 

3.4.5.2 Accuracy: 

An intuitive, obvious and almost unused metric is accuracy - the proportion of correct 

answers of the algorithm: 

          (3.1) 

 

This metric is useless in problems with unequal classes, and this is easy to show with 

an example. Let’s say we want to evaluate the performance of a mail spam filter. We have 

100 non-spam emails, 90 of which our classifier determined correctly (True Negative = 90, 

False Positive = 10), and 10 spam emails, 5 of which were also correctly determined by the 

classifier (True Positive = 5, False Negative = 5). Then accuracy: 

 

However, if we just predict all emails as non-spam, we get a higher accuracy: 
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At the same time, our model does not have any predictive power at all, since initially 

we wanted to identify spam emails. The transition from a common metric for all classes to 

individual indicators of class quality will help us overcome this. 

3.4.5.3 Precision, recall and F-measure    

                                                                                  (3.2) 

 

(3.3) 

To assess the quality of the algorithm on each of the classes separately, we introduce 

the metrics precision (accuracy) and recall (completeness). 

Precision can be interpreted as the proportion of objects called positive by the 

classifier and at the same time are really positive, and recall shows what proportion of objects 

of a positive class out of all objects of a positive class the algorithm found. It is the 

introduction of precision that does not allow us to write all objects into one class, since in this 

case we get an increase in the False Positive level. Recall illustrates the algorithm’s capacity 

to recognize a particular class in general, while precision demonstrates the ability to 

differentiate this class from other classes. 

3.4.6 Training Data Preparation 

3.4.6.1 Data cleaning 

Raw data can be very messy and corrupted in many ways. If not properly cleaned, they 

can skew results and cause the AI model to produce erroneous results. Data cleaning is the 

process of repairing or deleting inaccurate, corrupted, or duplicated data from a dataset.. The 

steps in the data cleaning process depend on the particular data set. 

1. Check for duplicates - the same sample data may occur several times in a dataset. This 

may be generated by gathering data from several sources, resulting in comparable data. They 

need to be deleted since they may cause the model to over fit certain patterns and provide 

incorrect predictions. 

2. Eliminate outliers - some parts of the data behave differently from the rest of the data. An 

example would be the Session ID, which is constantly found in the weblog data. This may be 
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due to some malicious activity that does not need to be passed to our model. As a result, 

monitoring emissions is one method of removing data that should not be supplied to the 

machine. 

3. Fix Structural Errors - In certain conditions, the dataset may include faulty markup. For 

example, "Dog" and "dog" are regarded to be separate classes, although "doog" and "dog" are 

different according to a typo resulting in misclassification. 

4. Check for missing values - there may be components in the dataset for which data 

examples are sorely missing attributes/features. We can overcome this issue by simply not 

include these components in the training dataset. 

3.5.6.2 Data markup 

Data markup is the process in which we assign a value to data in the form of a class or a 

label. Data labeling can be performed by employees, operators in the control loop, or any 

automated machine that speeds up the labeling process. 

1. Establish the gold standard - Data scientists are considered the gold standard in data 

labeling, labeling raw data with maximum sensitivity and accuracy. Their markup is 

considered a guide for the annotation team and can be used as responses when screening 

annotation options. 

2. Don’t use too many labels - splitting a dataset into a large number of classes can confuse 

employees when annotating it. In addition, to select among the many labels, the analysis of 

more features will be required. For example, it will be difficult for annotators to mark up data 

with classes such as "Very Expensive", "Expensive", "Less Expensive". 

3. Use multiple passes - data markup should be done by multiple annotators. This is 

necessary to improve the overall quality of the data. While this is more time consuming and 

resource intensive, this approach is used to build consensus within the team. 

4. Establish a validation system - to reduce the chance of errors, ready-made data markup 

should be verified by another person or through self-improvement checks. This will allow any 

annotator to understand where he can improve, his level of accuracy, and the kind of training 

needed to improve his work. 
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3.5.6.3 Standard deviation - Standard Deviation in simple terms, this is a measure of how 

scattered a set of data is. By calculating it, you can find out whether the numbers are close to 

the average value or far from it. If the data points are far from the mean, then there is a large 

variance in the data set .When the data is more spread out, the standard deviation increases. 

Standard Deviation Formula : 

(3.4) 

Where: 

σ standard deviation. 

Xi are different sample values, 

µ is the arithmetic mean of the sample, n is the sample size. 

3.5 The k Nearest Neighbors (kNN) 

The k Nearest Neighbors (kNN) method is a popular classification algorithm that is used in 

various types of machine learning problems. Along with the decision tree, this is one of the 

most understandable approaches to classification [68]. On an intuitive level, the essence of the 

method is simple: we look at the neighbors around, which of them prevail, that are what we 

are. Formally, the technique is based on the compactness hypothesis: if the space metric 

among examples is delivered successfully, then similar examples are much more likely to lie 

in the same class than in different ones. 

• In the case of using the method for classification, the object is assigned to the class that is 

the most common among the k neighbors of this element, whose classes are already known. 

• In the case of using the method for regression, the object is assigned the average value of the 

k objects closest to it, the values of which are already known. 
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Figure 3.6: An example of k-nearest neighbor classification. 

We have a test sample in the form of a green circle. The blue squares will be designated as 

class 1, the red triangles as class 2 . 

• The green circle must be classified as class 1 or class 2 . If the area we are considering is a 

small circle, then the object is classified as 2nd class, because inside this circle there are 2 

triangles and only 1 square. 

• If we consider a large circle (with a dotted line), then the circle will be classified as 1st class, 

since there are 3 squares inside the circle as opposed to 2 triangles. 

3.5.1 Theoretical component of the k-NN algorithm 

3.5.1.1 Euclidean metric 

Beyond the simple explanation, the expertise of the underlying mathematical components of 

the k-nearest neighbors algorithm is absolutely necessary Euclidean metric (Euclidean 

distance, or Euclidean distance) - a metric in Euclidean space, the distance between two 

points in Euclidean space, calculated by the Pythagorean theorem [69]. Simply expressed, this 

is the lowest feasible space across locations A and B. Although Euclidean distance is useful 

for small dimensions [70], it does not work for large dimensions and for categorical variables. 

The disadvantage of Euclidean distance is that it ignores the similarity between attributes. 

Each of them is seen as completely different from all the others. 
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Figure 3.7: The Euclidean distance 

The Euclidean distance is calculated using the following formula: 

 

(3.5) 

 

Another important component of the method is normalization [71]. Different attributes 

usually have different ranges of values represented in the selection. For example, attribute A 

is represented in the range 0.01 to 0.05, and attribute B is represented in the range 500 to 

1000). In this case, the distance values can be highly dependent on attributes with larger 

ranges. Accordingly, the data in most cases is going through normalization. There are two 

essential approaches to normalize data in cluster analysis: Min-Max normalization and Z-

normalization. 

When undertaking some type of study in which we have multiple variables measured 

on different scales and we want each of the variables to have the same range, we often 

normalize variables. 

3.5.1.2 Feature selection 

Experts in feature selection face a variety of challenges, including extracting and 

decreasing features. The features are what make every class in system have a variance or 

significance in term of it, sometimes required a sophisticated features generating [72] with 

specialists in order to increase features so raising dimensions of the feature space, that is in 

the event of a shortage of the required features, One of the most common techniques to 
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improve features is to work with statistical characteristics[73] such as spectral density, 

standard deviation, variance, and so o, using the available features. in the case of 

accumulation of the features, in order to reduce it , the features that ensure the best results and 

distinct differences in the distribution of situations must be identified. One of the most 

common ways to reduce the number of features and ensure the preservation of high accuracy 

is to use principle component analysis(PCA)[74], which allows you to reduce the number of 

features while also creating new features with different significance for each class. 

3.5.1.3 Z-normalization 

which normalize every value in data set so that the mean of every data set is 0 and the 

standard deviation is 1. 

(3.6) 

where: 

σ is the standard deviation. 

x is the original value. 

M[x] is the mean of data. 

In this case, most of the values fall within the range. 

3.5.2 Min-Max normalization 

Both values will be changed to the same scale/range when the data of the various 

scales is normalized. Both values, for example, will be in the range of 0 to 1. 

The data will have a value of 0 for the lowest value and a value of 1 for the greatest 

value, with all other values falling between 0 and 1. 

(3.7) 

where: xi 

Is the original value. min(x) is the minimum value in data set . max(x) is the maximum 

value in data set . 
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What is the course of action? 

• Download our data. 

• Initialize k by choosing the optimal number of neighbors. 

For each of the data samples: 

. Using the data, calculate the distance between the querying example and the actual 

example. 

. Add the index of the sample to the ordered collection, just like its distance. 

• Sort an ordered list of distances and indices in ascending order from least to greatest. 

• Choose the first k data points from the sorted collection. 

• Take the labels of the chosen k entries. 

• If we have a regression problem, we’ll return to the average of the previously 

selected k labels. 

• If we have a classification problem, we’ll return to the most frequently occurring 

value of the previously selected labels k . 

3.6 Spectral analysis 

One of the most powerful techniques for processing experiments is spectral analysis. 

In particular, it is used for data analysis, detection of characteristic frequencies [75], noise 

suppression[76], etc. 

The spectrum of the data set y(x) is some function of another coordinate (or 

coordinates, if we are talking about a multidimensional spectrum [77]) F(ω), Obtainable 

through the use of a specific algorithm . Fourier transform, power spectrum, and wavelet 

transform are examples of spectral analysis approaches. 

3.6.1 Fourier Transform 

The Fourier transform mathematically presents the signal y(x) as an infinite 

summation of sinusoids of the format F(ω) sin(ωx) .The function F(ω) is called the Fourier 
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transform, or the Fourier spectrum of the signal. Its argument represents the frequency of the 

appropriate component of the signal. The inverse Fourier transform transforms the spectrum 

F(ω) into the original y(x) signal. By definition, 

(3.8) 

 

Even if the signal is real, the Fourier transform is a complex value [78], as defined by 

definition in formula 3.8.The Fourier transform is particularly important in many 

mathematical applications, and a very efficient algorithm for it has been constructed. Called 

the FFT (Fast Fourier Transform) algorithm. it’s so popular due to its super economical, 

which in almost all mathematical packages is organized as a subroutine. 

The FFT algorithm has a rather strong limitation, which is not critical in practice. The 

idea is that the direct Fourier transform argument, i.e. the sample size y(xi) , must contain 

exactly 2n elements (n is any integer). Accordingly, the result of the FFT algorithm is a vector 

with 1 +2 (n−1) elements [79]. If the number of data does not match the power of 2, then to 

run the FFT algorithm, it is enough to pad the missing elements with zeros. 

Considering the most typical situation for a physical experiment in calculating the 

Fourier spectrum of a real signal. we utilize the discretization of the following deterministic 

signal as model data (Figure3.11(a)) To further comprehend the Fourier transform: 

y(x) = 1 sin(2π0.05x) + 0.5 sin(2π0.1x) + 0.1 sin(2π0.5x) On Figure3.11(b) shows the 

results of the FFT algorithm in the form of the Fourier spectrum modulus |F(ω)|, since, again, 

the spectrum itself is complex. It is very useful to compare the obtained amplitudes and the 

location of the spectral peaks in Figure 3.11 (b) with the definition of sinusoids [80] in the 

formula3.11. It is significant that if we subject the obtained absolute value of the Fourier 

spectrum Figure 3.11(b) to the inverse transformation 

Fourier, which is also provided by the FFT algorithm, then the profile of the original 

signal will be reconstructed correctly, but will be shifted by a certain distance along the x-

axis. This is because taking the absolute value of the complex spectrum destroys information 

about the relative phase of the data samples. Otherwise, the signal y(x) is restored with great 

accuracy, which is typical for a smooth signal change [81]. If, however, the complex Fourier 
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spectrum is used as the input data of the inverse Fourier transform, then the match will be 

complete [82]. 

3.7.Conclusion  

The k-nearest neighbors approach is a basic supervised machine learning algorithm 

that may be used to handle classification and regression issues. It is simple to implement and 

understand, but has a significant drawback - a significant slowdown when the amount of data 

grows. 

The k-Nearest Neighbor algorithm classifies based on the distance to a certain number 

(K) of training samples. This family of algorithms is called instance-based learning, since 

there are no parameters to study. the model assumes that the distance is sufficient for 

inference, otherwise it makes no assumptions about the underlying data or its distribution. 
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Chapter 4 

 Implementation of machine learning in 

photovoltaic system 

Introduction  

In this chapter, we will present the results of the operating of the multicellular inverter in two 

control modes sliding and exact linearization presented in the first chapter 1 in Both healthy 

mode  case and with  presence of faults in one , or all capacitors separately or instantaneous , 

and we use machine learning to classify this faults 

4.1-- Simulation Results 

In order to validate the behavior of the multicellular converter with the sliding mode and 

exact linearization controls in the case of flying capacitors faults, the system shown in Figure 

1 is adopted.  

Table 1 shows system parameters. 

Table 4.1. System Simulation Parameters  

Parameter Value 

Photovoltaic system voltage Vdc = 600V 

Flying capacitor C1 = C2 = 400µF 

Electric load inductor LL = 2 mH 

Electric load resistor RL = 25Ω 

 

A set of computer simulation runs is conducted using sliding mode control and exact 

linearization technique to demonstrate the effectiveness of proposed control strategies. 
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Therefore, a study of performance of these control methods applied to multicellular converter 

considering all capacitor faulty cases using MATLAB/Simulink software, starting from 

healthy mode to faulty in capacitor C1, C2 and C1, C2 simultaneously. A comparison is made 

to better illustrate the impact of failing in capacitors on system behavior and to show the 

better controller in this circumstance.  

Figure 3.1 show the voltage and corresponding error compared to the reference of flying 

capacitors Vc1 and Vc2 for both controls in healthy operating mode. In sliding mode control, 

the two voltages track their references in steady-state with time response equal to 0.02s for 

both Vc1 and Vc2 and a ripple (∆V) of 0.02V. However, in exact linearization time response 

for Vc1 and Vc2 are respectively 0.045s and 0.007s with a ripple of 0.02V. Hence, the sliding 

mode control performs better than the exact linearization control in terms of ripple and time 

response. 

 

  

(a) (b) 

Figure 4.1. Error voltage C1 and in C2 healthy mode both control 

As shown in Figures 4.2 and 4.3, in case of occurrence of a failure in C1, the ripple 

magnitude of Vc1 increases, in both controls, by 200V for exact linearization and by 95V for 

sliding mode. On the other hand, Vc2 is less affected, and the ripple is less intense, i.e. 15v for 

the sliding mode and 1v for the exact linearization. This implies that the sliding mode control 

shows better robustness than the exact linearization control. 



Chapter 4                                                    Implementation of machine in photovoltaic system 

 

66 
 

  

(a) (b) 

Figure 4.2. The voltage of capacitor C1 and C2, failure C1 in both controls. 

  

(a) (b) 

Figure 4.3. Error voltage of capacitor C1 and C2, failure C1 in both controls. 

Figures 4.4 and 4.5 illustrate the results for the failure of capacitor C2. This case shows 

that the failure in C2 has less effect on the behavior of the system. This case shows fewer 

voltage ripples in Vc2 for both controls, compared to ripples generated in Vc1 due to the failure 

of capacitor C1.  

The associated ripple for Vc2 is 1V in exact linearization and 60V in sliding mode, while 

for Vc1 it is equal to 1V in the case of exact linearization and 10V in sliding mode. In 

addition, the sliding mode control has better accuracy than the exact linearization control. It is 

6V for Vc1 and 10V for Vc2 in the case of sliding mode control and 22V for Vc1; however, it 

is 33V for Vc2 in the case of exact linearization. 
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(a) (b) 

Figure 4.4 Voltage of capacitor C1 and C2, failure C2 in both controls. 

  

(a) (b) 

Figure 4.5. Error voltage of capacitor C1 and C2, failure C2 in both controls. 

The impact of the fault of the two capacitors C1 and C2 simultaneously is illustrated in 

Figures 4.6 and 4.7. This case shows that the failure of C1 and C2 has a significant impact on 

the system behavior. The flying capacitor voltages follow their references with strong ripples 

in sliding mode control of about 90 volts for Vc1 and Vc2. On the other hand, for the control by 

exact linearization, the voltage Vc1 drops to 0V without ripple, while Vc2 follows the reference 

with 35 volts of precision. Form above discussion, the sliding mode control was less affected 

by this type of fault than the exact linearization control despite the high ripple generated. 
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(a) (b) 

Figure 4.6. Voltage of capacitor C1 and C2, failure C2 and C2 in both controls 

  

(a) (b) 

Figure 4.7. Error voltage of capacitor C1 and C2, failure C2 and C2 in both controls. 

Table 4.2 resume the comparison study results. 
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Table 4.2. Comparison between sliding mode and exact linearization controls in different 

operating modes 

Control mode  

Time response (s) Precision (V) ∆V(V) 

VC1 VC2 VC1 VC2 VC1 VC2 

Sliding mode 

control 

Healthy mode 0.02 0.02 0 0 0.02 0.02 

C1 Failure 0.12 0.02 5 5 95 15 

C2 Failure 0.01 0.01 6 10 10 60 

C1 and C2 Failure 0.01 0.01 5 5 90 90 

Exact 

linearization 

control 

Healthy mode 0.045 0.007 0 0 0.02 1 

C1 Failure 0.12 0 0 0 200 1 

C2 Failure 0 - 22 33 1 1 

C1 and C2 Failure 0 - 200 30 1 1 

 

From the above discussion about simulation results comparing sliding mode and exact 

linearization controls, applied to three cells multicellular converter used in photovoltaic 

system, for different modes (healthy, C1 failure, C2 failure, and both C1 C2 failure), obviously, 

the slider mode control shows more robustness against all types of faults considered and a 

shorter response time in a transient state, while the exact linearization control shows less 

voltage ripple. However, the major disadvantage of exact linearization control is zero load 

current when C2 is faulty.   

The results, also, indicate that when capacitor C1 fails, it generates ripples in Vc1, and 

similarly for capacitor C2 where it generates ripples in Vc2. It is clearly noticed that the fault 

of the capacitor C1 causes more brutal ripples than the fault relating to C2. Moreover, the 

sliding mode control is more robust than exact linearization control, in terms of capacitor 

failure. Al though in the healthy case, the exact linearization shows slightly better 

performance than the sliding mode control.  
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In the next section, the changes that occur in feature spaces of the system resulting from 

faults in capacitors and the impact of capacitor fault on the feature space geometry and/or 

distribution are discussed. 

4.2. Data Processing and Feature Space Analysis 

     Data processing and analysis is a critical step, for it creates a feature space that 

distinguishes between different operating conditions, i.e., the feature space differentiates 

between healthy and faulty operating modes. For this purpose, the chosen features must 

maximize the separation between the normal and each of the failure modes in the feature 

space. In order to define the best sensitive features to distinguish the normal class of each of 

the failure modes in the multicellular converter, knowledge of the physical dynamics of the 

latter is needed. The capacitor voltages Vc1 and Vc2 are used for this purpose. Thus, there are 

a number of features that correspond to the number of capacitors, to which can be added 

another feature such as the load current iL to ensure better separation of the different failure 

modes. As indicated by equation (4.3), the capacitor voltages are regulated to their reference 

values in the case of a healthy operating mode (normal condition), whereas if a fault occurs in 

one or two capacitors, the corresponding voltages cannot reach their references with the 

proposed control. This change over time between the real values of the capacitor voltages and 

their references makes it possible to detect faults through changes of normal class in the space 

of the characteristic curves. 

     Figures (4.8-4.10) show the characteristics for different operating modes with sliding 

mode and exact linearization control derived from simulation data. Vc1, Vc2 and iL was used as 

the axis for the representation of the space of 2D or 3D entities. 

     Figure 4.8 shows the two-axis feature space with sliding mode control for all healthy 

or faulty modes. İt is noticed that healthy feature spaces are very small regimes drowned in 

the global feature space. The spatial characteristics of the different failure modes are well 

separated but with some superposed or interlaced region. To overcome this situation, the 

current " iL" is suggested as the third axis (see Figure 4.9). This last figure shows that all the 

modes are well separated with no ambiguity. These results show that through these features 

spaces, it is possible to detect or locate the different faults. 
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Figure 4.8. Feature space during failure of capacitor using sliding mode control 

 

Figure 4.9. 3D feature space during failure of capacitor using sliding mode control 

The feature space corresponding to the exact linearization control for all the modes is 

shown in Figure 4.10. It can be seen that the three fault modes in the capacitor C1, C2 and C1/ 

C2 simultaneously are well separated. On the other hand, the fault C1 completely covers the 

healthy mode; the latter represents a restricted mode compared to the modes with defaults. As 

in the case of control by sliding mode and to overcome this problem of covering the feature 

spaces each other, the current "iL" is added as the third axis (see Figure 4.11). This latest 

figure shows that all the modes are better separated, but always with an ambiguity between 

the healthy mode and the faulty mode in C1; however, this ambiguity is not very important. 

These results show that through these feature spaces, it is possible to detect or locate the 

various faults with a slight ambiguity in the case of a fault in capacitor C1. 
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Figure 4.10. Feature space during failure of capacitor using exact linearization control 

 

Figure 4.11. 3D feature space during failure of a capacitor using exact linearization control 

According to obtained results from feature spaces, the sliding mode control presents a 

better separation between the different modes compared to the exact linearization control. In 

addition, the sliding mode control shows better robustness compared to the exact linearization 

control. This is observed by the zero-load current when C2 is faulty, in the case of exact 

linearization control. 

4.3-. K-Nearest Neighbor (KNN) implementation 

After the data has been collected and features selected, the available data can now be 

used to apply the Machine Learning algorithm for classification. 

Since the data will be classified into more than two classes, the k-nearest neighbor (KNN) 

algorithm was chosen because it is multiclass, based on determining the distance between all 

features. The classification is based on the property of closest distance, which is the feature 

with which it is similar or identical. 
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The process entails teaching the algorithm with the available data, i.e. training it to know 

the characteristics of each case in order to identify it in order to classify it, and this is done by 

teaching the data and dividing it randomly into 70% training and 30% testing and then 

submitting the training data to the machine learning algorithm to build a classified model 

based on it (Figure.4.12). 

 

Figure 4.12. the KNN workflow. 

The histogram in the figure 4.13 resume the behavior of the proposed fault detection 

approaches in term of accuracy. it was observed that the sliding mode classification model is 

more accurate than the exact linearization model.  

 

Figure 4.13 Histogram represent the comparison between the two modes of control 
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 Conclusion 

This chapter presented a comparative study between a sliding mode and exact linearization 

controls applied to three cells multicellular converter used in photovoltaic system under flying 

capacitors faults. The parameters used to differentiate between both controls are time 

response, precision and ripple of flying capacitors voltages in healthy and faulty modes (C1 

failure, C2 failure and simultaneously failure of C1 and C2). In the field of time series, sliding 

mode control has better performance in terms of robustness and time response, compared to 

exact linearization control in healthy and faulty modes. It is found that the exact linearization 

control is smoother (less ripple) in both healthy and faulty modes. 

In order to analyses the behavior of multicellular converters in four operating modes, two-

dimension feature spaces are used with time domain axes to separate different operating 

modes. KNN algorithm for classification proved also that the sliding mode control presents a 

better class separation compared to the exact linearization control.  
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Conclusion 

This work is an opportunity to address major issues related to renewable energy, especially in 

multi-cellular converters. Therefore, the study was carried out according to a professional 

project approach, which ensured the achievement of the objectives in terms of detection of 

capacitor faults in multi-cell power converters using KNN machine learning algorithms and 

determination of the optimal control method between exact linearization and sliding mode 

control. The realization of this project provided an excellent opportunity to study the main 

faults and their impact on the voltage and output current of a multi-cell battery converter. 

This work could be of great benefit to the renewable energy sector. In fact, since multi-cell 

power converter systems run smoothly and produce a steady load current, capacitor faults can 

be located to handle high power equipment. 

.As future works direction, the calculation of remaining useful life (RUL) in order to perform 

a fault prognosis of the considered system. 
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