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Abstract

Machine learning has become a burgeoning field with a wide range of applications in both
academia and industry. Breast cancer may be seen as a catalyst for incorporating the field of
deep learning into the facilities of medical practitioners. Although it has not yet been widely
adopted, it has sparked the curiosity of scientists. Because of this, it has brought attention to
how these new technologies can be used in the medical field.

We show how advanced ways of analyzing medical images are changing, with a focus on
global breast cancer updates. We also provide applications of deep learning in mammogra-
phy. In addition, we discuss breast cancer and its effects on the world and how it motivates
researchers to make innovations to fight this disease. Next, we put under scrutiny the proposed
methods in the current literature that use deep learning in the field of diagnostics based on the
X − ray medical imaging method.

In our experience, we used convolutional neural networks as one of the basic structures for
deep learning, because they are the best in image analysis, we used BreakHis data containing
7909 breast cancer micro biopsy images,benign and malignant (5429 malignant, 2480 benign),
in addition, we detail all the results of Our tests in this thesis.

Keywords
Computer Vision, Artificial Intelligence, Deep learning, Image processing, Mammography,
Convolution Neural Network, Breast Cancer.
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Résumé

L’apprentissage par machine est devenu un domaine en plein essor avec un large éventail
d’applications à la fois dans le milieu universitaire et dans l’industrie. Le cancer du sein
peut être considéré comme un catalyseur pour intégrer le domaine de l’apprentissage en pro-
fondeur dans les installations des médecins praticiens. Bien qu’elle ne soit pas encore large-
ment adoptée, elle a suscité la curiosité des scientifiques. En conséquence, il a mis en évidence
l’application de ces nouvelles technologies dans le domaine médical.

Nous donnons un aperçu de l’évolution des méthodes avancées d’analyse d’images médicales,
avec un accent particulier sur les mises à jour mondiales sur le cancer du sein. Nous fournissons
également des applications d’apprentissage en profondeur en mammographie. En outre, nous
discutons du cancer du sein et de ses effets sur le monde, et de la manière dont il a motivé
les chercheurs à innover pour lutter contre cette maladie. Ensuite, nous avons examiné les
méthodes proposées dans la littérature actuelle qui utilisent l’apprentissage en profondeur dans
le domaine du diagnostic basé sur la méthode d’imagerie médicale par rayons X.

Dans notre expérience, nous avons utilisé les réseaux de neurones convolutifs comme l’une
des structures de base pour l’apprentissage en profondeur, car ils sont les meilleurs en analyse
d’image, nous avons utilisé les données BreakHis contenant 7909 images de micro biopsie du
cancer du sein, bénignes et malignes (5429 malignes, 2480 bénignes) , de plus, nous détaillons
tous les résultats de Nos tests dans cette thèse.

Mote Clé
Vision par ordinateur, Intelligence Artificielle, Apprentissage en profondeur, Traitement d’images,
Mammographie, Réseau de neurones à convolution, Cancer du sein.
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General Introduction

Due to scientific breakthroughs and constantly developing infrastructure, machine learning

has seen huge success in a variety of industries over the past decade. Models such as artificial

neural networks require huge amounts of computing, which can now be addressed by models

such as machine learning. Recent attempts have shown promise in improving detection in a

range of medical fields, including diagnosis and prognosis.

The terrible severity and prevalence of breast cancer can be considered to bring deep learn-

ing into the clinics of medical practitioners. Even if it is not yet widely applied, it has become of

interest to researchers all over the world. Commercial applications have seized the opportunity

to promote their solutions, and artificial intelligence technology has become a catalyst for any

future diseases or epidemics. At the radiographic level, it is time to put current structures and

potential future innovations to use in the service of human well-being.

In this work, we provide a reflection on the latest emerging technologies in the field of

medical image analysis, with a main focus on the updates brought by breast cancer. This thesis

is organized into three chapters: In the first chapter 1, we present the statistical and medical risk

of breast cancer and also the interpretation of mammography. In the second chapter 2, we delve

into the world of deep learning and review its application in mammography. The last chapter 3

covers the analysis and comparison of the proposed methods in the recent literature that apply

deep learning in the field and presents the results obtained. Finally, we will draw conclusions

from our findings and discuss how we can improve them in the future.
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Interpretation of mammography
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3 1. Interpretation of mammography

1.1 Introduction

Mammograms are X-ray images of the breasts designed to detect cancer cells and other

changes in breast tissue, there two types of mammograms that we perform one is in the screen-

ing setting and the others in the diagnostic centre in general screening mammograms are per-

formed in all women every one to two years after the age of 40. In this chapter, we will review

what breast cancer is, in addition to highlighting the mammogram and its effects.

1.2 Structure of the breast

The breast is a complicated structure that is made up of 15 to 20 lobes. Each lobe is made

up of lobules, which are tiny structures. The lobules are grouped in clusters, with small ”bulbs”

that generate milk at the end of each lobule. The lobes, lobules, and bulbs are joined by ducts,

which are tiny tubes [1].

Figure 1.1: Illustration showing the breast anatomy
[2]

Milk is carried to the nipples, which are positioned in the center of the areola, through

3



1. Interpretation of mammography 4

the ducts (the darker area surrounding the nipple). Fats fill the gaps between the lobes and the

ducts. The breast anatomy is depicted in fig 1.1, which shows the internal structure of the breast.

Different forms of fatty, fibrous, and glandular tissue can be found in the female breasts:

• The breast lobes and breast ducts are glandular tissue.

• Ligaments, supporting tissues (dense breast tissue), and scar tissues all fall under the

category of fibrous tissues.

• Breast size is mostly determined by fatty tissue (non-dense breast tissue), which fills in

the crevices between glandular and fibrous tissue.

All non-fatty tissue is referred to as fibroglandular tissue. In addition, ligaments are sup-

porting, flexible connective tissue bands that reach from the skin to the chest wall to keep the

breast tissue in place. The pectoral muscle supports both breasts by lying against the chest wall

below them. Furthermore, because each woman’s breast has a unique blend of fatty and dense

tissue, no two women’s breasts are same. Some women’s breasts are nearly entirely made up of

fatty tissue, while others have a mixture of fatty and fibroglandular tissue. The amount of fatty

tissue in women’s breasts grows with age, such that by the age of 70, roughly 80 of all women’s

breasts are made up largely of fatty tissues. Breast cancer may develop in any area of the breast,

thus women need to be screened with the right imaging tools [1].

1.3 Breast cancer

In the female population, breast cancer is the most frequent type of cancer. Approximately

12% of women in the United States will be diagnosed with breast cancer at some point through-

out their lives. Breast cancer will affect 2.3 million women globally in 2020, with 685,000

fatalities. Breast cancer has been diagnosed in 7.8 million women According to the latest statis-

tics (See Fig. 1.2), making it the most common disease in the world. Breast cancer causes more

disability adjusted life years (DALYs) in women throughout the world than any other kind of

cancer. Breast cancer strikes women at any age after puberty in every nation on the planet, with

rates rising as they become older. The International Agency for Research on Cancer (IARC)

4
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Incidence Mortality
Propotion Propotion CrudeCountry/ Region Cases (%) Crude Rate ASIR Deaths (%) Rate ASMR

World 2,261,419 100.0 58.5 47.8 684,996 100.0 17.7 13.6
Human Development Index (HDI)

Very high HDI 1,017,459 45.0 128.7 75.6 231,093 33.8 29.2 13.4
High HDI 825,438 36.5 57.2 42.7 247,486 36.2 17.2 12.1
Medium HDI 307,658 13.6 27.1 27.8 147,427 21.5 13.0 13.6HDI

Low HDI 109,572 4.8 22.2 36.1 58,586 8.6 11.8 20.1
Asia 1,026,171 45.4 45.3 36.8 346,009 50.5 15.3 11.9

China 416,371 18.4 59.0 39.1 117,174 17.1 16.6 9.5
Japan 92,024 4.1 76.3 76.3 17,081 2.5 26.4 9.9
South Korea 25,814 1.1 100.8 64.2 3,009 0.4 11.8 6.4
Iran 16,967 0.8 40.8 35.8 4,81 0.7 11.6 10.8
Zionist occupation 4,348 0.2 100.0 78.3 1,194 0.2 27.5 16.7

Asia

Singapore 3,662 0.2 131.3 77.9 921 0.1 33.0 17.8
Europe 531,086 23.5 137.2 74.3 141,765 20.7 36.6 14.8

United Kingdom 53,889 2.4 156.9 87.7 11,839 1.7 34.5 14.0
Denmark 5,083 0.2 174.5 98.4 1,121 0.2 38.5 14.9
Italy 55,133 2.4 177.7 87.0 12,633 1.8 40.7 13.4
Belgium 11,734 0.5 200.7 113.2 2,362 0.3 40.4 15.1
Hungary 7,565 0.3 149.4 77.3 2,195 0.3 43.4 17.3
Africa 186,598 8.3 27.8 40.7 85,787 12.5 12.8 19.4
South Africa 15,491 0.7 51.5 52.6 4,664 0.7 15.5 16.0
Morocco 11,747 0.5 63.2 56.4 3,695 0.5 19.9 17.5
Cameroon 4,17 0.2 31.4 43.6 2,108 0.3 15.9 22.8
Nigeria 28,38 1.3 27.9 49.0 14,274 2.1 14.0 25.5

Europe

Mauritius 648 0.0 100.6 66.2 207 0.0 32.1 20.0
Oceania 25,873 1.1 121.4 87.8 5,044 0.7 23.7 14.7

Australia 19,617 0.9 153.2 96.0 3,132 0.5 24.5 11.7
Fiji 302 0.0 68.3 65.1 184 0.0 41.6 41.0Oceania
Samoa 66 0.0 69.0 81.4 21 0.0 21.9 25.6

America 491,691 21.7 94.8 68.0 106,391 15.5 20.5 13.2
USA 253,465 11.2 151.6 90.3 42,617 6.2 25.5 12.4
Mexico 29,929 1.3 45.4 40.5 7,931 1.2 12.0 10.6
Argentina 22,024 1.0 95.1 73.1 6,821 1.0 29.5 18.9
Costa Rica 1,624 0.1 63.7 47.5 433 0.1 17.0 11.5
Jamaica 1,208 0.1 81.0 66.9 637 0.1 42.7 34.1

Table 1.1: The burden of breast cancer for different countries in 2020
[3]
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estimates that globally, 1 in 5 people develop cancer during their lifetime, and 1 in 8 men and

1 in 11 women die from the disease. These new estimates suggest that more than 50 million

people are living within five years of a past cancer diagnosis. Aging populations globally and

socio-economic risk factors remain among the primary factors driving this increase.

Breast cancer represents 1 in 4 cancers diagnosed among women globally. Colorectal, lung,

cervical, and thyroid cancers are also common among women [1].

Figure 1.2: Latest stats

Breast cancer incidence rates were 58.5 and 47.8 per 100,000 people, respectively, when

age was taken into account (See Table 1.1, Figure 1.3). China had the highest number of

breast cancer cases, accounting for around 18.4% of worldwide breast cancer cases, followed

by the United States, which had 11.8% of global breast cancer cases (See Table 1.1). The

age-standardized incidence rates differed by more than thrice, ranging from 113.2 per 100,000

people in Belgium to 35.8 per 100,000 in Iran (See Table 1.1, Figure 1.3). Highly developed

countries (Belgium, Denmark, Australia, the United States, the United Kingdom, and Italy)

6
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had much higher incidence rates (47.8 per 100,000 population) than developing countries (Iran,

China, Mexico, Cameroon, and Costa Rica), while developing countries (Iran, China, Mexico,

Cameroon, and Costa Rica) had much lower incidence rates (See Table 1.1, Figure 1.3). In all

nations studied, the age-specific incidence rates of breast cancer were relatively low for females

under 25 years old, but increased rapidly after this age (See Figure 1.4). Surprisingly, the peak

age of breast cancer was different in different parts of the world. The youngest onset peak age

was 40 years old in South Korea and Cameroon (See Figure 1.4). Females aged 55-60 years

old were most interested in China, Japan, Iran, Fiji, and Morocco. The peak beginning age of

breast cancer in the United States, Belgium, Australia, and the United Kingdom was 70 years

old (See Figure 1.4) [3].

Breast cancer claimed the lives of around 685,000 women in 2020, accounting for roughly

15.5 percent of all cancer fatalities worldwide. Breast cancer had crude and age-standardized

death rates of 17.7 and 13.6 per 100,000 people worldwide, respectively (See Table 1.1, figure

1.3). Similar to the high number of breast cancer cases, China had the highest number of breast

cancer fatalities, accounting for 17.1% of all cancer deaths worldwide, followed by the United

States, which accounted for 6.2 percent of all breast cancer deaths worldwide (See Table 1.1).

The age-standardized death rates differed dramatically (almost seven-fold) between nations,

ranging from 41.0 per 100,000 in Fiji to 6.4 per 100,000 in South Korea. In contrast to the

incidence rates, most poor or developing nations (such as Fiji, Jamaica, Samoa, Nigeria, and

Cameroon) had high death rates, whereas high-income countries (such as South Korea, Japan,

and the United States) had lower mortality rates (See Table 1.1, Figure 1.3). Breast cancer death

rates increased with age in most of the nations studied, peaking around 70 years old (See Figure

1.5 ) [3].

1.4 Mammography

Mammography is a technique for early detection of breast cancer that uses a low-dose x-ray

to project the breast’s interior tissues. Signs will be more visible in this manner. The presence

of malignancy (masses, microcalcifications, asymmetries, and deformities) might be a sign of

7
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[anchor=south west,inner sep=0] at (0,0)

;

Figure 1.3: Age-standardized incidence (ASIR) and mortality (ASMR) rates per 100,000 population for
female breast cancer in different countries in 2020.

[3]

8



9 1. Interpretation of mammography

Figure 1.4: Age-specific incidence rates of female breast cancer by different countries and HDI levels.
[3]

malignancy visualised. Figures 1.6 and 1.7 depicts an example of a mammography system.

The breast is sandwiched between the compression plate and the breast support, and then, from

the top, they were subjected to low-intensity x-ray beams (x-ray tube). The x-ray photons

generated in the tube are captured by an image receptor placed beneath the breast support. In

addition, an anti-scatter grid is usually placed between the breast support and the detector to

decrease scattered radiation signal, which lowers picture contrast. The scanners produce raw

and processed mammograms as shown in Figure 1.8 [1].

The most generally used procedure for breast cancer screening is mammography, which is

9
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Figure 1.5: Age-specific mortality rates of female breast cancer by different countries and HDI levels.
[3]

quick, inexpensive, and does not require a highly competent operator. However, there are a

number of drawbacks to using this method. It has a high risk of False Negatives (FN: detection

shows that there is no cancer but there is a cancer) and False Positives (FP: detection reveals

certain cancer signs (tumour or micro-calcifications) although there is no cancer) in particular

female demographic groups (with thick breasts). A woman with no disease is biopsied in the

latter, but a woman with disease is left untreated and can result in a fatality in the former [1].

Each breast is obtained utilizing two separate view points (Craniocaudal View (CC) and

Mediolateral Oblique (MLO)) in mammography-based screening programs, as shown in Fig.

10



11 1. Interpretation of mammography

Figure 1.6: An overview of mammography setup, where a women’s breast is placed on the breast support
and a x-ray beam projection is generated in the x-ray tube (courtesy: Wikipedia).

1.9 a. Sample mammograms from these two view positions are displayed in Figures 1.9 b and

1.9 c. If the radiologist notices questionable areas, further image projections (e.g. enlarged

views, medio-lateral views) might be done. Screen-Film Mammography (SFM) employed pho-

tographic films to capture the breast scan in the past. With advances in imaging technology,

high-quality FFDM are now employed, which may be viewed immediately on computers. To

address the issues with standard 2D mammography, pseudo-3D DBT has exploded in popular-

ity in recent years as a novel imaging method for reducing the masking impact of overlapping

fibro-glandular tissue and thereby enhancing breast cancer detection. The x-ray tube passes

through a narrow arc above the breast (See Fig. 1.10) and several low-dose x-rays are taken [1].

Exposures are taken, which are subsequently post-processed to produce pseudo-3D breast

volumes. Each slice of this pseudo-3D volume represents a breast depth. Slices are usually

spaced by 1 mm, allowing for improved visualization of the interior breast tissue and reduc-

ing the overlapping effects seen in mammography. Varying DBT geometries and acquisition

settings (e.g., narrow vs. broad angle) are available, with different detection performance in

masses and microcalcifications. Figure 1.11 displays different slices of breast DBT volume as

an example. Despite the growing use of DBT, x-ray mammography remains the gold standard

11



1. Interpretation of mammography 12

Figure 1.7: A dedicated mammography system has many unique attributes, including K-edge filtration,
collimation, and compression. AEC has an external or internal sensor for digital detectors
and can be positioned by the user. Major components of a typical system, excluding the
generator and user console, are shown.

[4]

imaging modality for breast cancer screening due to its speed and cost effectiveness. Further-

more, DBT is a relatively new treatment option, with limited access in hospitals. As a result, it

is not yet regarded as a standard approach for breast cancer detection [1].

1.4.1 Impacts in mammography

• exposure to radiation, Exposure to small amounts of radiation however, for many women,

the benefits of a regular mammogram far outweigh the risks associated with the amount

of radiation they receive.

• Not always accurate, the accuracy of the procedure depends in part on the technique used

and the experience and skills of the radiologist.

• Other factors (such as age and breast density) can cause a ”fake” mammogram, Negative

or Positive

• Difficult to use for young people, the breasts of younger women contain more glands

12



13 1. Interpretation of mammography

Figure 1.8: Illustration showing the raw and processed mammogram in FFDM.

and ligaments than the breasts of older people, therefore, dense breast tissue can mask

the signs of cancer, but as you get older, there will be more fat in the breast tissue and

the glands will become less, therefore, it becomes easier to detect breast changes with a

mammogram.

• The need for more tests, among women of all ages who undergo mammograms, about

10% of women require additional tests, such as ultrasound and biopsy, A sample of breast

tissue is collected in a laboratory examination, most abnormal findings are not cancerous.

• If there is an abnormality on the mammogram, the radiologist needs to compare it with

the previous mammogram.

• It cannot detect all cancers, some cancers found through a physical exam don’t show up

on a mammogram, the cancer may be small or located in areas that are difficult to show

on a mammogram, like armpits.

• Not all cancers detected through it can be cured, some types of cancer are dangerous

because they grow quickly and spread to other parts of the body early.

• Damage to the fetus, these rays may harm the fetus, which requires telling the doctor if

13
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Figure 1.9: Mammography projection views used in breast cancer screening studies: (a) shows the di-
rection of two mostly used view points to produce mammograms, (b) CC view, and (c) MLO
view

.

the woman is pregnant [5].

1.5 Digital mammography

As a result of the digital revolution, conventional film-based hospitals are switching to dig-

ital hospitals, where clinicians may access patient medical data, chart information, and test

results electronically from anywhere in the hospital. In this regard, full-digital mammography

is gaining traction in comparison to the still-popular film-screen mammography, because digital

acquisition, storage, and display procedures may all be separated and optimized separately. Let

us go through these processes in further detail [6].

1.5.1 Image Acquisition

Traditional screen-film receptors have lower quantum efficiency and resolution than digital

detectors. These will result in lower doses and better picture quality in mammography. Ac-

cording on how the X-ray is collected, digital detectors for mammography can be classified as

14
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Figure 1.10: Schematic procedure of DBT, showing the movement of the x-ray tube to acquire images
at different angles. Note that the geometry differs between manufacturers

indirect or direct conversion detectors. The energy of the X-rays is caught by a scintillator,

which transforms it to light in indirect conversion methods (the first ones). Following that, an

array of thin film diodes captures the light and converts it to an electrical signal, which is then

caught by thin-film transistors. The fundamental issue with these systems is that the scintilla-

tor’s generated light scatters, causing the same X-ray to be collected by many transistors. In

direct conversion devices, on the other hand, the same photo-conductor that captures the X-ray

can also create an electrical signal. As a result, dispersion in these systems is less severe. Berns

et al. [7] compared the acquisition times of digital mammography with screen-film mammog-

raphy. While the former took an average of 21.6 minutes, the latter took just 14.1 minutes, a

remarkable 35 percent less time. The specialists took an average of 1.4 minutes to analyze the

pictures for screen-film mammography and 2.3 minutes for digital mammography, a significant

57 percent greater interpretation time [6].

1.5.2 Image Storage

After the image has been captured, it must be saved. The Digital Imaging and Communi-

cations in Medicine (DICOM) standard to do this. This standard covers not only the storing of

information in medical imaging, but also the printing and transfer of it. The DICOM format

varies from the others in that it combines information on the patient and the image source (in
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Figure 1.11: Sample DBT volume: Different slices of DBT volume traversing from left to right
.

our example, a mammogram), as well as the entire picture or images. As a result, photographs

from a single research are never incorrectly separated from their associated data. JPEG, JPEG

Lossless, JPEG 2000, and Run-length encoding are some of the standards that may be used to

compress picture data Run-length Encoding (RLE). The paper by Avrin et al. [8] includes a

discussion of its utility. They believe that the benefits of adopting compression techniques over

expanding existing and future technology’s storing capacity are not as evident. Furthermore, the

DICOM standard controls the communication protocol, allowing the hospital’s many imaging

instruments to be integrated. As a result, monitors, scanners, servers, workstations, printers, and

network gear may all be linked into a completely digital system known as the Picture Archiving

and Communication System (PACS). A PACS network is typically made up of a central server

that stores the DICOM database and a series of clients that give or consume the pictures [6].

1.5.3 Image Display

The picture from the digital mammogram can be forwarded to the screening workstation,

where one or more professionals would generally examine and diagnose the case once it has

been received and saved by the PACS database. In contrast to a traditional movie screen, the
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experts will have to see the image on an electronic display (also called soft-copy display). Soft-

copy reading, as opposed to (static) film reading, provides more options. Experiments have

demonstrated that presenting current and previous mammograms on the same screen allows for

a better assessment of temporal changes than displaying pictures adjacent to each other, es-

pecially if the images are appropriately registered in the spatial and gray-scale domains. The

biggest disadvantage is that a malfunctioning, under-calibrated, or incorrectly set-up display can

degrade the overall quality of a diagnostic operation. Clinical trials suggest that radiologists can

interpret digital screening mammography as well as conventional films using soft-copy reading,

with no significant variations in sensitivity or specificity. Furthermore, both investigations re-

veal that the speed of interpretation did not change much (in contrast to the already cited work

of Berns et al. [6]).

1.6 Conclusion

Due to the complexities of breast structure and the difficulty of mammography in detecting

cancer, this has led to its widespread, which prompted scientists and researchers to research

and devise a method of mammography to aid in early detection, which led to these efforts

to reach mammography. Regular mammograms are the best tests doctors have to find breast

cancer early, sometimes up to three years before it can be felt, We also learned about the risks

of mammography and its impact on women.
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2.1 Introduction

Breast cancer is the second most frequent cancer in women and the primary cause of mor-

tality from cancer. It has evolved into a severe worldwide health concern during the last 50

years, with its prevalence growing in recent years. If breast cancer is detected early, it can be

diagnosed and treated more successfully. Using deep learning,CAD devices can aid in the early

diagnosis of breast cancer and minimize mortality among breast cancer patients.

The synergistic neural network was chosen because it has shown good performance in a

variety of computer vision and machine learning challenges. Thanks to the ways in which the

synaptic neural network works, many powerful research papers have been published on this

issue, which greatly help reduce the time it takes radiologists to diagnose a patient’s condition

(healthy or ill)

2.2 Breast cancer screening

Breast cancer screening is examining a woman’s breast before she develops signs of the

disease. Screening can take several forms; a mammogram is an X-ray scan of the breast. This

picture is examined by a radiologist for abnormal findings. A clinical breast exam is a physical

examination of the breasts performed by a doctor or nurse who uses their hands to feel for lumps

or other changes. Women can also do a breast self-exam, which involves inspecting their own

breasts for lumps or changes in the breasts or underarm. Breast cancer is best detected early,

before symptoms occur, with mammograms. Breast cancer can be treated more easily if it is

detected early. Digital mammography is becoming the most often used technology. The breast

X-ray pictures can be taken on film or saved immediately to a computer. There are no changes

in how a mammography and a digital mammogram are interpreted [9].

2.3 Computer-Aided Detection/Diagnosis CAD systems

A CAD system analyzes medical pictures and assists the detection specialist. It is frequently

used as a detector and a classifier (K-nearest Neighbor Classifiers (KNN), decision trees, etc.).
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The earliest studies on automatic mammography processing systems attempted to provide ra-

diologists with a second interpretation to aid them in early detection and diagnosis. The use of

CAD technologies might increase radiologists’ performance in breast cancer screening [10].

2.3.1 Computer-aided detection

On traditional mammography, the rate of false negative interpretations is quite high (be-

tween 10% and 30%). As a result, computer-assisted detection is becoming more widely em-

ployed in mammography screening, as it enhances mammogram sensitivity. A scanner converts

the film mammography picture into a digital image. A computer analyzes the digital image and

displays it on the screen. Software is used to scan the image and offer messages in computer-

aided detection. Using information derived from mammography, the detector detects anoma-

lies.The role of the classifier is to sort.

CAD (Computer-aided Detection) is a helpful addition to the radiologist’s toolkit. Expert

radiologists must choose a CAD with the most efficient algorithms, especially when it comes to

mass detection. Given the potential benefits of these technologies, the Food and Drug Admin-

istration (FDA) has approved four computer-aided detection systems in the United States since

1998. The R2 Image Checker is the first system created. In January 2002, two were approved:

the CADx Second Look and the CAD MammoReader. These two companies ended up merging

and they kept the name of Second Look. Then the ”Kodak DirectView CR” Mammography

Feature system was released [10].

2.3.2 Computer-Aided Diagnosis

The diagnosis comes from the Greek “diagnosis”: knowledge. Originally used in the medi-

cal field, this term means the identification of a disease by its symptoms. More generally, it can

be defined as a judgment made on a situation, on a state. But the interpretation of the word diag-

nosis has many meanings depending on the interlocutors to whom it is addressed: the financial

diagnosis of a company concerns the verification of its financial state, the medical diagnosis is

interested in determining a disease to identify the causes, and the industrial diagnosis, for its

part, aims to find the cause of a failure. The medical field quickly adopted diagnostic aid tools.
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The implementation of a diagnostic aid system using the medical image goes through several

stages: a pre-processing stage, a classification/identification stage, and a final stage for the final

decision-making by the medical staff. A radiologist’s categorization of breast lesions is a sub-

jective human assessment that can categorize the same lesion in two ways. An automated CAD

method, on the other hand, based on the descriptors (characteristics) of the lesion, consistently

produces the same results for the same X-ray and so may be used as a reference. To provide a

second opinion to the radiologist, an automated Computer Aided Diagnosis system is deployed.

Such a system begins with a preprocessing in order to obtain a more readable and less noisy

image. This pre-treatment facilitates the task of the following steps. A step of extracting math-

ematical descriptors allows the classification of tissue type and the detection of the presence of

anomaly. Then the final step is to make a decision.

Classification of breast tissue density is an important step. This information will be used for

the diagnosis of breast tissue. The concept of systems dedicated to diagnostic assistance CAD

has been emerging for about fifteen years. Several teams have taken an interest in automated

computer systems to help detect and diagnose radiological lesions in mammography. They are

intended for computer reading which is intended to assist but not to substitute for the radiologist.

The digital analysis of the mammography images can then serve as a second computer readout

for the radiologist. Several recent studies have shown that these CAD systems can increase the

rate of cancers detected by 15 to 20% [10].

2.4 Diagnosis/detection support system for mammography

The proposed diagnostic/detection support system for mammography consists of several

steps described in the following figure 2.1:

The stages depicted in figure form a diagnostic assistance system for mammography, with

the ultimate step allowing for the diagnosis of breast abnormalities [10].
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Figure 2.1: The stages of the diagnostic/detection support system for mammography

2.4.1 Mammography Preprocessing

The majority of pixels in an image are redundant and do not add much to the image’s in-

herent information. To prevent extra processing overhead while working with Artificial Intelli-

gence (AI) networks, it is vital to remove them. Compression methods can help with this. We’ll

start by putting our deep net into action. The photos in the dataset are being processed. This

is accomplished with the assistance of Python’s implementation of the OpenCV library. There

are other different modules that may be utilized. MATLAB or other image processing libraries,

for example, were utilized in this stage software this is required to eliminate redundancy in the

input data. It only adds to the network’s computational complexity without bringing about any

meaningful improvements in the outcome.

2.4.2 Classification of breast tissue

The density of breast tissue is an essential characteristic of breast anatomy and physiology.

Density is significant for two reasons in particular: To begin with, increasing mammography

density is linked to a decrease in mammography sensitivity for detecting breast cancer. Second,

breast density is one of the most powerful recognized risk factors for breast cancer in women

under the age of 70. For all of these reasons, automated tissue density categorization is an

essential diagnostic method. To categorize breast tissue, many classification approaches have

been used; the following table 2.1 is a non-exhaustive depiction of this work [10].
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Description of the method Database Used
in 2005

This study presents two methods:
the k nearest neighbors algorithm

and the decision tree [11].

MIAS

in 2006
a breast density classification technique

using a multi-resolution histogram
has been proposed [12].

MIAS

in 2011
Several methods have been used

for the classification of breast density:
- Classification and regression trees
- The k nearest neighbors algorithm

-Support Vector Machine (SVM) [13].

Mini-MIAS

in 2012
In this article,

they propose the use of the naive bayesian
classifier and the k nearest neighbors

algorithm [14] .

Mini MIAS and
KBD-ER digital
mammography

in 2013
This article presents a method based on estimating breast density.

The overall profile of breast tissue density
is represented using a topographic map [15] .

MIAS and DDSM

in 2018 has been proposed :
In the proposed approach,

the values deduced from the histogram
will be processed by Artificial Neural Networks (ANN)

for the breast tissue classification [10].

Mini-MIAS

Table 2.1: Breast tissue density classification methods.
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Description of the method Database Used
in 2010 ,

An automatic diagnostic aid system is applied to the detection
and localization of suspicious areas in mammograms.
The proposed algorithm contains three essential steps;

in the first step a method based on active contours and the chamfer map
is used for the detection of contours of the mammary gland.

In the second step a segmentation method is used to segment the pectoral muscle,
the aim of the two previous steps is to limit the region of interest,

in the third step a genetic active contour is used to locate
the regions of suspicious masses [10] .

MIAS

in 2012
This article presents an approach based on a hybridization

of the K-means method
and the harmonic search method Harmony Search (HS)

in order to detect tumors [16].

Mammographic
images
of size

256*256

in 2015
The study proposes a computer-aided diagnostic technique

using the hybridization
of the genetic algorithm

by the GA-PSO particle swarm optimization algorithm,
for the selection of texture features.

The KNN classifier is used
to classify normal and abnormal breast tissue [17].

Mini-MIAS

in 2016
In this article a Gabor filter is used to calculate characteristics

that will be used to select the most relevant pixels.
Finally, a classification of breast tissue

into two abnormal/normal classes is performed
using a SVM [18] .

Mini-MIAS

in 2018 has been proposed:
The present study proposes

an interpretation of mammograms
by a system based on an artificial neural network

capable of detecting the presence or absence
of breast abnormality [10].

Mini-MIAS

Table 2.2: Breast tissue abnormality detection methods.
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2.4.3 Detection of an anomaly in Breast tissue

We are going to study the problem of detecting the presence or not of an anomaly in a

mammogram, several studies have been carried out for the detection of anomalies table 2.2 [10].

2.5 Convolution neural network

Convolutional Neural Network (CNN)s are a sort of neural network that processes input

using a preset grid-like topology. In practical applications, convolutional networks have had a

lot of success. The usage of a mathematical procedure known as convolution is referred to as a

”convolutional neural network”. Convolutional networks, in other words, are neural networks

having at least one layer that use convolution rather than traditional matrix multiplication. The

biological inspiration for CNNs is the visual cortex in animals. Small sub-regions of the input

are sensitive to the visual cortex cells, which is referred to as the visual field (or receptive field).

These smaller sub-regions are tiled together to capture the whole visual field. The cells are well-

suited to take advantage of the high spatially local correlation evident in the types of images our

brains comprehend, acting as local filters across the input space. In this part of the brain, there

are two types of cells. Simple cells fire when they detect edge-like patterns, whereas more

complex cells fire when they have a bigger receptive field and are unaffected by the pattern’s

location. CNNs are responsible for major medical imaging discoveries as a consequence of

having the upper hand when it comes to dealing with images. Following that, we’ll go through

the fundamental components of these networks [19].

2.5.1 Input Layers

Input layers are placeholders for picture raw data. The input data is usually three-dimensional,

with the width, height, and number of channels specified. The depth or color channels are rep-

resented by the latter (three for Red Green Blue (RGB) or just one in the case of greyscale

images) [19].
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Figure 2.2: A high-level overview of CNN Architecture
.

2.5.2 Convolutional Layers

Convolutional layers execute a convolution on the input before passing the output to the

next layer. A convolution is a technique for converting all of the pixels in a receptive region

into a single value. When you apply convolution to a picture, for example, the size of the image

is decreased as all of the information in the field is combined into a single pixel. This function

is followed by an element-wise non-linear activation function (typically ReLu), which modifies

the pixel values while maintaining the input data’s spatial dimension [19].

Fourier transformers are a mathematical procedure that allows two sets of data to be com-

bined. The input to a convolution operation is a matrix representing raw data or a feature map

from a previous convolution, as shown in the diagram. To create entries in the output feature

map, a kernel (also known as a filter) is slid over the input matrix [19].

To create the 3D output volume, the activation maps for each filter are layered along the

depth axis.

26



27 2. Breast Cancer & CNN

Figure 2.3: Input layer 3D volume
.

Figure 2.4: The convolution operation.

2.5.3 Pooling Layers

Pooling layers, which are often added between consecutive convolutional layers, are another

important basic component in ConvNets. They apply downsampling to the input, gradually

reducing the data representation across the network. By summarizing subregions using some

statistical function, such as taking the average or maximum value, pooling processes reduce the

size of feature maps. One of the most popular pooling filters used in CNN is a 2× 2 filter with

a stride of 2. This filter down-scales each input depth slice by a factor of two while maintaining

spatial correlation [19].
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Figure 2.5: Max pooling on a single depth slice using a 2× 2 filter with a stride of 2.

Figure 2.6: The output of the flattening operation is a vector.

2.5.4 Fully Connected Layers

Fully connected layers, also known as feed forward neural networks, are utilized in the last

phase of CNN. The final Pooling or Convolutional Layer output is flattened and then provided

as input to the fully linked layer. The process of unrolling the values of a three-dimensional

matrix into a vector is known as flattening. It’s worth noting that the final layer makes use of

the Softmax algorithm (instead of Rectified Linear Unit (ReLU)). In the case of a classification

task, the last fully connected layer is used to compute class scores. The dimensions of the output

volume of the last layer is [1× 1×N ] where N is the number of target classes [19].
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2.6 Conclusion

Although breast cancer is the most common disease among women worldwide, and despite

its high risk, it can all be avoided by early detection to avoid advanced stages that are diffi-

cult for doctors to deal with (treatment). Unlike the detection and diagnosis manual, the often

mechanisms of deep learning have given a major impetus to the rapid detection and diagnosis

of these tumors.

With human progress, scientists and experts are trying to introduce artificial intelligence in

all fields in order to facilitate life and find the best results in the shortest period of time. This

could save thousands of lives around the world, The earlier the detection accurately, the more

women can avoid breast cancer. With the advancement of science, there are now different types

of neural networks such as Recurrent Neural Networks Recurrent Neural Networks (RNN),

ANN, and CNN. In our experience, we found that CNN provides the greatest results for early

diagnosis of cancer because, despite the anatomical complexities of the breast, it can detect the

disease
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3.1 Introduction

Deep learning algorithms, particularly convolution neural networks (CNN’s), are partic-

ularly well adapted to detecting patterns in pictures and exploiting those patterns to classify

them. We will work on four parameters to get the maximum accuracy (number of epochs, patch

size, learning rate, and optimizers), and we will adjust these parameters in this chapter until we

discover the optimum value of accuracy from the results we found.

3.2 Proposed approach

This research presents and evaluates a deep learning architecture for automated breast cancer

diagnosis that combines machine learning and image categorization ideas. Different Deep Neu-

ral Network topologies, particularly those tailored to picture data, such as Convolutional Neural

Networks, have been described. This took the labeled (benign/malignant) input image and high-

lighted the visual patterns, then used those patterns to distinguish between non-cancerous and

cancer-containing tissue, similar to how digital staining uses a classifier network to highlight

image segments important for diagnostic decisions. The RGB color model, which had 2480

healthy samples and 5429 unhealthy ones, was used to teach the CNN (See Fig. 3.1) in below

we describe in detail.

3.2.1 Feature extraction

For both human and machine systems, feature learning is a critical phase in the categoriza-

tion process. According to research, the human brain is more sensitive to forms than computers

are to patterns and texture. As a result, feature learning differs greatly between manual and ma-

chine learning. Malignant tumors feature big, irregular nuclei or numerous nuclear structures in

the visual environment. The cytoplasm undergoes changes as well, with new structures forming

or existing ones disappearing. Malignant cells contain a small quantity of cytoplasm and often

have vacuoles. The ratio of cytoplasm to nucleus falls in this circumstance. Experts assess all

of these traits or algorithms are built to quantify these features in order to automate detection.
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Figure 3.1: The output of the flattening operation is a vector.
.

Because selection and quantification include a variety of unknown mistakes that are difficult

to resolve, this technique is complex and inaccurate. We do not need to give these elements

directly in order to oversee learning. In this scenario, photos are given to a CNN-like architec-

ture and their class as a label (Benign or Malignant). From this, CNN can derive computational

characteristics from the automated updating of filter values throughout the training phase. In

other words, for a particular architecture of CNN filters and their weights, these are attributes

that are employed for model assessment during testing. In this method, CNN takes an image’s

raw pixels and outputs learning filter weights as shown in figure 3.2 (features learning part).

The details of the network are illustrated in Table 3.1, followed by its visual representation

in Fig. 3.2 the number of filters employed in the convolution process increases the depth of the

input however, when the pooling layer is applied, the depth remains the same, while the size is

reduced. Visual representation of Table 3.1 is shown in Fig. 3.2 (convX@Y × Y ) represents

convolution with X number of filters of size (Y ×Y ), and (pool@Z×Z) represents max pooling

with a kernel size of (Z × Z).
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Figure 3.2: CNN Architecture.
.

Layer attribute L1 L2 L3 L4 L5 L6
Type Conv Pool Conv Pool Conv Pool

Channel 32 - 64 - 128 -
Filter Size 5x5 - 5x5 - 5x5 -
Conv stride 1x1 - 1x1 - 1x1 -
Pooling size - 3x3 - 3x3 - 3x3

Pooling stride - 1x1 - 1x1 - 1x1
Padding size same none - none - none
Activation ReLu - ReLu - ReLu -

Table 3.1: Parameters of the CNN architecture.

3.2.2 Classification

The flattened weighted feature map created from the final pooling layer is utilized as input

to the fully connected network, which calculates the loss and updates the weights of the internal

hidden nodes accordingly during the classification process. Table 3.2 contains the parameters

of these layers. These layers are stacked after preprocessing is done. The output of the last layer

is taken as the final output as usual.

Layer Attribute FC-1 FC-2 FC-3
No of nodes 64 64 2

Activation used ReLu ReLu Softmax

Table 3.2: Details of fully connected network.
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3.3 Database and protocol

BreakHis [20] is a library of microscopic biopsy images of aggressive and benign breast

cancers. From January to December 2014, photographs were taken using a clinical report 1. The

P&D lab is referred to patients who have a clinical sign of breast cancer. Patients suffering from

breast tumors at P&D Lab Brazil were invited to participate in the study of breast tumors from

January to December 2014. The investigation was approved by a member of the establishment,

and all of the patients signed a written consent form.

BreakHis breast tumor tissue collection contains 9,109 images. It was acquired from 82

patients with various magnification factors on the site 2 (40×, 100×, 200×, and 400×) as shown

in figure 3.3. There are 5,429 cancerous and 2,480 benign instances (700 × 460 pixels). This

data-set was created at Parana, Brazil, with the help of the P& D lab-Pathological Anatomy and

Cytopathology. The breast tumor tissue is freely available for researchers to examine.

Figure 3.3: Breast malignant tumor slides observed with different magnification ratio 40 X , 100 X , 200
X and 400 X.

The cancers in BreakHis dataset are divided into two categories: benign and malignant

tumors. The cause of benign tumors is unknown in general. It grows and divides as the body’s

cells expand and divide. A benign tumor is a noncancerous tumor that is found in the majority

1https://www.wcrf.org/int/cancer-facts-figures/data-specificcancers/breast-cancer-statistics
2http://web.inf.ufpr.br/vri/breast-cancer-database
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of women. It does not spread to other organs or areas of the body. Malignant tumor is a term

that refers to cancer in general. It spreads to other sections of the body and may result in the

person’s death. Different biopsy procedures were used to gather samples.

A dataset is a labeled data image that contains all of the details about a patient and the

biopsy procedure. Every single image is labeled. The method of biopsy, type of tumor, tumor

class, patient identity number, and picture magnification factor are all included in the image.

For example, in SOB B TA15-5865-100 001.png, SOB stands for biopsy process, B for benign

tumor, and TA for benign tumor of type tubular adenoma, all of which are acquired from slide

15-5865.

Phyllodes tumor (PT), adenosis (A), tubular adenoma (TA), and fibroadenoma (FA) are the

four types of benign breast tumor tissue in the database (F). Mucinous carcinoma (MC), lobular

carcinoma (LC), papillary carcinoma (PC), and carcinoma are four different types of malignant

breast tumors (DC). The distribution of images is detailed in Table 3.3. We used 80% of the

data for training and 20% for tests (6,327 images for training and 1582 images for testing).

Magnification Benign Malignant Total
40x 652 1370 1995

100x 644 1437 2081
200x 623 1390 2013
400x 588 1232 1820
Total 2480 5429 7909

Table 3.3: Distribution of images in dataset

3.4 Evaluation metrices

Along with the descriptions of Accuracy (Eq. 3.1), Precision (Eq. 3.2), Recall (Eq. 3.3),

and F1-score (Eq. 3.4) numerous terms are widely employed. True positive (TP), True Negative

(TN), Flase Negative (FN), and False Positive (FP) are the four types. The result of a diagnostic

test is deemed true positive if a disease is proved to be present in a patient and the offered

diagnostic test also reveals the presence of disease. Similarly, if a disease is confirmed to be

absent in a patient and the diagnostic test confirms this, the test result is TN. Both true positive
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and true negative results indicate that the diagnostic test and the confirmed condition are in

agreement (also called the standard of truth). No medical test, however, is without flaws. The

diagnostic test result is false positive if it suggests the presence of disease in a patient who does

not have it FP. Similarly, if the diagnosis test result indicates that the disease is missing in a

patient who has a known ailment, the test result is FN. The terms ”false positive” and ”false

negative” refer to the test findings being the polar opposite of the actual condition.

Acc =
TP + TN

TP + TN + FP + FN
(3.1)

Precision =
TP

TP + FP
(3.2)

Recall =
TP

TP + FN
(3.3)

F1− score = 2× Precision×Recall

Precision+Recall
(3.4)

Accuracy is the base metric used for model evaluation describing the number of correct

predictions over all predictions (See Eq. 3.1). Precision is a measure of how many of the

positive predictions made are correct (true positives) (See Eq. 3.2). Recall is a measure of how

many of the positive cases the classifier correctly predicted, over all the positive cases in the

data (See Eq. 3.3). F1-Score is a metric that combines accuracy and recall. It’s often referred to

as the harmonic mean of the two. The harmonic mean is a method of calculating a ”average” of

numbers that is said to be better for ratios (such as accuracy and recall) than the usual arithmetic

mean. In this situation (See Eq. 3.4).

3.5 Results and Discussion

In this section, by considering the previously described setup we use some different param-

eters in CNN architectures to improve the result by focusing on a number of epochs, bach size,

learn rate and finally which one is the best optimizer. All these experiments we describe below
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in detailes.

3.5.1 Effectiveness of number epochs

Figure 3.4: Training accuracy and validation accuracy
.

Figure 3.5: Training loss and validation loss
.

As shown in figure 3.4, the results for accuracy in terms of the number of epochs (in our ex-

periment, 500 epochs) are as follows: we see an increase in accuracy in the range from 1 to 300

epochs, then the accuracy is stable (the highest value possible, 94.37%) in the range from 300

to 500 epochs, and the error rate of validation is the smallest possible value, as shown in figure

3.5, we should stop when the error rate of validation data is the minimum. Consequently, if we
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increase the number of epochs, we will have an over-fitted model. In general, too many epochs

may cause our model to over-fit the training data. It means that our model does not learn the

data, it memorizes the data. So we have to find the accuracy of validation data for each epoch

or maybe iteration to investigate whether it over-fits or not, so in our case, we obtained the best

accuracy possible of 94.37%.

3.5.2 Effectiveness of Batch size and Learning rate

Batch size is the number of samples processed before the model is updated, and this can

help to not wait until the whole data is processed, which may take a long time or even cause

further problems. However, dividing your data into mini-batches has proven its efficiency in

terms of better accuracy and training speed.

In general, smaller or larger batch size doesn’t guarantee better convergence. Batch size

is more or less treated as a hyperparameter to tune, keeping in mind the memory constraints

you have. There is a tradeoff between bigger and smaller batch sizes, which each have their

own disadvantages, making it a hyperparameter to tune in some sense. The theory says that

the bigger the batch size, the less the noise in the gradients and the better the gradient estimate.

This allows the model to take a better step towards a minimum. And that’s what we can notice

by setting the batch size bigger than 128 to lose in terms of accuracy. However, the challenge

is that a bigger batch size needs more memory, and each step is time-consuming. Even if

somehow we could avoid the time and space constraints, a bigger batch size still wouldn’t give

a better solution in practice compared to a smaller batch size. This is because the surface of

the objective of the neural network is generally non-convex, which means that there might be

local optimums. Just having an accurate gradient estimate doesn’t guarantee us reaching the

global optimum (which we seek). It could lead us to a local optimum very accurately! Keeping

the batch size small makes the gradient estimate noisy, which might allow us to bypass a local

optimum during convergence. This is what happens by increasing our batch size to 256. But

having a very small batch size would be too noisy for the model to converge anywhere. That’s

what we see for batch sizes less than 128. So, the best batch size depends on the network you

are training, and the data you are training with, and the objective function you are trying to
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Batch size 32 64 128 256
Accuracy 89.51% 93.92% 94.37% 94.05%

Benign 0.94 Benign 0.93 Benign 0.93 Benign 0.93
Malignant 0.88 Malignant 0.93 Malignant 0.95 Malignant 0.94Precision

AVG 0.91 AVG 0.925 AVG 0.94 AVG 0.935
Benign 0.71 Benign 0.85 Benign 0.89 Benign 0.88

Malignant 0.98 Malignant 0.98 Malignant 0.97 Malignant 0.97recall
AVG 0.845 AVG 0.915 AVG 0.93 AVG 0.925

Benign 0.81 Benign 0.9 Benign 0.91 Benign 0.9
Malignant 0.93 Malignant 0.96 Malignant 0.96 Malignant 0.96F1 score

AVG 0.87 AVG 0.93 AVG 0.935 AVG 0.93

Table 3.4: Batch size

Learning rate 0.1 0.01 0.001 0.0001
Accuracy 68.20% 68.21% 94.37% 92.48%

Training time 201min17sec 146min35sec 268min46sec 269min01sec

Table 3.5: Learning Rate

optimize. Finally, we found that the optimal batch size to use is 128. This is the batch size we

will use in the next experiments. as shown in Table 3.4.

Then, we tried to lookahead how can the learning rate affect our training phase. Actually,

The learning rate may be the most important hyperparameter when configuring your neural

network. Where in fact, the learning rate is a hyperparameter that controls how much to change

the model in response to the estimated error each time the model weights are updated. Choosing

the learning rate is challenging as a value too small may result in a long training process that

could get stuck, whereas a value too large may result in learning a sub-optimal set of weights too

fast or an unstable training process. And here in our experiment, it shows that with a learning

rate of 0.01 our model has a better execution time as shown in table 3.5. However, the accuracy

is very low which is in fact due to a sub-optimal set of weights. Whereas, a smaller learning

rate of 0.001 gives better accuracy but with a longer time.

3.5.3 Effectiveness of optimizer

Optimizers are techniques or strategies for minimizing an error function (loss function) or

increasing production efficiency. Optimizers are mathematical functions that are based on the
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Optimizers Adam Adamax SGD RMSprop
Accuracy 94.37% 93.81% 85.52% 88.94%

Benign 0.92 Benign 0.89 Benign 0.84 Benign 0.88
Malignant 0.95 Malignant 0.96 Malignant 0.86 Malignant 0.89Precision

AVG 0.935 AVG 0.925 AVG 0.85 AVG 0.885
Benign 0.90 Benign 0.92 Benign 0.68 Benign 0.85

Malignant 0.96 Malignant 0.95 Malignant 0.94 Malignant 0.89recall
AVG 0.93 AVG 0.935 AVG 0.81 AVG 0.87

Benign 0.91 Benign 0.90 Benign 0.75 Benign 0.81
Malignant 0.96 Malignant 0.95 Malignant 0.9 Malignant 0.82F1 score

AVG 0.935 AVG 0.925 AVG 0.825 AVG 0.815

Table 3.6: Optimizers

learnable parameters of a model. Biases and weights optimizers assist in determining how to

adjust the weights and learning rate of a neural network in order to minimize losses.

There are several types of optimizers, but we only used four for our experiment (Adam,

Adamax, SGD, and RMSprop). Based on the results in the table 3.6, we can see that SGD

and RMSprop have the lowest accuracy (85.52% and 88.94%, respectively), while the Adam

optimizer has the highest (accuracy = 94.37%) with (a precision = 93.5%, recall = 93%, and

F1-score = 93.5%), so we used Adam in our experiment.

3.5.4 Compared with state of the art

The confusion matrix obtained is shown in Fig 3.6, which visually depicts the results of

Table 3.7. We may deduce from Fig 3.6 that the Malignant class is the actual class in this

situation; hence, the TP, TN, FP, and FN values are 64.97%, 29.23%, 3.24%, and 2.53%,

respectively.

Precision Recall F1-score
Benign 0.92 0.90 0.91

Malignant 0.95 0.96 0.96
Avg/total 0.935 0.93 0.935

Table 3.7: Summary of result

We acquired a degree of precision with the aforesaid arrangement that was superior to many

state-of-the-art experimental setups. We evaluated our findings (94.37% validation accuracy
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Figure 3.6: Confusion matrix.
.

from the test set) with various published research (Table 3.8) for comparison. Along with the

increase in accuracy, there has been a considerable increase in precision (93.5% in our instance,

and 63.36% [21] and 90.63% [22] and 93% [23] respectively) and recall (as 93% in our case

and 76.67% [21] and 86.39% [22] and 93% [23]) This method is particularly advantageous

since the system is totally automated and any user may test a new image.

Year Method Used
Validation

Accuracy Range (in %)
2017 K-Nearest Neighbor [22] 83 to 86
2017 Pre-Trained Networks [24] 80 to 89
2017 Feature Extracted Using CNN [25] 83 to 90
2018 Deep Convolution Neural Network [21] 91.54

2019
Cancer diagnosis in histopathological image:

CNN based approach [23]
93.45

2022

Deep Neural Networks Improve

Radiologists’ Performance in Breast

Cancer Screening

94.37

Table 3.8: Existing methods and respective Accuracy
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3.6 Breast Cancer Detection Interface

In this section after we tested all parameters on the CNN architecture are proposed and fixed

the best parameters we implemented a GUI interface (See Fig. 3.7).

Figure 3.7: Graphical user interface
.

There is no requirement for domain knowledge even at the design stage because our tech-

nique has high prediction accuracy. We evaluated our model with photos of various resolutions

of histopathology and found that the findings were mostly unaffected by resolution (refer to

Tables 3.9 and 3.10). By using this automated method, it is possible to find cancer early and at

a lower cost. This could increase the number of breast cancer patients who survive the disease.

We attained the expected result using 7909 biopsy photos of normal and malignant breast tissue

in our model with a train-test split of 0.2. Figures 3.8 and 3.9 show the prediction output of four
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benign and four malignant photos from the testing set for demonstrative purposes.

Figure 3.8: Sample Benign image for Testing
.

Figure 3.9: Sample Malignant image for Testing
.
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Label Resolution Image name in Dataset
B40 40X SOB B A-14-29960CD-40-015.png
B100 100X SOB B PT-14-22704-100-018.png
B200 200X SOB B TA-14-19854C-200-016.png
B400 400X SOB B TA-14-13200-400-008.png
M40 40X SOB M LC-14-12204-40-001.png
M100 100X SOB M LC-14-12204-100-049.png
M200 200X SOB M MC-14-13418DE-200-012.png
M400 400X SOB M PC-14-12465-400-013.png

Table 3.9: Details of sample images from test set.

Label Actual Class Predicted Accuracy Predicted Class
B40 Benign 100% Benign

B100 Benign 99.99% Benign
B200 Benign 99.99% Benign
B400 Benign 99.99% Benign
M40 Malignant 100% Malignant

M100 Malignant 99.99% Malignant
M200 Malignant 99.99% Malignant
M400 Malignant 99.99% Malignant

Table 3.10: Prediction result

3.7 Conclusion

In this chapter, we studied and evaluated the latest methods and architectures proposed by
recent research on the use of deep learning for the effective diagnosis of breast cancer based on
datasets consisting of medical images, especially breast X-ray images, since they were identified
as the best imaging modality for this type of detection. Most of the studied architectures could
more or less achieve satisfying results with high accuracy. But more research with new and
large datasets is always needed to improve the performance of the methods that are already in
place and get better results.
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General Conclusion

Because breast cancer is one of the most dangerous diseases that affects women around the

world, and because it is the leading cause of death in the world due to the slowness with which

it is detected or errors in detection, it is necessary to assist specialists doctors by relying on

machine learning techniques now more than ever.

Deep learning and specifically convolutional neural networks are considered to be a power-

ful tool when it comes to image processing because of their ability to recognize spatial infor-

mation.

ConvNets have demonstrated excellent achievements in both academic and real-world ap-

plications, particularly in light of the tremendous increase in computer capacity we’ve seen in

the previous decade. Because x-ray equipment are widely available and even portable nowa-

days, using X-rays as an imaging modality for detecting cancer may make this technology more

accessible in third-world nations. When combined with a rapid, trustworthy, and understand-

able diagnosis AI helper model, medical teams can save time and money in the fight against this

terrible pandemic.
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