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Abstract 

 

 This work presented in this project is part of the graduation project for the MASTER2 

Diploma in Embedded Systems Electronics. It is about making an optimal control model of 

twin -rotor MIMO system TRMS. during this thesis, we designed the twin-rotor multi-output 

multi-input system with Linear Quadrature Regulator (LQR) technology on which an optimal 

state feedback controller is based. 

The objective in this project is to demonstrate the steps taken in developing an optimal model 

for multi-variable, nonlinear and dynamic system by an optimal state feedback controller 

based on linear quadratic regulator (LQR) technique  

Keywords: Optimal control, MIMO, TRMS, LQR, LQG, nonlinear. 

 

 ملخص

  الأنظمة إلكترونيات في MASTER2 لدبلومة التخرج مشروع من جزء هو المشروع هذا  في المقدم العمل هذا           

 نظام بتصميم قمنا ، الأطروحة هذه خلال. الدوران ثنائي TRMS لنظام مثالي تحكم نموذج  بصنع الأمر يتعلق. المدمجة

 وحدة  عليها تعتمد التي (LQR) الخطي التربيع منظم  تقنية باستخدام المخرجات متعدد الدوران ثنائي المدخلات متعدد

 .المثلى للحالة المرتدة التغذية في التحكم

  وغير المتغيرات متعدد لنظام مثالي نموذج تطوير في اتخاذها تم التي الخطوات توضيح هو المشروع هذا من الهدف        

 ( LQR) الخطي التربيعي المنظم تقنية على تعتمد المثلى  للحالة الراجعة التغذية في تحكم  وحدة خلال من وديناميكي خطي

 

 غير خطي. ،نظام ثنائي الدوار متعدد المداخل و المخارج،متعدد المداخل و متعدد المخارج،الأمثل التحكم كلمات مفتاحية :
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General Introduction 

 

Recent times have witnessed the development of several approaches for controlling the 

flight of air vehicle such as Helicopter and Unmanned Air Vehicle (UAV). The modeling of the 

air vehicle dynamics is a highly challenging task owing to the presence of high nonlinear 

interactions among the various variables and the non-accessibility of certain states.  

The twin rotor mimo system (TRMS) is an experimental set-up that provides a replication 

of the flight dynamics. The TRMS has gained wide popularity among the control system 

community because of the difficulties involved in performing direct experiments with air 

vehicles.  

The TRMS is basically a prototype model of Helicopter. However, there is some significant 

difference in aerodynamically controlling of Helicopter and TRMS. In Helicopter, controlling is 

done by changing the angle of both rotors, while in TRMS it is done by varying the speed of 

rotors. Several works have been reported on dynamic modeling and control of TRMS. For 

instance, an intelligent control scheme for the design of hybrid PID controller has been proposed 

in [1]. Other notable works include LPV Modeling and Control [2], QFT based control [3], LMI 

based approach [4] and Single Neuron PID control [5]. 

Considering the unmodelled dynamics and the presence of noise in the output 

measurement, in the present work, a state feedback controller has been designed considering the 

effect of unmodelled dynamics and noisy output data.  

The design of a state feedback controller demands the availability of all the state variables 

in the output. However, for the TRMS since all the states are not accessible an observer (Kalman 

filter) has been designed for estimating the unavailable state variables from the noisy output 

measurement. The Kalman filter has been coupled with an optimal controller i.e., Linear 

Quadratic Regulator (LQR) for tracking a desired trajectory. 

       The objective of this work is to present a general view of the TRMS modelling and control. 

The present work is divided into three parts including a general introduction and a general 

conclusion. 
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             Chapter one is entitled the TRMS model. In this chapter, a brief description of TRMS 

and its model is provided, and the mathematical model is presented. 

    Chapter two deals with Optimal control, it provides a brief introduction to optimal 

control LQR, LQG and their most important general principles. 

 Chapter three is entitled Optimal Control Design for TRMS, the simulation results of two 

control approaches are presented (LQR/PID). A brief comparison is focused on showing the 

superiority of optimal control over PID ones. 

 The general conclusion summarizes the overall proposed approaches and the obtained 

results. 
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1 TRMS MODEL 

 
1.1 Introduction 

 
Twin Rotor MIMO system (TRMS) is considered as a prototype model   of 

Helicopter. The aim of studying the TRMS model and designing the controller for 

controlling the response of TRMS is that it provides a platform for controlling the flight 

of Helicopter. 

 

1.2 TRMS presentation 

 
TRMS has two types of rotors, a main and tail rotor at both ends of the beam, each operated 

by a DC motor and counterbalanced by a weighted arm attached at pivot. Both horizontal and 

vertical movement are possible for the system. Four process variables characterize the state of the 

beam: horizontal and vertical angles sensed by encoders at the pivot, and two matching angular 

velocities. Speed sensors are used in conjunction with DC motors to measure the angular 

velocities of rotors. 

Figure 1.1 depicts the TRMS aerodynamic model. It is made up of two propellers that are 

perpendicular to one another and are connected by a beam pivoting at the base. 

Both vertically and horizontally, the system may freely spin. Both propellers are operated 

by a DC motor, and the rotational speed of the propellers may be regulated by adjusting the 

voltage provided to the beam. 

For balancing the beam in steady state, counterweight is connected to the system. Both 

propellers are shielded so that the environmental effects can be minimized. The complete unit is 

attached to the tower which ensures safe helicopter control experiments. The electrical unit is 

placed under the tower which is responsible for communication between TRMS and PC. 

The electrical unit is responsible for transfer of measured signal by sensors to PC and 

transfer of control signal via I/O card. 
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Figure-1.1 TRMS mechanical unit 

 

 

 

Main rotor is responsible for controlling the flight of TRMS   in vertical   direction 

and Tail rotor is responsible for controlling the flight of TRMS in horizontal direction. 

There is cross-coupling between Main and Tail rotor. 
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1.2.1 TRMS Mathematical model 
 

 

 

 

 

 

 
Figure-1.2 TRMS Phenomenological model 

 

 

The nonlinear character of the mathematical model obtained from the phenomenological 

model illustrated in Figure-1.2 indicates that at least one of the states (rotor current or 

position) has a nonlinear function argument. The mathematical model should be linearized in 

order to construct the controller for managing the flight of TRMS. 

According to model represented in Figure-1.2, the non-linear mathematical model of TRMS 

can 

be represented as [6] 
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d𝛼h 

 
 

Mathematical equation in vertical plane is given as- 
 

I   (
d2𝛼v) = M   − M − M − M 

 

 
(1.1) 

1 dt2 1 FG B𝛼v G 

 
 

 
1 

 
 
 
 

 

 

MG = KgyM1 ( 
dt  

) cos (𝛼v 

-friction forces momentum (1.4) 
 

) -gyroscopic (1.5) 
 

The motor and the electrical control circuit is approximated as a first order transfer function, thus 

the rotor momentum in Laplace domain is described as- 

 

 

 

 
Mathematical equation in horizontal plane is given as- 

 

 

Where 

 

(1.6) 

 

 

 

(1.7) 

 

 

-nonlinear static characteristic (1.8) 

 

 
-friction forces momentum (1.9) 

 

 

-cross reaction momentum (1.10) 

Rotor momentum in Laplace domain is given as- 

𝑟 =
 𝑘2 𝑢 (1.11) 

2 𝑇21𝑠+𝑇20 
2 

Where  

M1 = c1𝑟2 + d1𝑟1 -nonlinear static characteristic (1.2) 

V) -gravity momentum (1.3) 

 



Chapter1                                                                       TRMS MODEL 

Page 5 

 

 

 
 

 
 

 

 

The model parameters used in above (1.1)-(1.11) equations are chosen experimentally, which 

makes the TRMS nonlinear model a semi-phenomenological model. 

The boundary for the control signal is set to [ -2.5 to +2.5]. 
 

The following table gives the approximate value of parameter [7]. 
 

Table- 1.1 TRMS system parameters 
 
 

Parameter Value 

 

 6.8*10-2 kg.m2 
 

 2*10-2 kg.m2 
 

 0.0135 

 0.0924 

 0.02 

 0.09 

 0.32 N-m 

 6*10-3 N-m-s/rad 

 

1*10-3 N-m-s2/rad 

1*10-1 N-m-s/rad 

 1*10-2 N-m-s2/rad 

 0.05 s/rad 

 

 1.1 
 

 0.8 
 

 1.1 

 1 
 

 1 

 1 

 2 
 

 3.5 

 -0.2 
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1.3 Linearized model 
 

The mathematical model given in equation (1.1)-(1.11) are non-linear and in order to design 

controller for system, the model should be linearized. The first step in linearization technique 

[8-9] is to find equilibrium point. 

Equations (1.1)-(1.11) are combined to represent alternate model of TRMS. The alternate model 

is given as- 

 

 

 

(1.13) (1.12) 

  (1.14) 

  (1.15) 
 

 

 

(1.16) 

Now let us assume - 
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Equations (1.12)-(1.16) can be represented with state space variable as 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(1.18) 

 
 

(1.19) 

 

 
(1.20) 

 

 

(1.21) 

 

 

 
(1.22) 

 

 

 

(1.17) 

 

 

 

(1.23) 
 

Now Taylor series is applied to find equilibrium point. For this make all the derivative term of 

equations (1.17)-(1.23) equal to zero and find equilibrium point, take . 

Thus, equilibrium point will be- 
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I 

 

 

 
 

The non-linear equations (1.17) -(1.23) can be represented in state space form given as – 

 

(1.24) 

 
(1.25) 

 

 
where A, B, C can be found by applying Jacobean matrix method. Thus A, B, C are given as – 

 

 

𝖥 
I 

A = 
I
 

I 

0 0 0 0 0 1 0 

11 
I 

0I 
0I 
0I 

I−4.70588 0 1.358823 0 0 −0.088235 0I 
[ 0 0 0 4.5 −50 −5 0] 

 
 
 

0 0 
𝖥 0 0 1 
I 1 0 I 

𝐵 = 
I 

0 
I 

C = [
1 0

 
I 0.8I 0 1

 

I−0.35 0 I 
I 0 0 I 
[ 0 0 ] 

 
 

By using A, B, C matrix TRMS system can be represented in state space form by using 

equation (1.24) and (1.25). 

After representing the system in state space form, the next approach is to design 

controller for the system to achieve desired output. 

0 0 0 0 0 0 
0 0 −0.909 0 0 0 
0 0 0 −1 0 0 
0 0 0.218181 0 −0.5 0 
 

0 0 0 0 0 ] 
0 0 0 0 0 
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2 Optimal control 

 

2.1Introduction: 

A controller in a control system is a device that attempts to reduce the difference between a 

system's actual value (i.e., the process variable) and its desired value (i.e., the setpoint). All 

sophisticated control systems use controllers, which are a key aspect of control engineering. 

2.2 Controllers  

A controller is a device that monitors and adjusts the parameters of a system in order to get 

the intended result. Analogue or digital circuits can be used. Controllers are used if the system 

does not meet the given performance standards, such as stability and precision. Controllers can be 

connected to the plant in series or parallel, depending on the application. 

Figure 3.1 depicts a simple feedback control system with a controller 

 

 

Figure-2.1 Feedback control Loop  

       As shown in Figure-3.1 error signal is generated, which is difference between input signal 

and output signal. The error signal decides the magnitude by which output signal deviates from 

input value. Depending upon error signal value parameter of controller will get changed and 

control input Acting signal is applied to plant which will give satisfactory output.   

       Multiple controllers are required for a plant with multiple inputs and outputs. If the system is 

a SISO system with a single input and output, a single controller is required for control. 

Adjusting the system's input variable (assuming it is MIMO) will influence the operational 
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parameter, also known as the controlled output variable, depending on the set-up of the physical 

(or non-physical) system. More sophisticated systems can benefit from the concept of controllers. 

Both natural and man-made systems require a controller to function properly. 

2.2.1 Types of Controllers  

 
There are several sorts of controllers that can be utilized to improve a system's performance 

specifications. In general, all controllers can be divided into two types: feedback and feed 

forward controllers. The regulated variable is "feedback" into the controller, therefore the input to 

a feedback controller is the same as what it's trying to manage. Feedback control, on the other 

hand, frequently results in interim periods where the controlled variable is not at the desired 

setpoint. The slowness of feedback control can be avoided by feed-forward control. By using 

feed-forward control, the disturbances are measured and accounted for before they have time to 

affect the system. 

Controllers can be broadly classified as-  

Proportional controller  

Proportional – integral controller  

Proportional – derivative controller  

Proportional – integral- derivative controller  

Pole placement controller  

Optimal controller  

The first four controllers are feedback controller and the fifth one is full state feedback 

controller Pole placement controller is a feedback controller that is used to place closed loop 

poles in s plane to the desired spot. However, only the SISO system can utilize pole positioning. 

Overabundance of design parameters is a concern in MIMO systems.  

For such systems, we did not know how to determine all the design parameters, because 

only a limited number of them could be found from the closed loop pole locations. 

Optimal control is a strategy for finding all of the design parameters in a multi-input, multi-

output system. In addition, some trial-and-error with pole placements was required in the pole 

placement technique because we did not know ahead of time which pole site would provide 

sufficient performance.  

Optimal control allows us to immediately construct a control system's performance goal 
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and obtain the desired response. Furthermore, optimal control reduces the amount of time and 

money spent on system design. 

2.3 Linear Quadratic Regulator (LQR) 

2.3.1 Overview 

The notion of optimal control is concerned with running a dynamic system at the lowest 

possible cost. The Linear Quadratic (LQ) issue is a system whose dynamics are represented by a 

set of linear differential equations and cost is supplied by a quadratic function. The setting of a 

controller that regulates either a machine or a process is essentially determined by a 

mathematical procedure that minimizes the cost function, which is made up of weighting 

factors. In the design process, mathematical algorithms are essentially objective functions that 

must be minimized. 

For optimal control, the cost objective function must be the time integral of the sum of 

control and transient energy represented as a function of time. If total energy of a system during 

transient response is defined as transient energy, then the control system should have transient 

energy that decays fast to zero. The settling time is defined by the greatest value of transient 

energy and the time it takes for the transient reaction to fade to zero. By adding transient energy 

in the goal function, an acceptable settling time and maximum overshoot may be established. 

Similarly, control energy should be incorporated in the objective function to decrease the 

system's control energy. Figure 3.2 depicts the plant block diagram with the Linear Quadratic 

Regulator (LQR) [9-11]. The gain K of the Linear Quadratic Regulator is used to control the 

plant's output. 

 

Figure-2.2 Block diagram of Linear Quadratic Regulator 
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Consider linear plant given by the following state equations  

 
ẋ(t)=Ax(t)+ Bu(t)                                                                                                                          (2.1) 

         Here time-varying plant in equation (2.1) are taken because optimal control problem 

is formulated for time-varying system. Control input vector for full state feedback 

regulator of the plant is given by 

u(t)=−K(t)x(t)                                                                                                                                (2.2) 

         The control input given by equation (2.2) is linear, because the plant is also linear. 

The control energy is given by uT(t)R(t)u(t), where R(t) is a square and symmetric 

matrix called control cost matrix. The expression for control energy is in quadratic form 

because the function uT(t)R(t)u(t)contains quadratic function of u(t). The transient 

energy can be expressed as xT(t)Q(t)x(t), where Q(t) is square and symmetric matrix 

called state weighing matrix. Thus, objective function can be represented as– 

 

𝐽(𝑡, 𝑡𝑓) = ∫  
𝑡𝑓
𝑡

(𝑥𝑇(𝜏)𝑄(𝜏)𝑥(𝜏) + 𝑢𝑇(𝜏)𝑅(𝜏)𝑢(𝜏))𝑑𝜏                                                ( 2.3) 

        Where t and tf are initial land final time values respectively, where controlling process 

begins at 

𝜏 = t and ends at 𝜏 = tf. The main objective of optimal control problem is to find matrix 

K(t)such that objective function J(t, tf)given in equation (2.3)is minimized. The 

minimization process is done in a way such that solution of plant’s state-equation (2.1) is 

given by state vector(t). Thema in objective of designs to bring x(t) to zero at time t=tf. 

 

     2.3.2Estimating Optimal control gain K 

      The closed loop state equation is given by substituting equation (2.2) into equation 

(2.1), which is given as  

ẋ(t)=(A−BK(t))x(t)                                                                                                                          (2.4) 
 

ẋ(t)=ACx(t)                                                                                                                                           (2.5) 
 

where AC = (A − BK(t)) is closed loop state dynamics matrix. The solution of equation 

(2.5) is given as – 
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x(t)=𝜃C(t,t0)x(t0)                                                                                                                    (2.6) 

where𝜃C(t,t0)is state transition matrix of closed loop system given by equation(2.5). 

Equation (2.6) indicates at any time ‘t’ state x(t) can be obtained by post multiplying the 

state at some initial time, x(t0) with 𝜃C(t, t0). On substituting equation (2.6) into equation 

(2.3), the expression for objective function is given as– 

𝐽(𝑡, 𝑡𝑓) = ∫  
𝑡𝑓

𝑡

𝑥𝑇(𝑡)𝜃𝐶
𝑇(𝜏, 𝑡)(𝑄(𝜏) + 𝐾𝑇(𝜏)𝑅(𝜏)𝐾(𝜏))𝜃𝐶(𝜏, 𝑡)𝑥(𝑡)𝑑𝜏 

                                                                                                                    (2.7) 
Equation (3.7)can be written as – 

J(t,tf)=xT(t)M(t,tf)x(t)                                                                                                               (2.8) 

Where 
 

M(t, tf) = ∫  
tf
t

θC
T(τ, t)(Q(τ) + KT(τ)R(τ)K(τ))θC(τ, t)d                                               (2.9)     

                         
 

       Linear optimal regulator problem given by equation (2.1) − (2.3) also called Linear 

Quadratic Regulator problem because the objective function shown in equation (2.3.8) is 

a quadratic function initial state. By using the equation (2.6) and (2.7), it is given as 

t𝐹 

J(t,tf)=∫   xT(𝜏)(Q(𝜏)+KT(𝜏)R(𝜏)K(𝜏))x(𝜏)d𝜏                                                                   
t 

 

Now on differentiating equation (3.10) partially with respect to time ‘t’, 

we get– 

 
      (2.10) 

 

∂𝐽(𝑡,𝑡𝑓)

∂𝑡
= −𝑥𝑇(𝑡)(𝑄(𝑡) + 𝐾𝑇(𝑡)𝑅(𝑡)𝐾(𝑡))𝑥(𝑡)                                                                   (2.11) 

Also, partial differentiating equation (3.8) with respect to ‘t ’we get 
 
∂J(t,tf)

∂t
= (ẋ(t))TM(t, tf)x(t) + xT(t) (

∂M(t,tf)

∂t
) x(t) + xT(t)M(t, tf)ẋ(t)                                (2.12)
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On combining equation (2.5) and equation (2.12) we get  
 

∂J(t,tf)

∂t
= xT(t) (AC

T(t)M(t, tf) +
∂M(t,tf)

∂t
+ M(t, tf)AC(t)) x(t)                                                     (2.13)

 

       Equating equations (2.11) and (2.13) following matrix differential equation is 

obtained, which is given as  

 

−
∂M(t,tf)

∂t
= AC

T(t)M(t, tf) + M(t, tf)AC(t) + (Q(t) + KT(t)R(t)K(t))                             (2.14)                                                        
 

        The matrix Riccati equation for finite time duration is given by equation (2.14). 

 
By solving the Riccati equation (2.14) optimal feedback gain matrix K(t)is given by 

 
K(t)=R−1(t)BT(t)M                                                                                                                            (2.15) 

          There are large number of control problem where control time interval is infinite. By 

considering infinite time interval optimal control problem gets simplified. The quadratic 

objective function for infinite final time is given as

𝐽∞(𝑡) = ∫  
∞

𝑡
(𝑥𝑇(𝜏)𝑄(𝜏)𝑥(𝜏) + 𝑢𝑇(𝜏)𝑅(𝜏)𝑢(𝜏))𝑑𝜏                                                      (2.16) 

where 

            J∞(t) is the objective function of the optimal control problem for infinite time. For 

infinite final time, M(t, ∞) is either constant ordos not gives any energy to any limit. Thus 

∂M
=0

 

∂t 

Thus, Riccati equation for infinite final time is given by 
 

0=ATM+MA−MBR−1(t)BTM+Q(t)                                                                                        (2.17) 

         Since equation (2.17) is an algebraic equation, thus it is called Algebraic Riccati 

equation. The condition for the solution of Riccati equation (2.17) to exist is either the 

system is asymptotically stable or the system is controllable and observable without put y(t) 

= C(t)x(t), where Q(t)=CT(t)C(t) and R(t) is positive definite matrix and symmetric .  
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         If the system is stabilizable and output y(t) = C(t)x(t) is detectable then also solution 

to Riccati equation will exists with Q(t)=CT(t)C(t) and R(t) is positive definite matrix and 

symmetric. 

        In this system positive definite matrix Q(t)and positive semi definite matrix R(t)are 

time in dependent and are randomly chosen. While designing LQR value of Q and R are 

varied until the output of system decays to zero at steady state. 

For the present work Q and R matrix are given as 

 

Q =

[
 
 
 
 
 
 
1 0 0 0 0 0 0
0 0.1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0.001 0 0
0 0 0 0 0 0.4 0
0 0 0 0 0 0 0.4]

 
 
 
 
 
 

        AND   𝑅 = [
0.0395 0

0 1
] 

 

 

 

In matrix Q , the element q5=0.001representscross-coupling coefficient which needs to be 

minimized, so its weight is taken to be minimum. 

By applying LQR technique on system by using Q and R given above we calculate the 

optimal control gain K of system. 

The optimal control gain calculated is given as  

 

K = [
22.7462 1.5716 −7.2280 3.9397 −52.6533 0.1295 3.6697
2.5257 0.0494 −1.0458 0.6041 −3.3438 −0.6577 0.1323

]
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   2.3.3 Linear Quadratic Tracking Problem 

The output of the system in the Linear Quadratic Regulator problem decays to zero in 

steady state. There is no reference signal applied to the system in this scenario. When a 

reference signal is used, however, the linear quadratic regulator problem transforms into a 

linear quadratic tracking (LQT) problem. A reference signal is applied to the system in the 

Linear Quadratic Tracking issue, and the output of the system tracks the reference signal. 

Consider linear, time invariant plant given by equation (2.1). Now our aim is to 

design a tracking system for plant (2.1)if desired state vector is given by xd (t), which is 

solution of equation– 

�̇�d(t) = Ad(t)xd(t)                                                                                                                   (2.18) 

The desired state dynamics is given by homogeneous state equation, because xd(t) is 

unaffected by the input signal u(t). Now by solving equations (2.1) and (2.18) we get the 

state equation for tracking error e(t)=xd(t)− x(t). 

ė(t)=Ae(t)+(Ad−A)xd(t)−Bu(t)                                                                                                  (2.19) 

The main objective is to find control input u(t), which makes the tracking error given 

by e(t) equal to zero in steady state. To achieve this by optimal control, our first aim is to 

find objective function which is to be minimized. In tracking problem control input will 

depend on state vector xd (t). Now combining equations (2.1) and (2.19) and taking the 

state vector as xc(t)  = [𝑒(𝑡)T; xd(t)
T]T,thus control input is given by following linear 

control law– 

u(t)=−Kc(t)xc(t)=−Kc(t)[e(t)T;xd(t)T]T                                                                                  (2.20) 

where Kc(t) is combined feedback gain matrix. The equations (2.18) and (2.19) can be 

written as following combined state equation– 

�̇�𝑐(𝑡) = 𝐴𝑐𝑥𝑐(𝑡) + 𝐵𝑐𝑢(𝑡)                                                                                                            (2.21) 

where 
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C 

𝐴𝑐(𝑡) = [
𝐴 [𝐴𝑑(𝑡) − 𝐴(𝑡)]

0 𝐴𝑑(𝑡)
] , 𝐵𝑐(𝑡) = [−𝐵(𝑡)

0
]                                                                 (2.22)

 

So now objective function can be expressed as– 

 

𝐽(𝑡, 𝑡𝑓) = ∫  
𝑡𝑓
𝑡

(𝑥𝑐
𝑇(𝜏)𝑄𝑐(𝜏)𝑥𝑐(𝜏) + 𝑢𝑇(𝜏)𝑅(𝜏)𝑢(𝜏))𝑑𝜏                                                        (2.23) 

 

In tracking error problem final time tf cannot be taken as infinite, because the desired state 

vector xd(t)will not go to zero in steady state, thus non-zero control input u(t)will be 

required in steady state. The system represented by equation (2.21) is uncontrollable, 

because desired state dynamics given by equation (2.18) is unaffected by input u(t). Since 

the system represented by equation (2.21) is uncontrollable , thus unique solution of system 

is not guaranteed. Thus, for having a guaranteed positive definite and unique solution of the 

optimal control problem , we have to exclude the uncontrollable desired state vector from 

objective function by choosing combined state we ighting matrix as follows– 

 

𝑄𝑐(𝑡) = [
𝑄(𝑡) 0

0 0
] 

 

Thus, changed objective function will be – 

t𝐹 

J(t,tf)=∫(eT(𝜏)Q(𝜏)e(𝜏)+uT(𝜏)R(𝜏)u(𝜏))d
𝜏 

 
(2.24) 

Here in equation (2.24) u(t) is given by equation (2.20). Thus, for existence of unique and 

positive definite solution of optimal control problem, we choose Q(t)and R(t)to be positive 

semi definite and definite respectively. The optimal gain Kc(t)is given by– 

KC(t)=R−1(t)BT(t)MC                                                                                                                                                                                         (2.25) 

Where MC is solution of the follow ing equation– 

𝐽(𝑡, 𝑡𝑓) = ∫  
𝑡𝑓
𝑡

(𝑒𝑇(𝜏)𝑄(𝜏)𝑒(𝜏) + 𝑢𝑇(𝜏)𝑅(𝜏)𝑢(𝜏))𝑑𝜏                                                             (2.26)
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MC is symmetric matrix which can be represented as– 

MC is symmetric matrix which can be represented as– 

 

𝑀𝐶 = [
𝑀1    𝑀2

𝑀3    𝑀4
]                                                                                                                            () 

 

whereM1andM2correspondsto plant and desired state dynamics. Now substitute equation 

(2.27) and (2.22) into equation (2.25), the optimal feedback gain matrix is given as– 

 
KC(t)=−[R−1(t)BTM1 ;R−1(t)BTM2]                                                                                           (2.28) 

And optimal control input is given by– 
 

u(t)=R−1(t)BTM1e(t)+R−1(t)BTM2xd(t)                                                                                     (2.29) 

Now substitute equation (2.22) and (2.27) into equation (2.26)we get– 

−
∂𝑀2

∂𝑡
= 𝑀2𝐴𝑑 + 𝑀1(𝐴𝑑 − 𝐴) + (𝐴𝑇 − 𝑀1𝐵𝑅−1𝐵𝑇)                                                                     (2.31)

Optimal matrix M1can beobtained by solving equation (2.30) and this value is used in equation 

(2.31). Thus equation (2.31) can be written as – 

 

−
∂M1

∂t
= ATM1 + M1A − M1BR−1(t)BTM1 + Q(t)                                                                     (2.32)

Where AC=A−BR−1(t)BTM1                                                                                                                                                         (2.33) 

Most of the time it is required to track a constant desired state vector given as, xd(t) = 

xC, which corresponds to Ad = 0. Thus, both M1and M2are constants in the steady state. 

Thus equations (2.30) and (2.31)can be written as– 

0=ATM1+M1A−M1BR−1(t)BTM1+Q(t)                                                                                (2.34) 

0=−M1A+ATM2                                                                                                                                                                                                  (2.35) 

The equation (2.34) is the algebraic Riccati equation. From equation (2.35)we get – 

M2[Ac
T]−1M1A                                                                                                                     (2.36)
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       Now substituting equation (2.36) in equation (3.29) we get 

𝑢(𝑡) = 𝑅−1(𝑡)𝐵𝑇𝑀1𝑒(𝑡) + 𝑅−1(𝑡)𝐵𝑇[𝐴𝐶
𝑇]−1𝑀1𝐴𝑥𝑑

𝐶                                                           (2.37) 

        Substituting equation (2.37) into equation (2.19) we get 

 

ė(t) = ACe(t) − [A + BR−1(t)BT(AC
T)

−1
M1A] xd

C                                                                              (2.38) 

       Thus, from equation (2.38) it is clear that tracking error can become zero in the steady 

state for any non-zero constant desired state xC. The final optimal control input is given as– 

𝑢(𝑡) = 𝑅−1(𝑡)𝐵𝑇𝑀1𝑒(𝑡) − 𝐾𝑑(𝑡)𝑥𝑑
𝐶                                                                                            (2.39) 

     where Kd(t)is feed forward gain matrix which will make e(t)zero in steady state for 

some value of xC. By substituting equation (2.39) into equation (2.19), the state equation 

for tracking is calculated as – 

ė(t) = ACe(t) − [A − BKd(t)]xd
C                                                                                (2.40) 

 

      Thus, by using the same value of positive semi definite matrix Q and positive definite 

matrix R as used in Linear Quadratic Regulator problem, optimal control gain K is 

calculated. Now by taking specific reference value xC optimal control input is calculated 

by using equation (2.39). In this particular TRMS system there are two outputs i.e. pitch 

and yaw. So, two reference signal are taken, which are 

𝑥d1
C = 1

xd1
C = 2

 

2.4 Kalman Filter 

2.4.1 Overview 

The Kalman Filter, also known as Linear Quadratic Estimation (LQE), is a method for 

estimating unknown variables that uses a series of measurements performed over time to give 

estimates that appear to be more precise than those based on a single measurement. There are 
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various technological uses for the Kalman Filter [12-13]. Two examples of applications are 

navigation and vehicle control. 

guidance. The Kalman Filter is a commonly utilized time analysis concept in domains such 

as signal processing and econometrics. 

2.4.2Requirement of Kalman Filter 

Due to the presence of process and measurement noise, the TRMS model is a stochastic 

system that cannot be represented using a deterministic model. As a result, a noisy plant can be 

defined as a stochastic system fed white noise through a linear system. Consider a plant that 

grows in a straight line. 

ẋ(t)=Ax(t)+ Bu(t)+ F(t)w(t)                                                                                           (3.41) 

y(t)=Cx(t)+ Du(t)+ v(t)                                                                                                     (2.42) 

where v(t) is measurement noise vector and w(t) are process noise vector and this 

may arise due to modelling error such as neglecting high frequency and nonlinear 

dynamics. The correlation matrices of non-station ar y white noise, w(t)an dv(t), and can 

be expressed as – 

Rv(t,𝜏)=W(t)𝛿(t−𝜏)                                                                                                                   (2.43) 

Rz(t,𝜏)=V(t)𝛿(t−𝜏)                                                                                                                     (2.44) 

Where W(t) and V(t) are time-varying power spectral density matrices of w(t) and v(t). 

we cannot rely on complete state feedback when building a control system for a stochastic 

plant since the state vector x(t) cannot be anticipated. As a result, the stochastic plant 

observer's job is to anticipate the state vector based on measurements of the output y(t) in 

equation (2.42) and the input u. (t). The state observer can't be employed since it ignores the 

process noise's power spectral density and measurement noise. 

 

2.4.3 Mathematical model of Kalman Filter 

Kalman filter which is an optimal observer, minimizes the statistical error of estimation 
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e 
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error, e0(t)=x(t) −x0(t), where x0(t)is estimated state vector. The state equation of Kalman 

Filter is given as – 

x0̇(t)=Ax0(t)+Bu(t)+ L(t)[y(t)−Cx0(t)− Du(t)]                                                                   (2.45) 

 
where L is Kalman Filter gain matrix. As optimal regulator minimizes the objective 

function comprises of transient and steady state response and control energy, in the same 

way Kalman Filter minimizes covariance of estimation error, 

Re(t,t)=E[e0(t)eT(t)].Subtracting equation 

(2.45) from (2.41) we get – 

 
e0̇(t)=[A−L(t)C]e0(t)+F(t)w(t)−L(t)v(t)                                                                          (2.46) 

Thus, after mini mizing the covariance of stimation error Re (t,t),algebraic Riccati equation 

results for optimal covariance matrix ,Re- 

0 = AGRe
0 + Re

0AG
T − Re

0CTV−1Ce
0 + FWGFT                                                                                       (2.47)

where, 

AG=A−F(t)𝜑(t)V−1(t)C(t)                                                                                                          (2.48) 

 
WG(t)=W(t)−𝜑(t)V−1(t)𝜑T(t)                                                                                                    (2.49) 

 
and 𝜑(t)is cross spectral density matrix between w(t)and 

v(t).Kalman Filter gain matrix is given as– 

L=R0CTV−1                                                                                                                                                                                                             (2.50) 

         Where R0 is calculated by solving algebraic Riccati equation (2.47). Then ecessary and 

sufficient condition for existence of a positive and semi-definite solution for L is that, [A, F] 

is stabilizable and[A,C]is detectable; 

2.4.4 Design of  Kalman ffilter 

The process noise spectral density matrix V and measurement noise spectral density 

matrix Z are chosen at random while developing the Kalman Filter. The density matrices 

are changed until the desired response is obtained. The ratio between the elements of the 

returned optimal covariance matrix of estimation error P and the covariance of simulated 
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estimation error cove(e) must be the same to check the intended response. 

For system TRMS the value of process spectral density Vand measurement noise 

spectral density matrix Z are taken as 

W=10−6FTF   and   V=10−6CCT 

Where ,F=B 

Thus, the Kalman gain L, returned optimal covariance matrix of estimation error P, eigen 

value of Kalman Filter E of TRMS system is given as– 

 

L =

[
 
 
 
 
 
 

1.0412 −0.0534
−.0.0534 7.1475
0.1080 −0.0946
0.0047 0.0375

−0.0839 −0.7523
0.0435 −0.6881
0.2505 25.0448]

 
 
 
 
 
 

E =

[
 
 
 
 
 
 

−3.7371
−1.8623 + 3.1630i
−1.8623 − 3.1630i
−0.6253 + 1.9775i
−0.6253 − 1.9775i

−0.9830
−0.9908 ]

 
 
 
 
 
 

 

 
 

𝑃 =

[
 
 
 
 
 
 

0.0010 −0.0001 0.0001 0 −0.0001 0 0.0003
−0.0001 0.0071 −0.0001 0 −0.0008 −0.0007 0.0250
0.0001 −0.0001 0.0005 0 0 0.0002 −0.0008

0 0 0 0.0005 0 0 0.0003
−0.0001 −0.0008 0 0 0.0004 −0.0001 −0.0057

0 −0.0007 0.0002 0 −0.0001 0.0043 −0.0051
0.0003 0.0250 −0.0008 0.0003 −0.0057 −0.0051 0.1378 ]

 
 
 
 
 
 

∗ 10
3
 

 

2.4 Linear Quadratic Gaussian (LQG) 

2.5.1Overview 

The best controller is the linear quadratic Gaussian (LQG) [14-15]. The problem 

involves a linear system with additive white Gaussian noise, insufficient state knowledge, 

and quadratic cost control. The LQG control issue has a one-of-a-kind solution: a simple 

linear dynamic feedback control rule. The Linear Quadratic Gaussian controller combines 

the Kalman Filter with the Linear Quadratic Regulator. The separation idea underpins LQG, 

which means the Kalman Filter and Linear Quadratic Regulator may be built and calculated 

separately. 
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        LQG controller application can be applied to Linear time invariant system along with 

 Linear time varying system. Here in this work Linear time invariant system is being considered. 

Designing of system with LQG controller does not guarantee Robustness of system. 

        The robustness of system should be checked once the LQG controller has been designed. 

Figure-3.3shows block diagram of LQG controller. 

 

 

 

Figure-2.3 Block diagram of LQG controller along with plant 

 

Figure 3.3 shows the Linear Quadratic Gaussian (LQG) controller, which is made up of a 

Kalman Filter (which estimates the entire state of the system) and a Linear Quadratic Regulator 

(LQR) (which is responsible for controlling the response of system). Process noise 'w' is applied 

to the system in addition to control input 'u'. Because the plant is stochastic and contains 

unknown noise, white Gaussian noise is injected outside. The measurement noise 'v' is also 

supplied to the syst 

2.5.2 Requirement of LQG compensator 

When designing the Linear Quadratic Regulator or Linear Quadratic Tracking controller for 

TRMS systems, we anticipated comprehensive state feedback. It means we've assumed all of the 

system's states are accessible and can be observed immediately.  

However, because the number of outputs in our TRMS system is less than the number of 

states, we can't directly monitor all of the system's states. As a result, for that type of system, an 

observer is developed that estimates all of the system's states based on the input and output  
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combinations. As a result, a Linear Quadratic Regulator and a Kalman filter are used to estimate 

all of the system's states, i.e., seven states from two output measurements, resulting in a Linear 

Quadratic Gaussian controller. 

2.4.3 Steps in the Design of LQG Compensator 

1. Assuming complete state feedback, create a linear plant optimal regulator (LQG) 

with a quadratic objective function. We expected that all of the system's statuses 

could be observed directly. The regulator will construct the control input u(t) based 

on the state vector x. 

2. Use the control input u(t), the measured output y(t), and white noise v(t) and z to 

create a Kalman Filter for the linear plant (t). The Kalman Filter provides the best 

approximation of the state vector x0 (t). This work's Kalman Filter is in perfect 

working condition filter Kalman. 

3. When you combine the Linear Quadratic Regulator (LQR) with the Kalman Filter, 

you'll have a Linear Quadratic Gaussian (LQG) controller that will be in charge of 

directing the plant's reaction. Based on the Kalman Filter's predicted state, this 

compensator will generate control input u(t). 

2.5.4 Conclusion: 

In this chapter, we gave a general idea about Optimal control and its importance in the 

domain of complex and non-linear systems modeling. 

the Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG) control are 

typically used in Optimal Control methodology where the basis of the control action comes from 

minimizing a cost function. The LQG approach typically involves modeling your system in state 

space, designing an observer to estimate the system states, and figuring out a gain vector/matrix 

that multiplies the observed state vector to obtain control.  

LQR control is used for optimal control of linear systems using quadratic state and control 

costs, while LQG control is used for optimal control of linear systems with additive Gaussian 

noise using quadratic state and control costs. As such, LQG controllers can be used for systems 

which explicitly model measurement noise in the output, we using the  LQG might be the 

approach you would want to use  .to isolate vibrations in your mechanical system using the 

minimal amount of control energy . 
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Optimal control Design for TRMS 

 

 
Introduction: 

 

In this work, the non-linear model of Twin Rotor MIMO system has been linearized and 

expressed in state space form. For controlling action, a Linear Quadratic Gaussian (LQG) 

compensator has been designed for a multi-input multi output Twin Rotor system. Two degree of 

freedom dynamic model involving Pitch and Yaw motion has been considered for controller 

design. 

The combination of the Kalman filter and LQR is commonly referred to as Linear 

Quadratic Gaussian (LQG) Compensator. For an observer-based state feedback control of a plant 

corrupted by state and measurement noise, the control action and the appropriateness of the 

estimated states is heavily 

dependent on the output and control weighting matrices. The selection of these parameters 

is not trivial problem and hence is carried out by trial-and-error method. This involves 

maintaining a trade-off between minimizing the control effort and improving the transient 

response. 

The two-stage design process consists of the design of an optimal Linear Quadratic 

Regulator followed by the design of an observer (Kalman filter) for estimating the non-accessible 

state variable from noisy output measurement. LQR parameter i.e., Q and R are varied randomly 

to get the desired response 
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3.5.1 Compensator for TRM System 

 
The state-space representation of optimal compensator (LQG), for regulating the 

noisy plant with state-space model is given by following state and output equation– 

X0̇(t)=(A−BK−LC+LDK) x0(t)+Ly(t) (3.51) 

u(t)=−Kx0(t) (3.52) 

 
where LandKareKalmanFilterandoptimalregulatorgainmatricesrespectively. 

Here optimal regulator gain matrix is obtained by using following command– 

K=lqr (A,B,Q,R) (3.53) 

 
where 

 
 

1 0 0 0 0 0 0 
𝖥0 0.1 0 0 0 0 0 1 
I0 0 1 0 0 0 0 I 

Q = 
I I 

 
 

0.0395 0 
I0 0 0 1 0 0 0 
I0 0 0 0 100000 0 0 
I0 0 0 0 0 10 0 

I R = [ 
I 
I 

0 1
]
 

[0 0 0 0 0 0 0.1] 
 
 

 

K = s 
0.0008 [ 0.0002 −0.0004 0.0007 −1.5892 0.0034 0.0003] ∗ 103 
0.0039 0.0003 −0.0010 0.0021 −0.0030 −0.0006 0.0007  
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Kalman Filter gain parameter L can be obtained by using– 

 
[L, P, E] =lqr (A, F,C,10−6*FTF,10−6*CCT)(3.4) 

 
The value of L, P, E is given in section 3.5.1. 

 
The Eigen values of the Linear Quadratic Gaussian (LQG) compensator are made up 

of Linear Quadratic Regulator (LQR) and Kalman Filter Eigen values. The Eigen values of 

the Linear Quadratic Gaussian (LQG) compensator should be on the left-hand side of the 

imaginary axis for the system to be stable. The response of the Linear Quadratic Gaussian 

(LQG) compensator should ideally be identical to that of the Linear Quadratic Regulator 

(LQR). In this case, the Eigen values of the Linear Quadratic Regulator (LQR) should take 

precedence over the Eigen values of the Kalman Filter. 

 
In comparison to Eigen values of Linear Quadratic Regulator, Kalman Filter Eigen 

values should be distant from imaginary axis (LQG). 

Due to the fact that the Kalman Filter does not require a control input signal, its Eigen 

values can be moved farther towards the left half plane without requiring a big control input 

and at no cost. However, in certain circumstances, merely changing the noise spectral 

densities will not be enough to push the Eigen value of the Kalman Filter deeper into the left 

half plane, therefore careful selection of Kalman Filter spectral densities will produce the 

greatest recovery of full state feedback dynamics. 
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PID control 

PID control, and LQR, an optimal control technique to make the optimal control decisions, 

have been implemented to control the nonlinear inverted pendulum-cart system with disturbance 

input. To compare the results PID control has been implemented. In the optimal control of 

nonlinear inverted pendulum dynamical system using PID controller & LQR approach, all the 

instantaneous states of the nonlinear system, are considered available for measurement, which are 

directly fed to the LQR. The LQR is designed using the linear state space model of the system. 

The optimal control value of LQR is added negatively with PID control value to have a resultant 

optimal control. The MATLAB-SIMULINK models have been developed for simulation of the 

control schemes. 

PID parameters: 

1. the elevation 

Kp = 3 

Ki = 8 

Kd = 10 

 

2. the azimuth 

Kp = 2 

Ki = 0.5 

Kd = 5 

 

Simulation Results 

 
The twin rotor mimo system and the proposed controllers are modeled and simulated in the 

MATLAB/Simulink environment. The responses of two controllers in terms of reaching desired 

positions and angles are compared. For this purpose, fourth different experiences are simulated, a 

step of 0,5 rad for elevation end azimuth angles consequently, after that a step of 0,5 on two 

angles simultaneously followed by a brutal change of the reference’s steps from 0,5 to 0,25. 
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Case1: 

The tracking error performance of the azimuth and the elevation angle for the TRMS 

model for the reference inputs (𝜑 = 0, 𝜓 = 0.5) are show in fig 1. 

 
Figure-3.1 

 
At first stage a strong coupling between two angles is observed. The PID controller shows a 

slower response than LQR controller, in addition to unacceptable overshoot, and the response 

times of PID is 20 seconds while LQR is 6 second. 

Case2: 

The tracking error performance of the azimuth and the elevation angle for the TRMS 

model for the reference inputs (𝜑 = 0.5, 𝜓 = 0) are show in fig 2. 

 

 

Figure-3.2 
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At the second stage a small coupling between two angles elevation LQR and PID is observed, 

The LQR control takes a short time to response 4 second, in addition overshoot of PID with a low 

steady-stat 

Case 3: 

The tracking error performance of the azimuth and the elevation angle for the TRMS 

model for the reference inputs (𝜑 = 0.5, 𝜓 = 0.5) are show in fig 3. 

 

 

Figure-3.3 

 

At third stage. Unacceptable overshoot of PID, The PID controller shows a slower 

response which spends a long time to reach a stable situation at 25 seconds on the same azimuth 

and elevation angles. While the LQR is 6 seconds. 

Case 4: 

 
The tracking error performance of the azimuth and the elevation angle for the TRMS model 

for the reference inputs (𝝋 = 𝟎, 𝟓 𝝍 = 𝟎. 𝟓), then (𝝋 = 𝟎, 𝟐𝟓 𝝍 = 𝟎. 𝟐𝟓), are show in fig 4. 
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Figure-3.4 

 

At fourth stage. The PID controller Similar to previous simulations, it shows a slower 

response and high overshoot all along the reference inputs. the LQR controller reaches the up- 

balance position at around 6 seconds in 0.5 rad has the ability to track a predefined trajectories of 

the azimuth and elevation angles. 

from both controller LQR and PID controller’s result, it is clear that both are successfully 

designed but LQR controller exhibits better response and performance. The linear stability of the 

system is assured in simulation environment with the control gains which are designed with the 

weighting matrices, Q and R in LQR control and with chosen suitable P, I, D controller 

parameters in PID control. 

Conclusion 

In this chapter, two controllers, PID and LQR, are designed and compared to investigate a 

more appropriate control method. The simulation results demonstrate that both of these 

controllers are effective and suitable for improving the time domain characteristics of system 

response, such as settling time and overshoots. According to the results, LQR method give the 

better performance compared to PID controller. However, as a method the determination of PID 

parameters is easier to obtain using LQR. 
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Conclusion general  
 

The presentation mainly focuses on optimal control for TRMS system which is 

(multivariable, nonlinear and dynamic) , The work is divided into three parts:  

In the first part, we gave an overview and basic definitions of the TRMS (TWIN ROTOR 

MIMO System) dynamic model of the company's feedback and extracted a mathematical model of 

this system that was used to compare the obtained results.  

In the second part, we presented the optimal control by defining the linear quadratic regulator 

(LQR) that control the system response, and the system state was estimated using a Kalman filter 

and combined with the linear quadratic regulator resulting in a linear quadratic Gaussian (LQG) 

controller.  

The aim of the third part was analyze and compare different control approaches for the 

TRMS. TWO different approaches are considered for this purpose. The first one PID controller. 

The second approach is Linear-Quadratic Regulator (LQR). Linear quadratic regulator (LQR) is 

one of the most commonly used optimal control techniques for linear systems. This control method 

takes into account a cost function which depends on the states of the dynamical system and control 

input to make the optimal control decisions. The PID controller is one of the standard classic models 

in control theory. The aim is to minimize the error by tuning the proportional, integral, and the 

derivative coefficients used in the controller equation  

The reference tracking properties of the corresponding control systems have been tested with 

a given reference trajectory. The reference trajectory has been selected to test the capability of the 

control system to promptly respond to setpoint variations on both pitch and yaw angles.  

The simulations displayed and compared the consistent and satisfactory performances of the 

PID and LQR controllers used to control the TRMS model. Because of the LQR technique deals 

with balance between low control effort and faster response, it can be concluded that LQR 

controller is better suited for TRMS control mechanism than the classical.  
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