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Face aux inquiétudes croissantes concernant les failles de sécurité et les transactions
frauduleuses, les technologies fiables et pratiques d’identification et de vérification des
personnes sont de plus en plus demandées dans nos activités sociales et nos services na-
tionaux. La biométrie, qui utilise des caractéristiques physiologiques et comportementales
distinctives pour connaître l’identité d’un individu, gagne en popularité dans un large
éventail d’applications de sécurité gouvernementales, médico-légales, militaires et com-
merciales.

L’empreinte palmaire et l’empreinte articulaire du doigt sont deux modalités physiolo-
giques obtenues à partir de la main humaine et ont prouvé leur fiabilité et leur acceptabilité
par l’utilisateur dans une large gamme d’applications de sécurité. Dans notre travail, nous
avons d’abord développé une approche efficace appelée Simplified PalmNet—Gabor qui
se concentre sur l’amélioration du PalmNet pour la reconnaissance rapide d’images d’em-
preintes palmaires multispectrales et sans contact. De plus, nous utilisons des procédures
de sélection de caractéristiques et de réduction de la dimensionnalité pour surmonter les
problèmes de complexité de calcul. Les résultats expérimentaux montrent que notre ap-
proche permet d’atteindre un taux de reconnaissance élevé en utilisant un nombre de
caractéristiques nettement inférieur.

Nous avons également conçu des systèmes d’identification unimodaux et multimodaux
basés sur des images multispectrales d’empreintes palmaires et empreintes des articula-
tions des doigts. L’extraction de caractéristiques est une étape cruciale dans le système
biométrique. Pour cette raison, nous proposons une méthode d’apprentissage profond par
réseau de neurones convolutionnels (CNN) pour extraire les caractéristiques profondes.
Les résultats obtenus indiquent clairement que les techniques d’extraction de caracté-
ristiques basées sur l’apprentissage profond proposé peuvent atteindre des performances
élevées par rapport aux meilleures techniques de pointe.

Mots-clés : Biométrie, Apprentissage profond, PalmNet–Gabor, Sélection de caracté-
ristiques, Réduction de la dimensionnalité, Empreinte palmaire multispectrale, Empreinte
palmaire sans contact, Empreintes des articulations des doigts, Réseau de neurones convo-
lutionnels.



With growing concerns about security breaches and transaction fraud, reliable and
convenient personal identification and verification technologies are increasingly demanded
in our social activities and national services. Biometrics, which uses distinctive physiolo-
gical and behavioral characteristics to learn an individual’s identity, is gaining popularity
in a wide range of government, forensic, military, and commercial security applications.

Palmprint and finger knuckle print are two physiological modalities obtained from the
human hand and have proved their reliability and user acceptability in a wide range of
security applications. In our work, we first developed an effective approach called Simpli-
fied PalmNet—Gabor that concentrates on improving the PalmNet for fast recognition of
multispectral and contactless palmprint images. Moreover, we use feature selection and
dimensionality reduction procedures to overcome computational complexity issues. Ex-
perimental results show that our approach achieves a high recognition rate by using a
substantially lower number of features.

We also designed unimodal and multimodal identification systems based on multispec-
tral palmprint and finger knuckle print images. Feature extraction is a crucial step in the
biometric system. For this reason, we propose the Convolutional Neural Network (CNN)
deep learning method to extract deep features. The results indicate that the proposed
deep learning-based feature extraction techniques can achieve high performance compa-
red to the best state-of-the-art techniques.

Keywords : Biometrics, Deep learning, PalmNet–Gabor, Feature selection, Dimen-
sionality reduction, Multispectral palmprint, Contactless palmprint, Finger knuckle print,
Convolutional Neural Network.
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General Introduction
Individual authentication and identification are becoming increasingly important in

the modern automated world. The current technology uses personal identification codes

(PINs) or passwords. These reasons fall far short of the standard of an identification

scheme since it requires an excessive amount of passwords to be remembered, and the

password or PIN is highly insecure. As an outcome, in today’s complex, geographically

mobile, and increasingly electronically wired information society, the issue of identifying

an individual remains a significant challenge. Biometrics-based authentication and identi-

fication are emerging as the most reliable method. Biometrics necessitates the individual

to be physically identified and present at the moment of identification. It depends on

"something which you are or you do" to provide high security, improved accuracy, and

increased efficiency [1],[2].

It overpowers some of the shortcomings of traditional identification technology, includ-

ing ID cards and PINs: ID cards can be misplaced, thieved, or unremembered, whereas

PINs can be forgotten or guessed by impostors. Furthermore, traditional identification

methods cannot distinguish between an authorized user and an imposter who illegally ob-

tained the authorized user’s "information" or "token." Automated biometrics are concerned

with physiological or behavioral-related characteristics like fingerprint [3], signature [4],

palmprint [5], iris [6], voice [7], and face [8]; these traits are used to verify the individual’s

identity or create an identity from a database. Creating an automated biometric system
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Chapter 1. General Introduction

that can authenticate many people with accuracy and reliability is a difficult task.

To develop a biometric system, it is necessary to choose which biometric method will

be used. Overall, this biometric modality enables us to select the most appropriate feature

extraction technique that may provide the best recognition rate. Indeed, acceptability and

precision rates are two essential parameters implemented to choose the suitable biomet-

ric method within a particular security application. Human behavior modalities have a

greater acceptability rate with inferior precision because of their higher inter-class vari-

ability [9]. In contrast, the physiological modalities offer a good compromise between

acceptability and precision rates. Even within the usual range of physiological traits, bio-

metric modalities with low acceptability and others characterized by poor accuracy. For

example, face traits are very acceptable but result in low precision. Besides, fingerprints

provide high precision but are not accepted by users in several applications. Various

physiological modalities are currently required, and those obtained from the human hand

have confirmed their reliability and acceptability by the user in a wide range of security

applications [10]. In particular, from the palm of the human hand, two main biometric

modalities can be obtained: palmprint and finger knuckle print.

Specifically, palmprint is concerned with the inner surface of a hand and looks at line

patterns and surface shapes. A palm is covered with the same kind of skin as the finger-

tips and is larger than a fingertip in size. As a result, it is quite natural to consider using

palmprints to identify an individual. Because of the rich texture features, principal lines

and wrinkles on palm prints are considered sufficiently stable and distinctive information

for identifying an individual from a wide population. On the other hand, Finger Knuckle

Print (FKP) has several features that can be used, such as structure and shape, length,

width, thickness, and joint characteristics of the skin surface, such as creases and ridges

in fingers. Several major factors make a person’s FKP unique. Among these factors, the

ease of use, including the rich texture information, appears to be the most significant,

allowing the biometric system to work with higher accuracy.
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Chapter 1. General Introduction

In general, a biometric system is a type of pattern recognition system where a feature

set is first extracted from the obtained data and then compared with the stored template

set to decide on the identity of an individual. A biometric system is implemented for

both verification and identification. In verification mode, the decision looks into "whom

the person claims to be," whereas, in identification mode, the decision looks into "to

whom this biometric data belong?" As a result, a biometric system is formalized as a two-

class or multi-class pattern recognition system. A biometric system typically consists of

four main modules: data acquisition, feature extraction, matching, and system database,

where feature extraction and matching are two of the most challenging issues in biometric

recognition research, attracting researchers from diverse fields including biometrics, com-

puter vision, pattern recognition, signal processing, and neural networks.

1.1 Problem statement and objectives

Developing an effective biometric system must consider five essential and relevant

factors: accuracy, user acceptance, environmental constraints, security, cost, and compu-

tation speed (see figure 1.1). Indeed, decreasing accuracy can increase speed, reduce user

acceptance, enhance precision, and increase cost, which may enhance security [11] [12].

Therefore, a system based on palm prints or finger knuckle prints is very appropriate

because they do not cause anxiety to the users. In particular, finger knuckle print recogni-

tion offers many features that can be used, including structure and shape (length, width,

and thickness), attributes of the skin surface, including creases and ridges in fingers, and

traits of the skin. In addition, a person’s FKP is distinctive due to several major factors,

the most important of which appear to be the rich texture data, low cost, and simplicity

of use. This permits the biometric system to function more accurately.

On the other hand, biometric systems based on palm prints are generally well accepted

by users because they are not viewed as very intrusive or privacy-sensitive. Additionally,

palm prints can be acquired using low-cost devices, making them suitable for various
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low-cost applications in daily life. Palm prints are also suitably redundant to facilitate

the accurate recognition of even a partially damaged palm surface. Unfortunately, tradi-

tional systems for palm print recognition depend on touch-based acquisitions with pegs

that restrict the posture of the hand, making them harder to use. For this reason, recent

research has focused on contactless and contact-free acquisition systems, making them

more convenient and comfortable by eliminating the contact obligation. However, the

liberty of presenting one’s hand offers a variety of variabilities such as scaling changes,

position variability, hand orientation changes, illumination changes, etc. Moreover, high-

dimensional data with many uncorrelated and redundant features remains challenging due

to computational complexity issues.

Research in this field is certainly interesting via the multiplicity and diversity of these

problems. Hand biometric modality has received much attention from research laborato-

ries and industrial ones. To provide the design of our hand biometric system with success,

our purposes are concentrated on the proposition of a solution that enhances the accuracy

and the speed of the individual recognition process, which reduces the cost of the bio-

metric system and increases user acceptance. Hence, our solution is based on multimodal

biometric systems based on deep learning and feature selection methods for contactless

and contact-based recognition systems. Then, we proposed unimodal and multimodal

identification systems for multispectral and touchless palmprint images. Also, feature

selection and dimensionality reduction procedures are applied to reduce computational

complexity. For the multimodal system, we used the matching score fusion method to

improve the performance of the unimodal system. On the other hand, two multimodal

identification systems have been developed based on palmprint and finger-knuckle print

recognition.
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Chapter 1. General Introduction

Figure 1.1 – Interrelationships between different factors for biometric system design.

1.2 Contributions

In order to achieve the objectives detailed in the previous section, some contributions

are suggested for identification systems based on hand biometric modalities. The main

contributions of this thesis are detailed as follows:

1. Our first contribution is to design an efficient approach called simplified Palm-

Net–Gabor based on deep learning and feature selection. Our approach focuses

on enhancing PalmNet for multispectral and contactless palmprint recognition.

Therefore, in the preprocessing stage, we applied Log-Gabor filters to adjust the

pixel luminance of palmprint images. Then, we reduced the number of features

using feature selection and dimensionality reduction procedures. Our objective

is to select a subset of relevant features, decrease the dimensionality, reduce the

running time, and improve the accuracy. After that, SVM and K-NN classifiers

are used for classification. Finally, we fused modalities at the matching score level

for the multimodal system to improve system performance. The proposed method
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effectively improves the accuracy of the PalmNet and reduces the number of fea-

tures and computational time. Experiments show that our approach achieves a

high recognition rate while using a substantially lower number of features.

2. Our second contribution is constructing a reliable recognition system based on Con-

volutional Neural Networks (CNN). CNN is a deep neural network used in pattern

recognition and image processing. We aim to develop palmprint and palm-vein-

based biometric systems in which biometric images are analyzed using the CNN

feature extraction technique. In our experiments, we first evaluate each biometric

identification system based on a single spectral band (a unimodal system). Also,

the results of two or more unimodal systems are fused at the matching score level

to create an efficient and robust multimodal identification system.

3. Finally, we presented an approach to extracting deep features from finger knuckle

print images. The proposed method uses a CNN deep learning technique. The

proposed CNNs are designed to extract highly discriminative features specific to

finger knuckle print samples. This work aims to improve the recognition rate using

multimodal biometric systems based on the fusion at the matching score level for

multi-sample FKP images, which are Left Index Finger (LIF), Left Middle Finger

(LMF), and Right Index Finger (RIF), and Right Middle Finger (RMF) modali-

ties. Experimental results on FKP images show that the proposed scheme yields

the best performance and can provide an excellent recognition rate, mainly when

fusing spectral bands of biometric modality.

1.3 Organization of the Manuscript

The rest of the thesis is organized as follows.

Chapter 2: Chapter 2 illustrates the state of the art of hand modalities repre-

sented by palmprint recognition, including different representations of palmprint images
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and classical and deep learning methods for palmprint feature extraction. Then, the state

of the art of finger knuckle print recognition is detailed. Also, the performance evaluation

metrics of the detectors are presented.

Chapter 3: This chapter describes the proposed unimodal and multimodal identifica-

tion systems based on deep learning and feature selection methods. Various experiments

were carried out using contact-based and contactless palmprint images. Besides, this

chapter includes multimodal system experiments at matching score fusion levels to over-

come the drawbacks of the unimodal system.

Chapter 4: This chapter presents the proposed approach based on Convolutional

Neural Network (CNN) for palmprint recognition. The architecture of the CNN is de-

tailed. Then, the experimental results of the unimodal and multimodal systems are

demonstrated to evaluate the robustness and efficiency of the proposed method.

Chapter 5: Chapter 5 demonstrates ourunimodal and multimodal systems based on

finger knuckle print (FKP) images. Then, a description of the deep CNN-based feature

extraction method and a classification. Finally, the experimental results obtained using

different samples of FKP images are presented and discussed.

Chapter 6: This chapter gives a general conclusion with the perspectives that we

will consider.
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Hand Biometric Traits: State of

the Art

2.1 Introduction

The ease of use of a biometric system depends on the constraints related to the acqui-

sition, and use of the chosen biometric modality [13]. In order to satisfy this requirement,

hand-related biometric modalities are potentially powerful technologies. People readily

accept biometric technologies based on different hand-related modalities because of their

ergonomics. Moreover, these technologies are easy to install at a reasonable cost. This

chapter is organized as follows: Section 2 introduces state-of-the-art palmprint recog-

nition, including different representations of palmprint images and classical and deep

learning methods for palmprint feature extraction. Section 3 exhibits the state of the art

of finger knuckle print recognition. The performance evaluation metrics of the detectors

are detailed in Section 4. Finally, section 5 refers to the conclusion of this chapter.
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Chapter 2. Hand Biometric Traits: State of the Art

2.2 Palmprint Recognition

The palm is defined as the inner part of the hand, from the wrist to the roots of the

fingers. A print is an impression made on or over a surface through pressure. A palm

print is defined as a palm skin pattern composed of the physical characteristics of skin

patterns, such as lines, points, and texture (see fig 2.1) [2].

Figure 2.1 – The palm of the hand.

Many unique features in a palmprint image can be used to identify a person. Figure

2.2 shows an inked palmprint, and a palmprint without ink from the same palm [2]. Both

were obtained using a resolution of 500 dpi. On the palm, six main types of features can

be observed. The first four can be taken from inkless or inked palm prints, while the last

two can only be obtained from inked palm prints with relatively high accuracy [2].

— Geometry Properties: Based on the shape of the palm, we can easily get the

corresponding geometric features like length, width, and area.

— Principal Line Features: In a palmprint, the location and shape of the main lines

are significant physiological characteristics for identifying individuals because they

vary slightly over time.

— Wrinkle Features: Many wrinkles in a palmprint differ from the main lines in

that they are thinner and more irregular. They are categorized as fine and coarse

wrinkles so that more features can be captured in detail.
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— Datum points: Two endpoints called "data points" are acquired using the main

lines (see Figure 2.2). These crisscross both sides of the palm and provide a sta-

ble method for registering palm prints. Palm size can be determined using the

Euclidean distance between these endpoints.

— Delta Point Features: The delta point is represented as the center of a delta-like

area of the palmprint. The delta points are usually located in the finger-root region.

These offer reliable and unique measurements for palmprint verification.

— Minutiae Features: A palmprint is essentially comprised of the ridges, giving the

minutiae features the ability to be employed as another vital measurement.

(a) (b)

Figure 2.2 – Palmprint features. (a) inked palmprint, (b) inkless palmprint.

The palmprint approach can be classified into different categories based on the palm-

print image data type, such as grayscale [14] [15], 3D [16] and multispectral/hyperspectral.

In addition, the palmprint images can also be classified based on the method of palmprint

image acquisition, and thus, they can be grouped into contact-based [17] and contactless

palmprint images. The main difference is whether the hand is in contact with the acqui-

sition device. Specifically, the former is captured by placing the palms on the device and

user-pegs’ aids. By contrast, the latter is collected with hands not touching the device.

Fig. 2.3 illustrates two typical contact-based and contactless palmprint image acquisition

modes [18].
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(a) (b)

Figure 2.3 – The devices used to collect palmprint images. (a) contact-based palmprint image
acquisition device. (b) contactless palmprint image acquisition device.

2.2.1 GrayScale representation

Zhang et al. [19] created a camera to capture palmprints in 2003 based on the Gabor

wavelet decomposition. They have recommended a system of detection and extraction of

local peculiarities of the palmprint. The efficiency of this system was confirmed under two

operational procedures; verification and identification, adding to the help of a database

of 775 of 7752 images of 386 persons, with variations in light and pose. A recognition

rate of 98% on average and an error of 0.04% have been reported, demonstrating that the

recognition rate is exceptionally high. This indicates the strength of this approach.

Kumar et al. [20] have introduced a DCT-based system. The goal is to show the

objective and utility of DCT coefficients in palmprint verification. This system collects

data and information from the hand shape and the palmprint to strengthen identifica-

tion. These two components are fused and used at the score level. The results of this

experiment on a database of 100 people revealed that both the handprint and palmprint

are the same. Besides that, the product rule of the scores produces positive results with

a 0.6% error.
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Moreover, a DWT-based palmprint description was suggested by Zhang et al. [21],

along with directional context for each subband. The goal is to gather dominant coeffi-

cients for all main lines and wrinkles. A series of traits, including the center of gravity,

density, and energy, would then be defined to distinguish the palmprint from the selected

values of the directional context. Tests performed on a database of 200 images of 50

people show that the system can produce impressive results.

Furthermore, Zhang et al. [22] proposed an approach based on lines. It uses two main

and new features for palmprint identification: datum point invariance and line feature

matching. The palmprint’s reference points are defined. The retrieval of line features

and their matching are then recommended to evaluate whether the two palm prints are

from the same palm. The experimental results reveal that the recognition algorithms’

performance remains poor. Following what has been preceded, Jay Kumar et al. [23] de-

veloped another effective method based on palmprint lines. They combined the traits of

the palmprint with the hand geometry to enhance the system’s performance. The palm-

print’s traits and the hand’s geometry can be obtained simultaneously, from the same

image, using a digital camera. Their test results on a database of 100 people demonstrate

the fusion of hand geometry traits with palmprint traits with the help of a simple image

sensor.

The Fisherpalms method was also presented by Wu et al. [24]. A Fisher Linear Dis-

criminant Analysis (LDA) linear selection is utilized to forecast all of the initial high

dimensional palmprints to an even smaller area (Fisher space). The connection between

the accuracy of recognition and the palmprint image is investigated. The proposed method

gave high precision (> 99 percent). Besides, the results show that this approach is easy,

quick, and allows for real-time recognition (identification or verification). Also, Lu et

al. [25] recommend a palmprint system grounded on eigenpalms(eigenspace). As used

in PCA, the initial images are converted into a small set of primary components known

as Eigen palms, which are the eigenvectors of the learning set. The recognition process

involves projecting the image into a subspace composed of the selected principal compo-
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nents, computing the Euclidean distance between them, and determining the Euclidean

spacing between the image and its projection. The outcomes of the studies proved the

method’s efficacy in terms of recognition rate. In addition, Zuo et al. [26] have improved

on the PCA-based approach by using a two-dimensional primary component subspace to

distinguish palmprints (2D-PCA). The two-dimensional PCA is a new image portrayal

approach for recognition. The authors propose an Arranged Matrix Distance (AMD) to

calculate the distance between two matrices. The test findings exhibit that this approach

is efficacious for recognition.

2.2.2 Multispectral and hyperspectral representation

Recently, biometric recognition has made use of multispectral and hyperspectral im-

ages. If we can successfully evaluate and process images captured in the multispectral or

hyperspectral domain, we can acquire valuable information about the human body. For

example, in the presence of certain waves, the temperature of the skin and its physio-

logical traits can deliver information on the thermal regulation of human tissues and the

vascular mapping unique to each individual. Rather than only a few researchers having

studied biometric identification employing hyperspectral images, most of them focus on

biometric identification using multispectral images.

1. Multispectral representation

Han et al. [27] provided a multispectral palmprint recognition method that uses

various spectral bands to identify palmprint image data, which includes red, green,

blue, and infrared. Although, as a comparison algorithm, the Competitive Cod-

ing Strategy is used (similarity measure) by combining the entire spectral bands

(by employing the image level merging method formed on wavelet transform), the

outcomes of the verification tests revealed that the fusion produced better results

than a single spectral band. Guo et al. [28] differentiated the performance of a

palm print recognition biometric scheme employing white and non-white lights (six

other lights of different colors). However, the tests on an extensive database showed

that white light does not offer the optimal illumination for palm print recognition.
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Hao et al. [29] proposed pixel-level fusion of multispectral palm print images for

increasing the performance of a palm print authentication system. The findings

of the studies obtained using several image fusion methods exhibited an enhance-

ment in recognition accuracy compared to a scheme that only utilizes monochrome

images.

David Zhang et al. [30] suggested a multispectral palmprint verification method.

Their work contained a data acquisition device to obtain palmprint images in dif-

ferent illuminations and then use an orientation-based representation for the mul-

tispectral palm print images. At the score level, the fusion scheme was used. The

experimental results showed the efficiency of merging all of the multispectral bands

compared to a particular spectral band. On the other hand, Khan et al. [31] cre-

ated a sample of a multispectral palmprint system based on contour representation.

This representation is obtained from the contourlet transform. The verification re-

sults demonstrated that the contour representation outperforms methods found in

various literature. Cui et al. [32] used Image-Based Linear Discriminant Analysis

(IBLDA) and the synthesis of the four bands of the palmprint image. The images of

the four bands are classified into two groups, and a complex matrix is constructed

using the two bands from each group. The results have revealed that using the

IBLDA technique results in the highest recognition rate. Xu et al. [33] proposed

a new technique for multispectral images using a quaternion model. A quaternion

matrix represents the multispectral palmprint image. A PCA and DWT alteration

were implemented on the matrix to retrieve the palm print characteristics. Ac-

cording to the test results, the quaternion matrix can achieve a high recognition

rate.

2. hyperspectral representation

Multispectral imaging delivers additional information compared to the traditional

observed palmprint image. This image presents many measured spectral bands
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of less than ten. Therefore, additional information is added to the multispectral

image by using a hyperspectral representation. The hyperspectral image consists

of several bands varying from ten to two hundred. While a database of hyperspec-

tral palm prints is now available, few studies on biometric identification centered

on hyperspectral imaging have been conducted. Zhenhua Guo et al. in [34] have

created a system for acquiring hyperspectral images in several consecutive bands

(420 nm–1100 nm). These images were analyzed in order to select the best spectral

bands. First, a feature vector is obtained (using 2D-PCA) and compared with each

spectral band. Then, several combinations are evaluated using score level merging

to select the best combination. The experimental results show that two spectral

bands can provide the desired discriminating information for the palm print. This

work could also guide future systems identification based on hyperspectral palm

prints. In another work, Zhenhua Guo et al. [34] did the same with the use of

a classification algorithm. The authors propose a new algorithm for classifying

spectral bands using a k-means clustering algorithm. The test results disclosed

that three spectral bands delivered can provide the most significant discriminating

power of the palmprint.

3. Three-dimensional representation

Several methods have been developed for palmprint recognition (2D representa-

tion). However, they have several limitations related to palm print orientation,

pose, lighting, etc. In recent years, 3D palmprint recognition methods have been

debated as a substitute solution to the mentioned problems. The wealth of infor-

mation delivered by 3D measurements permitted the renovation of the palmprint’s

three-dimensional form. This kind of exemplification is unaffected by variations in

lighting and pose. Overall, the methods developed employed 2D-3D multimodal

methods that integrated 2D and 3D measurements to maximize the benefits of

both methods (2D and 3D). In their work, Zhang et al. [35] contained the bio-

metric identification framework devoted to the 3D demonstration of palmprints.
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The study proposed three methods for feature extraction: Mean Curvature Im-

age (MCI), Gaussian Curvature Image (GCI), and Surface Types (ST). The 3D

palmprints are then classified using a rapid technique for measuring similarity and

a score-level fusion strategy. These tests demonstrate that 3D palmprint identi-

fication has an excellent recognition rate and that 3D demonstration also has a

powerful anti-counterfeiting ability.

Li et al. [16] employed image curvatures (MCI) to demonstrate palmprint char-

acteristics after proposing a palmprint database based on the assistance of 200

volunteers. The 3D palmprint design is then coded using the "Competitive Cod-

ing" method based on their MCI. The scheme can attain excellent performance

with an error of 0.284 % by using fusion at the level of MCI scores and their Com-

pCode. Zhang et al. [36] developed the precision and robustness of the palmprint

recognition scheme by utilizing both the 2D and 3D characteristics of the palm

prints simultaneously. The feature extraction procedure employs a "surface curva-

ture maps" method for 3D images and the Gabor filter for 2D images. The fusion

of these two characteristics is used at the score level. Experiments on a database

of 73 people show that the identification scheme can achieve satisfactory results.

In the work of Cui [37], the feature vector is exemplified by the "Two-Phase Test

Sample Representation-TPTSR" algorithm. PCA is used to acquire the overall

palmprint characteristics before adding TPTSR. The two modalities, 2D and 3D,

are combined at the score level. The experimental results on a database of 8000

images show that the combination of the two methods makes it possible to achieve

identification rates above 95%.

2.2.3 Classical Methods for Palmprint feature extraction

Recognizing an individual employs a specific criterion to determine a person’s identity.

To do this, a certain number of clues (or characteristics) collected from an anonymous

form, the individual to be recognized, must be exploited and interpreted to generate a

theory concerning his identity. Performing this recognition task with exact accuracy is
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difficult [38]. This is primarily due to the choice of the extracted features that must be

reflective of the person’s identity to be identified. This decision is significant because it

influences the entire recognition methodology. Finally, even if these characteristics are

known, it is frequently hard to exploit them to describe a set of rules. Many features, such

as lines and texture, can be implemented to represent and characterize the palmprint im-

age. Numerous methods for extracting many biometric characteristics have already been

suggested. The classical methods for palmprint recognition can be divided into line-

based, coding-based, texture-based, subspace-based, and local-texture-descriptor-based

approaches [39]. In this chapter, we focus on online-based, and coding-based approaches

that are most commonly studied in the literature and demonstrate the best recognition

accuracies for palmprint recognition [18].

1. Line based algorithms

To extract palm lines, Wu et al. [15] used the second-order derivatives of a Gaus-

sian to show the magnitude of the line and the first-order derivatives of a Gaussian

to detect the line location. The last result is acquired by combining all the direc-

tional line detection results and then encoded using the chain code. Liu et al. [40]

proposed a wide line detector using an isotropic nonlinear filter to obtain the loca-

tion and width information of palm lines. Additional techniques, such as two-stage

filtering, have similarly been used to detect palm lines [41]. Wu et al. [42] propose

another algorithm that computes the magnitude of palm lines by applying Sobel

masks. Histograms are formed by projecting these magnitudes in the same direc-

tions. These histograms are considered inputs to Hidden Markov Models (HMMs).

Boles et al. [43] built binary edge images with Sobel masks and thresholds. After

that, they applied the Hough transform to collect the parameters of the six lines

with the highest densities in the accumulator array for matching. Kung et al.

[44] developed a low-resolution edge map to generate a feature vector. Finally, the

feature vector is passed into decision-based neural networks. To retrieve main wrin-

kles and lines, Huang et al. [45] recommended a two-level improved finite radon
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transform and a dynamic threshold to extract major principal lines and wrinkles.

A matching scheme known as the pixel-to-area comparison is used to evaluate the

difference between two binary edge maps. Leung et al. [46] used Sobel masks to

obtain palm lines and line segment Hausdorff distance to compare two palmprints.

Rafael Diaz et al. [47] made use of Sobel masks and morphologic operators as two

separate feature extractors to obtain the gradient of the images. Neural networks

categorize these feature values.

2. Coding based algorithms

The coding-based technique encodes the output of a bank of filters into bitwise

code. Zhang et al. [19] developed a PalmCode method that first convolved the

palmprint image with a 2D Gabor filter and then encoded the phase of the filter

responses as bitwise features. PalmCode achieved significant rates of accuracy and

speed in verifying the palmprint information extracted from low-resolution sets.

Inspired by the PalmCode method, Kong et al. [48] introduced a new palm recog-

nition method called Competitive Coding Scheme (CompCode). The scheme uses

the real part of a neurophysiology-based 2D Gabor filter to extract the orienta-

tion information of the palmprint, accompanied by an encoding process to create

a feature vector to uniquely describe the original palmprint. The filter is none

other than the original Gabor filter, whose degrees of freedom were repartitioned

corresponding to the results of the neurophysiological system such that the palm

line pattern was modeled as an inverted Gaussian function.

Kong et al. [49] presented the FusionCode method to improve performance through

convolving a palmprint image along with a bank of Gabor filters with distinct ori-

entations and then encoding the phase of the filter response with the maximum

magnitude. Recent advances in coding-based techniques indicate that the orienta-

tion information of palm lines is one of the most promising features for personal

identification. Jia et al. [50] employed a modified version of the Radon transform

(FRAT), called the Modified Radon Transform (MFRAT), which attempted to
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increase the robustness of coding-based palmprint recognition techniques against

small image transformations. Moreover, they demonstrated a new matching tech-

nique that considers small geometric differences by considering the neighborhood

of each pixel in the Radon-filtered image. This is referred to in the literature as the

robust line orientation code (RLOC). Although RLOC produces a slight advantage

over its associated competitors in the presence of geometric distortions, it suffers

from significant computational complexity.

Zuo et al. [51] suggested the competitive code method that processes the image

using several Gabor filters with distinct orientations, and after that, it encodes

merely the index of the filter matching to the minimum magnitude reaction for

each pixel separately. This encoding creates a map of the image’s most crucial

palmprint line orientations. Fei et al. [52] employ multiple Gabor filters with var-

ious orientations to filter the image, encoding statistics signifying the two most

demonstrative filters for every pixel and matching them by using the nonlinear an-

gular distance. Likewise, the neighboring direction indicator (NDI) technique [53]

encodes the main orientation and the relations with the orientations of the neigh-

boring areas for every pixel. More recently, the robust competitive code approach

has been proposed by Xu et al. [54], which combines the competitive code algo-

rithm with the NDI technique. Specifically, the robust competitive code method

encodes the most relevant orientation and a weighted combination of the orienta-

tions in nearby regions for each pixel.

3. Other algorithms

Jing et al. [55] used a two-dimensional (2D) separability judgment to select DCT

frequency bands with appropriate linear separability. Then, from the given bands,

it extracts the linear discriminant features using the optimized Fisherface method

and classifies them with the nearest neighbor classifier. Luo et al. [56] proposed

a new image descriptor, local line directional patterns (LLDP). This work shows
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that different implementations of LLDP descriptors perform competitively in palm

print recognition. Kang et al. [57] presented a novel recognition approach for

contact-free palm-vein recognition that performs feature extraction and match-

ing on all vein textures distributed over the palm surface, including finger veins

and palm veins, to minimize the loss of feature information. First, a hierarchical

enhancement algorithm is adopted, which combines a DOG filter and histogram

equalization to alleviate uneven illumination and highlight vein textures. Second,

a Root Scale Invariant Feature Transform (RootSIFT), a more stable local invari-

ant feature extraction method compared to the Scale Invariant Feature Transform

(SIFT), is used to overcome the projection transformation in contact-free mode.

2.2.4 Deep Learning Methods for Palmprint feature extraction

Palmprint recognition technologies in deep learning [58] [59] have flourished on a large

scale. Deep learning is classified into two types: supervised learning, such as convolutional

neural networks (CNN), and unsupervised learning, such as deep belief networks (DBN).

The three crucial points in a particular learning system are the activation function, the

loss function, and the optimization strategy. Generally, a typical deep learning system

comprises various layers, such as the input layer, convolutional layer, fully connected

layer, pooling layer, softmax layer, and output layer [60]. In this context, Wang et al.

[61] proposed 2D Gabor wavelets for palmprint images. They used a Pulse-Coupled Neu-

ral Network (PCNN) to imitate the creatural vision perceptive process and decompose

each Gabor subband into a series of binary images. Entropies for these binary images

are calculated and regarded as features. An SVM classifier is employed for classification.

Minaee and Wang [62] proposed a Deep Scattering Convolutional Network with a two-

layer for palmprint recognition. Then Principal Component Analysis (PCA) is applied to

reduce the dimensionality of the data. For classification, a multi-class SVM and the near-

est neighbor classifier are used. Svoboda [63] proposed a Convolutional Neural Network

(CNN) based on the AlexNet model and trained by optimizing a loss function related to

the d-prime index to achieve a better genuine/impostor score distribution separation of
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touchless palmprint databases.

Meraoumia et al. [64] proposed Principal Component Analysis Network (PCANet)

deep learning-based feature extraction using two stages. Then, the supervised proce-

dure uses four classifiers (SVM, Radial Basis Function (RBF), Random Forest Transform

(RFT), and KNN). The testing was performed on multispectral palmprint databases.

Cheng et al. [65] proposed Deep Convolutional Features-Based Supervised Hashing (DCFSH).

They used the CNN-F architecture to extract the palmprint convolutional features, fol-

lowed by learning binary coding from distilled deep features. The DCFSH is evaluated on

a multispectral palmprint database. The Hamming distance is employed in the matching

steps. Zhong et al. [66] proposed a new method to achieve end-to-end palmprint recogni-

tion using a Siamese network. In their network, two parameter-sharing Visual Geometry

Group-16 (VGG-16) networks were used to extract the convolutional features of two in-

put palmprint images, and the top network directly obtained the similarity of two input

palmprints based on their convolutional features. Bensid et al. [67] proposed a simple

new deep learning feature extraction algorithm for an efficient multispectral palmprint

identification system called the Discrete Cosine Transform Network (DCTNet).

Genovese et al. [68] proposed PalmNet, a Convolutional Network that uses Gabor

responses and PCA filters through an unsupervised procedure applied to different touch-

less palmprint databases and uses the 1-NN classifier based on the Euclidean distance

for classification step. Besides, Zhao et al. [69] proposed a joint constrained least-square

regression (JCLSR) model with deep convolutional neural networks to solve the under-

sampling classification problem by extracting different deep local convolution features

using different patches of the same palmprint image. The experiments of the proposed

method (JCLSR) were performed on touchless and multispectral palmprint databases.

Table 2.1 includes a summary of deep learning methods for palmprint recognition.

Fei et al. [70] proposed LRRIPLD, a new Low-Rank Representation (LRR) model In-

tegrated with Principal Line Distance for contactless palmprint recognition. LRRIPLD

generates a graph that is more distinct than LRR because the main line distances effec-
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tively improve clustering results by increasing the weights of the links between similar

samples. The approach has been tested on three palmprint databases: IITD-Touchless,

GPDS-Touchless, and CASIA.
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Table 2.1 – A summary of published Deep Learning approaches for Palmprint Recognition.
Notes:
-N. ind = Number of individuals;
-N. samp = Number of samples;
-M= Multispectral database;
-T= Touchless database.

DATABASES Performance
Authors Year Methods

Name N. ind N. samp EER (%) ROR (%)

Train

/ Test (%)

Wang et al. [61] 2012
2-D-Gabor wavelet and

pulse-coupled neural network

PolyU 193 7752 - 97.37 50/50

Minaee and Wang [62] 2016
Deep scattering

convolutional network

PolyU 500 6000 - 100 50/50

IITD 460 2300 1.640 -
Svoboda et al. [63] 2016

AlexNet,

Discriminative Index Learning CASIA 312 2751 1.860 -

50/50

IIT DT 230 2600 - 91.78

GP DST 100 1000 - 91.30Fei et al. [70] 2016 LRRIPLD

CASIAT 312 5500 - 95.05

-

PolyU 500 6000 0.000 100

CASIAM 100 1200 0.125 99.50

33.33/

66.67Meraoumia et al. [64] 2017 PCANet with two stages

CASIA 100 1200 0.006 99.83 50/50

Cheng et al. [65] 2017 DCFSH PolyU 193 7752 0.000 - -

PolyU 500 6000 0.281 -
Zhong et al. [66] 2018 Siamese Network

XJTV 114 2078 4.559 -

-

PolyU 500 6000 0.000 100

CASIAM 100 1200 0.111 99.33

25/75

PolyU 500 6000 0.000 100

Bensid et al. [67] 2018 DCTNet with Two-stages

CASIA 100 1200 0.003 99.83

50/50

CASIAT 624 5455 0.720 99.77

IIT DT 467 2669 0.520 99.37

RESTT 358 1937 4.500 97.16

Genovese et al. [68] 2019 PalmNet-GaborPCA

T ongjiT 600 5182 0.160 99.83

50/50

CASIA 312 2750 - 99.84

PolyU 500 6000 - 100Zhao et al. [69] 2020 JCLSR

IIT DT 230 2601 - 98.17

70/30

CASIA 312 2496 0.031 99.98

IT T DT 460 1841 0.390 99.62

T ongjiT 193 6000 0.530 97.85

Arora et al. [71] 2021 PalmHashNet

PolyU II 300 3860 0.011 99.83

-
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2.3 Finger Knuckle Print Recognition

The external surface of the finger has distinguishing characteristics, especially in the

vicinity of the joints, such as major lines, minor lines, and ridges, which can be extracted

from low-resolution images. Recently, a new biometric technology centered on the outer

of the finger, known as finger knuckle print [72], has been harnessed (see Figure 2.4). Be-

cause the hand has multiple fingers, numerous studies have shown that the finger knuckle

print can be employed in the area of individual identification for robust and accurate

recognition [73] [74].

Figure 2.4 – Finger Knuckle Print.

The schematic diagram of the personal identification system based on the FKP image

is shown in Figure 2.5. The system consists of two major modules. One is an information

acquisition module, while the other is a data processing module. The data acquisition

module comprises a finger holder, an LED light source ring, a lens, a CCD camera, and

an acquisition board. The LED light source and CCD camera are enclosed in a box to

provide almost constant illumination. In addition, a basal block and a triangular block

are utilized to fix the position of the finger knuckle. The data processing module has

three main stages: region of interest (ROI), feature extraction, and matching. During the

data acquisition step, the user puts the finger on the basal mass in a particular pattern

by trying to touch the two slopes of the triangular block (see Figure 2.6). This design

aims to decrease finger position alteration across various capture sessions.

University of Kasdi Merbah Ouargla 2022/2023 page 24



Chapter 2. Hand Biometric Traits: State of the Art

Figure 2.5 – Structure of the proposed FKP based personal identification system

Figure 2.6 – The device used to collect finger knuckle print images.

An FKP-based biometric system aims to determine the characteristics of an indi-

vidual’s finger knuckle print to distinguish among individuals in the recognition tasks.

Generally, the methods used for an FKP-based biometric identification system are similar

to those used for palmprint-based biometric identification systems. However, the major

benefit of the FKP method is that the hand has many fingers (Figure 2.7), allowing for

a high recognition rate if some of these fingers are fused. On the other hand, because it

has a greater surface area, it is rich in biometric data, allowing the biometric method’s
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identification rate to be increased.

Figure 2.7 – Finger knuckle print: middle, index, and ring finger.

Zhang et al. [75] used the Gabor wavelet for feature extraction. They contribute to

developing a biometric system based on the fusion of local and global data relevant to the

FKP method. Gabor filters are used to acquire the biometric traits that characterize the

local orientation scale. However, as the scale of the Gabor filters rises, the transformation

with these filters converges to the overall image’s Discrete Fourier Transform (DFT). As

a result, the DFT of the entire image offers a set of coefficients to demonstrate the FKP

modality’s relevant data. The experimental results on a database of 165 people show

that this scheme can operate with an error of 0.402%. The same authors [76] integrated

the orientation and amplitude of the information extracted by the Gabor filtering. They

validated that combining all fingers allows for zero error rates.

Hedge et al. [77] identify the peak points in the Gabor Wavelet graph. Then, the dis-

tances between these points are measured and saved in a feature vector. The experimental

results acquired using the same database proved its minority compared to Zhang et al.’s

algorithms [75]. Badrinath et al. [78] introduced a novel integration of local data for
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an FKP identification system that is robust to scale and rotation. The FKP’s varying

brightness is adjusted, and the texture is upgraded, owing to the comparatively curved

surface. The local features are extracted by employing the scale-invariant feature trans-

form (SIFT) and accelerated robust features (SURF) of the enhanced FKP. Aoyama et al.

[79] developed an algorithm for individual identification-related FKP recognition system

depending on Band Limited Phase Only Correlation (BLPOC). The scheme is designed

to generate phase information using the 2D Discrete Fourier Transform (DFT), which is

then accompanied by phase-based correspondence matching. Lastly, the BLPOC-based

local block matching is employed to estimate the matching score by applying the global

and local demonstrations of FKP images.

Jaswal et al. [80] introduced a recognition system relying on the dorsal surface of

the finger. First, the images acquired are processed using a median filter. Then, the

Scale Invariant Feature Transform (SIFT) and PCA-related LDA approaches are merged

to extract features. Later, the feature vectors are classified and identified by the nearest

neighbor classifier (KNN) depending on three estimation methods: Euclidean Distance,

Spearman Correlation Coefficient, and City Block Distance. Nigam et al. [81] proposed an

FKP recognition scheme using the concatenation of multiple texture features. However,

the FKP image is processed before employing the curvature Gabor filter to extract the

Region of Interest (ROI). Next, the Gradient-related Ordinal Connections are applied to

acquire robust image representation to improve ROI. Finally, the Distinction Incorrectly

Tracked Corners (ITC) amount is applied in the matching stage. Waghode et al. [82]

introduced a subspace-based method for an FKP recognition system. The Gabor filter

was originally employed to eliminate the noise. Also, PCA is applied to extract features.

Lastly, LDA and Probabilistic Neural Network (P-NN) classifiers were utilized for the

matching stage. Zhai et al. [83] presented an FKP recognition scheme that employs

a Batch Normalized Convolutional Neural Network (CNN) architecture accompanied by

histogram equalization for data augmentation. Chaa et al. [84] proposed a novel tech-

nique for combining two histograms of oriented gradients (HOG) derived from reflection

and illumination. The Adaptive Single Scale Retinex (ASSR) procedure obtains a large
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feature vector from FKP images. Dimensionality was reduced using the PCA + LDA

method. Lastly, cosine distance is employed for classification. Attia et al. [85] provided

an FKP identification system based on the feature-level fusion of imaginary and real

images extracted using the 1D Log Gabor filter. The feature vectors of the images are

extracted together using Three Patch Local Binary Patterns (TPLBP). All the feature

vectors extracted are concatenated to form a single feature vector. Afterward, LDA is

utilized to reduce dimensionality. Eventually, the nearest neighbor classifier is matched

by using cosine Mahalanobis.

Kim et al. [86] introduced a novel method for extracting line features from FKP

images. First, the horizontal and vertical knuckle lines are extracted using a shift-and-

difference matrix, activated with the sigmoid function for contract improvements. Fol-

lowing that, line features are extracted using a Fourier spectrum analysis. Finally, the

two-directional line features are combined at the score level using Total Error Rate Mini-

mization that Adopts the Extreme Learning Machine Kernel (TERELM). Muthukumar et

al. [87] developed an FKP biometric scheme that uses the Short and Long Gabor features.

The Hamming Distance (HD) and Support Vector Machines (SVM) are implemented in

the matching phase. Finally, the scores of both techniques are combined and then utilized

to identify the individual.

Chlaoua et al. [88] introduced a multimodal biometric system based on FKP im-

ages. The Principal Component Analysis Network (PCANet) method was employed.

The PCANet processes an FKP image in two stages involving filter banks and a sim-

ple binary hashing and block histogram for clustering feature vectors. Finally, a linear

multiclass Support Vector Machine (SVM) is used for the classification step. Attia et al.

[89] introduced an FKP recognition system that uses a Multi-Scale Bank of Binarized

Statistical Image Features (BBSIF). This scheme extracts features to encode FKP images

using top-performing complex filters. Following that, the encoded FKP images were used

to extract histograms, which were then connected in series to produce a large feature

vector later utilized for dimensionality decrease. Concerning recognition, the PCA+LDA
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method was utilized, along with the nearest neighbor classifier.

2.4 Biometric System Evaluation

Evaluating the performance of a biometric system is an essential task in conceiving

the biometric verification and identification system. This section discusses techniques for

testing a biometric system and reviews different performance statistics and charts related

to visualizing. There are two types of biometric applications, namely verification and

identification. It is helpful to distinguish between them here as they will impact the

choice of performance evaluation.

2.4.1 Error Rate Metrics

In general, there are several metrics used in the context of biometric system conception

and evaluation. Some are used in the verification system and others in identification. The

identification system can operate in two modes: open-set and closed-set identification. In

the first mode, the person to be identified is not guaranteed to exist in the database but

is assumed to exist in the second mode. First, however, The principal criteria used to

evaluate the performance of a biometric system are:

— False Rejection Rate, or FRR: It reflects the percentage of persons required to be

accepted, but the system rejects them. The following equation describes it:

FRR(%) = Number of rejected genuine (FR)
Total number of genuine access

(2.1)

— False Acceptance Rate, or FAR: This rate reflects the percentage of persons ex-

pected to be not recognized, but the system accepts them. The following equation

describes it:

FAR(%) = Number of accepted imposter (FA)
Total number of imposter access

(2.2)

— Equal Error Rate, or EER: This rate is defined as the percentage where the false

acceptance and rejection rates are equal (FAR = FRR). That is the best trade-off

between false rejections and false acceptances.
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Figure 2.8 – Distributions of genuine users scores and impostor scores.

We can use another performance measurement, the Genuine Acceptance Rate (GAR).

It represents the system identification rate. This rate is defined as the percentage of

genuine users accepted by the system, which is expressed as follows:

GAR(%) = 100−FRR(%) (2.3)

So, we can display the Receiver Operating Characteristics (ROC) curves, which are the

GAR against the FAR or the FRR against the FAR [90].

In closed-set identification, we use the Cumulative Matching Characteristic (CMC) curve

to measure the accuracy performance of a biometric system. It shows the ranking of in-

dividual templates based on the match rate. This curve is associated with two criteria.

The rank of Perfect Rate (RPR), defined as the rank at which the identification rate

attempts 100%, and Rank-One Recognition (ROR), defined as the percentage of persons

recognized by the system as a function of a variable "rank."
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2.4.2 Curves of Performance

The performance of a biometric system for various criteria (decision threshold) is

graphically represented using specific curves. The logarithmic scale is frequently applied

to represent them as more precise and readable, principally in comparing biometric sys-

tems with similar performance. The most used performance curves are:

2.4.3 Receiver Operating Characteristic curve (ROC)

The Receiver Operating Characteristic (ROC) curve is a typical technique for describ-

ing the technical presentation of a biometric scheme in a precise application (generally in

verification and open-set tasks). The ROC curve is a diagram that depicts the connection

between FAR and FRR (GAR against FAR). Figure 2.9 shows a demonstration of the

ROC curve.

2.4.4 Cumulative match characteristic curve (CMC)

A CMC curve is a graphical representation employed to evaluate the performance of a

biometric identification system in closed-set mode. A CMC curve plots the identification

rate against the rank. An example of this curve is shown in Figure 2.10.
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Figure 2.9 – Receiver Operating Characteristic (ROC): (a) GAR against FAR when the de-
cision threshold varies, (b) FRR Variation according to the FAR when the decision threshold
varies

Figure 2.10 – Cumulative match characteristic curve (CMC).

2.5 Conclusion

Biometric systems that use different biometric modalities of the hand are superior to

systems using a single biometric modality. This superiority is due to their efficiency, and

users accept them easily because of their ergonomics. Furthermore, the installation of

these systems is easy and less expensive. Several biometric modalities can be extracted
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from the hand.

In this chapter, we have reviewed the main biometric modalities related to the hand.

Then, we have detailed the two most commonly used biometric modalities currently,

namely the palmprint and the finger knuckle print. Therefore, the state-of-the-art on the

various works realized in the literature was given in this chapter.
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3.1 Introduction

The fast growth of modern human civilization has led to an increasing demand for

new and efficient technologies to sustain it. Alongside, security and privacy concerns

have emerged, and the usage of highly reliable and accessible individual authentication

and identification techniques became crucial. Biometrics has emerged to address this

need and has become a science that studies physiological and behavioral characteristics

of the human body to recognize an individual’s identity. Biometric technologies focus

on techniques that automatically authenticate both stable human traits, such as DNA,

fingerprint [91], faces [92], iris [93], palmprint, and human behavioral traits such as gait

[94], voice [95], keystroke [96], and signature [97]. Among these, palmprint recognition

has shown itself to be one of the essential biometric technologies, attracting significant
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attention.

The palmprint images contain rich features such as principal lines, wrinkles, and minu-

tiae. They are relatively stable, and their captured images are easy to obtain [98] [99].

They can be categorized according to the way of their acquisition. Therefore, they can

be divided into two categories of palmprint images, contact-based and contactless. The

main difference between them is whether the hand is in touch with the acquisition device

or not [100]. The first type of image is gathered by placing the palms on the device and

using user-pegs, while the second type is obtained without contacting the device’s surface

[18]. A biometric system can be divided into two categories, unimodal and multimodal

biometric systems. The unimodal biometric system is designed to recognize individuals

based on a single biometric trait’s information. That system suffers from some limitations

and cannot provide satisfactory recognition accuracy. The multimodal biometric system

integrates information from multiple biometric traits. It is more secure than a unimodal

system and can solve a variety of problems, including noisy sensor data, non-universality,

distinctiveness, and the lack of biometric traits. The combination of modalities provides

efficient means for improving the performance and reliability of the biometric system [101].

The main component of a biometric system is feature extraction. It extracts only

the discriminant information from the acquired image to create a new representation that

should be essentially unique to each person [102]. Deep learning techniques, which provide

a better representation of the image, have become popular methods for this purpose. The

main benefit of deep learning methods is their ability to generate efficient and discrimina-

tive features from the biometric image. Recently, many feature extraction methods based

on deep learning techniques have been proposed in the literature [64] [62].

Since feature extraction is an essential part of the recognition task, predicting perfor-

mance and reducing the computation required can be achieved by using Feature Selection

(FS). This latter is an essential component of machine learning and data mining, which

has been studied for many years under different conditions and in diverse scenarios [103].

These algorithms aim to rank and select a subset of related features based on their de-
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grees of preference, relevance, or importance, as defined in a particular application. Since

feature selection may reduce the number of features needed to train classification models,

it mitigates the effect of dimensionality’s curse, speeds up the learning process, improves

model performance, and promotes data understanding. In this chapter, inspired by the

work of PalmNet [68], we will propose efficient biometric identification systems based

on palmprint traits. To accomplish this, we suggest applying Log-Gabor filters in the

preprocessing step to adjust the pixel luminance of palmprint images. After, we process

to extract the discriminant information by using an adaptive Gabor-based filter tuning

procedure [68]. To improve the recognition rate as well as reduce the size of large feature

vectors and the computational time, we use feature selection and dimensionality reduction

procedures. Additionally, we employ a Support Vector Machines (SVM) classifier instead

of the K-Nearest Neighbor (KNN) classifier based on the Euclidean distance, with K=1

(denoted by 1-NN in the following). For the multimodal system, we fuse modalities at

the matching score level to improve system performance. To validate our method, we

applied it to several public palmprint databases containing images of distinct qualities,

resolutions, and dynamic ranges. We also carried out comparisons with several recent

state-of-the-art methods.

The main contributions of this work are as follows:

— The development of effective unimodal and multimodal biometric systems for palm-

print recognition.

— Improvement of palmprint images using log-Gabor filters by adjusting pixel lumi-

nance.

— Using feature selection with dimensionality reduction significantly reduced the fea-

tures vector size with a reduction rate of 0.003 %, which allowed reducing compu-

tational time without degrading the performance of our recognition systems.

— Employing the SVM classifier instead of the 1-NN classifier as in the chapter [68].

Experimental results demonstrate that our methodology scored a higher recogni-

tion accuracy than existing approaches in the literature.

The rest of the chapter is organized as follows: Section 3.2 introduces the proposed

approach of unimodal and multimodal identification systems for palmprint recognition.
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The experimental results are given in Section 3.3, which reports the obtained experimental

results. Finally, Section 3.4 concludes the chapter.

3.2 Proposed approach

Figure 3.1 shows the block diagram of the proposed unimodal palmprint identification

system, composed of five steps: Preprocessing; feature extraction; feature selection and

dimensionality reduction; classification and matching; decision. Every unimodal system

calculates its own matching score. For the multimodal system, these individual scores

are eventually combined or fused at the matching score level into a total score used by

the decision module. A final decision is made based on this matching score (the user is

identified or not). This structure can improve the proficiency of a unimodal system and

be used to solve some of its limitations.

Pre-
processing

Feature
extraction

Feature
selection

and reduction

Classification
and matching Decision

User’s identity or

User’s not identified

Figure 3.1 – Flowchart of the proposed approach.

3.2.1 Preprocessing

The preprocessing step can be divided into three separate tasks: a) extracting the

Region of Interest (ROI) from the palmprint image, b) resize the ROI palmprint images,

and c) applying the Log-Gabor filter (see Figure 3.2). First, the surface of the palm

image is segmented for extracting the Region Of Interest (ROI). The ROI attempts to

get only the area where the hand has useful information. For that, we have to align

the palmprints by using the algorithm mentioned in [19]. The central part of the image,

which is 128× 128, is then cropped to represent the whole palmprint. Second, we resize

the ROI to dimensions of 32× 32 pixels in order to reduce the computational time. In

the last step of the preprocessing module, and to enhance the ROI image of palmprint, a

Log-Gabor filter is applied to provide a better enhancement with its good smoothening

characteristics based on performance and quality measurements that have been empiri-

cally observed (Fig. 3.2. d). The log-Gabor filter is a derivative of the standard Gabor
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filter. The log-Gabor frequency response is Gaussian in the logarithmic frequency scale,

as opposed to the standard Gabor that has Gaussian frequency response in a linear scale.

The log-Gabor frequency response is described by (Eq. 3.1):

G(w) = exp
(
−(log(w/w0))2

2(log(k/w0))2

)
(3.1)

Where w0 is the centre frequency of the filter and the bandwidth is determined by the k
w0

term. The parameters of Log-Gabor filter were experimentally selected as w0 = 1/3 and

k = 0.65.

Figure 3.2 – The main tasks of preprocessing step. (a) input image, (b) ROI palmprint
extraction, (c) image resizing, and (d) results of Log-Gabor filter.

3.2.2 Features extraction

Feature extraction is a key module for recognition systems. The acquired biometric

data are processed, and only the salient information is extracted to form a new represen-

tation of the data. Ideally, for each person, this new representation should be unique. In

our scheme, to extract highly discriminative palmprint features, PalmNet deep learning

is used to extract the features vector of each data type. It is a particular case of an image

University of Kasdi Merbah Ouargla 2022/2023 page 39



Chapter 3. Efficient palmprint biometric identification systems using deep learning and feature
selection methods

classification deep learning baseline, which consists of three stages: 1) convolutional stage,

2) binarization stage, 3) histograms stage. Thus, the block diagram of PalmNet algorithm

is presented in Fig. 3.3 and can be summarized as follows [68]:

1. Convolutional stage

As shown in Fig. 3.3, the convolution process is ensured by two layers of the Gabor

filter bank:

— First convolutional layer (L1), consisting of k1 filters. Each filter is convolved

with the input image (layer L0 with dimensions of u×v). Thus, the output of

this layer consists of k1 images with dimensions of u×v. So,

Il1(i, j) =
∑
m

∑
n
hl1(m,n)Il0(i−m,j−n), 1≤ l1 ≤ k1 (3.2)

Where, Il0 represents the input image of layer L0 to be convolved with the filter

hl1 to produce the output image Il1 of layer L1. The indices i and j deal with the

images while m and n work with the filters.

— Second convolutional layer (L2), consisting of k2 filters. Each filter is convolved

with the output of layer L1. Thus, the output of this layer consists of k1k2

images with dimensions of u×v.

Il1l2(i, j) =
∑
m

∑
n
hl2(m,n)Il1(i−m,j−n), 1≤ l1 ≤ k1 and1≤ l2 ≤ k1k2 (3.3)

Where, Il2 represents an image of the k1k2 output filtered images. hl2 is a filter of

layer L2.

The significance of this part is that we used two types of filters, fixed-scale Ga-

bor filters and adaptive multiscale Gabor filters. In the first type, we created a

set of fixed scale 2−D Gabor filters with dimensions of h1×h2, as products of a

sinusoidal wave with a Gaussian function [68]. In the second type, we first com-

puted a set of adaptive orientations from the training subset of palmprint ROI.

Then, we computed a bank of multiscale Gabor filters with the computed orien-

tations. Finally, we selected the filters that get the greatest magnitude responses

with dimensions of g1× g2 where g1× g2 = 4 · 2mf . The value of mf is computed

as mf = [0,1, · · · , · · ·M ], where M equal to M = [log2(u/2)] and u is the horizontal

size of the ROI images [68]. So, the number of filters chosen for each layer of the
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network, i.e., k1 and k2, consists of F +A′ filters, corresponding to F fixed-scale

2−D Gabor filters and A′ adaptive multiscale 2−D Gabor filters.

2. Binarization stage

In this stage, the k1k2 output images obtained from the output of the second layer

are converted to binary format using a Heaviside step function illustrated by the

following equation:

Bl2(i, j) =


1 if Il2(i, j)> 0

0 otherwise
(3.4)

Where Bl2 is a binary image. In total, we obtain k1 groups of binary images, each

containing k2 binary images Bi, with i= 1,2, · · · ,k2. These images have the same

dimensions of u×v. For each position (i, j), by concatenating the binary values of

all k2×k1 binary images, we obtain:

b= [B1(i, j),B2(i, j), · · · ,Bk2(i, j)] (3.5)

We convert the binary vector b into a decimal number as follows:

d=
k2∑

k=1
2k−1b(k) (3.6)

This process is repeated for each position (i, j). Finally, we obtain a decimal matrix

D(i, j) that describes the whole k2 binary output image group.

Likewise, the decimal matrices Dl are determined for all k1 binary images groups,

with l = 1,2, · · · ,k1.

3. Histograms stage

In this stage, each Dl matrix is partitioned into nB non-overlapping (disjoint)

blocks with dimensions of bl× b2, and their histograms are computed. Each his-

togram consists of 2k2 bins. Thus, a features vector H is obtained by concatenating

the histograms for all blocks of all images Dl, where:
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|H|= k1nB2k2 (3.7)

In conclusion, to achieve the best recognition accuracy, the hyperparameters of the

PalmNet include the number of filters in each layer k1 and k2, and the values of b1

and b2 are experimentally tuned.

Figure 3.3 – Topology of the proposed network.

3.2.3 Feature selection and dimensionality reduction

Feature selection (Fs) is a significant component of machine learning, computer vision,

artificial intelligence, and data analysis. The aim of feature selection is to select useful

features and remove redundant information. In this section, we use the feature selection

and dimensionality reduction methods as follows: i) Fisher score algorithm (as feature

selection method), ii) ReliefF algorithm (as feature selection method) and iii) Whitening

Principal Component Analysis (WPCA) algorithm (as dimensionality reduction method).

Feature selection algorithms can be divided into three groups [104]:

— Wrappers method that uses classifiers to score a particular subset of features;

— embedded methods that insert the selection process into the classifier’s learning

process;
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— filter methods that analyse intrinsic properties of data, ignoring the classifier [105].

We aim to use feature selection algorithms to rank and select a subset of pertinent

features based on their degree of importance, preference, or significance as specified in an

application, since the number of features used for training classification models can be

decreased by the selection of features. Furthermore, dimensionality reduction reduces the

impact of the dimensional curse, reduces time and over-fitting, improves training model,

and data comprehension.

While feature selection can be used in both supervised and unsupervised learning, we will

focus our study on supervised learning (classification) methods in which the class labels are

known ahead of time. The interesting topic of feature selection for unsupervised learning

(clustering) is a more complicated issue, and research in this field is recently getting more

attention in several communities. In recent years, a variety of feature selection methods

have been exploited for clustering paradigms, for example [106] [107] [108] [109] [110].

1. Fisher score algorithm

Fisher score is one of the most common supervised feature selection methods. We

used a linear discriminant approach based on Fisher’s score, which evaluates the

discriminating power of features. The score is given by:

Wi =
∑c

j=1Nj .(mj− m̄)2∑c
j=1Njσ2

j

(3.8)

Where Wi is the score of features i, c is the number of classes, Nj is the number

of samples in class j, m̄ is the feature mean. mj and σ2
j are the mean and the

variance of the class j in the intended feature.

2. ReliefF algorithm

Kira and Rendell [111] formulated the original Relief algorithm inspired by instance-

based learning, which is optimized for two-class problems without losing values.

The basic idea of the algorithm, when analysing learning instances, is to take into

account not just the difference in features values and the variation in classes but

also the distance between the instances. In the features space, distance is calcu-

lated so that similar instances are close to each other and far apart, and dissimilar
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ones are far away. By taking into account the similarity of instances, the context

of all the features is implicitly considered [104]. For each instance, from a random

subset of m (m6M), learning instances compute the closest instance of the same

class (near hit xH) and the closest instance of the opposite class (near miss xM ).

Then it updates the quality of each feature (see Eq. 3.8).

W [i] =W [i]−diff(i,xk,xH)/m+diff(i,xk,xM )/m (3.9)

Kononenko et al. [112] propose a number of updates to Relief. First, they found the

near hit (xH) and near miss (xM ) instances using the Manhattan (L1) norm rather

than the Euclidean (L2) norm, although the rationale is not specified. Second, they

found taking the absolute differences between xk and near hit (xH), and xk and

near miss (xM ) to be sufficient when updating the weight vector (rather than the

square of those differences), which can deal with multiclass problems.

3. Whitening Principal Component Analysis (WPCA) algorithm

Principal Component Analysis (PCA) is the most popular dimensionality reduc-

tion technique widely used in machine learning to reduce the features’ redundancy

for efficient palmprint recognition. However, PCA has two weaknesses: The per-

formance of PCA is degraded when using its leading eigenvalues and the weak

discriminating in its eigenvectors. WPCA is PCA with an extra step: whitening

the eigenvectors by eigenvalues. The whitening step is simple but very effective; it

helps to rectify the deficiencies of PCA, where (i) the features are less correlated

with each other, and (ii) the features all have the same variance. Therefore, mak-

ing the palmprint recognition system achieve better performance.

3.2.4 Classification and Feature Matching procedures

A person’s identity can be ascertained through the classification and feature matching

process. The feature vectors of the training set issued by the feature extraction module

are used for classification. In our work, we used two classifiers, a 1-NN classifier based on
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the Euclidean distance and a multi-class SVM classifier with Gaussian kernel. The first

classifier arranges a sample based on the category of its nearest neighbour. It basically

consists of finding the similarity between the test model and each model of the training

set. The second classifier uses a set of training data that enables a hyperplane to separate

the best points [113].

A matching process is intended to compare the test features vectors against the stored

templates (training set) to generate match scores. The match score is a measure of the

similarity or dissimilarity between the template and the test. Therefore, a higher match

score indicates a greater similarity between the template and the query. If a matcher

measures the dissimilarity between the two feature sets, the score is denoted as a distance

score. A lower distance score points to higher similarity.

3.2.5 Normalization and Fusion Procedures

In multimodal systems, the normalization method widely used allows each measured

score to be converted into a common interval. Min−Max is the type of normalization

mostly used in biometric recognition systems. This technique is most appropriate where

the limits (minimum and maximum values) of the scores produced by the systems are

known [114]. So, we can conveniently convert the minimum and maximum values of the

scores vector into 0 and 1, respectively. The following formula gives the score normalized

by the Min−Max method.

V̂d = Vd−min(Vd)
max(Vd)−min(Vd) (3.10)

Where the vector Vd includes all the scores calculated between the test and all the

stored feature vectors, while the vector V̂d comprises the normalized scores.

Score level fusion is the most commonly used biometric information fusion strategy

since matching scores are readily available, and they retain enough information to distin-

guish genuine matching from impostor matching. There are several matching score fusion

rules that integrate normalized matching scores of a user to produce the final match-

ing score. In our work, we conducted the experiment with four fusion rules: sum-score
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rule (SUM), product score rule (MUL), SUM-weighted-score (SUM MUL) and product-

weighted-score (WHT MUL) [114].

— Simple Sum rule: This rule takes the sum of the N unimodal systems matching

scores of the kth user as the final matching score Sk of this user. Sk is calculated

as follows:

Sk =
N∑

i=1
Ski

(3.11)

— The product rule: This rule presents the multiplication result of the N unimodal

systems matching scores of the kth user as the final matching score of this user,

which is expressed as follows:

Sk =
∏

i=1,2,...,N

Ski
(3.12)

— The weighted Sum rule: This rule can define the final matching score of the kth

user, which is calculated as follows:

Sk =
N∑

i=1
wiSki

(3.13)

— The weighted Product rule: This rule can determine the final matching score of

the kth user, which is shown as follows:

Sk =
∏

i=1,2,...,N

Swi
ki

(3.14)

Where wi represents the weight of the matching score of the ith biometric trait of

the kth user, which is calculated as follows:

wi =
1

EERi∑N
j=1( 1

EERj
)

(3.15)

3.2.6 Simplified PalmNet Gabor algorithm

The proposed approach uses an innovative procedure based on deep learning and

feature selection for palmprint recognition. First, we apply Log-Gabor filters in the pre-
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processing step to adjust the pixel luminance of palmprint images. Then, in order to

extract discriminative palmprint features, we use the PalmNet Gabor network [68] in fea-

ture extraction. Additionally, we employ a Support Vector Machines (SVM) classifier and

K-Nearest Neighbour (KNN) classifiers. The key idea of our approach is to use feature se-

lection and dimensionality reduction procedures to improve PalmNet Gabor performance

and reduce feature vector size. Therefore, we use the Fisher score and ReliefF feature

selection algorithms and dimensionality reduction WPCA algorithm. For the multimodal

system, we combined modalities at the matching score level to improve system perfor-

mance. To validate our method, we applied it to several public palmprint databases.

3.3 Experiments and Results

This section presents the experimental evaluation, by conducting experiments on four

popular and publicly available databases which are CASIA multispectral palmprint, PolyU

multispectral palmprint, Tongji contactless palmprint, and PolyU 2D/3D contactless

palmprint. First, we give a brief description of the adopted palmprint databases (sec-

tion 3.3.1). Second, we present the setup of our approach in the experimental setup

(section 3.3.2). Finally, in the experimental results (section 3.3.3), we discuss and analyse

the results.

3.3.1 Databases

The proposed method is tested using four publicly available palmprint databases; the

CASIA and PolyU multispectral databases and Tongji and PolyU 2D/3D contactless

databases. The aim of employing contact-based and contactless databases is to verify the

robustness and high efficiency of our method. A description of these databases is given

below.

1. CASIA Multispectral Palmprint Database V1.0

The CASIA Multispectral Palmprint Image Database comprises 7,200 palm im-

ages obtained from 100 different individuals using self-designed multiple spectral

imaging devices described in [115]. In this database, the images of each hand

are collected in two separate sessions. The time interval between two sessions is
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more than one month. In each session, there are three samples. Each sample

includes six palm images, which are captured at the same time with six different

electromagnetic spectrums. Wavelengths of the illuminator corresponding to the

six spectrums are 460, 630, 700, 850, 940 nm, and white light, respectively (see

Fig 3.4). Between two samples, certain degrees of variations of hand postures are

allowed. All palm images are low resolution < 150dpi stored as 8-bit gray-level

images per band with dimensions of 128×128.

Figure 3.4 – Palmprint ROI samples from the multispectral CASIA database. (a) 460nm, (b)
630nm, (c) 700nm, (d) 850nm, (e) 940nm, and (f) White light.

2. PolyU Multispectral Palmprint Images Database

PolyU Multispectral Palmprint Images Database comprises 6000 images obtained

from 500 different palms for each band using palmprint images capturing device

designed by Hong Kong Polytechnic University researchers described in [30]. The

multispectral database contains cropped multispectral palmprint images of four

different bands (Red, Green, Blue, and NIR) are shown in Fig 3.5. The images

were collected in two separate sessions at a time interval of about two months.

In each session, the person provides 6 images per palm, so there are 12 images

for each person. Therefore, 48 spectrum images of all illumination from 2 palms

were collected from each person. The average time interval between the first and
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the second sessions was about nine days. Also, all palm images are low resolution

< 150dpi stored as 8-bit gray-level images per band with dimensions of 128×128.

Figure 3.5 – Palmprint ROI samples from the multispectral PolyU database. (a) Red, (b)
Green, (c) Blue, and (d) NIR.

3. Tongji Contactless Palmprint Dataset

Tongji Contactless Palmprint Dataset comprises 12,000 images obtained from 600

different palms using the proprietary touchless acquisition device described in [116].

Tongji University collected images from 300 volunteers, including 192 males and

108 females. Among them were 235 people between the ages of 20 and 30 and the

others between the ages of 30 and 50. The left and right samples were collected in

two separate sessions (see Fig 3.6). In each session, the person provides ten images

per palm. Therefore, 40 images from 2 palms were collected from each person. The

average period of time between the first and second sessions was approximately 61

days. The minimum and maximum time intervals were 21 days and 106 days,

respectively. All palm images are stored as 8−bit gray-level images per band with

dimensions of 128×128.
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Figure 3.6 – Palmprint ROI samples from the Contactless Tongji database. (a) Left, and (b)
Right.

4. PolyU 2D/3D Contactless Palmprint Dataset

The PolyU 2D/3D Contactless Palmprint database contains 8000 images collected

from 400 palms of 200 volunteers. The Bio-Research Center (UGC/CRC) of Hong

Kong Polytechnic University [117] created the PolyU 2D/3D database. The par-

ticipants’ gender includes 136 males and 64 females with the age range of 18 to

50 years. Each person provided twenty samples for both the left and right palms.

The left and right palms from the same person can be considered as belonging to

different classes. Thus, there are 400 classes of 2D/3D palmprint image samples.

The samples have been collected in two sessions, where ten samples are captured

in each session, and the average time between the two sessions is one month. All

2D images in this database are stored as 8− bit gray-level images with dimensions

of 128× 128. In this work, we use only the 2D ROI images. The following figure

(Fig 3.7) shows the 2D ROI images from this database.

Figure 3.7 – Palmprint 2D ROI samples from the Contactless PolyU 2D/3D database.
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3.3.2 Experimental setup

To evaluate the efficiency of our proposed method, the experiments were conducted

on two sub-datasets. The first sub-dataset is used for the training phase, while the second

is for the testing phase. Each sub-dataset contained 50% of the images in the database.

Moreover, to evaluate the computational time requirements of each algorithm, the per-

formance indicator time refers to the CPU time needed to classify one palmprint image

in seconds.

To reach the best possible recognition accuracy on the considered datasets, we ex-

perimentally tuned some filter parameters, and we selected the others by considering the

optimal values found in the literature [68]. For the Gabor filters, the chosen values of the

filter numbers k1 and k2 were k1 = k2 = 13 in two stages. The fixed-scale 2−D Gabor

filters F is 10 with dimensions h1 = h2 = 31 and the adaptive multiscale 2−D Gabor

filters A′ is 3.

The feature vector size is computed by using the Eq. 3.7 as follows: |H| = k1nB2k2 =

13 . 4 . 213 = 425984. Where nB = 4 represents the number of non-overlapping blocks

with the values of b1 = b2 = 15 that fit in the input ROI image with size u= v = 32. The

network parameters are summarized in Table. 3.1.
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Table 3.1 – Network Parameters.

Parameter(s) Description Value(s)

u,v Size of the palmprint ROI images 32, 32

k1 Number of filters in L1 13

k2 Number of filters in L2 13

h1,h2 Dimensions of the fixed-scale Gabor filters 31, 31

F Number of fixed-scale Gabor filters 10

A
′ Number of adaptive multiscale Gabor filters 3

b1, b2 Size of non-overlapping blocks 15, 15

3.3.3 Experimental Results

In our experiments, after extracting the Region of Interest (ROI) from the palmprint

images, we resized the images to 32×32 and applied the Log-Gabor filters for adjusting

pixel luminance. We used two layers of Gabor filters with an adaptive Gabor-based fil-

ter tuning technique for extracting palmprint specific informative features. To increase

recognition accuracy and reduce computation time, we used feature selection algorithms

Fisher score and ReliefF with the reduction of dimensionality algorithm whitening Princi-

pal Component Analysis (WPCA). For classification, we used the Support Vector Machine

classifier (SVM) and the Nearest Neighbour classifier (1-NN). Finally, we fuse the spectral

bands at the matching score level to improve identification system performance.

All the computation times presented in this chapter are obtained with MATLAB®

2018a in PC with a processor (Intel Core i7-4710MQ) 2.50-GHz and RAM 16 GB.

The experimental results can be divided into three subparts: the first subpart includes

the results obtained from the unimodal identification system evaluated on the CASIA and

PolyU multispectral databases, and the contactless Tongji and PolyU 2D/3D databases.

While in the second subpart, the results of the multimodal identification system are pre-

sented. As for the third subpart, we do a comparison study with some works in literature.
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1. Unimodal biometric system performance

The unimodal system results were performed on four public multispectral and

contactless palmprint databases.

(a) CASIA multispectral database results

In order to evaluate and test the effectiveness of the proposed method, experi-

ments are done on the CASIA multispectral database with 100 persons and six

spectral bands (460, 630, 700, 850, 940 nm, and white light). Since our eval-

uation adopts random splits for training and testing, we studied the effect of

the amount of training on the method’s performance. To this end, we run our

method using three different random training-testing splits (without Feature

selection) (see Table 3.2). From the obtained results, we can observe that the

50% training-testing split gives the best results for all spectral bands. There-

fore, the experiments will be conducted using the 50% training-testing splits.

Also, to evaluate the performance of the proposed approach, we calculated the

performance indicators for several random splits of the training and testing

images. Thus, we calculated the standard deviation of the main performance

indicators EER and ROR in two cases: without and with FS and dimensionality

reduction using the SVM classifier. To this end, we have adopted ten random

image splits, each of which contains six images for training and the remaining

six images for testing. The number of genuine and impostor comparisons for

each spectral band is 600 and 29,700, respectively. Table 3.3 shows the different

results of ERR (%) and ROR (%) on the ten random splits for two cases without

feature selection (FS) and with FS (Fisher score) and dimensionality reduction

(WPCA) of six spectral bands from the CASIA database. This table also shows

the mean and standard deviation of ERR (%) and ROR (%). Comparing all

the results in the two tables shows that feature selection and dimensionality re-

duction have improved average performance (i.e., EER and ROR) and reduced

standard deviations, implying that performance is relatively stable. Moreover,

in the case without feature selection, the best results were obtained with band

University of Kasdi Merbah Ouargla 2022/2023 page 53



Chapter 3. Efficient palmprint biometric identification systems using deep learning and feature
selection methods

630, and in the case with feature selection, with band 460.

Table 3.4 shows the results of the proposed method with two classifiers (1-NN

and SVM) and two modes of identification (open-set and closed-set). This table

also shows the mean of ERR (%), ROR (%), and time for all spectral bands.

By comparing all the obtained findings, it is clear that the spectral band 460

nm gives the best results in terms of EER and ROR values. Firstly, the fea-

tures’ number of the unimodal identification systems is reduced from 12288000

features for the work [68] to 425984 features for our work. In order to reduce

features more, applying Fisher score algorithm with ReliefF algorithm or not

has allowed reducing the features while maintaining a good identification accu-

racy. Fig 3.8 and Fig 3.9 show an example of selecting features for a Fisher score

algorithm using an SVM classifier based on the performance of EER (%) and

GAR (%) against the number of ranked features, respectively. The obtained

results show that the insertion of Fisher score with SVM classifier achieves the

perfect results with EER equal to 0.000 % in the open set and ROR equal to

100 % in the closed set for spectral band 460 nm with 11500 features. Fig 3.10

illustrates the effectiveness (ROC and CMC curves) of this case for all spec-

tral bands. For the last case, Fisher score algorithm with WPCA algorithm,

the system yielded better results compared with previous (without FS), it can

achieve an EER of 0.003 % in the open set and a ROR of 99.83 % in the closed

set for the 460 nm spectral band while reducing the feature vector size to 410

with CPU time 0.001s instead of 0.478s. Thus, the use of the FS and dimen-

sionality reduction allowed us to reduce the number of features and improve

the identification accuracy.
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Table 3.2 – Performances comparison of different random training-testing splits.

Spectral bands

Performance of 25% for

training and 75% for testing

Performance of 33.33% for

training and 66.67% for testing

Performance of 50% for

training and 50% for testing

ERR (%) ROR (%) ERR (%) ROR (%) ERR (%) ROR (%)

460 6.951 73.55 1.306 92.75 0.333 97.66

630 4.755 85.88 2.000 92.25 0.666 98.00

700 6.057 77.77 2.805 88.62 0.914 95.50

850 8.169 71.44 3.875 86.25 1.650 92.83

940 6.440 78.33 4.345 88.62 1.833 94.66

WHT 9.579 72.33 2.250 86.25 0.500 97.50
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Table 3.3 – Mean and standard deviation results using 50% for training and 50% for testing.

Spectral bands Cases Random split 1 2 3 4 5 6 7 8 9 10 Mean ± SD

460

Without FS
ERR(%) 0.333 0.833 2.474 2.319 2.440 0.500 0.333 1.883 1.763 0.333 1.321 ± 0.938

ROR (%) 97.66 96.16 88.66 89.00 91.00 98.16 97.16 90.00 88.83 97.50 93.41 ± 4.208

FS + dimensionality

reduction

ERR(%) 0.003 0.367 1.000 0.833 0.666 0.166 0.166 1.244 0.521 0.166 0.513 ± 0.413

ROR (%) 99.83 97.83 94.33 96.33 96.66 99.33 98.83 94.83 97.16 99.16 97.42 ± 1.907

630

Without FS
ERR(%) 0.666 0.773 2.666 2.000 1.500 0.500 0.636 1.666 0.996 0.666 1.207 ± 0.722

ROR (%) 98.00 95.50 88.66 93.00 94.33 98.00 97.00 90.50 94.16 97.83 94.69 ± 3.248

FS + dimensionality

reduction

ERR(%) 0.268 0.333 1.666 0.833 0.693 0.205 0.185 0.744 0.333 0.166 0.542 ± 0.466

ROR (%) 98.83 99.00 94.33 95.50 96.66 98.50 98.50 95.50 97.33 98.66 97.28 ± 1.688

700

Without FS
ERR(%) 0.914 1.333 4.500 3.056 3.245 0.833 1.133 4.636 2.102 0.850 2.260 ± 1.500

ROR (%) 95.50 93.33 84.16 87.16 88.00 95.33 95.16 81.66 86.66 95.66 90.26 ± 5.318

FS + dimensionality

reduction

ERR(%) 0.500 1.016 2.666 1.666 1.776 0.500 0.500 2.166 0.666 0.221 1.168 ± 0.841

ROR (%) 97.66 96.33 90.50 93.50 94.33 98.00 98.50 90.16 95.50 98.33 95.28 ± 3.109

850

Without FS
ERR(%) 1.650 2.833 4.666 4.666 4.333 1.115 1.833 3.833 3.166 1.880 2.997 ± 1.336

ROR (%) 92.83 90.33 83.66 81.50 83.00 94.16 94.66 85.50 90.16 93.66 88.94 ± 5.067

FS + dimensionality

reduction

ERR(%) 0.934 1.333 3.192 2.333 2.833 0.587 0.666 1.950 1.280 1.000 1.611 ± 0.918

ROR (%) 96.16 94.33 89.50 92.83 90.83 97.66 97.66 91.50 95.50 96.16 94.21 ± 2.904

940

Without FS
ERR(%) 1.833 2.500 4.500 4.333 3.500 1.166 0.833 3.275 2.333 1.666 2.594 ± 1.273

ROR (%) 94.66 92.83 85.33 87.16 85.50 96.33 96.83 85.83 90.66 95.16 91.02 ± 4.719

FS + dimensionality

reduction

ERR(%) 0.833 1.368 2.666 2.071 2.166 0.500 0.500 1.967 1.166 1.000 1.424 ± 0.753

ROR (%) 96.66 94.66 91.83 92.83 90.00 97.83 97.33 92.16 95.16 97.50 94.59 ± 2.764

WHT

Without FS
ERR(%) 0.500 1.677 4.255 3.504 3.500 0.500 0.623 2.746 2.333 0.725 2.036 ± 1.428

ROR (%) 97.50 94.50 84.16 87.66 86.16 97.66 96.16 81.00 86.50 97.00 90.83 ± 6.349

FS + dimensionality

reduction

ERR(%) 0.271 0.666 2.166 1.204 1.500 0.500 0.166 1.196 1.125 0.040 0.883 ± 0.673

ROR (%) 98.50 97.33 90.66 94.33 95.33 98.00 99.00 92.83 94.83 99.16 95.99 ± 2.870
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Table 3.4 – The unimodal identification system performance for the CASIA database using
50% for training and 50% for testing.
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Note: Time= CPU time needed to classify one palmprint image for the CASIA database.

University of Kasdi Merbah Ouargla 2022/2023 page 57



Chapter 3. Efficient palmprint biometric identification systems using deep learning and feature
selection methods

1000 11500 155000 20000 290000 4250000

Numbre of features

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

E
E

R
 (

%
)

460 nm 630 nm 700 nm 850 nm

0.000 %

0.767 %
0.703 %

0.283 %

Figure 3.8 – The performance of EER (%) against the Number of ranked features on the
CASIA database using 50% for training and 50% for testing.
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Figure 3.10 – Unimodal system results for the CASIA database using 50% for training and
50% for testing. (a) ROC curves (FRR against FAR) and (b) CMC curves (Identification rate
against Rank).

(b) PolyU multispectral database results

In the following, we present experimental results of the proposed system eval-

uated on the PolyU multispectral database, which contains 500 persons and

various modalities (Red, Green, Blue, and NIR). In our experiment, six im-

ages of each person are selected for training, and the other six for testing.

Namely, 3000 images are used for training, and 3000 images are used for test-

ing for each modality. Furthermore, there are 3000 genuine comparisons, and

748,500 impostor comparisons are generated for each band. Thus, in order to

see the performance of the biometric system with two modes of identification

and CPU time needed to classify one palmprint image, we present the findings

in Table 3.5. We can observe from the results obtained by the proposed system

that NIR and Blue spectral bands presented the best results in terms of the

EER(%) and ROR(%) values. For example, the results of the open-set identifi-

cation with 1-NN classifier and without FS give EERs equal to 4.008×10−4 %
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and 8.016× 10−4 % for NIR and Blue spectral bands, respectively. While,

for the closed-set identification, the system achieved a ROR = 99.96 % and

CPUtime = 0.121 s with NIR band, and a ROR of 99.96 % and CPU time

equal 0.118 s with Blue. It is also clear that the use of feature selection and

dimensionality reduction improves the system’s accuracy and reduces compu-

tational time. The Fisher score with SVM classifier achieves the perfect results

with an EER = 0.000 % in the open-set and a ROR = 100 % in the closed-set

for NIR spectral band. The effectiveness of all spectral bands is shown in Fig

3.11, where the ROC and CMC curves are illustrated. The use of the Fisher

score + ReliefF with SVM classifier reduced the feature vector size to 3000 and

gave a perfect result with an EER = 0.000 % in the open-set and a ROR of

100 % in the closed-set for the blue spectral band. Similarly, the Fisher score

+ WPCA yielded perfect results with an EER= 0.000 % in the open-set and a

ROR = 100 % in the closed-set and reduced the feature vector size to 410 and

CPU time to 0.007 s for NIR spectral band.
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Table 3.5 – The unimodal identification system performance for the PolyU database using 50%
for training and 50% for testing.
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Note: Time= CPU time needed to classify one palmprint image for the PolyU database.
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Figure 3.11 – Unimodal system results for the PolyU database using 50% for training and
50% for testing. (a) ROC curves (FRR against FAR) and (b) CMC curves (Identification rate
against Rank).

(c) Tongji contactless database results

In order to verify the robustness and high efficiency of the proposed method in

the contactless database, we used the Tongji database containing 300 persons

with two modalities (Left and Right hands). In our experiment, we apply the

10 images of each person for training, and the other ten for testing. Namely,

3000 images are used for training, and 3000 images are used for testing each

sample. Thus, 3000 genuine comparisons and 448,500 impostor comparisons are

generated. Table 3.6 shows the performance of our unimodal biometric system

with two modes of identification system (open-set and closed-set) and the CPU

time needed to classify one palmprint image. Compared to all the obtained

results, almost all of them give perfect accuracies. The feature selection and di-

mensionality reduction with two classifiers have not decreased the performance

of our identification system. Effectively, with the SVM classifier, the use of the

fisher score and the WPCA yielded perfect results with EER of 0.000 % in the
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open-set and ROR of 100 % in the closed-set and reduced the feature vector

size to 410 and CPU time 0.004 s instead of 6.987 s (without FS) and 0.004 s

instead of 7.184 s (without FS) for Left and Right hands, respectively.

Table 3.6 – The performance of unimodal identification systems for the Tongji database using
50% for training and 50% for testing.

Feature selection schemes Classifier Number of features

Samples

Left Right

EER % ROR % Time (s) EER % ROR % Time (s)

Without feat. select.

NN

425984 0.000 100 0.088 0.000 100 0.083

Fisher score 10000 0.000 100 0.070 0.000 100 0.064

Fisher score+ReliefF 3000 0.000 100 0.020 0.000 100 0.020

Fisher score+WPCA 410 0.000 100 0.005 0.001 99.93 0.005

Without feat. select.

SVM

425984 0.000 100 6.987 0.000 100 7.184

Fisher score 10000 0.000 100 0.036 0.000 100 0.035

Fisher score+ReliefF 3000 0.000 100 0.014 0.000 100 0.012

Fisher score+WPCA 410 0.000 100 0.004 0.000 100 0.004

Note: Time= CPU time needed to classify one palmprint image for the Tongji database.

In our case, we do not need the fusion for PolyU and Tongji databases be-

cause we got perfect results in the unimodal system (EER = 0.000 % and

ROR = 100 %).

(d) PolyU 2D/3D contactless database results

In order to evaluate the efficiency of the proposed method in the contactless

database, we utilized the PolyU 2D/3D database, which contains 400 people. In

our experiment, we used 2D images from this database splitting each person’s 20

images into ten for training and ten for testing. Each sample is tested using 4000

images for training and 4000 images for testing. As a result, there are 4000 genuine

comparisons and 798,000 impostor comparisons. Table 3.7 shows the performance

of our unimodal biometric system with two modes of identification system (open-set
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and closed-set) and the CPU time needed to classify one palmprint image. From the

obtained results, we observe that the SVM classifier achieves better performance

than the NN classifier, especially in the case of the Fisher score. Furthermore, the

use of the fisher score and the WPCA provided perfect results with an EER of

0.000 % in the open-set and ROR of 100 % in the closed-set, reducing the feature

vector size to 410 and CPU time 0.007 s instead of 2.394 s (without FS).

Table 3.7 – The performance of unimodal identification systems for the Contactless PolyU
2D/3D database using 50% for training and 50% for testing.

Feature selection schemes Classifier Number of features

Spectral band

2D

EER % ROR % Time (s)

Without feat. select.

NN

425984 0.000 100 0.022

Fisher score 10000 0.976 89.85 0.019

Fisher score+ReliefF 3000 0.000 100 0.007

Fisher score+WPCA 410 0.000 100 0.003

Without feat. select.

SVM

425984 0.000 100 2.394

Fisher score 10000 0.000 100 0.063

Fisher score+ReliefF 3000 0.000 100 0.022

Fisher score+WPCA 410 0.000 100 0.007
Note: Time= CPU time needed to classify one palmprint image for the Contactless

PolyU 2D/3D database.

2. Multimodal biometric system performance Unimodal systems suffer from

some limitations and cannot provide satisfactory recognition performance in sev-

eral cases, such as the possibility of noise in the biometric modality and its non-

universality [118], which increases system error (EER). Intra-class dissimilarity,

as well as inter-class similarity, can also impact the unimodal biometric system

and hence the result of identification [119]. An excellent biometric identification

system requires a very low EER value, which can be achieved by the multimodal

system [120] [121]. Such a system combined several features of each modality at

different levels to improve system performance. Matching score level fusion is the
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most widely used in the biometric system. In our work, we fuse only the spectral

bands of CASIA database palmprint at the matching score level to improve sys-

tem performance. The other databases have given perfect results with unimodal

biometric systems (EER= 0.000 % and ROR= 100 %). The experiment was con-

ducted with four methods of fusion which are the SUM rule (SUM), the product

rule (MUL), and their weighted versions, that is, weighted SUM rule (WHT SUM)

and weighted product rule (WHT MUL). The performance of our multimodal iden-

tification system is shown in Tables 3.8 and 3.9. The analysis of data showed that

the results of the multimodal fusion were much better than those of the unimodal

biometric systems. As can be seen from the results, the lowest EER of multimodal

identification was obtained by using the combination of all spectral bands that are

always better than the lowest results of the unimodal system. In addition, the best

results were obtained with an EER= 0.000 %. In contrast, the best results of the

unimodal biometric system were 0.003 % (case Fisher score+ WPCA with SVM

classifier). Figure 3.12 illustrates the CMC and ROC curves for the multimodal

identification system.

Table 3.8 – The performance of multimodal identification system fusion between (460, 630,
700) and (850, 940, WHT) using 50% for training and 50% for testing.

Fusion rules
460- 630- 700 850- 940- WHT

Open-Set Closed-Set Open-Set Closed-Set

EER (%) T0 ROR (%) RPR EER (%) T0 ROR (%) RPR

SUM 0.010 0.863 99.00 3 0.046 0.651 100 1

MUL 0.000 0.584 100 1 0.043 0.271 100 1

WHT SUM 0.000 0.985 100 1 0.057 0.647 100 1

WHT MUL 0.000 0.962 100 1 0.006 0.710 100 1
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Table 3.9 – The performance of multimodal identification system (fusion between all spectral
bands) using 50% for training and 50% for testing.

Fusion rules
460-630-700-850-940-WHT

Open-Set Closed-Set

EER (%) T0 ROR (%) RPR

SUM 0.000 0.940 100 1

MUL 0.000 0.070 100 1

WHT SUM 0.000 0.939 100 1

WHT MUL 0.000 0.940 100 1

0 0.02 0.04 0.06 0.08

FAR( % )

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

F
R

R
( 

%
 )

0 5 10 15 20 25 30

Rank

98.8

99

99.2

99.4

99.6

99.8

100

I
d

e
n

ti
fi

c
a

ti
o

n
 R

a
te

( 
%

 )

460- 630- 700

850- 940- WHT

460-630-700-850-940-WHT

100%

0.046%

0.010%

0.000 

%

99.00%

Figure 3.12 – Multimodal system results for the CASIA database (SUM rule) using 50%
for training and 50% for testing. (a) ROC curves (FRR against FAR) and (b) CMC curves
(Identification rate against Rank).

3. Comparative Study

To prove the effectiveness of the proposed approach against alternative methods, we did a

comparative study along with some works found in the literature. Thus, in this chapter,

we provided unimodal and multimodal identification systems using multispectral and

contactless palmprint images. The results validated the robustness and effectiveness of
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the proposed method. The system reached very high identification accuracy (EER =

0.000 % and ROR = 100 %). Therefore, a comparison of some related and existing

techniques must be made on the same databases. Table 3.10 summarizes the works

of the unimodal biometric system performed on the multispectral CASIA and PolyU

databases, and the contactless Tongji and PolyU 2D/3D databases. To obtain an equitable

comparison, we chose works where the percentage of training and testing is 50 %. From

this table, we observe that the proposed algorithm (Simplified PalmNet-Gabor) provides

high identification performance for multispectral PolyU database and contactless Tongji

and PolyU 2D/3D databases, using a substantially lower number of features compared

with other methods listed in the same table. On the other hand, for the multispectral

CASIA database, a fusion process is used to improve the identification performance. Table

3.10 lists the recognition accuracies of the proposed method and the most recent methods

published in the literature with the number of features and computing time of the different

classifiers. The computing time represents the CPU time needed to classify one palmprint

image. To obtain an equitable comparison, we chose works where the percentage of

training and testing is 50 %. From this table, we observe that the proposed algorithm

(Simplified PalmNet-Gabor) provides high identification performance for multispectral

PolyU database and contactless Tongji and PolyU 2D/3D databases, using a substantially

lower number of features compared with other methods listed in the same table. On the

other hand, for the multispectral CASIA database, a fusion process is used to improve

the identification performance.
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Table 3.10 – Performance comparison of the unimodal systems using 50% for training and 50%
for testing. For each competing method, the number in parentheses indicates how many times
the proposed method is faster.

Performance
Method Databases

ERR (%) ROR (%)

Number

of features
Classifier

Computing

Time (s)

Deep scattering

convolutional network [62]
PolyUM - 100 12,512 SVM 0.090 (x 64.3)

CASIAM 0.006 99.83
PCANet with Two stages [64]

PolyUM 0.000 100
46,080 SVM 1.194 (x 852.8)

CASIAM 0.003 99.83
DCTNet with Two stages [67]

PolyUM 0.000 100
46,080 SVM 1.552 (x 1109)

PalmNet Gabor-PCA [68] TongjiT 0.720 99.77 12,288,000 KNN 0.151 (x 108.4)

CASIAM 0.003 99.83

PolyUM 0.000 100

TongjiT 0.000 100
Simplified PalmNet Gabor

PolyUT 0.000 100

410 SVM 0.001

For the multimodal biometric system, a comparative study was performed in Table

3.11 with the works that used fusion at the matching score level and 50% train-test split

procedure. It is observed that the proposed algorithm has also given perfect identification

performance (EER= 0.000 %, ROR= 100 %) like the two other works, but it has reduced

the features vector to 410 instead of 46,060 for the two other works.

Table 3.11 – Performances comparison of the multimodal systems using 50% for training and
50% for testing.

Method
Performance

Number of features
EER (%) ROR (%)

PCANet with Two stages [64] 0.000 100 46,080

DCTNet with Two stages [67] 0.000 100 46,080

Simplified PalmNet-Gabor 0.000 100 410
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3.4 Conclusion

In this work, we proposed efficient unimodal and multimodal identification systems

for fast palmprint recognition. The proposed method, namely simplified PalmNet-Gabor,

adopts the PalmNet network with enhancements based on feature selection and reduction

dimension methods. Therefore, we used feature selection methods to select a subset of

relevant features of PalmNet using Fisher score and ReliefF methods and dimensionality

reduction by WPCA method to reduce the computational time and improve the accuracy

recognition. Furthermore, we applied log-Gabor filters by adjusting the pixel luminance of

palmprint images. For the multimodal system, we use the matching score fusion method

to improve the performance of the unimodal system. The proposed method effectively

improves the accuracy of PalmNet, reduces the number of features, and solves the problem

of computational complexity. The proposed approach was evaluated using four popular

and publicly available palmprint databases. The extensive experiments presented in this

work have validated the robustness and effectiveness of our method by achieving high

recognition accuracy with a significantly smaller number of features.

The unimodal identification system performed on multispectral PolyU database and con-

tactless Tongji and PolyU 2D/3D databases obtained a very high identification accuracy

(EER= 0.000 % and ROR= 100 %). It gave a CPU time less than 0.009 s and reduced

the feature vector size to 410. Likewise, the multimodal identification system performed

on the CASIA database offers perfect results EER = 0.000 % for the open-set identifica-

tion and ROR = 100 % for the closed-set identification. In the future, we will test our

proposed method with other large databases, such as medical images. We will also em-

ploy additional clustering and dimensionality reduction techniques. Furthermore, we will

employ the graphics processing unit (GPU) to reduce processing time, which is a highly

valuable tool for speeding up the processing speed of computationally intensive algorithms.
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4.1 Introduction

N
OWADAYS , the adoption of persons and institutions of digitization in their

activities has become an urgent necessity. Unfortunately, in this new trend, in-

formation is not always safe; this is why information security has become a significant

concern for our modern societies [122]. Indeed, one way to achieve this goal is to recognize

the identity of the person trying to access the system. In fact, due to the great need for

such recognition, researchers have developed several methods related to knowledge-based

or token-based [123]. These traditional methods improve security, but they suffer from

several limitations that can be overcome effectively by using some characteristics that are

inherent to the person or simply biometric technologies [124].

Biometrics refers to the technologies of recognition of individuals based on biometric fea-

tures that can be extracted from one or more physiological or behavioral traits such as

fingerprint, face, iris, speech, hand geometry, etc. Hence, to develop a biometric system,

one must first determine the biometric modality we are going to use. In general, this
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biometric modality allows us to choose the suitable feature extraction technique that can

provide the best success rate [125]. Indeed, two critical parameters are used to select

the appropriate biometric modality in a given security application, namely acceptability

and precision rates. Human behavior traits have a higher acceptability rate with infe-

rior precision due to their more significant inter-class variability [67]. In contrast to this,

the physiological traits offer a good compromise between the acceptability rate and the

precision rate. Even in the set of physiological traits, there are biometric traits charac-

terized by low acceptability and others characterized by poor accuracy. For example, face

modalities are very acceptable but lead to poor precision. Besides, fingerprints offer high

precision but are not acceptable to users in many applications. Currently, many physio-

logical traits have been extracted, and those obtained from the human hand have proven

their reliability and acceptability by the user in a wide range of security applications [126].

In particular, from the palm of the human hand, two main biometric modalities, palm-

print, and palm-vein can be extracted. Fortunately, with the modern development of

multispectral imaging, it is possible to capture these two modalities with a single acquisi-

tion device that provides images for the skin and veins of the palm [127]. In other words,

the palmprint images, which represent the skin pattern of the inner palm surface, are

captured in the visible light spectrum. While the palm-vein images are captured in the

near-infrared (NIR) spectrum, they represent the dark lines of the palms and are based

on the infrared light absorption (IR) properties of the blood vessel structures.

In the feature extraction task, the acquired biometric image is processed to extract only

the discriminant information to form a new representation that must necessarily be unique

for each person. In this task, several feature extraction methods, such as Gabor filtering

[128], Local Binary Pattern (LBP) [129], and Discrete Cosine Transform (DCT) [55], can

be used. However, these methods have big limitations (e.g. large intraclass variability)

that affects the accuracy of the system. To overcome these limitations, deep learning

techniques [130] have become popular methods that provide a better representation of

the image. Compared to conventional methods, one of the main advantages of deep

learning methods is flexibility and discriminatively. In these methods, it is possible to use

higher-level representation in several levels of representation to extract some discriminant
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information from the biometric image. Recently, many feature extraction methods based

on deep learning techniques have been proposed in the literature and the Convolutional

Neural Network (CNN) technique [131] is almost the first and most effective of these

techniques.

This work aims to develop palmprint (palm-vein)-based biometric systems in which bio-

metric images are analyzed using the deep CNN technique. In our experiments, we first

evaluate each biometric identification system based on a single spectral band (unimodal

system). Also, the results of two or more unimodal systems are fused at the matching

score level to create an efficient and robust multimodal identification system.

The rest of the chapter is organized as follows: Section 4.2 describes the proposed multi-

modal biometric system in which scores are fused at the matching level. Section 4.3 gives

an overview of the preprocessing stage. Section 4.4 briefly describes the deep CNN based

feature extraction method and classification. The scores normalization and the fusion

scheme are illustrated in section 4.5. In section 4.6, the experimental results, obtained

using a database of 500 persons, are presented and discussed. Finally, the last section

includes the conclusion and the intended perspectives.

4.2 System Framework

In Fig .4.1, we present the technical framework of the proposed multimodal biometric

system based on the fusion, at the matching score level, of the palmprint and palm-vein

features. In both phases (enrolment and identification), our system includes the image

pre-processing and the deep-CNN based feature extraction. For the enrolment phase, the

extracted feature vector must be stored in the system database, while for the identifica-

tion phase, this feature vector is subject to a matching step to decide whether to accept

or reject this person at the decision step. It is important to note that before combining

the scores obtained from the two unimodal systems, a normalization process is applied.

This enhanced scheme takes advantage of each biometric modality and can be used to

improve the unimodal biometric system.
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Figure 4.1 – Multimodal biometric identification system based on fusion of Deep features of
palmprint & palm-vein

4.3 Prepossessing Stage

Determining the palmprint Region Of Interest (ROI) is an essential step in the bio-

metric based identification system. For this, we used in our work the same algorithm as

that used in [30]. It consists of defining a system of coordinates, making it possible to

locate the central area of the palm. The gaps between the fingers are used as reference

points for determining a coordinate system. As a result, a rectangular ROI sub-image of

size H×W W is located and then extracted.

The main steps of this technique, illustrated in Fig. 4.2, are as follows: (a) the biomet-

ric modality (e.g. the palmprint) is filtered with a Gaussian smoothing filter to reduce

the noise effect. Then, (b) the resulting image is binarized with the Otsu thresholding

algorithm to obtain a binary image containing only one object (the whole hand). (c) A

hand contour tracking algorithm is used to extract only the perimeter of the hand. This

perimeter is then used to locate the two reference and stable points, located between

the ring and the little finger and between the forefinger and the middle finger. (d) The

tangent of these two points is calculated to be used to align the palmprint modality. Fi-

nally, (e) the central region of the image, i.e. 128×128, is cropped to represent the ROI

palmprint. It should be noted that all spectral bands of the image (red, green, blue and

near-infrared) are subjected to the same preprocessing steps to extract the ROI sub-image.

University of Kasdi Merbah Ouargla 2022/2023 page 73



Chapter 4. An Improved Multispectral Palmprint System Using Deep CNN-based Palm-Features

Figure 4.2 – Palmprint region of interest extraction technique. (a) Image filtering, (b) Image
binarization, (c) Binary image boundaries with the location points of the ROI sub-image, (d)
Location of the central area, and (e) Preprocessing result (ROI sub-image).

4.4 Feature Extraction and Classification

The Convolutional Neural Network (CNN) [132] scans an input image with many

banks of convolution filters. It can be run using multiple layers and several filters to

extract higher level feature vectors. Indeed, CNN is a kind of deep neural network used

in pattern recognition and image processing. The CNN algorithm is a multilayer percep-

tron explicitly designed for the analysis of two-dimensional signal information like image.

Overall, the CNN architecture (see Fig. 4.3) includes three main layers: i) convolutional

layers, ii) pooling layers and iii) fully-connected layers. Thus, in the convolutional layer,

the input image is convolved with some filters. This task can be applied in several steps.

After each convolutional layer and to reduce the size of the obtained feature, which is the

role of the pooling layer, the outputs of this layer are reduced by using the max-pooling.

Finally, in the output layer, the feature vectors of the input image are obtained and then

used as inputs of an ANN for the classification (matching).
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Figure 4.3 – CNN’s proposed architecture for biometric feature extraction.

4.5 Scores Normalization and Fusion Schemes

The normalization process that is typically used in multimodal systems (data fusion)

allows each measured score to be transformed into a common interval. The most widely

used normalization method in biometric identification systems is Min−Max. This tech-

nique is the more appropriate in the case where the limits (minimum and maximum values)

of the scores produced by the systems are known. In this case, we can easily translate

the minimum and maximum values of the scores vector into 0 and 1, respectively. The

following formula gives the score normalized by the Min−Max method:

V̂d = Vd−min(Vd)
max(Vd)−min(Vd) (4.1)

Where the vector Vd comprises all the scores calculated between the test and all the stored

feature vectors, while the vector Vd contains the normalized scores.

Generally, the performance of a single-modality based biometric system (or unimodal bio-

metric system) has several limitations. Indeed, to overcome the weaknesses of unimodal

biometric systems, the data fusion principle is used. In the biometric system, the fusion

process can be applied to one of four levels: sensor level, feature level, matching score level

and decision level. Until now, the fusion at matching score level is the most commonly

used process due to its simplicity, efficiency and ease of implementation. In this process,
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the normalized scores were fused to produce a new score which is used to make a final

decision. There are a variety of rules-based fusion techniques. In our work, we used six fu-

sion rules: sum-score rule (SUM), product-score rule (MUL), sum-weighted-score (WHT

SUM), product-weighted-score (WHT MUL), min-score (MIN), and max-score (MAX)

[124].

The system decision depends on the computed matching score (di
0) and the system secu-

rity threshold (T0) provided by the system designer (depending on the desired security

level). For each user, the system decision is made as follows:

Decision=


Accepted if di

0 ≥ T0

Rejected if di
0 < T0

 (4.2)

Where (di
0) indicates the calculated score for the ith person and (T0) the system secu-

rity threshold.

4.6 Experiments and Results

An excellent biometric system depends on its accuracy. The degree of accuracy is

measured with biometric parameters depending on the system used. For this, an evalua-

tion phase is carried out with a dataset of multispectral palmprint images acquired with

a capture device developed by the Polytechnic University of Hong Kong (PolyU) [133].

This database contains a large number of images and is widely used in many works, which

justifies its use. This dataset is composed of palm images captured under visible light

(red, green and blue spectral bands) which represent the modalities of the palmprint and

the Near InfraRed (NIR spectral band) representing the palm vein modalities. Thus, 195

males and 55 females contributed to the image collection, which constituted a dataset of

250 persons. These persons represent the students and staff of PolyU University and have

a different age, which varies between 20 and 60 years. All of the images in this database

were collected in two separate sessions during which each person is asked to provide six

images for each palm. These two sessions were separated by an average time interval of 9
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days. As a result, for each illumination, 24 images (four spectral bands in every six image)

were collected from both palms of each person. The built dataset contains 6000 images

of 500 different palms The experiments involved are performed on two sub-datasets. The

first sub-dataset is used for training (learning) phase, while the second is for the testing

phase. For the CNN algorithm, it is better to adopt a more extensive training set to avoid

overfitting. To do this, for each spectral band, six images are selected randomly for the

learning phase, containing images of 3000(6× 500) and six images for the testing phase

containing 3000(6×500) images.

The set of tests presented in this chapter is divided into three parts. In the first part, an

empirical evaluation is used to select the relevant and suitable parameters of the CNN al-

gorithm (which gives the best system accuracy). These parameters are used in the second

part to evaluate the performance of the proposed unimodal biometric system using the

different spectral bands of the multispectral palmprint database. For this, both identifi-

cation modes (open-set and closed-set modes) are tested. Finally, in the third and final

part, the performance of the multimodal biometric system is evaluated.

Our system is implemented using MATLAB 2018a in an experimental platform as a work-

station (HP Z8 G4), with a 64-bit Microsoft Windows 10 operating system, equipped

with an Intel Xeon Silver 4108 processor, a 32 GB of RAM and a graphic processing unit

(GeForce RTX 2080 Ti).

4.6.1 Experimental Setup

There are many parameters for adjusting a convolutional neural network. To get the

best CNN architecture and get a very accurate identification rate, we need to find the

relevant parameters that effectively represent our system. In any CNN architecture, there

are hyper-parameters and additional parameters. Among the essential hyper-parameters,

one can find the number of layers, the activation function, the learning rate, the batch size,

the number of epochs and the L2 regularization. On the other hand, the most important

additional parameters are the filters size, the number of filters, the padding, the stride,

and the pooling-layer. To have an excellent biometric system with reduced complexity,

our study focused on a few parameters that we think are important in our work and on
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the fact that other parameters taken by default have given good results. It’s good practice

to start with a basic model and then try to improve it at every step. Our basic model

took the following default settings: stochastic gradient descent with momentum, learning

rate = 0.01, L2 regularization = 0.0001, fixed the maximum number of epochs for training

to 30 and used a mini-batch with 128 observations at each iteration. In the rest of this

study, we will adopt an empirical evaluation by modifying the number of layers, the size

of the filters and the number of filters. It should be noted that each layer of our CNN

architecture is composed of a convolution operation, a batch normalization operation to

normalize (mean centering and variance scaling) the input given to the layers.

A Relu operation and an optional max-pooling operation which aim to down-sample an

input representation (image, hidden layer output matrix, etc.), reducing its dimensional-

ity to retaining the maximum value (activated features) in the sub-regions binned. Table

4.1 illustrates the effect of the above parameters on system performance (Red spectral

band). According to this table, the best parameters obtained are the number of layers

= 3, the size of the filters = 7× 7 and the number of filters is 32, 64, 128 for each layer

respectively. We will use these parameters in the next subsections.

4.6.2 Unimodal biometric System Test Results

We continue to evaluate the performance of our biometric system on the other spectral

bands (Green, Blue, and NIR) using the parameters obtained in the two identification

modes, open-set, and closed-set. Table 4.2 and Fig.4.4 show an objective comparison

between the four spectral bands. In this figure, all the spectral bands gave excellent

results. The Green and NIR spectral bands and the color palmprint (RGB) slightly out-

perform the Red and Blue spectral bands. In this case, an Equal Error Rate (EER) of

1,336×10−4 % is reached. The Red and Blue spectral bands can work with a close EER,

with 2,672× 10− 4 %. Fig. 4.4.(a) and Fig. 4.4.(b) illustrates the comparison between

the four spectral bands and the color component of the palmprint for the open-set iden-

tification.

Finally, Fig. 4.4.(c) compare the closed-set identification results. Like the open-set iden-
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tification biometric system, the closed-set identification system can achieve high precision

with the CNN algorithm. In this case, the system generates a Rank-One Recognition

(ROR) equal to 99.93% up to 99.96% with a Rank of Perfect Recognition (RPR) of 2 for

all spectral bands and the color component (RGB).

Table 4.1 – Identification System Parameters Selection

NUMBER OF LAYER [2] [3] [4] [5]

ERR (%) 0.046 0.038 0.626 15.70

NUMBER OF FILTER [4 4 4] [4 8 16] [8 16 32] [16 32 64] [32 64 128] [64 128 256] [128 128 128]

ERR (%) 0.038 0.006 8.950×10−3 0.010 7.420×10−3 0.015 0.029

FILTER SIZE [3 3] [4 4] [5 5] [6 6] [7 7] [8 8] [9 9]

ERR (%) 7.420×10−3 0.010 1.730×10−3 7.580×10−3 2.672×10−4 3×10−3 7.980×10−4

Table 4.2 – Unimodal Identification Test Results

OPEN SET CLOSED SETSPECTRAL BANDS
To ERR (%) ROR (%) RPR

RED 0.439 2,672×10−4 99.96 02
GREEN 0.982 1,336×10−4 99.96 02
BLUE 0.863 2,672×10−4 99.93 02
NIR 0.599 1,336×10−4 99.96 02
RGB 0.593 1,336×10−4 99.96 02

4.6.3 Multimodal Biometric System Test Results

Unimodal systems are subject to a variety of problems, such as the possibility of

noise in the biometric modality and its non-universality, which increases the system error

(EER) [134]. Intra-class dissimilarity, as well as inter-class similarity, can also affect the

unimodal biometric system and hence the result of identification [135]. An excellent bio-

metric identification system requires a very low EER value, which can be achieved by the

multimodal system [120]. Such a system combined several features of each modality at

different levels to improve system performance. To build a multimodal biometric system,

unimodal biometric systems can be combined at four different levels, namely the sensor
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(a) (b) (c)

Figure 4.4 – Unimodal biometric identification system test results. (a) ROC curves (FRR
against FAR), (b) ROC curves (GAR against FAR) and (c) CMC curves, identification rate
against rank.

level [136], the feature level [137], the matching score level [138], and the decision level

[139].

Matching score level fusion is the most commonly used biometric information fusion strat-

egy because matching scores are readily available and because they retain enough infor-

mation to distinguish the genuine matching from impostor matching. In our work, we will

combine (fusion) all spectral bands and the RGB palmprint at the matching score level to

improve system performance. The experiment was conducted with five methods of fusion

which are the sum of the scores (SUM), the sum of the weighted scores (WHT SUM),

the product of the scores (MUL), the product of the weighted scores (WHT MUL) and

the minimum score (MIN). Several combinations can be made between the four spectral

bands and the color images. We limit our tests only to R+G+B and RGB+NIR.

This choice allows the biometric system to use a device captured under visible light (color

image, RGB) or a multispectral image (RGB-NIR).

Table 4.3 and Fig. 4.5 show the results obtained from our multimodal identification sys-

tem with different fusion rules in open-set mode and closed-set mode. The analysis of

the data showed that the results of the multimodal fusion were much better than those

of the unimodal biometric systems. As can be seen from the results, the lowest EER

of multimodal identification was obtained by using the combination R+G+B with all
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fusion rules that are always better than the lowest results of the unimodal system. In

addition, the best results were obtained with EER = 0.000%. While the best results of

the unimodal biometric system were 1,336×10−4.

The (RGB+NIR) combination did not bring any improvement, except for the closed-

set identification biometric system which provides a perfect ROR of 100% (RPR = 1).

Same thing for the combination R+G+B. In our case, we do not need to fusion the

R+G+B combination with the NIR spectral band because we got perfect results with

the R+G+B combination.

Table 4.3 – Multimodal Biometric Identification System Test Results

RED-GREEN-BLUE RGB-NIR

OPEN SET CLOSED SET OPEN SET CLOSED SETFUSION RULES

To ERR(%) ROR(%) RPR To ERR(%) ROR(%) RPR

SUM 0.913 0.000 100 01 0.596 1.336×10−4 100 01

WHT SUM 0.612 0.000 100 01 0.596 1.336×10−4 100 01

MUL 0.025 0.000 100 01 0.356 1.336×10−4 100 01

WHT MUL 0.138 0.000 100 01 0.596 1.336×10−4 100 01

MIN 0.173 0.000 100 01 0.593 1.336×10−4 100 01

(a) (b) (c)

Figure 4.5 – Multimodal biometric identification system test results. (a) ROC curves (FRR
against FAR), (b) ROC curves (GAR against FAR) and (c) CMC curves, identification rate
against Rank.
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4.7 Conclusion and Future Work

In the proposed method for this study, the first multispectral palmprint based uni-

modal biometric systems were evaluated independently. It was found that the Green

spectral band (palmprint modality) and the NIR spectral band (palm-vein modality)

gave better results than the other palmprint bands (blue and red spectral bands). Be-

sides, the study evaluated the multimodal system on the fusion of RGB palmprint or all

spectral bands at matching scores level. The fusion of the bands was done by five rules

fusion. All fusion rules produced the best result with a value of 0% EER in open-set mode

and a ROR of 100% in closed-set mode.

In conclusion, the fusion schemes with multimodal systems gave significantly better

performances than their unimodal systems. This result suggests that the multimodal iden-

tification system is the best choice for our case. The unimodal identification system will

be a secondary choice. Due to the effectiveness of the CNN approach in the classification

system, our future work focuses on other deep learning techniques (like Deep Belief Net-

work (DBN) and autoencoder neural network) and their use in feature extraction methods.
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5.1 Introduction

S
ince the beginning of the 21th century humans has always been searching for ways

to improve their lifestyle in many domains, especially their own security and here

we see their huge step in technological evolution towards improving their safety in several

sectors taking several ways and methods. Biometrics has emerged to meet this need

and even has developed in the science combining biology technology and information

technology to utilize physiological or behavioral characteristics in the human body to

deal with identifying individuals. It is applied to two main aspects applications, identity

verification and identity recognition. A hand has many biometric traits such as fingerprint,

palm print, finger/palm vein, finger knuckle, and hand geometry. Among such traits, a

finger knuckle is a relatively new biometric trait in contrast with famous biometric traits

such as face, fingerprint, and iris.

In this work, one of these systems was chosen for study, which uses the (FKP) trait [88].

This trait has been selected according to many great advantages: accepted by people, easy
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to use, simple, permanent, stable throughout life, unique to each and another. Finally,

the combination of fingers (ten fingers with both hands) can be used to create a strong

and precise recognition system. Our experience is based on convolutional neural network

method. CNNs have recently shown remarkable success in image recognition [140][141],

computer vision, automated language process, text classification, medicine [142], time

series physiological signals [143], electric machine fault diagnosis [144], ultrasonic signal

classification [145]. Deep learning techniques have recently been used by many companies,

such as Adobe, Apple, Facebook, Baidu, Google, IBM, Microsoft, NEC, Netflix, and

NVIDIA [146]. This work aims at achieving the unimodal and multimodal biometric

systems based on multi-sample FKP images using the deep CNN technique. Compared

with traditional methods, the proposed DCNN could extract more distinctive and deep

features and achieve satisfying recognition performance.

In our experiments, we first evaluate each biometric identification system based on a single

spectral band (unimodal system). Also, the results of two or more unimodal systems are

fused at the matching score level to create an efficient and robust multimodal identification

system. The rest of the work is organized as follows: Section 5.2 describes the proposed

multimodal biometric system in which scores are fused at the matching level. Section

5.3 briefly describes the deep CNN based feature extraction method and classification.

The fusion rules are illustrated in section 5.4. In section 5.5, the experimental results,

obtained using a database of 165 persons, are presented and discussed. Finally, the last

section includes the conclusion and the intended perspectives.

5.2 System Design

In Fig. 5.1, we present the block diagram of the proposed multimodal identification

system based on the fusion (at the matching score level) of finger knuckle print Scores.

Each subsystem exploits different biometric techniques, which are Left Index Finger (LIF),

Left Middle Finger (LMF), Right Index Finger (RIF) and Right Middle Finger (RMF)

modalities. Our system includes the pre-processing image and the deep-CNN based fea-

ture extraction with classification. Like all biometric systems, this system work into two

phases: the enrollment phase and the identification phase. In the enrollment phase, the
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extracted feature vector must be stored in the system database, while for the identifica-

tion phase, this feature vector is subject to a matching step to decide the decision.

For each user, the system decision is made as follows:

Decision =


Accepted, if di

0 ≥ Tth

Rejected, if di
0 < Tth

(5.1)

where di
0 indicates the probability for the ith person and (T0) the system security

threshold provided by the system designer (depending on the desired security level). This

enhanced scheme takes advantage of each biometric modality and can be used to improve

the unimodal biometric system.

Figure 5.1 – Multimodal Finger Knuckle Print identification system.

5.3 Feature Extraction and Classification

The CNN is a kind of deep neural network where the structure consists of many hid-

den layers and parameters. (CNN) is a kind of deep neural network inspired by biological

processes and designed to recognize patterns directly from pixel images, it has been ap-

plied in image processing, natural language processing. CNNs are typically structured in

two parts. First part, usually called feature extraction, which uses combinations of con-

volutional and pooling layers. Second part called classification which uses fully connected

layers. Overall, the CNN architecture includes three main layers: i) convolutional layers,

ii) pooling layers and iii) fully-connected layers as shown in Fig. 5.2 .
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5.3.1 Convolution Layer

is the core building block of the CNN. The prime purpose of convolution is to extract

distinct features from the input. These layers are comprised of a series of filters or

learnable kernels which aim at extracting local features from the input, and each kernel

is used to calculate a feature map or kernel map. The first convolutional layer extracts

low-level meaningful features such as edges, corners, textures and lines.

5.3.2 Pooling Layer (Downsampling, or Subsampling Layers)

It reduces the resolution of the previous feature maps through compressing features

and computational complexity of the network. It adjusts the features robust to noise and

disorder. Another purpose of the pooling layer is to make it robust to small variations

for previously learned features, there are mainly two kinds of Pooling: Max and Mean

Pooling.

5.3.3 Fully-Connected Layer

The output from the convolutional and pooling layers represent high-level features of

the input image. The purpose of the Fully Connected layer is to use these features for

classifying the input image into various classes based on the training dataset, this layer

is a traditional ANN include a softmax activation function (with Loss function called

cross-entropy loss) which outputs a probability (values between zero and one that sum to

one) for every classification label.

Figure 5.2 – Architecture of the proposed CNN.
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5.4 Matching, Fusion Scheme and Decision

Matching score is a measure of similarity between the test (input) and train (tem-

plate) feature vectors. The high match score can be determined by examining the match

scores appertaining to all the comparisons and reporting the identity of the template cor-

responding to the largest similarity score [67]. Fusion at the matching score level is the

most popular and frequently used method because of its good performance and simplicity.

The outputs of the two or more matching modules (LIF, LMF, RIF, RMF) are combined

using fusion at the matching-score level.

There are several matching-score fusion rules integrate normalized matching scores of a

user to produce the final matching score [30].

1. Simple Sum rule

The Simple Sum rule takes the sum of the R matching scores of the (k)th user as

the final matching score Sk of this user. Sk is calculated as follows:

S = 1/N
N∑

i=1
Si (5.2)

2. Product rule

This rule defines the new scores for each matcher, is calculated as follows:

S = 1/N
N∏

i=1
Si (5.3)

3. Minimum rule

This rule simply sets a new scores as the minimum score of each matcher’s scores,

is calculated as follows:

S = min(Si) (5.4)

4. Maximum rule

This rule simply sets a new scores as the maximum score of each matcher’s scores,

is calculated as follows:

S = max(Si) (5.5)

The final result of the fusion is a new matching score, which is the basis for the

classification decision of the entire system.
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5. Weighted Sum rule

The weighted sum of the R matching scores, which is shown in (6), is considered

as the final matching score of the kth user.

S =
N∑

i=1
wiSi (5.6)

whereWi represents the weight of the matching score of the ith biometric trait of

the kth user. And

wi = 1/
∑N

i=1 1/EERj

EERi
(5.7)

6. Weighted Product rule

Let Wi stand for the weight of the matching score of the ith biometric trait of the

kth user. A Weighted Product rule can determine the final matching score of the

kth user using

S =
N∏

i=1
wiSi (5.8)

The final result of the fusion is a new matching score, which is the basis for the

classification decision of the entire system.

5.5 Experimental Results and Discussion

To evaluate the performance of the proposed biometric system and choose their ap-

propriate parameters, a database of FKP images is required. Thus, our experiment tests

were performed using the FKP Database from the Poly University (The Hong Kong Poly-

technic University 2018) [147]. The database has a total of 7920 images from 660 different

fingers obtained by 165 persons. This dataset including 125 males and 40 females. Among

them, 143 subjects were 20-30 years old and the others are 30-50 years old. These images

are collected in two separate sessions. The average time interval between the first and

the second sessions were about 25 days. The maximum and minimum intervals were 96

and 14 days, respectively. In each session, the subject (person) was asked to provide 12

image samples for each of Left Index Fingers LIF, Left Middle Fingers LMF, Right Index
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Fingers RIF and Right Middle Fingers RMF. Therefore, 48 image samples from 4 finger

types were collected from each subject. To develop a finger knuckle print recognition

system, it is necessary to have two databases: a database to perform training (learning)

and another techniques to test and determine their performance. For the CNN algorithm,

it is better to adopt a more extensive training set to avoid overfitting. In our series of

tests, we divided the database as follows: The odd images of each person are used for the

learning phase, the remaining 6 (even) images of each individual were used for the vari-

ous tests. In order to properly analyze our identification system, and in order to achieve

satisfactory results, we divided our work into three parts: In the first part, an empirical

evaluation is used to select the relevant and suitable parameters of the CNN algorithm

(which gives the best system accuracy). These parameters are used in the second part

to evaluate the performance of the proposed unimodal biometric system using the differ-

ent FKP finger knuckle print samples. For this, both identification modes (open-set and

closed-set modes) are tested. Finally, in the third and final part, the performance of the

multimodal biometric system is evaluated. Our system is implemented using MATLAB

2019a in an experimental platform as a workstation (HP Z8 G4), with a 64-bit Microsoft

Windows 10 operating system, equipped with an Intel Xeon Silver 4108 processor, a 32

GB of RAM and a graphic processing unit (GeForce RTX 2080 Ti).

5.5.1 Experimental Setup

To get the best CNN architecture and get a very accurate identification rate, there are

many parameters for adjusting a convolutional neural network. In any CNN architecture,

there are hyper-parameters and additional parameters. In the essential hyper-parameters,

we can find the number of layers, the activation function, the learning rate, the batch size,

the number of epochs and the L2 regularization. On the other hand, the most important

additional parameters are the filters size, the number of filters, the padding, the stride,

and the pooling-layer. To have an excellent biometric system with reduced complexity,

our study focused on a few parameters that we think are important in our work and

on the fact that other parameters taken by default have given good results. It’s good
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practice to start with a fundamental model and afterward attempt to improve it at every

step. Our basic model took the following default settings: stochastic gradient descent

with momentum, L2 regularization = 0,0001, learning rate = 0,01, fixed the maximum

number of epochs for training to 30 and used a mini-batch with 128 observations at each

iteration. In the rest of this study, we will adopt an empirical evaluation by modifying

the number of layers, the size of the filters and the number of filters. It should be noted

that each layer of our CNN architecture is composed of a convolution operation, a Relu

operation and an optional max-pooling operation which aims to down-sample an input

representation (image, hidden layer output matrix, etc.), reducing its dimensionality to

retaining the maximum value (activated features) in the sub-regions binned. Table 5.1

illustrates the effect of the above parameters on system performance (LIF). According to

this table, the best parameters obtained are the number of layers = 4, the size of the

filters = [5,5] and the number of filters is [32;32;32,32] for each layer respectively. We

will use these parameters in the next subsections.

5.5.2 Performance of the unimodal biometric system

The goal of this experiment is to evaluate the system performance when we using

information from each modality (each finger). For this, in Open Set identification we

found the performance under different modalities (LIF, LMF, RIF, RMF). Table 5.2 and

Fig. 5.3 compares the performance of the unimodal system using CNN feature extraction

for various fingers. The experimental results indicate that the LIF, LMF perform better

than the RIF and RMF in terms of EER. They give EER = 1.590×10−1,2.020×10−1%

respectively. Fig. 5.3 (c) compare the closed-set identification results. Like the open-

set identification biometric system, the closed-set identification system can achieve high

precision with the CNN algorithm. In this case, the system generates a Rank-One Recog-

nition (ROR) equal to 99.93% up to 99.96% with a Rank of Perfect Recognition (RPR)

equal to 21 up to 71 for all spectral bands.
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Table 5.1 – Identification Rate Under The Design Parameters.

Number Of Layer [2] [3] [4] [5]

ERR (%) 5.520×10−1 2.120×10−1 1.590×10−1 8.900×10−1

Number Of Filter [8 16 32 64] [16 16 32 64] [32 32 32 32] [32 48 64 128] [64 64 64 64] [32 64 64 32]

ERR (%) 6.060×10−1 5.480×10−1 1.590×10−1 4.040×10−1 4.040×10−1 2.020×10−1

Filter Size [3 3] [4 4] [5 5] [6 6] [7 7] [8 8]

ERR (%) 4.650×10−1 3.520×10−1 1.590×10−1 4.040×10−1 3.810×10−1 3.706

Table 5.2 – Unimodal Identification Test Results

Open Set Closed SetFingres
To ERR (%) ROR (%) RPR

LIF 0.168 1.590×10−1 99.96 21
LMF 0.137 2.020×10−1 98.44 28
RIF 0.082 4.040×10−1 97.77 32
RMF 0.056 5.050×10−1 97.27 71

(a) (b) (c)

Figure 5.3 – Unimodal biometric identification system test results. (a) ROC curves (FRR
against FAR), (b) ROC curves (GAR against FAR) and (c) CMC curves, identification rate
against rank.

5.5.3 Performance of the multimodal biometric system

Unimodal systems are Faced several problems, such as the possibility of noise in the

biometric modality and its non-universality, which increases the system error (EER) [134].
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Intra-class dissimilarity, as well as inter-class similarity, can also affect the unimodal bio-

metric system and hence the result of identification [135]. An excellent biometric identi-

fication system requires a very low EER value, which can be achieved by the multimodal

system [120]. Such a system combined several features of each modality at different lev-

els to improve system performance. To build a multimodal biometric system, unimodal

biometric systems can be combined at four different levels, namely the sensor level [136],

the feature level [137], the matching score level [138], and the decision level [139].

The goal of the fusion process is to improve the performance by fusing the information

from different modalities. To improve more our results, we will try to merge the different

scores for different finger to obtain a multimodal system. In this case, we merge the dif-

ferent samples of some fingers (LIF and LMF, RIF and RMF) and at the end we realize a

system based on the fusion between the two fingers (LF*RF). Table 5.3 and Fig 5.4 show

the performance of the multimodal identification system using different fusion rules, from

the results, we note that the PROD rule gives the best result with the LIF+LMF and

RIF +RMF in combinations, they gives EER = 2.210×10−2%, 0.000% respectively.

In closed set, the system generates a Rank-One Recognition (ROR) equal to 100%.

The analysis of the data showed that the results of the multimodal fusion were much

better than those of the unimodal biometric systems. The multimodal system have a

(EER = 0.000%) and an (ROR = 100%) and an (RPR = 01), there by obtaining a per-

fect result. This ideal precision can be reduced to a large database. The PROD rule is

the best compared to another rules because it gives a perfect result and it is simple to use.
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Table 5.3 – Multimodal Biometric Identification System Test Results

LIF-LMF RIF-RMF

Open Set Closed Set Open Set Closed SetFUSION RULES

To ERR (%) ROR (%) RPR To ERR(%) ROR(%) RPR

SUM 0.559 2.210×10−2 100 01 0.288 1.010×10−1 100 01

WHT SUM 0.559 2.210×10−1 98.78 02 0.279 1.010×10−1 100 01

PROD 0.366 3.690×10−3 100 01 0.034 2.210×10−2 100 01

WHT PROD 0.569 7.390×10−3 100 01 0.221 2.210×10−2 100 01

MIN 0.366 7.380×10−3 100 01 0.067 1.010×10−1 100 01

MAX 0.388 1.010×10−1 97.57 02 0.988 5.660×10−2 99.39 02

LF-RF-ALL Fingers

Open Set Closed Set
Fusion rules

To ERR(%) ROR(%) RPR

SUM 0.854 1.230×10−3 100 01

WHT SUM 0.717 4.920×10−3 100 01

PROD 0.089 0.000 100 01

WHT PROD 0.441 0.000 100 01

MIN 0.137 3.690×10−3 100 01

MAX 0.988 5.660×10−2 96.96 02

(a) (b) (c)

Figure 5.4 – Multimodal biometric identification system test results. (a) ROC curves (FRR
against FAR), (b) ROC curves (GAR against FAR) and (c) CMC curves, identification rate
against rank.

5.6 Conclusion and Further Work

This work provides a multimodal biometric system based on fusion of the sub-systems

outputs at matching score level by using the FKP database (which consists LIF, LMF,

RIF and RMF fingers). In this context, we have implemented the CNN deep learning
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technique. The experimental results show that the combination of fingers modalities im-

ages performs better against the one finger modality and results up to EER of 0.000% for

open-set identification and a ROR of 100% for closed-set identification.

In conclusion, the fusion schemes with multimodal systems gave significantly better per-

formances than their unimodal systems. Our future work will project to use other finger

knuckle print databases (CASIA) with other deep learning techniques (like Deep Belief

Network (DBN) and autoencoder neural network) and their use in feature extraction

methods.
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6.1 General Conclusion

The study discussed in this thesis concerns the automatic identification of individuals

based on their biometric characteristics. We have proposed unimodal and multimodal

biometric systems based on the two most important biometric modalities: the palmprint

and the finger knuckle print. This thesis aims to improve the performance of identification

systems using palmprints and finger knuckle prints by employing various approaches and

sets of operations.

We used deep learning methods for feature extraction in the first proposed system

based on palmprint recognition. For this reason, we have developed the simplified Palm-

Net–Gabor using Log-Gabor filters to increase the pixel for preprocessing. In order to

decrease the feature vector size and increase recognition accuracy, we have selected rele-

vant features using Fisher score, ReliefF, and dimensionality reduction (WPCA) methods.

Besides, we fused modalities at the matching score level for the multimodal system to

improve system performance. The experimental results performed on the multispectral

PolyU database and contactless Tongji and PolyU 2D/3D databases using a single modal-

ity (unimodal) obtained a very high identification accuracy (EER = 0:000% and ROR =
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100%). It gave a CPU time of less than 0.009 s and reduced the feature vector size to 410.

Likewise, the multimodal identification system performed on the CASIA database offers

perfect results with EER = 0:000% for the open-set identification and ROR = 100% for

the closed-set identification.

We designed unimodal and multimodal based on palmprint recognition for the sec-

ond proposed system. Our method uses a Convolutional Neural Network (CNN) deep

learning technique for feature extraction and classification. The experiment evaluated the

multimodal system on the fusion of palmprint and palm-vein modalities at the matching

scores level using five methods of fusion, which are the sum of the scores (SUM), the sum

of the weighted scores (WHT SUM), the product of the scores (MUL), the product of the

weighted scores (WHT MUL) and the minimum score (MIN). All fusion rules produced

the best result with a value of 0% EER in open-set mode and a ROR of 100% in closed-set

mode.

The last proposed systems were unimodal and multimodal based on finger knuckle

print recognition. We used the Convolutional Neural Network (CNN) deep learning tech-

nique to extract deep palmprint features. In our experiments, we first evaluate each

biometric identification system based on a single spectral band (unimodal system). Then,

the results of two or more unimodal systems are fused at the matching score level to cre-

ate an efficient and robust multimodal identification system. Therefore, the experimental

results were obtained using a large and available FKP database (which consists of LIF,

LMF, RIF, and RMF fingers) and show that the combination of finger modalities images

performs better against the one finger modality and results up to EER of 0.000% for

open-set identification and a ROR of 100% for closed-set identification. Moreover, the

results indicate that the proposed method is more efficient than other approaches in the

literature. In conclusion, the fusion schemes with multimodal systems gave significantly

better performances than their unimodal systems.

University of Kasdi Merbah Ouargla 2022/2023 page 96



Chapter 6. General conclusion and Perspectives

6.2 Perspectives

Although the proposed approaches have demonstrated high performance for hand

modalities recognition, they could be developed and improved in future works.

1. We will test our first proposed method with other large databases, such as the

Hyperspectral PolyU or 3D databases. We will also employ additional clustering

and dimensionality reduction techniques. Furthermore, we will employ the graph-

ics processing unit (GPU) to reduce processing time, which is a valuable tool for

speeding up the processing speed of computationally intensive algorithms. More-

over, we will test our proposed method on another trait, such as the face or Iris.

2. We will test our second proposed method on other deep learning techniques (like

Deep Belief Network (DBN) and autoencoder neural network) and their use in fea-

ture extraction methods. We will also change other classifiers and other distance

measures.

3. We will try to use large finger knuckle print databases like the CASIA database

with other deep learning techniques and an autoencoder neural network for the

last proposed method. We will test our proposed method on another trait, such as

the face or iris.
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