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Abstract

The goal of this work is the study of some properties of existence of positive solutions for a
fractional BVP under the fractional derivatives of Caputo and Riemann-Liouville in Banach
and Sobolev spaces. Our main results are obtained by using some standard fixed point
theorems together with upper and lower control functions. In addition, our theoretical
results are illuminated by some numerical examples where the exact positive solutions are
compared with its approximate solutions.

Key words

Fractional derivative, lower solution, upper solution, positive solution, fixed point.

Résumé

Le but de ce travail est I'étude de quelques propriétés d'existence de solutions positives pour
guelgues probléememes aux limites fractionnaire sous les dérivées fractionnaires de Caputo et
de Riemann-Liouville dans des espaces de Banach et de Sobolev. Nos principaux résultats
sont obtenus en utilisant des théorémes de point fixe classiques avec deux fonctions de
controles supérieures et inférieures. De plus, nos résultats théoriques sont éclairés par
guelgues exemples numériques ou les solutions positives exactes sont comparées a ses
solutions approchées.

Les mots-clés

Dérivée fractionnaire, sous-solution, sur-solution, solution positive, point fixe.
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Notations

['(.) : Euler’s gamma function

B(.,.) : Euler’s beta function

R: Set of real numbers

R, : Set of real positive numbers

L ([a, b],]R)I: The space of measurable functions f, for 1 < p < +oo defined by || f||, =
(S 1717) "

L*([a, ], R): Space of Lebesgue integrable functions on [a, b]

Bp : The open ball centered at the origin and of radius R

[.]: The integer part

C([a,b],R) : The space of continuous functions on [a, b]

AC([a,b],R): Space of absolutely continuous functions on [a, b]

AC*([a, b],R) : Space of absolutely of k time continuously, differentiable functions on [a, b].

W}i“gi : The Riemann-Liouville fractional Sobolev spaces.

Acronyms

BVP: Boundary value problem

IVP: Initial value problem



Notations

FBVP:Fractional boundary value problem

FDE: Fractional differential equation

Notations



Introduction

Fractional calculus plays an important role in mathematics fields. It was
born from a question that was asked in 1695 by L'Hopital (1661-1704)
to Leibniz (1646-1716). Leibniz introduced the symbol % to denote the
derivation of order n = % In September 30, 1695, Leibniz [24] replied
as follows: "It is an apparent paradox from which, one day, useful conse-
quences will be drawn". In 1819, Lacroix devoted two pages (pp. 409-410)
to the fractional calculus in his textbook (700-page), entitled "Traite du

Calcul Differentiel et du Calcul Integral", so finally show that

dz 2
-V = —=/0.
dvz ﬁ\/_

Also, fractional derivatives was mentioned by Euler in 1730, Lagrange (1772),

Laplace (1812), Lacroix (1819), Fourier (1822), Liouville (1832), Riemann
(1847), Greer (1859), Holmgren (1865), Griinwald (1867), Letnikov (1868),
Sonin (1869), Laurent (1884), Nekrassov (1888), Krug (1890), and Weyl
(1917).

Fractional calculus has been around for a long time. However, despite the
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Introduction

different fields of application, for example, in models of viscoelastic bodies,
continuous media with memory, the transformation of temperature and hu-
midity in atmospheric layers, in diffusion equations and in other areas, until
recently this area has received little attention. It is known that the genetic
and memory characteristics of most processes, phenomena and materials
can be predicted with the help of various models under some fractional
operators. In this direction, fractional differential equations have recently
confirmed to be a useful tool in modeling a large variety of structures in
diverse branches of science. In order to increase the acceleration and de-
velopment of studies and research in the field of fractional calculus, many
researches have been appeared; see [1,5,6,11, 34,42,47-49, 66]. Many
mathematicians have also interested on studying the properties of existence
of solutions for fifferent structures of FDEs by means of various techniques

and methods. See for example [3,4,17,25,37,40,51,54,58].

The study of fractional calculus is very important in modern mathematics.
It allows us to interpret various kinds of linear and nonlinear differential
equations, integral and integro-differential. The maximum principle for
the Caputo fractional derivative, the structure of compact sets, upper and
lower solutions techniques, allow us to effectively study of existence and
uniqueness of solutions. In recent years, several problems involving frac-
tional derivatives and integrals have appeared in different aspects. Most of
them are focused their researches to solve linear initial fractional equa-

tions in term of special functions. There has been significant advance-
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ment in the study of the existence of positive solutions for BVPs and IVPs
with fractional differential equations by exploiting some fixed point theo-
rems [1,9,13,14,22,26,35,39]. Here, we have a number of detailed articles
and reviews, among which we note the work by Stanék [52] , Ibrahim et

al [29], Agarwal et al [44].

Several mathematicians concentrated their studies on the positive solutions
for nonlinear FDEs and accordingly, many articles have been published in
this direction. In 2003, Zhang [55] investigated the multiple and infinitely
solvability of positive solutions for a nonlinear generalized FDE by utilizing
some fixed point methods on cones. In 2007, El-Shahed [39] studied the ex-
istence and nonexistence of positive solutions for a nonlinear fractional BVP
in the Riemann-Liouville sense. The author used the Krasnoselskii’s fixed
point theorem on cone preserving operators for establishing some required
results. In [8], Guezane-Lakoud et al. discussed a fourth-order mathemat-
ical model of elastic beam in three separate points of domain and studied
the existence of positive solutions with the help of fixed point techniques.
In [70], Tian, Sun and Bai considered positive solutions for a new class
of four-point BVP of FDE with p-Laplacian operator and used the Leggett-
Williams fixed point theorem on a cone to prove the multiplicity results of
such solutions. More recently, Seemab et al. [10] proved the existence of
positive solutions for a BVP defined by the generalized Riemann-Liouville
and Caputo fractional operators by using the properties of Green functions

in three different types. Along with these, some other authors introduced
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numerical methods and nonsingular fractional operators for obtaining ap-

proximate solutions of various kinds of FDEs such as [28,57].

This thesis is organized as follows:

In Chapter 1: we present some definitions, notations, lemmas and fixed
point theorems which are used throughout this work.

In Chapter 2: An important problem is considered as an application in
sciences and engineering, namely, Riemann-Liouville nonlinear fractional
BVP. Under new minimal conditions on the parameters 0 < s,7 < 1, it is
proved that, by using the upper and lower solutions method together with
Schauder fixed point theorem, the positive solutions in a Sobolev spaces
exist.

In Chapter 3: A multiterm semilinear BVP is studied by using Caputo frac-
tional derivatives, and the existence of positive solutions in terms of differ-
ent given conditions is investigated. To do this, we establish some proper-
ties of Green’s function and then by defining two lower and upper control
functions and using the Schauder’s fixed-point theorem, we find our exis-
tence results.

In Chapter 4: we show the existence of positive solutions to the following
multi-term semilinear fractional BVP under Caputo fractional derivatives,
by using some classical fixed point theorems of Schauder’s and exploitiong

definitions of upper and lower control functions.

In Chapter 5: we study some properties of existence of positive solutions

Introduction
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for a semilinear FDE using the Riemann-Liouville operator. To acheive our
aim, we transform our main problems into equivalent operator equations.
After that, based on the fixed point theorem du to Krasnoselskii and the
nonlinear alternative of Leray-Schauder in a cone, we establish properties

of existence of solutions to our problems in a Banach space.

Introduction



Chapter 1

Preliminaries

1.1 Some special functions

1.1.1 Euler’s Gamma function

Definition 1.1 [43]

The Euler’s Gamma function is expressed by the Euler’s integral of the second

type: .
I'(z) :/ t“ e ldt, 2>0, (1.1)
0

For this function the reduction formula
+00 oo
I'z+1) = / e dt = [—e " + z/ e 't ldt = 21(2)
0 0

holds, it is obtained from (1.1) by integration by parts.

1.1.2 Euler’s Beta function

Definition 1.2 [43]
The Euler’s Beta function is expressed by the Euler’s integral of the first type:

6



Chapter 1. Preliminaries

1
Bz,w) — / Y1 — 0" it (Re(2) >0, Re(w)>0).  (1.2)
0
This function is connected with the gamma functions by the relation
_ ') (w)
Blzw) = Fore

1.2 Fractional Integration and derivation

1.2.1 Integration and Derivation in Riemann-Liouville sense

Definition 1.3 [43]
Let « > 0and f : (0,+00) — R, be continuous. The integral

2 f(s) = ﬁ / (s — 1) (r)dr (1.3)

is called the fractional integral in the Riemann-Liouville sense of order (3, such

this integral has a finite value.

where I'(f) is gamma function.

Definition 1.4 [43]
Let >0, k—1 < 8 < kand a mapping f : (0,+00) —> R. Then the integral

1 d\k [° g1
D) = = () [ = e aw

is called the fractional derivative in the Riemann-Liouville sense of order [,

such this integral has a finite value.

1.2.  Fractional Integration and derivation



Chapter 1. Preliminaries

Lemma 1.1 [27]

Let 3 >~ > 0,and let f € L¥([a,b],RY), (1 < p < +00), then
(Dg+][)ﬁ+ )(s) = [(?JW (s)-

In the special case 3 = v, we obtain

(D§+1§+ )(s) = f(s).
Lemma 1.2 [27]
Let >0, f € L'([a,b],RY) and let I'7" f € AC™([a,b],RN), then we have
" (0)s7
I (D 9) =16 = X T =1y

k=1

wheren — 1 < B <n.

Lemma 1.3 [7]

If 5 > 0 and v > 0, then at almost point s € [a, b], we have
LI f(9) = 197 £(s), (1.5)

with f € LP([a,b],RY) and 1 < p < +o0.
If B+~ > 1, then the relation (1.5) holds fort any s € [a, b].

Lemma 1.4 [7]

If 8 > 0and v > 0, then
F(*y)sﬁﬂ_l
NG

]537_1 =

Lemma 1.5 [36]
We set (15,f)(v) = f(v+h), forv € (0,1) and h € R. Let F' be a bounded set
in L1(0,1) with 1 < p < oo. Suppose that

1.2.  Fractional Integration and derivation [E}
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) |}lli‘:no \nf — fll, = 0, uniformly in f € F,
(ii) lim [L_1f(y)|dy = 0 uniformly in f € F.
Thus, F is relatively compact in L7(0,1).
Remark 1.1 We have the following useful axioms :
(H1) For 0 < a < f3, we have D&I@f(t) = Zoﬁfo‘f(t);

(H2) For f > —1suchthat f #a—j (j =1,2,....,n), we have for t > 0

I'l1+pB)
[f—a+1)

Dyt = '~ and Dt =0, (j=1,2,...n).

(1.6)

Proposition 1.1 [71]

Let « > 0 and k — 1 < a < k. The solution of the following equation
D f(t) = 0.
in C([0,1],R) N L*([0,1], R) is
flt) =t oot P4 ot te0,1],
where ¢1,¢9,...,¢c;, € R,

Proposition 1.2 [71]
Assume that o > 0, f € C([0,1],R) N L!([0,1],R) and k = [a] + 1. Then

ToDS F(t) = f(t) — ert™ ! — et 2 — oo — gt (1.7)

with ¢, ¢9,...,¢c, € R.

1.2.  Fractional Integration and derivation [}



Chapter 1. Preliminaries

1.2.2 Derivation in Caputo sense

Definition 1.5 [43]
Letk—1<a<kand f:(0,+00) — R belongs to AC*)((0,00),R). Then

DUf(t) = ! ) /Ot(t—s)k_o‘_lf(k)(s)ds, (1.8)

[k —a

is named the fractional derivative in Caputo sense of order v.

Remark 1.2 The following assertions hold:
(D IfO<v<~,thewehave D"I"f(z) =17 " f(2);

Q) Ify>—-1withy#v—j(j=1,2,..,n), then for any z > 0, we get

L(1+7)

DVz2" =
I'(y—v+1)

2777 and D27 =0, (j=12,..,n). (1.9)

Proposition 1.3 [71]

Suppose that is contained in the space L(0,1)NC(0,1) and k = [v] + 1. Then
DD f(2) = f(2) + o+ 1z + ez + -+ 12 (1.10)

such that ¢y, ca, ..., cp—1 € R.

1.3 Functional analysis tools

Theorem 1.1 (Leray-Schauder’s nonlinear alternative) [7]
Let X be a Banach space, C' C X be a closed , convex of X, O an open subset
of Cand 0 € O and let T : O — C be a completely continuous operator. Then

either:

1.3. Functional analysis tools
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(i) T admits a fixed point in O, or
(ii) There exist v € 0O and X € (0,1) with v = AT (v).

Theorem 1.2 (Guo-Krasnoselskii) [38]

Suppose that X, is a Banach space; a cone P C X and two bounded open balls
O1, O, of X their center is the origin with O; C O,. Assume that the operator
A:PN(0;\ O)) — P is completely continuous so that one of the following

hypotheses is satisfied.

@) [JAv]| < ||v|l, vePNIO;and ||Av|| > ||v]|, v € P NIO,,
(i) ||Av| > ||v]], v e PNOO;and ||Av| < ||v]], v € P NIOs.
Then, A admits a fixed point in P N (O, \ Oy).

Theorem 1.3 (Schauder’s fixed point theorem) [23]
Let X be a nonempty, closed, bounded, convex subset of a Banach space X

and, Assume T : X — X is a compact operator. Hence, T" admits a fixed point.

Theorem 1.4 (Ascoli-Arzela theorem)

Let Q) be a subset in the normed space X and let C(Q) be a Banach space
formed of continuous functions v(t) or t € Q. For a setM € C(Q) to be
compact, it is necessary and sufficient that the functions of M are uniformly

bounded and equicontinuous.

1.3. Functional analysis tools



Chapter 2

Positive solutions for integral nonlinear

BVP in fractional Sobolev spaces

2.1 Introduction

FDEs has an interested role in the mathematical modeling of the processes
occurring in fractal media. During the construction of mathematical models
of geophysical processes, the introduction of the concept of effective rate of
change of certain physical quantities characterizing the simulated processes
leads to differential equations containing a composition of fractional differ-
entiation operators of different origins. Like most other integro-differential
equations, fractional-integral and fractional differential equations cannot
be solved exactly. In this regard, it becomes necessary to construct approx-
imate methods for their solution. In this work, one of theses methods is
proposed. Recently, many works related to the fractional Caputo-Fabrizio

derivative have been published by Rezapour et al. [21]- [46]. we have a

12



Chapter 2. Positive solutions for integral nonlinear BVP in fractional Sobolev spaces

number of detailed papers and reviews, among which we note the work by
Stané€k [52] discussed the existence, multiplicity, and uniqueness of solu-
tions , Ibrahim et al [29] studied the existence and uniqueness of solutions
for the BVP, Agarwal et al [44] consedered the singular fractional Cauchy
problem. In this chapter, we investigated the existence of positive solutions

of the following nonlinear FBVP:

Di.v(s) + f(s,v(s), D0+v( s)) = D0+g(s v(s)), se€(0,1),

v(0) = 0,v(1) = k5 Jo (1= 1) Lg(r, v(r))dr,

(2.1)

where Df, and Déi stands the standard fractional derivation of Riemann-
Liouville with order a and § respectively, with 1 < o < 2,0 < 8 < 1,a —
26> 1,f:]0,]] x RxR;y — Rand g : [0,1] x R — R, are considered
continuous functions.
2.2 Construction of Green’s function
Before presenting our main results, we need to state the Sobolev spaces

Whl(a,b) = {v € L'(a,b),0v € L'(a,b) },
equipped with the norm

ollws = l[ollzs + 18]z,

where 0,v denotes the first derivative of v.

2.2. Construction of Green's function
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Definition 2.1 [36] We define the Riemann-Liouville fractional Sobolev spaces
as

W];’é’ﬁ ={vel'(ab),ITTveW"(ab)}, 0<7<Ll

Wg’Ll .+ is a Banach space equipped with the norm

[ollyrs = Nl + (137 [l
RL,at

Lemma 2.1 Assume that v € L'([0,1],R) and I*~®v € AC([0,1];R) where

1 < a < 2. Then v is a solution of the boundary value problem 2.1 if and only

if
v(s) :/0 G(S,T)f(T,U(T),DBU(T))dT

1 ’ _ \a—p-1
+ 5a—5) /0 (s —7) g(1,v(T))dr, (2.2)
where
([t(l—T)]O‘ L_(s—7)t 0<7<s<1,
1
G(s, 1) = ) X (2.3)
t(1—7)*t 0<s<7<1.

\

Proof. From Lemma 1.2 with by taking /§. of the two members of equation

in (2.1), it comes

v(s) + e1s™ "+ a5+ TG f (s, 0(s), Diso(s) = I (15 Dy g (s, 0(s))

= 157 (g, 0(s) + ezs” ).

2.2. Construction of Green's function
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Thus,

a-l a2 1 83—7'“_1 T,V v T
v(s) + 187 + 98 +B(a)/0( ) (T u(T )DO+ (1))d

_ 1 ’ S — T a—p—1 T vl - C33a_16(5)
—@@_@/0( )T g+ =

From the boundary conditions of (2.1), we find ¢, = 0 and

c38(8)
B(a)

c:_—1 1 — 7)Y (7, 0(r), D u(r))dr
=Ty | =), Dt +

that is,

- /S(s — T)aiﬂilg(T, v(T))dT
1
Bla—

For the converse case, by applying Df. of the two members of (2.2) and

s, 7) f(,v( v T 85—7'0‘_5_1 7, v(7))dT.
/G M) Dwldr + 5 [ (5= 1 gl u(r))a

using Lemma 1.1, we obtain after some calculations

Di-v(s) + f(s,0(s), D o(s)) = Dyg(s, v(s)):

In addtion, by replacing ¢ by 0 and 1 in (2.2), we obtain the boundary
conditions of the problem (2.1). This completes the proof. m

Now, we recall some useful lemmas and definitions

Lemma 2.2 The function G expressed by (2.3) satisfies the following assump-

tions:

2.2. Construction of Green's function
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() G(s,7)>0,0<s,7<1
1
(i) G(s,7) < ——,0<s,7< 1.
5:7) < 5
Proof.

(i) From definition of the function G(s, ) it follows immediately that
G(s,7)>0for0 < s,7 < 1.

(ii) For 0 < 7 < s <1, we have

IA

2.2. Construction of Green's function
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2.3 Existence of solutions

Let W}i%ﬁ be the Banach space equipped with the norm
1—
lllywr-sa = l[vllze + Mo “oll 4+ DGl
Consider the cone
K = {v eWhol u(s)>0, 0<s<1, y(0)= 0}.

Let a,c € RT and b, d € R. Define the upper control function by

U(s,v,2) =sup{f(s,\,p) :a<A<wv, b<pu<z}

and the lower control function by
L(s,v,z) =inf{f(s,\, ) ;v <A <e¢, 2z<pu<d}
It is clear that
L(s,y,2) < f(s,y,2) <U(s,y,2) for<s<l,a<y<cb<z<d.

Suppose that the following assumptions hold

(H1): There exists v,v € K such that for 0 < s < 1, we have a < T(s) <

v(s) <cand b < D€+6 < D€+y(s) < d with

o(s) > /0 G(s, 7)U(7, (1), D"0(r))dr + m /05(3 — 1) P g (1, 0(r))dr,

v(s 1 s,7)L(r,v(), D’v(1))dr _ SS—Ta_ﬁ_l T,v(T))dT
w(s) < [ Gl L), Du()ir + 5 [ (s =1 gt o)

2.3. Existence of solutions
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D) o(s) > 6)/0 s — 1) L(r, T(r), DY, o(7))dr
/0 (1 —7)*'U(r, (1), D B(7))dr
a_% O )" g (T v(r))dr,
and
D) < g [ (5= 7" Ut Dt
+ﬁ(a—i6) / (1= 1) L (), DPu() e
) MR A L)

(H2): There exists M > 0 such that

l9(s,v) = g(s,2)| < M|f(s,v, Djiv) = f(s,2,Dy:2)|

for0<s<1landwv,zeR.
(H3): There exist two constants p,{ > 0 and a nonnegative function 6 €

L0, 1] such that
g(s,v) < pf(s,v,2) <O(s) +&(Jv| + |2]), for0 < s <1, wv,zeR

and

Lo <1+2>+ !
pBla—p)  Bla—=p) p)  pBla—pB)B(a—p)

+ L + L (10]|z: +ER) < R (2.4)

B2—-p)Ba—-p)  Bla— 25)]

2.3. Existence of solutions
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Theorem 2.1 Suppose that g is a nondecreasing function with respect to the
second variable x and the hypotheses (H1)-(H3) are satisfied. Then the BVP
(2.1) has at least one positive solution in Wéz%i such that v(s) < v(s) < (s)

and DO+U( s) < DO+U( s) < Dow( s)forall 0 < s <1.

Proof. Consider the set By defined by

Br=1y € K :|lyly-s1 < R, w(s) < v(s) <0(s),

DO+U( s) < DO+U( s) < DO+U( s),0 < s <1}

The subset By is a bounded, closed, and convex in Wé}%’i-

Let’s define the operator P : Br — W}i%ﬁ by

Pu(s) :/0 G(s,7)f(r,v(7), DO+U( T))dT+ L 3 /OS(S—T)Q_B_lg(T,U(T))dT,

fla -

which can be written according to (2.2) as

Pu(s) = = I f(s,v(s), Dg.v(s))

L o 1 — ) (v v T
5 [ 0= ) D) 2.5)

+ 107 g(s,0(s)).

To establish our main existence result, we shall show that the operator P
satisfies all assumptions of Schauder’s fixed point theorem. The proof will
be done in several steps.

Step 1. We will show that P is continuous in W}i%ﬁ. Consider a sequence

2.3. Existence of solutions
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(vn)n which converges to v in W}i%ﬁ. Then we have
|Pun(s) — Pu(s)|
1
< /O G (3, 7)| f(7,0n(7), Dy vn(7)) = f(7, (1), Dyv(7))|dr
1 /ks—ﬂ g(rovn(r)) — gl 0(r))|dr

+

/ ’f T, Up (T D0+Un 7)) — f(r,v(7), Dmv ’dT

/ }f (7, U (T DO+Un 7)) — f(r,0(7), DO+U }dT

O{_

v 5 U ful. 1.

Consequently,

—Pull ! M v —f(.,v b v 1
IPo—Pollr < (55 + 5o ) 1o D)= 1 <.>,DO+( <6>)>
2.

In a similar way, we get
1,77 Pu(s) — I, Pu(s)]

; 83—7_6 Up(7) — Po(T)ldT
< 5= |, =P = Put

L (] M
<30 —5)/ (s=7) (ﬁ(a) " ﬁ(a—5)>
1 (a0 Do) — £ 0(), DL vl el

<( Ly
= \BlpEz—75)

< (o oa(), Dgeon()) = f0(), Do)l

2.3. Existence of solutions
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Therefore,

113" Po(s) — I " Pu(s)| o2

1 M
= </3( 5@ —5) T B2 B)Bla 6)) @7
< F (o va (), Diioa() = £ (), Do ()]
According to (2.5), we have
D5+PU(S) = — ]gfﬁf(s,v(s) §+v(s))
S 1 — )L (r o(r), DPo(r))dr + 1% g(s,0(s))
“HaA ¢ AT o S
(2.8)

Thus, by exploiting the condition (H2), we get

1D}, 0(s) — Djvuls)]

— |15 (s, va(s), Dfovals)) — I £ (5. 0(s), Dv(s)
Sa—ﬁ—l

- /01(1 — 7)ot {f(T, U (7)), D0+Un( s)) — f(r,v(7)), D0+U( ))} dr

- [ ot~ B a0

! 1 — )P f (v (1), DP vy (7)) — v T

g@(a—ﬁ)/o (1= )P f (7 0n(7), Dyevn(7) = f(7,0(7), Dgov(r)|d
1 L a—1 —

+5<a—5>/0 (1 =) |f (7 0a(r), Dfvn(r)) = f(7,0(7), DY, 0(r))|dr
1 ! a—26-1

5=z ), A= elm () = glr () ar

2 M ; - .
< | * T | 1 0 Den() = Jo. D)

2.3. Existence of solutions
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which implies that
2 M
+
Bla—p)  Bla—2p)
<o)y DEon()) = Fv(), Dl ol (2.9)

From (2.6), (2.7) and (2.9) it follows that

[1 M + 2 1
B

(@) Bla—B)  Bla)BE-p)

- u —
B(2-p)Bla—p)  Bla—28)

XN vn(), Dhiva()) = F(0(), Do N (2.10)

HDngUn — D5+U‘|L1 < [

||PUn — PU|‘W1*B’1 <

RLOT

Finally, from inequality(2.10), we deduce that the operator P is continuous
in Wy, ot

Step 2. We show that P(Bgr) C Bg; thatis, for all v € By : v(s) < Pu(s) <
v(s) and D&y(s) < D@Pv(s) < Dgﬂ(s). From Lemma 2.2 and condition

(H3), it follows that for each y € Bpg

P < [ Gl Do(s)ldr + s [l Dot lir

! ! 1 VT b U\T T
< <pﬁ(a) + 5(04_5)>/0 [h(T)‘i‘f (| ( )| + ‘D0+ ( )|)}d
1 1
< (70 * 5w =) 1l + €
Consequently,
1 1
| Px|| 1 < (pﬁ(a—ﬂ) + 5(04—5)) (18] + ER). (2.11)

Similarly, from Definition 1.4, we find

i 1 1 1 ) 1
I Poll < 5t (S5 + 5 ) (Ol +€R). - 212)

2.3. Existence of solutions
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and by using (2.5), we obtain

8 p 1
123 Pell < (5 + ) (o 6. @13

A combination of (2.11), (2.12) and (2.13) with condition (H3) gives us

Hf3$|hvl 8,1 <:f%

RL,0t+

Since y € Bpg then v(s) < v(s) < ©(s). In view of condition (H1), the

definition of upper and lower control functions and the hypothesis on g, we

get

Pu(s)

:/O G(s,7)f(1,0(7), Dy.v(r ))d7+m/os(s—7)a g (r,v(r))dr
g/o G(s, ) U (r,v(r), Dl u(r ))d7+ﬁ/08(8_7)a 51 g(r o(r))dr
g/() G(s,7)U(T,0(7), DO+U( ))d7+5(a1—6) /05(5—7-)04 =Yg, v(T))dr
< 7(s)

In an analogous way, we get immediately Pv(s) > v(s); thusv(s) < Pu(s) <
U(s), for all y € Br. Now, we prove that D0+v( s) < Déin( ) < Dow( s).

Form (2.8), we can write

DLPos) = 5 / (s — 1) B u(r), DE () dr
Sa—ﬁ—l 1
# 5 | 1= ). D
+ m /OS(S — T)a_2ﬁ_1g(7', u(T))dT

2.3. Existence of solutions
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= ¢

+6(&i25)/0 (s — 7)* ¥ Lg(7,0(r))dr

< o [ L (), Doty

" 5‘?2_;) /0 (L= 70, 5(r), Do)
e AR S Y

< Dy u(s),

and
DLPu(s) 2 5 [ (5= )" U ot Dot

5(0415) 8
g [ = e
> (&—_1 5 /0 (s = 1) P07 u(r), DE. uo(r))dr
+ﬁ?:—_;) /O (L= 7 L, (), DY ()
S | = et et
> DY w(s)

Therefore, Dg&(s) < D@Pv(s) < Dgﬂ(s). Consequently, P(Br) C Bg.

2.3. Existence of solutions
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Step 3 Finally, since P is continuous in Wé Lﬂoi, then it suffices to show that

P(Bg) is relatively compact in W}i’%ﬁ. For this, we apply Lemma (1.5). For

all y € Bg, we have
|Py(s + h) — Pu(s)|
/ |G(s+ h,7) — G(s,7)|f(T,0(T), Doﬂj( T))dT

s _Taﬁl S_Ta_ﬁ_l - olr .
6(0«—5)/0((+h ) (s =7)* 7 g(r,v(1))d

1 s+h a_ﬁ_l
+m/g (S+h-7’) g(T,U(T))dT
((s+h) = =) [N e
< [ =t o), D)

P 5 ; Ay Bl e ya—B-1 " -
+6m—ﬁxl“‘+h )= 7) (s = 7)) f(m,0(r), Div(r))d

L s+h . . 1 § _

solg [ = ) D)

- ( h he Pt h(1 4 h)* 7!
pB(

o B Bla — B)

From (2.11) with some computations, it follows that

)Wﬂb+€R%Mw0 (2.14)

15" Py(s + h) — 1577 Pu(s)|

L 83—7'_5—5— — ) v(T)|aT
< s | (=) === P
s+h
—|—/ (s —h— 1) P|Pu(r)|dr
2h' =P 4 518 — (s 4+ h)1F 10| + &R

Bla—pB2=0) Bl +pla—p) "0 0. (2.15)

2.3. Existence of solutions
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In addition,

D}, Pu(s + h) — Dj), Pu(s)]

I(‘))fﬁf(s + h,z(s+ h), Déﬁx(s +h)) — [gfﬂf(s, v(s), D€+U(8))
Safﬂfl 1 -

S0

x [f(f + h,a(r + h), Dl x(r + h)) — £(r,v(7), D%(T))] dr

= (15 + (s + 1) — I35 Pg(s,0(6))]

_ 3pe—P-1 + h(l + h)a—ﬁ—l N Qpe—28-1 4+ h(l 4 h)a_gﬁ_l
B pB(a— B) Bla—20)

Ol +ER) —n0 0.

(2.16)
Therefore, inequalities (2.14), (2.15) and (2.16) imply that

Pv—P 8,
HTh v UHW;L%}r —n—0 0

uniformly on Br. Now, it remains to show the second hypothesis of Lemma

1.5. According to (2.11),(2.12) and (2.13), it follows

1 1 1
/ | Pu(s)|ds + / 1,77 Pu(s)|ds + / Dy, Pu(s)|ds
1 1

<[ 1 . 1 ! L 1 !
= [Ba) " Bla=p) " B2 B)pla)Bla - B)
1 1

T oBla—p) " 5(&—2@](”9”“ HE) a0 &1

uniformly on Bi. Then, the two hypotheses of Lemma 1.5 are satisfied;
therefore, P(Bpy) is relatively compact. Thus, Schauder’s fixed point theo-

rem affirms the existence of a fixed point v € By of the operator P, which

is a solution of problem (2.1). This completes the proof of our theorem. =

2.3. Existence of solutions
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Corollary 2.1 Suppose that there exist two real constants L and [ that satisfy

L>sup{f(s,v,2),0<s<1,0>0,z€R}

[ <inf{f(s,v,2),0<s<1,v>0,z€R}

and

—ﬁ(a+1) 1 — )Py, u(r))dr
L§l+5(a_ﬁ)/0(1 )7 g, u(T))dr.

Then, problem (2.1) has at least one positive solution in W}i%i

Proof. It suffices to prove that assumptions (H1)-(H3) hold. In view of

definitions of functions L(s, u,v) and U (s, u,v), we find

[ < L(s,u,v) <U(s,u,v) < L0<s<1l,u>0veR

Define
[} —_l8a+LSQ_1 ! SS—TO‘_B_l T,0(T))ar
) = e+ e [ =) el
L 415! R R
us) = o+ s [ = gl

Then, we have 0 < v(s) < T(s),

(s) > L/o G(s,7)dT + L 5 /08(3 — 1) P g (1 0(r))dr

Bla—
/0 G(s,7)U(7,5(s), Dy, 0(s)dr

—1 ss—To‘_B_l 7, u(T))dT
= | = et

Vv

_|_

2.3. Existence of solutions
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and
1 1 s
[ T)dT — ) B g o())dr
w9 <1 [ G+ s [ = rr gt
1
< [ G(s,7)L(r,u(s), Dyv(s))dr
0
—1 ) — ) (1 u(7))dr
e AR B G e
In addition, after some computations, we find
1 a—p Lso -1
2ol = gy s
1 s g
g [ e (),
8 o 1 _ a—p3 lSa_B_l
Do) = g —5an) 2 T asa=p)
L S — )2 g (r o(7))dT
+ 5 [ = (v

Consequently, we get

— 1 SS_TQB—I - 5. D o) dr
5(04—5)/0( )" L(7,0(7), Dy (7)) )d
g—h-1 1 A ol 3 S\ dr
+ 5= | 1=V, DY)
1 8 _ 2810V dr
+5(a—26)/0( )2 g (7, 0(7))d
< ! —1s*7F 4 Lso7
_6(a_6+1) OJB(OK—B)
1 SS_Ta—25_1 (PN dr
+ﬁ(a—2/5)/0( )" g (1, u(7))d
—ls*7 Ls=F-1 1 s a-26-1
< Bla—p+1) +B(C¥_5) +B(C¥—ﬁ)/o (s —7) g(r,v(7))dr
D0+U( s),

2.3. Existence of solutions
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and

——1 SS—T“_B_l T, U v T
= |, 6= ). D)
Sa—ﬁ—l

+—)/O (1 —7)* "L(7,o(1), DO+U( T))dT

Bla—p
—1 83—7'0‘_25_1 7, 0(7))dT
* g [, = ()
S _iLsa—ﬁ lsa—ﬁ—l
= Bla—B+1)  abla—p)
_ SS—To‘_w_l 7,0(7))dT
* g [ = ()
—Ls*F [s* P 1 ’ a—28-1
> Bla—B+1) +Ozﬁ(oz—5)+ﬁ(0z—25)/0 (s — 1) g(T,v(7))dr
D0+U( s).

Hence, hypothesis (H1) holds.

Finally, we choose R such that

L, 142 . 1
pBla—pB)  Bla—pB) Bla)B2—p)
+ ! 1 _li<r

Pla—=pB)B2—-p)  Bla—20)
Now, all assumptions of Theorem 2.1 hold; then the (2.1) has at least one
positive solution y € Bg, where v(s) < v(s) < v(s)
and D0+U(S) < Dow(s) < Dow( s) for each s € [0, 1]. The proof is now

completed. =

2.3. Existence of solutions
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2.4 Example

1. We consider the fractional BVP (2.1) when we take

a=15 B=02 L=1 1=0.72123,

f(s,v,2) =1+ (L—=10)s, g¢g(s,v)= %(l + (L —1s)), se€l0,1].
It is clear that
1< fls.0 ) S L gls,v) = 5 f(s0,2),
and

I+ (B(a — B)) " Bla + 1) / (1= 1) g v(r))dr

B [B(a+1) B Bla+1)
" Ba-s+n T 5512
=1.20113 > L.

We choose U (s, u,v) = L, L(s,u,v) = [ and 7, v such that

_ —1s® Ls*1 [s9F (L — 1)s*=F+
") = 5i D T Bar D T Wa—s D T W52

—Ls® [s1 152 (L —1)s*7*1
V) = 3t D THetD) T Ba-5+1D 28—

The exact solution of our problem is

s (L=Ds! [so1 (L —1)s*!
V)= 5 D Bty BatD ! Ba+

[s2~1 N (L —1)s*=FH
Bla=B+1) 2B8(a—pF+2)

"3

2.4. Example

30]
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Therefore,
D o(s) — st Ls L (L)

v T Bla—B+1)  afla—p)  28(a—26+1)  2B(a—28+1)
- —Ls* 7 [s@—P1

028 = 55T T 3B = ZA )

Ll (L
28(a—28+1)  2B8(a—28+1)
and
gy s (L-h)sei s
DO+U(8) - 6(04—5—}_1) Ozﬂ(&—ﬁ‘i‘Q) +Ozﬁ(&—5>
ala+1)(L—1)s* 7! [s*% (L — D>

+ + .
Bla =) 28 —=26+1) 28(a—-28+1)
Some computations give us
T(s) = —0.54255" 4 0.75235"% + 0.3091s"% + 0.05195>3,
v(s) = —0.7523s" + 0.54255"° 4+ 0.3091s"3 + 0.05195%2,

v(s) = —0.54255"° — 0.08395>° + 0.62645"° + 0.3091s"* + 0.05195>?,
and

D T(s) = —0.6182s3 + 0.74285"3 4 0.34465"! + 0.06345>,
DY u(s) = —0.8571s3 + 0.5358s"3 4 0.34465"! + 0.06345>,

DP v(s) = —0.618253 — 0.12695>° 4 0.61865"% + 0.34465' + 0.06345>".

2. Now, we consider (2.1) with nonlinear functions f and g.

Let s € [0,1],v € Ry, z € R. Take the problem (2.1) with

f(s,0,2) =12 —5)(1+e ")+ (L —2l)s* (1 + 1j22) :

2.4. Example
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and
g(s,v) =4[(2—s) (1 +e )+ (L -20)s*, se0,1], veR,.
For
a=126=091L=171=08,
we have
f(s,0,2) >1(2—8)+ (L —20)s* > 1,
and
f(s,0,2) < 2[1(2 —s) + (L —21)s?] < 2L.
Then,
[ < f(s,v,2) <2L, forall se€[0,1],veR,,z€R (2.18)
and
6((1 + 1) ! . a—pF-1
l+—04—5 /0 (1—1) g(t,v(T))dT
1
>+ —Z;ﬁ((a&jﬁl)) /0 (1— 7)o rt 12—-7)+ (L - 2[)7'2} dr
48(a + 1) 4L —20)B(a+1)
[
= Ba-5+n " Bla-p+I
> 3.9350 > 2L.

From Corollary 2.1, it follows that the BVP (2.1) has at least one solution in

Wg%}m. Please see Figure 2.1 and 2.2.

2.4. Example
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25
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Figure 2.1: Graphs of v, v, and ©
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Figure 2.2: Graphs of A = Déﬂﬁ, B =

D{fm, and C' = Dg+v
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Chapter 3

Positive solutions of a Caputo

multi-term semilinear FDE

3.1 Introduction

In this chapter, we are concerned with the existence of positive solutions for
certain classes of nonlinear fractional differential equations for a fractional

configuration of the Caputo fractional derivative given by

D(t) + T (t,0(t), D%u(t)) =0, (teJ=10,1]), (3.1)

where 1 < a < 2,0 < 8 < 1 and 7T is a continuous positive function on

[0,1] x R x R and D) denotes the Caputo fractional derivative.

34
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3.2 Green’s function associated to the problem

Proposition 3.1 Consider ¢ € C([0,1],R") and 1 < a < 2. Then, the solution

of the linear problem

(3.2)
v'(0) =0, v(l)=0
is given by the following integral equation
1
v(t) = / H(t,s)o(s)ds, (3.3)
0
where
_ o\a—1 _ a—1
(1F3) _(trs) C 0<s<i<1
H(t,s) = a _(g))a_l (@) (3.4)
<t <s<
Tla) 0<t<s<l1

Proof. If v is a solution of the linear boundary value problem (3.2), then

from Proposition (1.3), it is followed that

v(t) = co+ it — Z%(t)

1

t
= co+cit — m/o (t —s)* o(s)ds. (3.5)

By applying the operator D' to both sides of (3.5) and using (1.9), we find
that
V(t) = e = I o(t), (3.6)

which in view of the first boundary condition, gives ¢; = 0.

3.2. Green's function associated to the problem
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Now, from the second boundary condition together with (3.5), we find

I a1
cop = m/o (1 —3s)"""o(s)ds.

By substituting ¢, and ¢; in (3.5), we get

1

' a—1 . L t — g a—1 s)ds
o) = o / (1= 5)"ofs)ds — s / (t— ) o(s)ds (3.7)

- / H(t, s)ols)ds,

where H(t,s) is given by (3.4). In this case, we follow that v will be a
solution of (3.3). Inversely, we regard v as a solution of integral equation

(3.3). Then, from (3.7) one can write
v(t) =Z%(1) — Z%(t). (3.8)

By applying the operator D“ on the relation (3.8) and exploiting (1.9), it
follows immediately D*v(t) = —p(t). At last, in view of (3.6) and (3.7) one
can simply derive that v/(0) = 0 and v(1) = 0. Hence, v satisfies the linear

problem (3.2). This completes the proof. =

Remark 3.1 It is easy to show by a simple computation, that the function H

satisfies
H(t,s) >0, 0<t,s<l. (3.9)
and
! 2
H(t,s)ds < ———. 3.10
Jy e < .

3.2. Green's function associated to the problem
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Lemma 3.1 The function % is integrable for each t € [0, 1].
Proof. We have
(t _ S)a 2
OH(t,s) “Ta-1) 0<s<t<l1,
ot 0, 0<t<s<1
Then
1 t a2
/ 8H(t,s)d _/ (t—s) s
0 315 0 F(Oé — 1)
ta—l
- Ta)
< L <+ (3.11)
= T 0. :

This completes the proof. =

Remark 3.2 Consider the space X = C*([0,1],R). For 0 < 8 < 1 and v € X,
define the norm of v by

|v|lx = maX|U( )|+max [0 (¢ )|+maX‘D5 ’
te[0,1] t€[0,1] t€[0,1]

Then clearly (X, ||.|x) is a Banach space.

3.3 Existence result for Positive Solutions

In this section, several conditions are derived for which the existence of pos-
itive solutions to the multi-term semilinear boundary value problem (3.1)

is guaranteed. Let ay,a3 € R and as, a4 € R with a; < a3 and as < ay.

3.3. Existence result for Positive Solutions
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The upper control function
A :[0,1] X [, +00) X [y, +00) = RF

and the lower control function 4 : [0,1] x [—o0, a3) X [—00, ay) — R* are

defined by

A(t, u,v) = sup Y(¢,0,u) and S(t,u,fu) = inf Y(¢,0,p),
a1<0<u u<O<ag
azSZSU vSpu<ay

respectively. We clearly have
0<d(t,u,v) < T(t,u,v) < Alt,u,v),for 0<t<1, an <u<ag ay<v<ay
In addition to these, define the set

A={veX: vt)>0, 0<t<1}

which is used in the sequel. Here, we mean by a positive solution, each
function v satisfies v € X, v(0) = 0 and v(t) > 0 for each 0 < ¢ < 1; in other

words, v € A

Required Assumptions:

Now, for our main results, we need some assumptions given as follows:

(A1) there are v*, v, € A which satisfy oy < v, (t) < v*(t) < az and ay <

DPv*(t) < DPv,(t) < ay, along with

U*(t)Z/O H(t,S)A(S,U*(s),l)ﬂv*(s))ds,

w(t)ﬁ/o H(t,s)g(s,v*(s),Dﬂv*(s))ds,

3.3. Existence result for Positive Solutions
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and

Pu —; t — 8)* P15 (s, 0,(s), DPu,(s))ds
Do0.(t) 2~ [ (=97 (5.0 (5). Do)

(A2) There exists ¢ > 0 and non-negative function 6 € £'(0, 1) such that
Tt v,v) <O) +&(Jv[+[v]), 0<t<1, v,veR

(A3) There exists ¢ > 0 such that

B 2 |
A+ B
* +r<2—ﬁ>+“( I(a) F<a+1>+r<2—ﬁ>r<a>)SC
with
—trélg:i{/ﬁlts s)|ds and B = lglg@f/‘@Hts ’s

At this moment, we are ready to present the first existence theorem.

Theorem 3.1 Suppose that the assumptions (A1) — (A3) hold. Then the
multi-term semilinear boundary value problem (3.1) has at least a positive
solution v in X such that all inequalities 0 < v,(t) < v(t) < v*(t) and
DAv*(t) < DOu(t) < DPu,(t) hold for each 0 < t < 1.

Proof. For each ¢ > 0, define the set I'; as

T = {v e A: Jullx € ¢ 0<u(t) <o(t) < o(b),

DO (t) < Du(t) < DPu,(t), 0<t< 1}.

3.3. Existence result for Positive Solutions
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Obviously, I'; is a convex, closed and bounded set in X. Consider the oper-

ator P : I'c — X under the following rule

(Po)(t) = ﬁ/{) (1—35)"'Y(s,v(s), D"v(s))ds

—L t — )T (s,0(s), Du(s))ds

= /01 H(t,s)T(S,U(S),DﬂU(S))dS. (3.12)

To prove Theorem 3.1, we will show that the hypotheses of Schauder’s fixed
point theorem hold. So, the process of proof will be done in several steps.

Step 1: P is continuous in X. To prove such a claim, we consider a sequence

{v, } which converges to v in X. We have
[Bon(t) = Po(t)]

QA{HGAﬂ(T@Jm@LIﬁuA@)—YK&UQLDQU@»)dS

< max |Y (¢, v,(t), Dv,(t)) — Y(t,v(t), D u(t)) /IH(t,S)ds
t€[0,1] 0
2 8 8
< (m) mex T (¢, vn(t), D vn(t)) — Y(t, v(¢), D 0(t))|, (3.13)
and

| DB, (t) — D*Po(t)]

|t —5) 7 ((Pun) (5) — (Pv)'(s))ds
_‘F(l—ﬁ)/o(t ) ((Bow) (5) = (B)'(5))d

3.3. Existence result for Positive Solutions



Chapter 3. Positive solutions of a Caputo multi-term semilinear FDE

1 ! P
<mi=g )¢9

X (/01 aHé‘Z’ ) [T(A, Un(A), D, (M) —T(A,U(A),D%(A))] ‘dA)ds

1 ! _
< s [ (00,0, D00 (0) = Y000, D°00)| o5 [ (=97
x ( aH (5,4) ‘d)\ ds
< max | T(t, vn (¢ ),Dﬁvn(t T(t,v(t), D”Bv(t))‘

! max v SU — v B’U
AT Y (t,0,(t), D v,(t)) — T(t,v(t), Dou(t))|,  (3.14)
and
|[(Bua)'(t) = (Po)'(1)]
— /OaHa(i’S) (T(s,vn(s),l)ﬂvn(s))—T(S,U(s),Dﬁv(s))>dS
max v B — v o | 9H(E, 5) s
< max [Y(t.0,(0). Do, (8) = Tt vlo). Do) | [ |25
<= (1&)%[0,1] T(t, 0a(t), DPon(t)) — Y, 0(t), D°u(2)) | (3.15)

By tending n — oo and from the inequalities (3.13), (3.14) and (3.15), we
follow that 3 is continuous in X.

Step 2: Now, we show that 3 : ' — I'¢ is a selfmap on I';. Let v € I'¢. By
inequalities (3.10), (3.11) along with the assumptions (A2) and (A3), we

3.3. Existence result for Positive Solutions



Chapter 3. Positive solutions of a Caputo multi-term semilinear FDE

get

)Y (s,v(s), D v(s))ds

ds

< /0 H(t,s)Y(s,v(s), Dﬁv(s))

ds

</1 H(ts>[<>+f(|v y+]z>ﬂ )])]

/|Hts |d5—|—§</ |H(t,s)|ds

< A+5§( ) (3.16)

2
I'a+1)

and

R @] = | [ 20, u(s),D70(s)as

ot

) / aHé()? 5) [e<s> +&(lo(s)] + [D(9))]

/1 aHts
<
0

< B+£C<ﬁ), (3.17)

ds

and

DB‘Bv(t)‘

= L t — 5) P (Pv)'(s)ds
e | =y ()

3.3. Existence result for Positive Solutions
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I S N A A [l (CIRY VS
<t [ = ([ [P oo, o)

+/01 aH(gi, A)€<|U(A)| + ‘Dﬁv(A)‘)dA>dS

Sﬁ /Ot(t _ S)—Bds + %/{)t(t — s)—ﬁ</01

L 1-8 £¢ 1 1-8
“T2_p) +F@—®<H®)t

B 2 1
Sr@—&f*ﬂz—@(ﬂ@)' 3.18)

By virtue of inequalities (3.16), (3.17), (3.18) and the assumption (A3),
we get [[Pz||x < (.

In the sequel, we investigate the inequalities 0 < v,(t) < Po(t) < v*(¢) and

d/\> ds

M‘cﬂ)ds
0s

also DPv*(t) < D*Pu(t) < Du,(t) for each 0 < ¢t < 1. Since v belongs
to I'¢, we obviously have 0 < v,(t) < v(t) < v*(t). By using definitions of

upper and lower control functions together with the assumption (A1), we

get

‘Bv(t)g/o H(t,s)A(s,v(s),Dﬂv(s))ds

VA (s, v*(s), DPv*(s))ds
< [ H9AG (9. D)
<

< v'(1),
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and

Po(t) > /0 H(t, 5)5 (s, v(s), D v(s))ds

1 sAsvs fu.(s))ds
2/0 H(t, 5)5(s, v.(s), D%u,(s))d

> u,(t).

Hence, we obtain 0 < v,(t) < Po(t) < v*(t). Now, we need to show that

DPv*(t) < DPu(t) < Du,(t). We have

FBot) = ——— t — )27 (s, 0(s), D u(s))ds
DY) =~ | (4= 0l D)

L t—s“‘ﬁ‘lAsvs Pu(s))ds
<~ [ =9 (). Do)

1 t — )P 15(s. 0, (s). DPu,(s))ds
<~ [ =9 s e (e). D)
< D, (t).

Similarly, we showed that D?Buv(t) > D v*(t). Therefore P (I'¢) C T.

Step 3: At the final step, we aim to prove that ‘8 has the complete continuity
property. To see this, let v € T'c and take M = max;cpy (¢, v(t), D v(t)).
We have

Bo(t)]| :'ﬁ/o (1-— S)a_lT(S,U(S),DBU(S))dS

—L t — )Y (s,0(s), DPu(s))ds
o | = s ). D))

3.3. Existence result for Positive Solutions
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L 1 — )Y (s, 0(s), DPu(s))ds
Sna)/oﬂ )Y (s, 1(s), DO (s))d

+ ﬁfo (t— )" 'Y (s,0(s), Dv(s))ds

1 te
S(F(oHrl) + F(a+1))M
< 2M
T(a+1)
and
o901 = | [ 2810500, Do)
Y1OH(t,s)
< M/o gy ds
« M
~ I'(a)’
and
’Dﬁspv(t)‘ = 'F(a_—l 5) /0 (t— ) 710 (s,v(s), D v(s))ds
t — )27 (s, 0(s), Du(s))ds
<SFa | ). D)
- M-
“Tla—F+1)
< M
T Da—-B+1)
Thus

1 2 1
ol < (o + o+ T )M
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Hence P(I'¢) has the property of the uniform boundedness. Next, we show

that Bu is equicontinuous. To do this, for each v € I'c and ¢, ¢, € [0, 1] with

t1 < t9, we have

[Puo(tz) — Po(ty)]

:‘ﬁ /0752(152 )" (s, u(s), DPu(s)) ds

b /0 1(751 — )10 (s,v(s), D v(s))ds

['(«)
S A (R AU eI RTOR O
+ﬁ/j(t —8)* 1Y (s,v(s), D7v(s))ds
M(ts —t3)  M(t2—t)"
T(a+ 1) Fla+1) ° (3:19)

It is seen that the right-hand side of (3.19) does not depend on v and tends

to zero whenever ¢; — ¢, which leads to |Bu(t) — Pu(t)| — 0. Further,

we have

|(PBo)'(t2) — (Po)' (1))
/1 Otttz ) S)T(S,U(S),DBU(S))CZS - /1 MT(S’U(S%D%(S))CZ‘S

- ot =
"1O0H (ty,s) OH(ty,s)

< ! _ ) 3

N /0 Oty oty T(S, U(S)v D U(S))ds

= _M a—1 _ ja-1

B F(Oé> [t2 h } (3.20)
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which tends to zero whenever ¢; — .

‘Dﬂiﬁv(tg) — Dﬂmv(tl)’

:F(l 1_ B /Ot2(t2 — 5) P(Pv)(s)ds — /Ot1 (t — s)_ﬁ(%v)’(s)ds|

:F(11—5> /Ot2(t2 — 5)ﬂ</01 Méi’ )\)T(A,U(A),D%(A))d/\> ds

_ /Otl(t2 - 5)ﬂ</01 aHgi’ A)T(A,U(A)J)%(A))cu) ds'

T . 8) /0“ (=97 = (t2 =)
X (/01 8H§Z’ A)'}f(A,U(A),D%(A))dA)ds

+ /:2(752 - s)—ﬁ</01 aHé‘Z’ A)T(A,U(A),D%(A))CM) ds‘

=Ta 1_ ) /0“ {(tl —8)7 = (- S)_ﬁ}
([
ci ), e (]

aHé(;’ a) 'T(/\, v(N), D%(A))dA) ds

8Héi’ A ‘T(A, v(\), D%(A))d/\) ds

SF(ll\{ 3) /Otl {(751 —5) 7 = (t2 - S)ﬂ] (/01 ang’ a ‘d/\) ds
T p(lj\{ B) /:2(?52 — S)ﬂ</01 8H(§Z, ) dA)ds
TR _Agm&) (2(752 —t) 7 - té‘ﬂ) (3.21)
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which tends to zero as t; — t,. Therefore, inequalities (3.19), (3.20)
and (3.21) imply that Bv is equicontinuous. Knowing that it is uniformly
bounded, we find that ¥ is completely continuous. The Schauder’s fixed
point theorem implies that ‘B has a fixed point v € I'c which is a solution
for the multi-term semilinear boundary value problem (3.1) and the proof

is completed. m

Corollary 3.1 Let T be continuous positive on [0, 1] x R x R and there exists

¢ > 0 such that

£<— S — (3.22)
M) Ta+1) TE=pr()

Then, a solution exists for the multi-term semilinear boundary value problem

(3.1).

Proof. By choosing 6(t) = 0 the condition (A2) becomes Y(t,v,v) < &(|v|+
Iv]) and max;co 1) Y(¢,v,v) = &(Jv| + |v]). In addition the condition (A3)
leads to (3.22) . So, these ones allows us to apply Theorem 3.1 which
affirms the existence of a solution for the mentioned multi-term semilinear

problem (3.1). =
Corollary 3.2 Assume that there exist two real numbers n, v > 0 such that

n> sup Y(t,v,v) and v < inf  T(t,v,v).
0<t<1 0<t<1
vER | ,vER vER ,veR

Then, the multi-term semilinear boundary value problem (3.1) has at least a

positive solution on [0, 1].
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Proof. From definitions of the functions (¢, u,v) and A(t, u,v), it is fol-

lowed that

v <6(t,u,v) <A(tu,v)<n, (0<t<1 veRvER)

Define
) = o<,
Fla+1) Tla+1) —— =
tO[
o) =—"— Y 0<t<l.

Ia4+1) Ta+1) -

So, we have clearly 0 < v,(t) < v*(¢t) for 0 <t < 1, and also
1
vr(t) = 77/ H(t,s)ds
0
1 A
> / H(t,S)A(s,v*(s),l)ﬁv*(s))ds, 0<t<,
0
and
1
() = V/ H(t,s)ds
0

1
< / H(t,S)S(S,U*(S),DBU*(SDCZS, 0<t<1.
0

Moreover, by using Remark 1.2 and with some direct computations, we get

DOV (t) = — it 0<t<1
- Tla—pB+1) - =
pte—B
Dy, (t) = — . 0<t<1.
*) Mla—p+1) -
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Thus,
D@*}Bv(t) = _F(al— B /0 (t— )71 (s,v(s), D v(s))ds
> a5 /0 (¢ = o) ds
_ U tafﬁ
Cla—B11)
= Du*(t)
and
DY Put) = _F(al— 5 /O (t — )Y (s, u(s), D*u(s))ds
_F(a—ﬁ)/o(t_s)a F=1ds
e EEA
= DBU*(t)

This means that the assumption (A1) is satisfied. Finally, if (A2) holds,

then we can choose ( such that

C2A+B+—+n( S ! )
I'2-p) [(e)  Tla+1)  T'2-p)l(a)

Now, all hypotheses of Theorem 3.1 hold. Consequently, the multi-term
semilinear boundary value problem (3.1) has at least a positive solution
v € T'¢, where 0 < v,(t) < v(t) < v*(t) and DPv*(t) < DPu(t) < DPu,(t) for

each t € [0, 1] and the corollary is proved. =

3.3. Existence result for Positive Solutions
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To validate the theoretical findings, we provide a special example corre-
sponding to the suggested multi-term semilinear boundary value problem

(3.1).

3.4 Example

Example 3.1 According to the multi-term semilinear boundary value problem
(3.1), in the present example, we take « = 1.5, 3 =05, n=1, v =0.5
and

T(t,v,y) =v+(n—v)t=0.5+0.5t.

By taking into account the definition of the function Y, we clearly have
v < Y(t,u,v) < n. Now, we choose upper and lower control functions

A(t,u,v) = nand d(t,u,v) = v, respectively and then we get

1 1

*(t) = — 9 = 0.7523 — 0.7523¢1°

V)= Te5 " TEs) ’

0.5 05 . » .

(1) = - 15 = 0.3761 — 0.3761¢17,
) = Ta5 ~ Tes)

0.5 0.5 05 15 05

v(t) = F(25) T35 T(@5)  I'(35)

= 0.5266 — 0.3761¢'° — 0.1505¢>°.

3.4. Example
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Therefore, by some simple calculations, we obtain
DPv*(t) = —t,
D, (t) = —0.5t,

DPu(t) = —0.5t — 0.25t%,

Figure 1
25 T T T
Upper solution
Lower solution
Exact solution
2r 7
o 15F
=
@
@
®
=
=
[SEENE
0.5 k=
0 i i i i ; i i i T
0 01 02 03 04 05 0B 07 08 08 1

Abscissa axis

Figure 3.1: Graphs of v, v, and v*

Figure 2
0z T T T
—A
: : : —6B
o - T B : : o =——cCH
O2f e S
2
= N
& : : :
£
)=
© N

R i 1 i i i i I i i
il 01 02 03 04 05 0B 07 08 08 1
Abscissa axis

Figure 3.2: Graphs of A = Dfv,, B =
DPv* and C = DPv

The graphs of positive solutions and their derivatives are illustrated in Figures

1 and 2.

3.4. Example



Chapter 4

Positive solutions of a Caputo
multi-term semilinear FDE with

fractional boundary condition

4.1 Introduction

This the work inspired by [53] Zhang and Bai et al [72] , in this chapter,
we derive some sufficient conditions to establish our main results on the
existence of positive solutions to multi-term semilinear fractional boundary
value problem given by

D(t) = T(t,v(t), D o(t)), (te J=][0,1]), (4.1)

v(0) =0, D*lou(l)=0,

where 1 < a < 2,0 < 8 < 1 and 7T is a continuous positive function on

[0,1] x R x R and D) denotes the Caputo fractional derivative.

53
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4.2 Green’s function associated to the problem

Proposition 4.1 Consider o € ACY([0,1],R") and 1 < o < 2. Then, the

solution of the linear problem

D(t) = o(t), te€][0,1]

(4.2)
v(0) =0, D* (1) =0,
is given by the following integral equation
1
u(t) = / H(t,s)o(s)ds, (4.3)
0
where B
u—F(S—a)t, 0<s<t<l1
—I'(3 — a)t, 0<t<s<l.

Proof. If v is a solution of the linear boundary value problem (4.2), then

from Proposition (2.1), it is followed that

v(t) = co+ it +Z%(1)
1 ' a—1
=cy+cit + m/o (t— )" o(s)ds. (4.5)
Then, the first boundary condition gives ¢, = 0. By applying the operator
D! on both sides of (4.5) and using (1.9), we find that

a—1 _ C1 2—a 1
D o(t) = TG —a) &)t +Z o(t), (4.6)

which in view of the second boundary condition, gives

1
o =-I(3— a)/ o(s)ds. 4.7)
0

4.2. Green's function associated to the problem
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condition
By substituting ¢y and ¢; in (4.5), we get
1 t 1
u(t) = —Q)/ (t —s5)* to(s)ds — T'(3 — a)t/ o(s)ds (4.8)
0 0

I
= [ Hes)etsis

where H(t, s) is given by (4.4). In this case, we follow that v be a solution
of (4.3).
Conversely, we consider v as a solution of the integral equation (4.3). Then,

from (4.8), one can write
v(t) = I%(t) — T(3 — )t o(1). (4.9)

By applying the Caputo derivative D“ (1 < a < 2) on both sides of (4.9), it
follows immediately that

D(t) = o(t). (4.10)

Now, on the other hand, by applying the Caputo derivative D*! (0 < o —

1 < 1) on both sides of (4.9) and using the property (1.9), we get
D lu(t) = Tho(t) — t* T o(1). (4.11)
Finally, from (4.9) and (4.11), we obtain the following boundary conditions
v(0)=0, and D* 'u(1)=0. (4.12)

Consequently, from (4.10) and (4.12), we conclude that v is a solution of

the boundary value problem (4.2). This completes the proof. m

4.2. Green's function associated to the problem
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Remark 4.1 It is easy to show by a simple computation that the function H

satisfies

1
1
/O ‘H(t,8)|d8 < m—i—F(?)—Oz). (4.13)

0H(t,s)
ot

is integrable for each t € [0, 1].

Lemma 4.1 The function

Proof. We have

t — a—2
(=) TB-a), 0<s<t<l,

9H(t,s) _ ) T(a—-1)
ot —TI'(3—a), 0<t<s<1.
Then
HOH(t, s) Lt —s)? t :
/0 Tdsg/o mds+/o F(S—a)ds+/t (3 — a)ds
tafl

=T +TB—a)t+T(3—a)(l—1)
< ﬁ 4T3 - a) < +oo. (4.14)

This completes the proof. m
Remark 4.2 Consider the space X = C*([0,1],R). For 0 < 8 < 1 and v € X,

define the norm of v by

_ ¢ "(t DPu(t)].
v]lx trg[%lv()Htgnl[%\v()Htfg[%\ u(t)]

Then clearly (X, ||.||x) is a Banach space.

4.2. Green's function associated to the problem
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4.3 Property of existence

In this section, several conditions are derived for which the existence of pos-
itive solutions to the multi-term semilinear boundary value problem (4.1)
is guaranteed. Let a;, a3 € Rt and as, a4 € R with a; < a3 and ay < ay.

The upper control function
A :[0,1] X [, +00) X [y 4+ 00) = RF

and the lower control function 4 : [0,1] x [—o0, a3) X [—00, ay) — R* are

defined by

A(t,u,v) = sup ‘T(t,@,u)’ and S(t,u,v) = Inf ‘T(t,@,,u)‘,
u<O<a
cn<iy ven<ay

respectively. We have clearly

0< 5(t,u,v) < ‘T(t,u,v)‘ < A(t,u,fu),

for 0<t<1l, a1 <u<as as <v<ay.
In addition to these, define the set
A={veX: vit)>0, 0<t<1},

which is used in the sequel. Here, we mean by a positive solution, each
function v satisfies v € X, v(0) = 0 and v(¢) > 0 for each 0 < ¢ < 1; in other

words, v € A

4.3. Property of existence
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Required Assumptions:

Now, for our main results, we need some assumptions given as follows:

(A1)
H(t,s)Y(s,v(s),D(s)) >0, V(ts)el01].

(A2) There are v*, v, € A satisfying a; < v,(t)

IA

v*(t) < a3 and ay <

Dbu,(t) < Dv*(t) < ay with

o(E) > /0 H(t, )| A(s,0*(s), D 0*(s))ds,

lt) < /0 H(t,)[5 (s, va(s), D v,(s)) ds,

DPy* —1 t — 5)* LA (s, v*(s), DPu*(s))ds
8 i IAA s,v*(s), D v*(s))ds

~

r3—a)'" !
Db, (t) < NE) /t 0(s, vx(5), D vy(s))ds

(A3) There exist ¢ > 0 and non-negative function 0 € £'(0, 1) such that

Y(t,0,0)] <6 +E(Jo] +Jel), 0<E <1, vweR

(A4) There exists ¢ > 0 such that

1

B 1
A+B+—F(2—ﬁ) +€C<P(a) +F(oa—|—1) +2I'(3 — )
1 I'3—a)
+F@—5WMY+N2—@>SC’

4.3. Property of existence
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with
OH(t,s)

—maX/|Ht5 \dsandB—maX/‘

te|0,1 te|0,1

At this moment, we are ready to present the first existence theorem.

Theorem 4.1 Suppose that the assumptions (A1) — (A4) hold. Then the
multi-term semilinear boundary value problem (4.1) has at least a positive
solution v in X such that all inequalities 0 < v,(t) < v(t) < v*(t) and

D, (t) < DYv(t) < DPv*(t) hold for each 0 <t < 1.
Proof. For each ¢ > 0, define the set I'; as

I = {U e A: ullx < ¢ 0 < u(t) <ot) <vHt),

DPu,(t) < Du(t) < DPu*(t), 0 <t < 1}.

Obviously, I'; is a convex, closed and bounded set in X. Consider the oper-

ator ¢ : I'r — X under the following rule

(P (t) = ﬁ /O (t — 5)* 1T (s, 0(s), D*u(s)) ds

—I'(3 - a)t/o Y (s,v(s), D’v(s))ds

— /01 H(t,S)T(s,v(s),pﬂv(s))ds. (4.15)

To prove Theorem 4.1, we will show that the hypotheses of Schauder’s fixed
point theorem hold. So, the process of proof will be done in several steps.
Step 1: B is continuous in X. To prove such a claim, we consider a sequence

{v,} converging to v in X. We have

4.3. Property of existence
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[P, (t) — Po(t)]
/Hts( 5, 03(5), DPvn(s)) — T(s,v(s),pﬁu(s))>ds

(¢, 5)|ds

[ DPu.(t) — D*Put)]

= ‘ml_ 5 /O (6= 97 (B0, (5) - (Po)(5))ds

<tap 09

X (/01 8H(§Z, A) [T()\’UH(A),'DBUH<>\)) — T\ v(\), D ()\))] |d>\)ds

< max
t€[0,1]

: F(ll—m /ot(t_s)_5</ol

T<t7 un(t), Dﬁvn(t)) = T(t,v(t), D5U<t)) |

Y (t, va(t), Dv, () — Y (¢, v(t), D%<t>)|

@H(S,A)|d)\>d$
0s

< max
t€[0,1]

e (i T ) [ -7

4.3. Property of existence  [J§)
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1 ! — @) | max v fu - v v
= F(2—5)<F(a)+r(3 )) te[0,1] X (6 a(8), Do0n(8) = X, v(), D (t))‘7

(4.17)
and
|(Pua)'(t) — (Po) (1))
= /O 6H6(;’8) (T(s,vn(s),Dﬁvn(s))—T(s,v(s),D%(s)))ds
Y10H(t, s)
gtxg[% Y (t,00(t), D7v,(t)) — T(t, v(t), D v(t)) /O 5|4

L — X max v ’BU — v BU
< <F(a)+r(3 )) max T (¢, va(t), D vn(t)) — T(¢,0(t), D (t))'.

(4.18)

By tending n — oo and from the inequalities (4.16), (4.17) and (4.18), we
follow that ®J3 is continuous in X.

Step 2: Now, we show that 3 : I'c — I'¢ is a selfmap on I'¢. Let v € I'¢. By
inequalities (4.13), (4.14) along with the assumptions (A3) and (A4), we

get

IBo(t)]| = /0H(t,s)T(s,U(s),Dﬂv(s))ds

1 S S, V(S Fu(s S
< [ | v, D) a

ds

< [ |me 9o + (o1 + )]

4.3. Property of existence
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/\Hts |ds+§§/ H(t,5)|ds

§A+§§(F(a+1) +F(3—a)), (4.19)

0By 0] = | [ 205, 0(6), D7) s

ot

<[ “f;; d [e<s> (o) + [Pus))|)]

0Hts

ds

<B+EC (FL LT3 a)), (4.20)

1 t —3_5 1(9H(S,/\) v *B”U
e LT W Al s SERTEERYEY)

e o (] P

+/01 8Héz, )\)5(|U()\)| e ‘Dﬁv()\)Dd)\)ds

dA) ds

4.3. Property of existence
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B g S [T sl [T]2H N .
S s g 09 </ s Wd
B ., & (1 N
<ton " T (T )
B 2 1
<t e e T ) 2D

By virtue of inequalities (4.19), (4.20), (4.21) and the assumption (A4),
we get ||Pulx <.

In the sequel, we investigate the inequalities 0 < v, (t) < Po(t) < v*(¢) and
also Dv,(t) < D*Pou(t) < Dv*(t) for each 0 < ¢ < 1. Since v belongs
to I'¢, we obviously have 0 < v,(t) < v(t) < v*(t). By using definitions of
upper and lower control functions together with the assumptions (A1) and

(A2), we get
‘Bv(t):/o H(t,s)T(s,v(s),Dﬂv(s))ds
:/0 ]H(t,S)HT(S,U(S),DBU(S))|ds
g/o [H(t, 5)|A(s,v(s), D v(s))ds

1 $)|A (s, v*(s), DPv*(s))ds
g/O\H(t, A (s, 07 (s), DPv*(s))d

< (1), (4.22)

4.3. Property of existence
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and
To(t) = /01 H(t, 5)|| Y (5, v(s), D u(s)) |ds
> /01 H(t, )[5(s, v(s), D u(s)) ds
> /0 1 [H(t,5)|0(s,v.(5), Dvu(s))ds
> 0.(0). (4.23)

Hence, we obtain 0 < v,(t) < Po(t) < v*(t). Now, we need to show that

D, (t) < DPo(t) < Dv*(t). We have

D'B‘ISU = —1 t — S a—p-1 [ (s, v(s DBU s))ds
— (3 ﬁliﬂ 1 [ (s, v(s DBU s))ds

- t — 5)* AT (s, 0(s), DPu(s)) |ds
gr(a_ﬁ)/o(t )T (s, 0(s), Do(s)) |d

+ p(§(2 —);) /0 (s, v(s), D70 (s)) |ds

ri—a)t'? . ,
TTTE-B) /O A(s, v(s), D7v(s))ds

4.3. Property of existence
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; ¢ _Sa—ﬁ—lA S’U*S ﬁ’U*S <
SF(a—/ﬁ)/o(t )AL (s), D' (s))d
P@—a)t'# o 8, *
T2 ) /0 A(s,v*(s), D v*(s))ds

< DPu*(t). (4.24)

Now, we show that D*Pu(t) > D, (t). By exploiting the assumption (A1)

we can write

DPPu(t)

_ ﬁ /Ot(t ) I (s, u(s), Du(s))ds
_ F(ﬁ(; f‘)g)_ﬁ /O 1 =(s,v(s), D*v(s))ds

_ ﬁ /Ot(t ) I (s, u(s), Du(s))ds
_ F(Iff(; f>§)_ﬁ /0 tz(s,v(s),p%(s))ds

_ F(g(; f)g)_ﬁ /t 1 =(s,v(s), D*v(s))ds

4.3. Property of existence



Chapter 4. Positive solutions of a Caputo multi-term semilinear FDE with fractional boundary
condition

['(«) /0 (t—s)*" T(s,U(S),DﬁU(SDd‘S

~ Pla-p) ['(a)

; t— — S, U(S BUS S
i [ DB T (0. D)
(3 —a)ttr

— 1 S, V(S ﬁ’US S
Fo [ Tl D)

> min {mﬂ(%’ F(21— 2 } /Ot [(t_—s)a_l ~T(3- a)t} T (s, v(s), D v(s))ds

—atl b
/ T (s, v(s) ), D u( (s))|ds

3 — )il
)t / T (s, 0(s) ), DPu( (s))|ds

F(?)_O[)tl_ﬁ 5 S, Uy S B’U S S
> HE O [ 0u(6), D)
> Du,(t). (4.25)

Therefore, P(I'¢) C I'..

Step 3: At the final step, we aim to prove that 3 is completely continu-
ous. To see this, let v € T'¢ and take M = max;co1 |T(t, v(t), D’v(t))|. We

have

Bo(t)| = ‘ﬁ/o (t — S)a_lT(S,U(S),DBU(S))dS

-3 - a)t/o T (s,v(s), Dﬁu(s))ds

4.3. Property of existence [
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L t—so‘l S,V Pu(s S
SFWL/@ T (s v(s), Du(s)d

3—a) / ‘Tsv Dﬁ )|ds

< (F(& ot (3 — a)t>M
< (F(&1+ 5t (3 — a)) M,

and

B LOH(t, s)
_/O g Y(s,v(s), D v(s))ds

6Hts

< (m—kl“(?) ))M,

1
[la = p)

‘Dﬁ‘ﬁv(t)‘ = ‘ /0 (t — 5)0‘*5*11‘(5,v(s),Dﬂv(s))dS

— F(3 _ Oé)tl_ﬁ 1 S, U(S ﬁ'U S S
roti | T ). Do)

L t—so‘ﬁl S, v Pu(s))|ds
SF@—BL/@ T (5, v(5), Du(s))|a

_ 1-5
@)t /}Tsv Dﬁ )|ds

ta=p (3 —a)tt?
S(N@—B+D+ r@—p) )M

4.3. Property of existence



Chapter 4. Positive solutions of a Caputo multi-term semilinear FDE with fractional boundary

condition
1 I'3—a)
< (o o= "
Thus
1 1 1 ['(3—«)
HmUHX < (F(Oz) + F(&_'_ 1) + F(Oz — B—i- 1) +2F(3 — Oé) + m)M

Hence P(I'¢) has the property of the uniform boundedness. Next, we show
that P is equicontinuous. To do this, for each v € I'¢c and ¢;,t5 € [0, 1] with

t; < ty, we have

[Po(tz) — PBo(t)|
1

— " — )27 (s, v(s), DPu(s))ds
| =9 T (9. D))

L : — )Y (s, 0(s), Du(s))ds
i Lt T u(e), D)

1

- — § — )Y (s, 0(s), D u(s))ds
| = T (e D ()

CT(3—a)(ts — 1) /O T(s,0(s), D*u(s))ds

L " — gt — )2 | (s, v(s), D u(s S
= F(a)/() [(t2 = 5) (t1—s) ” (5. 0(s), ( ))‘d
_|__1 " — ) YT (s, 0(s), Du(s S

F(oz)/t1 (& ) ‘ ( e ( ))‘d

+ (3 —a)(ts — 1) /0 ‘T(s, v(s), DBU(S)) }ds

4.3. Property of existence [}
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_ M —19)

F(Oé i 1) + MF(S — CL’)(tQ — tl). (426)

It is seen that the right-hand side of (4.26) does not depend on v and tends
to zero whenever ¢t; — ¢, which leads to |Pu(t,) — Po(t)| — 0. Further,

we have

[(Po)'(t2) — (Po)' ()]

1 8H(t2, S)
= /0 TT(S,U(S),Dﬁv(S))dS

— /1 MT(S,U(S),DﬂU(S))dS
0

1
</
0

s%[

8H(t2, S) _ 8H(t1, S)

B
o, v ‘T(s,v(s),D U(s))‘ds

ol tffl} , (4.27)
which tends to zero whenever ¢; — ¢,. In addition,

| DPu(tz) — D*Po(t)|

- | [ e [0 -
-t 1_ 7 /Otg(ze2 . s)—ﬁ</01 8H(§‘Z’ A)T(A,U(A)JD%(A))CZA) ds
_ /Otl (ty — s)5</01 aHéZ’ A)T(A, v(A),D%(A))dA) ds

4.3. Property of existence [
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| [ =97 = -9

« (/01 WT(A v(\), D (A))dA)ds

tQ—s ﬂ( aHS A (A,U(A),D%(A))dA)ds
[

<t | [0 = -9
([
ci ), o ()
<t [ =9 w9 ([

+%/ﬁt2(zﬁ2—s)—ﬁ</ol M‘d)\)ds

0s
M 1 . .
< 7 (F(a) +I(3— a)> (2(752 — ) P 5), (4.28)

which tends to zero as t; — t,. Therefore, inequalities (4.26), (4.27)

OH (s, \)
0s

|T()\, v(N), Dﬁv()\))d)\) ds

OH (s, \)
0s

T\, v(A), Du(N))dA |ds
\ )

%‘cﬂ) ds

and (4.28) imply that Pv is equicontinuous. Knowing that it is uniformly
bounded, we find that ¥ is completely continuous. The Schauder’s fixed
point theorem implies that ‘B has a fixed point v € I'c which is a solution
for the multi-term semilinear boundary value problem (4.1) and the proof

is completed. m

4.3. Property of existence
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Corollary 4.1 Let Y be a continuous function defined on [0, 1] x R x R with
values in R. Assume that (A1)-(A2) are satisfied and there exists & > 0 such

that the following conditions hold:

T(t,v,0) <&(Jv|+v|), 0<t<1, wv,veER, (4.29)
and
(! 1 2 1 r@—a))
S\ T "TB-w "o " Te=p )

(4.30)
Then, there is a solution for the multi-term semilinear boundary value problem

(4.1).

Proof. Since the assumptions (A1) — (A2) hold, then it suffices to verify
(A3) and (A4).

We know that (A3) and (A4) hold for any non-negative function 0 €
£1(0,1). Therefore, if we choose §(t) = 0, we get A = B = 0. Consequently,
the assumptions (A3) and (A4) are equivalent to the conditions (4.29) and
(4.30), respectively. So, these allow us to apply Theorem 4.1 which con-
firms the existence of a solution for the mentioned multi-term semilinear

problem (4.1). m

Corollary 4.2 Assume that there exist two real numbers n,v > 0 such that

n> sup |Y(t,v,v)] and v < inf |Y(t,0,0)]
0<t<1 0<t<1
vER | ,wER veER, weR

Then, the multi-term semilinear boundary value problem (4.1) has at least a

positive solution on [0, 1].

4.3. Property of existence
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Proof. From definitions of the functions (¢, u,v) and A(t, u,v), it is fol-

lowed that

v <6(t,u,v) <A(tu,v)<n, (0<t<1 veRvER)

Define

(%

N nt
)=—" 4+ T(3—a)t 0<t<l1

V() =B —a)t(l—-t)y, 0<t< 1.

So, we have clearly 0 < v,(t) < v*(t) for 0 <t < 1, and also

lﬂﬂznh(ﬂ

Tl) + F(S — Od)t}

1
Zn/\Hw$WS
0

1
2/ H(t,)|A(s,0*(s), DPv*(s))ds, 0<t<1,
0

and

U (t) =T (B —a)t(l —t)v

tOé

< V[m +I'(3 — oz)t}

1
< V/ |H (t,s)|ds
0

1
< / |H(t, 5)[0(s,v.(s), DPvu(s))ds, 0<t<1.
0

4.3. Property of existence



Chapter 4. Positive solutions of a Caputo multi-term semilinear FDE with fractional boundary
condition

Moreover, by some direct computations, we get

nte=h nl(3 —a)t!=?
Mla-p+1) T2-p) °

DoV (t) =

Thus,

and

r3—a)t'=? [t By, (s))ds
T2 5 /t 0(s,04(s), D v.(s))d

(3 —a)tt’
= TTe- )

T B —a)t’ (3 - a)t>? By, (s
LR I CE R

This means that the assumption (A2) is satisfied. Finally, if (A3) holds,

(1—+t)

then we can choose ( such that

(> A+B+ ! ! ! NS_QU.

B
2 m*"(r(a)*r(a T P R T ) T = )

Now, all hypotheses of Theorem 4.1 hold. Consequently, the multi-term

semilinear boundary value problem (4.1) has at least a positive solution

4.3. Property of existence
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v € T, where 0 < v,(t) < v(t) < v*(t) and DPv,(t) < DPu(t) < Dv*(t) for
each t € [0, 1] and the corollary is proved. =

To validate the theoretical findings, we provide a special example corre-
sponding to the suggested multi-term semilinear boundary value problem

(4.1).

4.4 Example

Example 4.1 According to the multi-term semilinear boundary value problem
(4.1), in the present example, we take oo = 1.5, 5 = 0.5, n = 1. To simplify the
calculations, we suppose that 0 < s <t < 1. Thus H(t,s) = —I'(1.5)t.

Also, if we choose Y (t,v,v) = —5 — 3t, then we get
5 < |Y(t,v,v)| <8.

Therefore, we can put namely n = 9 and v = 4. From the assumption (A2),

we obtain

1
vr(t) = 9/ |H(t,s)|ds = 9I'(1.5)t = 7.9760t, 0<s<t<I,
0

1
ol(t) = 4/ H (L, 5)|ds = AT(1.5)f = 35449, 0 <s<t<1.
0
By using definition of v(t), we obtain

v(t) = 8T(1.5)t = 7.0898t, 0<s<t<1.

4.4. Example
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Moreover, by some simple calculations, we obtain

IA
V)

IA
(e
IA
\_)—\

Div*(t) = 9%, 0

IA
V)

IA
~
IA
\_)—‘

DPu,(t) = 4*5, 0

IN
<~
IN
—_

Diu(t) =8t%, 0<s

Figure 1

Fd

T T
LUpper 3 olation
Lo 5 olution
Exact s olution

Crinate awiz

1 i i i i 1 i I i i
1] o1 02 03 04 08 0B OF 0B 08 1
Ahsciasa anis

Figure 4.1: Graphs of v, v, and v*

Figure 2

5

—_—A

—F

Ordinate axis
[}
n

n L 1 | | | L | 1 |
g a1 02 03 04 05 0 07 08 08 1
Absciasa anis

Figure 4.2: Graphs of A = Dfv,, B =
DPv* and C = DPv

The graphs of positive solutions and their derivatives are illustrated in Figures

4.4. Example
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1 and 2.

4.4. Example



Chapter 5

Positive solutions for a semilinear
differential equation under

Riemann-Liouville fractional derivation

5.1 Introduction

This the work inspired by [53] Zhang and Bai et al [72] and Su et al [59],
in this work, we will look for some sufficient conditions to establish the
existence of positive solutions to multi-term semilinear fractional Bound

Value Problem

Deu(t) +9(tvt)) =0, 0<t<l,
{ & o(t) + 0t v(1) << o

v(0) =0, DY 'v(0)=0, Dy *v(l)=0,
where Dj. denotes the Riemann-Liouville fractional derivative of order

2<a<3and?: (0,1] x R — R* which satisfies lim ¥(t,.) = +oc.

t—0+

77
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5.2 Transformation of the problem to an equivalent inte-

gral equation

Proposition 5.1 Let x € C([0,1],R) and 2 < o < 3. Then, the solution of the

linear Bound Value Problem

Dgv(t) + x(t) =0, (t€O=]0,1])

(5.2)
v(0) =0, D 'v(0)=0, Dy *v(l)=0,
corresponds to the solution of the following integral equation
1
u(t) = / H(t, s)x(s)ds (5.3)
0
where
a—2 _ _ \a—1
we -] e T T@ -
Hal(t, s) Ta—1) 0<t<s<1

Proof. Suppose that v is a solution of the linear Bound Value Problem (5.2).

Then from Proposition 1.2, it follows that

v(t) = et et 2 st — I3 x (1)

1 t
= et gt 4 gt — —/ t—s)* 1ty s)ds. (5.5)
M) /s (t—s)*"x(

Then, the first boundary condition gives c3 = 0. By applying the operator

Dy to (5.5) and using (1.6), we get

Do to(t) = al(a) — Iy x(t), (5.6)

5.2. Transformation of the problem to an equivalent integral equation
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which gives with regard to the second boundary condition
C1 = 0.

Now, we take the Riemann-Liouville operator of order (« — 2) to both sides

of (5.5) together with (1.6), we find that
Dy o(t) = el — 1) — I3 x(t), (5.7)

which gives us, taking into account the third boundary conditions

1 1
- Ta 1) /o (1 —s)x(s)ds.

By replacing ¢; and ¢, and ¢3 in (5.5), we get

C2

u(t) = —ﬁ/@ (t—S)a_l)((S)dS—l—%/o (1 —s)x(s)ds
= /Olﬁ(t,s)x(s)ds, (5.8)

in which #(t, s) is defined by (5.4). At this stage, we find that v will be a
solution of (5.3). Conversely, we regard v as a solution of integral equation

(5.8). Then, we can write
toz—?

2

v(t) = =Zg-x(t) +

Hence, by taking the operator D; on (5.9) and using (1.6), it follows di-
rectly that Df, v(t) + x(t) = 0. Finally, it is easy to find that v(0) = 0,
Do 'w(0) = 0 and DY *v(1) = 0, Consequently, v satisfies the linear Bound

Value Problem (5.2). This completes the proof of our proposition. m

5.2. Transformation of the problem to an equivalent integral equation
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Proposition 5.2 The Green function H(t,s) subjects to the following condi-

tions
(i) H(t,s) is continuous for any (t,s) € [0,1] x [0, 1],

(ii) H(t,s) > 0, for any (t,s) € (0,1) x (0,1).

1
1
e < |
(iii) tem[(?i(]/o H(t,s)s Hds < T = 1)(1_111)(2_”),f0r0 <u<l
! 1 T(1—p)
(iiii) / H(l,s)s Hds = — > 0, for
, L) Ma-DI-wWE—pn Tata-m
0<pu<l.
Proof.

(i) It is very easy to verify that the function H(¢, s) is continuous on (¢, s) €

[0,1] x [0, 1],

(ii) First, if 0 < t < s < 1, we have clearly that H(¢,s) = Hy(t,s) > 0,

we have clearly that: 0 < s <t < 1, we can write

H(t,s) = Hi(t,s)
t2(a—1)(1—5) = (t—s)7?

['(a)

tO‘*Q(a — 1)(1 _ S)ozfl . (t B S)Oz—l
” [(a)

ta_Q(CY — 1)(1 — 3)‘)‘_1 _ ta—l(l . %)a—l
] I'(a)
R TR e ST

')

_ (=) a—1-1)
N T(a) > 0. (5.10)

5.2. Transformation of the problem to an equivalent integral equation m
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(iii) For each s € [0,1] and 0 < p < 1, we have

/Htss“ds

21— s)(a—1) = (t—s)"" _ s a 1)
/0 T (o) S ds+/t s Md

/01 to=2(1 ;(3)(@ — 1)3’“d$ _ /Ot M{“d&

a)

a1 Y L e
iy, (s = gy [0 st
el ET g0

Ce)1—m2—p) I(a)
a2 tRD (1 — )

T Te-D0-pe-p Tita—p &A1
ta—2

= Ta-D0-pe-n

Thus,

1
Pla=1D1=p)2—p)

max/?—[tss“ds<

te|0,1

(iiii) It is a consequence of (5.11) in (iii).

5.3 Results for the existence

Now, to construct and prove our main results, let us consider the space

B = C|0,1] endowed with the norm ||v|| = max |v(¢)| which is a Banach

0<t<1

space and define a cone

P={veB, ot)>0, 0<t<1},

5.3. Results for the existence
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with an operator 7 : P — P as:

To(t) = /0 H(t, $)0(s, v(s))ds.

Lemma 5.1 Assume that 0 < p < 1,2 < o < 3, F : (0,1] — R is continuous

where lim F(t) = oo and t"F(t) is continuous on [0, 1|. Then, the function

t—0+

1
B(t) = / H(t, 5)F(s)ds,
0
is continuous on [0, 1].

Proof. Since t"F(t) is continuous, then with the following functional
1
U(t) = / H(t,s)s Hs!F(s)ds,
0

we check easily that ¥(0) = 0. The proof is made in three steps.

Step 1: ¢, =0.
From the continuity of t*F(t) in [0, 1], we can find a positive real constant
M satisfying

t"F(t)| <M, foreach ¢e0,1].

Thus,
|U(t) — W(0)] = |(t)|

= ‘/{)lﬂ(t,s)s"s“.}"(s)ds‘

5.3. Results for the existence
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_ ) /Ot 221 —s)(a—1) — (t — S)a_ls_“s”]:(s)ds

[(a)
) /1 $o=2(1 ;(5))(04 — 1)3“3“./7(5)d8‘
= ’/ a (Z)) —b s st F(s )dslt%s”s“}'(s)ds‘
< /0 (1 F(Z))(@ D g sh 7 (s \ds+/0 U i ;(2) 7| F(s)|ds

Mta_2(04 — 1) 1 _ M t a—1 —
< o) /0 (1 —s)s Hds + m/o (t—s)* s Hds. (5.12)

By integration by parts, we obtain

1 o 1
/0“‘3)3 TR Ca—

and by the change of variables s = tv, we get

t
/ (t —s)* s Hds = t* FB(1 — p, a).
0

Taking into account (5.12), we get

Mo M
Ol e pre - T T

where (3 is the Euler beta function.

Bl — p, ), (5.13)

By exploiting expression (5.13), we find that |¥(t)| — 0, when ¢ — 0, this
means that W is continuous ¢, = 0.

Step 2: ¢, € (0,1).

We will show that W(t) — W(¢y), when ¢t — ¢,. For this end, we consider

in the first place that ¢ > t,. After that and with the same arguments, we

5.3. Results for the existence
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easily show the second case t < ;. So, we have

W (t) — W(ty)|
B t ta—Q(l _ S)(Oé — 1) — (t — S)a_ls—ﬂsll $)ds
-1 ig e
Pl - s)(a— 1) “HsHF(s)ds — 0 s)a - D g F(s)ds
+/t o) sTHSHF(s)d /t T F(s)d

(1 =8)(a—1)— (tg— )1

|
CN
st
~
S0
NS
—
—
(o}
N—

s“s“}"(s)ds‘

1 02 He) L
_/0 ty (1 ;(Z))(Oé _ 1)3_“3“.7:(3)d3 +/0 (to 1:(2)) st F( )ds‘
= ‘ /0 (t*” tg—r((;)_ s = 1)3_“3“./7(8)d8
- 0 0 (t — S) F—&()to — 5) s‘“s“]:(s)ds B /to (t 1:(52;_ —“s“]-"(s)ds}
. M (272 —in;)(a 1) /01(1 s hds
M fo a—1 a—1 —1 M t a—1 —1
+m/@ {(t—s) —(tO—S) }S dS-l-ﬁ to(t_s) s tds
< M(to‘ FE(;{) )(Q_l)/o(l—$>8 uds_|__/ (t—S) s Hds
M fo a—1 —
—m/() (to — s) s Mds
- M2 —t57?) MEET(1 — ) Mty "T(1 — ) 0

Cla—)1-w2-—p) TOl+a—p)  Tl+a—p)
whent — .

Step 3: t) = 1.

In this case we follow the same steps of the proof used in the Step 2, we
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immediately deduce the continuity of WV atty = 1. m

Proposition 5.3 Suppose that 0 < p < 1,2 < a < 3,9 :(0,1] x Rt — R*

is a continuous map with 11151 Y(t,.) = +oo and t"I(t,v(t)) is continuous on
t—0+

[0,1] x RT, then, the operator T : P — P is completely continuous.

Proof. Since for all v € P, To(t / H(t, s)9(s,v(s))ds. Then, in view of
Lemma 5.1 together with the fact that ¥(¢,v) and (¢, s) are nonnegative
functions, it follows that for any v € P, 7 (v) € P.ie, T : P — P.

Let v* € P with ||[v*|| = n*. If we take v € P and |jv — v*|| < 1, we have
immediately ||v|| < n = 1+n*. Furthermore, since ¢"4(¢, v(t)) is continuous,
then, it is uniformly continuous on [0, 1] x [0, 7.

Therefore, for any e > 0, there exists 0 < w < 1 such that |t"9(¢,0(t)) —
t"9(t,0(t))| < e, forall ¢ € [0,1] and 0(t), v(¢t) € [0,n] with [0(¢) — 0(t)| < w.
Now, it is clear that if ||v — v*|| < w, we have v(t),v*(¢) € [0,n] and |v(t) —

v*(t)| < e, for all t € [0, 1]. Thus,
|t19(t,0(t)) — t'I(t,v*(t))| <e, forall ¢el0,1]. (5.14)
Let, v € P and ||v — v*|| < w. Then, from (5.14) we can write

|Tv—Tv*|| = max |[To(t) — To*(t)]

t€0,1]

IA

max/ H(t, s)s " |s"0(s,v(s)) — s"I(s,v*(s))|ds

tel0,1

IA

te€l0,1

5max/ H(t,s)s Hds

IA

[a - 1)(1 —1)(2—p)
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Since v* is taken arbitrarily in P, then the operator 7 : P — ‘P is continu-
ous.

Let, Q2 be a bounded subset of P and consider A = max t"J(t,v) + 1.

t€[0,1],veq
Then, it follows that
1
[To(t)| = / H(t,s)V(s,v(s))|ds

S/Htss“‘s“ﬁsv |ds

< / H(t,s)s "ds.
Hence,

A
Tl <

[o—=1)(1=p)(2-p)
This means that 7(2) is uniformly bounded. Now, we show that 7((Q2) is

equicontinuous. For v € Q and ¢1,t; € [0, 1] with ¢; < 5, we have
‘T’U(tg) - T’U(tl)‘
1
= / Mt 5) — Hltr, )| 95, 0())ds
0

= /0 1 [H(tg, s) — H(t, s)}s“s“é‘(s, v(s))ds

Lg 21— s)(a—1) = (b —s)*! _, (1 —s)(e— 1)
<A /0 o) s s +L T(a) s
Pl —s)(a—1) = (b =)t _ T —s)(a 1)
- o) s [ A e
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A2 =t ) (a—1) [ B AP a-1 _
< ( F<&>)( )/0(1—3)5 “d$+m/0 (ta —s)" "s7"ds
A h a=1 _y,
— m/o (t1 — s) s Hds
Mo AT (-
STa-00-we-mw Tta-pm o1

Note that the right side of (5.15) is independent of v and goes to zero,
when t, — t;. Consequently 7 sends bounded sets to equi-continuous sets
of P. Hence, Arzela-Ascoli Theorem ensured that 7 : P — P is completely

continuous. The proof of our Proposition is now completed. =

Theorem 5.1 Assume that 0 < p < 1,2 < a < 3,9 : (0,1] x Rt — R* is
continuous lir(% ¥(t,.) = +oo and t'9(t, x) is continuous on [0, 1] x R*. If the
t—

following hypotheses hold
(A1) : There exists a nondecreasing function ® € C(R*,R") such that

tHo(t, &) < ®(€), forall (t,€) €]0,1] x RT.

(LA2) : There exists p* > 0, where,
®(p*)

p*
Then, our problem (5.1) admits at least one positive solution.

<T(a—1)(1—p)(2 - p).

Proof. Let us consider theset ' ={v e P: |jv]| < p*} C P.
In view of Proposition 5.3, we know that the operator 7 : [ — P is
completely continuous. Suppose now that there exists v € 9" and A € (0, 1)

with

v = ATv. (5.16)
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From (A1) with (5.16), we find that

v(t) = ATo(t)
= /Hts (s,v(s))ds

< / H(t,s)s  std(s,v(s))ds

< /Htss"(b v(s))ds

< @(HUH)/O H(t,s)s Hds

@ ([lvll)

Ma-D0-mE—p)’

which means that

>T(a—1)(1—p)(2—p). (5.17)

A combination of (A2) and (5.17) leads to |(\H HH) # o ) o ||Vl # p*,
p*

which contradicts the fact that v € 9I'. Based on Theorem 1.1 , we conclude

that 7 admits a fixed point v € T', which presents a positive solution for our

problem (5.1). m

Theorem 5.2 Assume that 0 < u < 1,2 < o < 3,9 : (0,1] x RT —» R*
is continuous, t1_1>%1+ VU(t,.) = 400 and t'i(t,z) is continuous on [0,1] x R*.
If v and v are two positive constant numbers (v > v) satisfy the following
assumptions

(A3) : 19(1,€) < D — 1)(1 = p)(2 — w7, for (1,€) € [0,1] x [0,7),

(A4) - t'0(t, &) = T = 1)(1 = p) (2 — p)w, for (¢,€) € [0,1] x [0, 7].

Then, the FBVP (5.1) has at least one positive solution.
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Proof.
First Step : Let us consider

Ch:{vep: M”<P_F?@i§?bmkﬁ‘

Then, for each v € P N 00, and any ¢ € [0, 1], we have

['a—1I'(3— “)}g
IM'l4+a—p) '

ogmng[y-
Thus, in view of assumption (.44), we arrive to
To(l) = /01 H(1,$)0(s,v(s))ds
= /017-[(1,8)5“5“19(8,1)(5))d3

> T(a—1)(1—p)(2- ,u)?/’/o H(1,s)s Hds

1 T —p) ]
Ma-1D)A-p)2-p) TA+a—p

7=

~ Tla- 1= 0 w7

- [1-Mebreon
I'(l14+oa—p)

Consequently,

I70ll = max [To(@)] = [To()] 2 [1 _ Pla=DIE - u)] _

v=|v|,
T+ a— ) ]l

for any v € PN 00O;.

Second Step :
Consider Oy = {v eP: vl < ﬁ}. Then, for each v € P N 00, and

any t € [0, 1], we have 0 < v(t) < v. Then, by the assumption (.A3), we can

5.3. Results for the existence |
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write
To(t) = /0 ()5 s (s, v(s)ds
< Ta- 10 -we-n7 [ H(t, )5 s
< v=|v|. : (5.18)
Hence,

| Tv|| < |lv||, forall vePnoO,.

Consequently, the proof ends by exploiting the assumption (ii) in Theorem

1.2. m

5.4 Example

Example 5.1 Let us consider the following FBVP

)
1—t)3e'In(3 +eY)
D2'5Ut—|—( =0, 0<t<l1,
0+ () \/E

9 (5.19)

v(0) =0, DgPv(0)=0, DiPv(l)=0.

\

The problem (5.19) is a particular case of the main problem (5.1) with a =
2.5 and

1 —t)3%e 1 Y
)’e I3 +e") where we have clearly  lim 9(t,v) = +o0.

\/1_5 t—0t

Therefore, if we take ;1 = 0.5 and p* = 1.5, we obtain

I(t,v) = (

ot €) = (1 —t)etIn(3+ed)

< In(3+€%) =), forall (t,¢)e(0,1] xRT,

5.4. Example [
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where evidently, ® is a continuous nondecreasing function and

(p*)
p*

~ 1.3416... < T(a — 1)(1 — p)(2 — p) ~ 1.5045...

At this time, all assumptions of Theorem 5.1 are checked, consequently, our

problem (5.19) has at least one solution.

Example 5.2 In this example we look with the following BVP

( t—1)%In(3 +
v”’(t)+( 4);( U):O, 0<t<l,

\ (5.20)

The BVP (5.20) is a particular case (Integer case) of the FBVP (5.1) with

o = 3, and
(t = D3+ )
tH ’

I(t,v) =

0<p<l.

So, it is easy to verify by simple computations that all assumptions of Theorem
5.1 are satisfied with a good choice of p*. Hence, (5.20) admits a positive

solution.

5.4. Example



Conclusion

In this thesis we studied the existence of a positive solution of the non-
linear fractional equation with integral boundary conditions in a fractional
Sobolev and Banach spaces which is the novel main point. The results
are obtained by combing the upper solution and lower solution method
with Schauder fixed point theorem and the nonlinear alternative of Leray-
Schauder point theorem, we proved that the equation has at least one so-
lution under some conditions. One of the main objectives is to contribute
to the growth of fractional calculus and to enrich the study as part of the
mathematical analysis related to fractional differential equations. We used
the Sobolev fractional space to obtain an optimal result and a numerical

decrease in the error.
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