

République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieure *Et de la Recherche Scientifique* Université Kasdi Merbah Ouargla Faculté des mathématiques et des Sciences de la matière

POUR L'OBTENTION DU DIPLOME DE **DOCTORAT ES' SCIENCES PHYSIOUE Option : Physique Energétique**

> Présentée par : Khennane Messaouda

ANALYSE DES PERFORMANCES D'UN SYSTEME PHOTOVOLTAÏQUE

Soutenu le : 14/ 05/23

Professeur

Professeur

Professeur

Devant le jury :

Directeur : Boughali Slimane

Co-Directeur : Bechki Djamel

Examinateurs : Touafek Khaled

Khlifa AbdelKrim

MRA Atia AbdElMalek Professeur

Université Kasdi Merbah Université Kasdi Merbah Université Kasdi Merbah Directeur de Recherches **URAER** URAER Université d'El Oued

2022/2023

Résumé

Cette thèse traite l'analyse des performances énergétiques des systèmes photovoltaïques connectées au réseau. Pour ce faire, nous avons dimensionné, réalisé et mis en service une plate-forme de centrales photovoltaïques (fixe et avec poursuite solaire) d'une puissance crête de 16,28 kWc connectés au réseau interne de l'URAER, CDER Ghardaïa. L'objectif de cette étude est l'évaluation théorique et expérimentale de l'impact des conditions météorologiques sur les performances énergétiques des centrales photovoltaïques. Le gain énergétique du système PV porté par un suiveur réel du soleil par rapport un même système fixe incliné à la latitude du lieu est 40%. Du premier Janvier à la fin Aout 2019, l'énergie totale produite est 17.422 MWh, a été injecté dans le réseau interne de l'URAER, la consommation totale de l'Unité est 159,094 MWh, pour la même période. Donc approximativement 10,95 % de l'énergie totale consommée par l'Unité était d'origine renouvelable. L'indice de performance PR du système avec poursuite solaire atteint sa valeur minimale au mois de janvier (44%), et atteint son maximum au mois d'avril (88%). Le cumule de l'énergie totale injectée dans le réseau interne atteint 27 MWh le 05/04/2018 et 67.28 MWh le 31/10/2019. Le pourcentage de l'apport d'énergie de toute la plate-forme par rapport à la consommation total de l'URAER, varie de 6,60% en Janvier et 22,96% en Avril. Durant cette période, l'énergie produite par l'URAER équivaut à 2090,64 euro (277706,68 DA), et l'énergie consommée acheter à la Sonelgaz est 4772,82 euro (664853,826 DA).

Mots clés: Centrale solaire photovoltaïque, Suiveur solaire, réseau électrique, Onduleur, performance.

Abstract

This thesis deals with the analysis of the energy performance of photovoltaic systems connected to the grid. To do this, we have designed, realised and commissioned a platform of photovoltaic power plants (fixed and with solar tracking) with a peak power of 16.28 kWp connected to the internal network of URAER, CDER Ghardaïa. The objective of this study is the theoretical and experimental evaluation of the impact of meteorological conditions on the energy performance of photovoltaic power plants. The energy gain of the PV system carried by a real time sun tracking compared to the same fixed system is 40%. From January 1 to the end of August 2019, the total energy produced is 17,422 MWh, was injected into the internal network of URAER, the total consumption of the URAER Unit is 159,094 MWh, for the same period. Therefore approximately 10.95% of the total energy consumed by the URAER Unit was of PV energy. The performance index PR for solar tracking plant reaches its minimum value in January (44%), and reaches its maximum in April (88%). The cumulative total energy injected into the internal network reached 27 MWh on 05/04/2018 and 67.28 MWh on 31/10/2019. The percentage of the energy contribution of the whole platform compared to the total consumption of the URAER varies from 6.60% in January and 22.96% in April. During this period, the energy produced by URAER is equivalent to 2090.64 euro

(277706.68 DA), and the energy consumed to buy from Sonelgaz is 4772.82 euro (664853.826 DA).

Keywords: Photovoltaic solar power plant, solar tracker, electrical network, inverter, performance.

ملخص تتناول هذه الرسالة تحليل أداء الطاقة للأنظمة الكهروضوئية المتصلة بالشبكة. للقيام بذلك ، قمنا بتصميم وتشغيل منصة لمحطات الطاقة الكهروضوئية (الثابتة والمزودة بتتبع شمسى) بطاقة ذروة تبلغ 16.28 كيلوواط في الساعة متصلة بالشبكة الداخلية لوحدة **CDER URAER** Ghardaïa. الهدف من هذه الدراسة هو التقييم النظرى والتجريبي لتأثير الظروف الجوية على أداء الطاقة لمحطات الطاقة الكهروضوبَية. إن كسبَ الطاقة للنظام الكهروضوئي الذي يتم بواسطة تتبع أشعة الشمس في الوقت الفعلى مقارنة بالنظام الثابت نفسه هو 40%. من 1 جانفي إلى نهاية أوت 2019 ، بلغ إجمالي الطاقة المنتجة 17.422 ميجاوات ساعة ، تم ضخها في الشبكة الداخلية لوحدة URAER ، وبلغ إجمالي استهلاك وحدة URAER ، وبلغ ميجاوات ساعة ، لنفس الفترة. لذلك كان ما يقرب من 10.95 ٪ من إجمالي الطاقة المستهلكة من طرف وحدة URAER بواسطة الطاقة الكهروضوئية. يصل مؤشر الأداء العام لمحطة تتبع الطاقة الشمسية إلى الحد الأدنى لقيمته في جانفي (٪44) ، ويصل إلى الحد الأقصى في أفريل (٪88). بلغ إجمالي الطاقة التراكمية المحقونة في الشبكة الداخلية 27 ميغاواط ساعة بتاريخ 04/05/2018 و 67.28 ميغاواط ساعة بتاريخ 2019/10/31. تتراوح نسبة مساهمة الطاقة للمنصة بأكملها مقارنة بإجمالي استهلاك وحدة URAER من 6.60٪ في جانفي و 22.96٪ في أفريل. خلال هذه الفترة، تعادل الطاقة التي تنتجها المحطات الشمسية 2090.64 يورو (DA 277706.68) ، والطاقة المستهلكة للشراء من Sonelgaz تبلغ 4772.82 يورو (664853.826 .(DA الكلمات المفتاحية : محطة الطاقة الشمسية الكهروضوئية ، تعقب الطاقة الشمسية ، الشبكة

الكهربائية ، المموج ، الأداع.

REMERCIEMENT

REMERCIEMENT

Les travaux présentés dans cette thèse ont été effectués au sein de l'Unité de Recherches Appliquées en Energies Renouvelables, Ghardaïa, sous la direction de monsieur **Boughali Slimane**, professeur à l'Université Kasdi Merbah Ouargla, et monsieur **Bechki Djamel** professeur à l'Université Kasdi Merbah Ouargla, auxquels je présente l'expression de ma profonde gratitude pour tous les conseils et les encouragements qu'ils m'ont prodigué pendant toute la durée de ce travail.

Mes remerciements les plus sincères sont adressés à monsieur **Marif Yacine**, professeur à l'Université Kasdi Merbah Ouargla, pour l'honneur qu'il m'a fait en acceptant la présidence du jury de cette thèse.

Mes vifs remerciements vont aussi à monsieur **Touafek Khaled**, Directeur de Recherches à l'Unité de Recherches Appliquées en Energies Renouvelables, Ghardaïa, pour l'intérêt qu'il a porté à ce travail en me faisant l'honneur de participer à ce jury.

Mes remerciements les plus sincères sont adressés à monsieur **Khelifa AbdelKrim**, MCA à l'Unité de Recherches Appliquées en Energies Renouvelables, Ghardaïa, pour l'intérêt qu'il a porté à ce travail en me faisant l'honneur de participer à ce jury.

Je suis très reconnaissant également à monsieur **Atia AbdElMalek**, professeur à l'Université d'El Oued, pour l'intérêt qu'il a bien voulu porter à ce travail en acceptant de siéger dans ce jury.

A toutes les personnes (dont le nombre est très élevé pour les citer toutes ici), qui ont contribué de près ou de loin, directement ou indirectement à l'aboutissement à ce travail, je les remercie tous, particulièrement ma famille et tous mes amis.

DEDICACE

DEDICACES

Je dédie ce modeste travail à : La mémoire de mon très cher père et mon frère Noureddine La mémoire de mes oncles La mémoire de mes grands parents Ma chère mère et mes chères enfants : Nassrallah, Khaoula, Chaima et Marouane Mes frères, et mes nerveux Toute ma famille.

Avant-propos :

Les travaux de recherches consignés par la présente thèse ont été concrétisés par plusieurs publications et communication, nationales et internationales dont :

Publications Scientifiques

- 1. Messaouda Benbitour Khennane, Slimane Boughali , Djamel Bechki , Layachi Zaghba , Amor Fezzani , Idriss Hadj mahammed, Experimental performance characterization and economic efficiency of 16.28 kwp grid-tied pv systems in semi-arid climate, Diagnostyka. 2021;22(2):53-65 DOI:10.29354/diag/135926
 - Messaouda Benbitour, Sliman Boughali, Djamal Bechki, Ali Malek, Boubaker Azoui, Layachi Zaghba, Amor Fezzani, Idriss Mahammed and Samir Oudjana, Performance Analysis of PV System on Real Time Sun Tracking Structure for Grid Connection in Southern Algeria, SCITEPRESS Digital Library, Volumes: Vol. 1 - 978-989-758-431-2, P. 199 – 205, ISBN: 978-989-758-431-2, P. 409 – 418, DOI:10.5220/0009775904090418. 2020 by SCITEPRESS – Science and Technology Publications.
- 3. Layachi Zaghba, Messaouda Khennane, Amor Fezzani, Abdelhalim Borni& Idriss Hadj Mahammed (2019): Experimental outdoor performance evaluation of photovoltaic plant in a Sahara environment (Algerian desert), International Journal of Ambient Energy, DOI:10.1080/01430750.2019.1636865.
 - **4. Layachi Zaghba, Messaouda Khennane, Amor Fezzani, Abdelhalim Borni &Idriss Hadj Mahammed** (2020): Experimental performance assessment of a 2.25 kWp Rooftop PV system installed in the desert environment: a case study of Ghardaia, Algeria, International Journal of Sustainable Engineering, DOI: 10.1080/19397038.2020.1743377.
 - 5. Layachi Zaghba ; Messaouda Khennane ; Abdelhalim Borni ; Amor Fezzani ; Abdelhak Bouchakour ; Idriss Hadj Mahammed ; Samir Hamid Oudjana, A Genetic Algorithm based Improve P&O-PI MPPT Controller for Stationary and Tracking Grid-Connected Photovoltaic System, IEEE Xplore: 27 April 2020, 2019 7th International Renewable and Sustainable Energy Conference (IRSEC), 2019, Page(s): 1–6 DOI: 10.1109/IRSEC48032.2019.9078304.
 - A. Fezzani ; I. Hadj Mahammed ; L. Zaghba ; M. Benbitour Khennane ; A. Bouchakour ; S. Hamid Oudjana, S. Drid, Performance Evaluation of Photovoltaic Systems using Simulation Model and Solmetric Analyzer, IEEE Xplore: 27 April 2020, 2019 7th International Renewable and Sustainable Energy Conference (IRSEC), 2019, Page(s): 1 6 , 10.1109/IRSEC48032.2019.9078246.
 - 7. Layachi Zaghba, Messaouda Khennane, Abdelhalim Borni, Amor Fezzani, Idriss Hadj Mahamed and Abdelhak Bouchakour, Intelligent MPPT Control of Stationary and Dual-axis Tracking Grid-connected Photovoltaic System,

SCITEPRESS Digital Library , Volumes: Vol. 1 - 978-989-758-431-2, P. 199 – 205, ISBN: 978-989-758-431-2, DOI:10.5220/0009772901990205. 2020 by SCITEPRESS – Science and Technology Publications.

- 8. Layachi Zaghba; Messaouda Khennane; Abdelhalim Borni; Amor Fezzani; Abdelhak Bouchakour; Idriss Hadj Mohammed; Samir Hamid Oudjana, An enhancement of grid connected PV system performance based on ANFIS MPPT control and dual axis solar tracking, Published in: 2019 1st International Conference on Sustainable Renewable Energy Systems and Applications (ICSRESA 2019), Date of Conference: 4-5 Dec. 2019, Tebessa, Algeria, IEEE Xplore DOI: 10.1109/ICSRESA49121.2019.9182591. Date Added to IEEE Xplore: 01 September 2020.
- **9. Layachi Zaghba, Messaouda Khennane, Amor Fezzani, ,Idriss Hadj Mahammed &Abdelhalim Borni**, A combined theoretical and experimental performance analysis of a grid-tied photovoltaic system in semi-arid climate : a case study in Ghardaia, Algeria, International Journal of Green Energy, https://doi.org/10.1080/15435075.2020.1814297.
- 10. Layachi Zaghba, Messaouda Khennane, Amor Fezzani, Idriss Hadj Mahamed, Abdelhalim Borni ,Performance evaluation of 2.25 kWp rooftop Solar PV plant based on experimental measurements in the desert environment, Case study for Ghardaia, Algeria, International Journal of Power Electronics, Accepted,. DOI: 10.1504/IJPELEC.2021.10027521.
- **11. A. Fezzani, N. Bouarroudj, S. Drid, L. Zaghba, I. Hadj Mahammed, M. Benbitour** "Robust maximum power point tracking control for photovoltaic system based on second order sliding- mode" International Journal of Applied Power Engineering (IJAPE),2020.

Communications Scientifiques

- Layachi Zaghba, Messaouda Khennane, Abdelhalim Borni, Amor Fezzani, Idriss Hadj Mahamed and Abdelhak Bouchakour, Intelligent MPPT control of stationary and dual axis tracking grid connected photovoltaic system, The 1st International Conference of Computer Science and Renewable Energies « ICCSRE'2018 », November 22 – 24, 2018, Ouarzazate – Morocco.
- Amor Fezzani, Noureddine Bouarroudj, Said Drid, Idriss Hadj Mahammed and Layachi Zaghba, Second order sliding Mode-Based maximum power point tracking control for photovoltaic system, The 1st International Conference of Computer Science and Renewable Energies « ICCSRE'2018 », November 22 24, 2018, Ouarzazate Morocco.
- A. Fezzani, I. Hadj Mahammed, S. Drid ,L. Zaghba, A Bouchakour ,M. Benbitour and S. hamid Oudjana "Performance Evaluation of Photovoltaic Systems Using Simulation Model and Solemtric Analyser "7th International Renewable and Sustainable Energy Conference «IRSEC'2019 » Agadir, 27-30 Nov 2019.

- L. Zaghba, M. Khennane, A. Borni, A. Fezzani, I. Hadj Mahammed , A. Bouchakour S. hamid Oudjana " A genetic algorithm based improve P&O-PI MPPT controller for stationary and tracking grid- connected Photovoltaic System" 7th International Renewable and Sustainable Energy Conference « IRSEC'2019 » Agadir, 27-30 Nov 2019.
- Layachi Zaghba, Messaouda Khennane, Abdelhalim Borni, Amor Fezzani, Abdelhak Bouchakour, Idriss Hadj Mahammed and Samir Hamid Oudjana, A genetic algorithm based improve P&O–PI MPPT controller for stationary and tracking grid-connected photovoltaic system, 7th International Renewable and Sustainable Energy Conference (IRSEC 2019), Nov 27, 2019 Nov 30, 2019, Agadir, Morocco.
- Amor Fezzani, Idrssi Hadj Mahammed, Said Drid, Layachi Zaghba, Messouda Khennane, Abdelhak Bouchakour and Samir Hamid Oudjana, Performance Evaluation of Photovoltaic Systems Using Simulation Model and Solmetric Analyzer, 7th International Renewable and Sustainable Energy Conference (IRSEC 2019), Nov 27, 2019 Nov 30, 2019, Agadir, Morocco.
- I. Hadj Mahammed, A. Hadj Arab, S. Berrah, Y. Bakelli, M. Khennane, S. Hamid Oudjana, A. Fezzani and L. Zaghba, " modelization of PV Moudules maximum power under desert real conditions" Proceedings of SEEP2019, 18-21November 2019, UOS, Sharjah, UAE.
- Layachi Zaghba, Messaouda Khennane, Abdelhalim Borni, Amor Fezzani, Abdelhak Bouchakour, Idriss Hadj Mahammed and Samir Hamid Oudjana, An enhancement of grid connected PV system performance based on ANFIS MPPT control and dual axis solar tracking, The International Conference on Sustainable, Renewable Energy Systems and Applications (ICSRESA'19), December 04-05, 2019, Tebessa, Algeria.

Résumé

Cette thèse traite l'analyse des performances énergétiques des systèmes photovoltaïques connectées au réseau. Pour ce faire, nous avons dimensionné, réalisé et mis en service une plate-forme de centrales photovoltaïques (fixe et avec poursuite solaire) d'une puissance crête de 16,28 kWc connectés au réseau interne de l'URAER, CDER Ghardaïa. L'objectif de cette étude est l'évaluation théorique et expérimentale de l'impact des conditions météorologiques sur les performances énergétiques des centrales photovoltaïques. Le gain énergétique du système PV porté par un suiveur réel du soleil par rapport un même système fixe incliné à la latitude du lieu est 40%. Du premier Janvier à la fin Aout 2019, l'énergie totale produite est 17.422 MWh, a été injecté dans le réseau interne de l'URAER, la consommation totale de l'Unité est 159,094 MWh, pour la même période. Donc approximativement 10,95 % de l'énergie totale consommée par l'Unité était d'origine renouvelable. L'indice de performance PR du système avec poursuite solaire atteint sa valeur minimale au mois de janvier (44%), et atteint son maximum au mois d'avril (88%). Le cumule de l'énergie totale injectée dans le réseau interne atteint 27 MWh le 05/04/2018 et 67.28 MWh le 31/10/2019. Le pourcentage de l'apport d'énergie de toute la plate-forme par rapport à la consommation total de l'URAER, varie de 6,60% en Janvier et 22,96% en Avril. Durant cette période, l'énergie produite par l'URAER équivaut à 2090,64 euro (277706,68 DA), et l'énergie consommée acheter à la Sonelgaz est 4772,82 euro (664853,826 DA).

Mots clés : Centrale solaire photovoltaïque, Suiveur solaire, réseau électrique, Onduleur, performance.

Abstract

This thesis deals with the analysis of the energy performance of photovoltaic systems connected to the grid. To do this, we have designed, realised and commissioned a platform of photovoltaic power plants (fixed and with solar tracking) with a peak power of 16.28 kWp connected to the internal network of URAER, CDER Ghardaïa. The objective of this study is the theoretical and experimental evaluation of the impact of meteorological conditions on the energy performance of photovoltaic power plants. The energy gain of the PV system carried by a real time sun tracking compared to the same fixed system is 40%. From January 1 to the end of August 2019, the total energy produced is 17,422 MWh, was injected into the internal network of URAER, the total consumption of the URAER Unit is 159,094 MWh, for the same period. Therefore approximately 10.95% of the total energy consumed by the URAER Unit was of PV energy. The performance index PR for solar tracking plant reaches its minimum value in January (44%), and reaches its maximum in April (88%). The cumulative total energy injected into the internal network reached 27 MWh on 05/04/2018 and 67.28 MWh on 31/10/2019. The percentage of the energy contribution of the whole platform compared to the total consumption of the URAER varies from 6.60% in January and 22.96% in April. During this period, the energy produced by URAER is equivalent to 2090.64 euro (277706.68 DA), and the energy consumed to buy from Sonelgaz is 4772.82 euro (664853.826 DA).

Keywords: Photovoltaic solar power plant, solar tracker, electrical network, inverter, performance.

ملخص تتناول هذه الرسالة تحليل أداء الطاقة للأنظمة الكهروضوئية المتصلة بالشبكة. للقيام بذلك ، قمنا بتصميم وتشغيل منصة لمحطات الطاقة الكهروضوئية (الثابتة والمزودة بتتبع شمسى) بطاقة ذروة تبلغ 16.28 كيلوواط فى الساعة متصلة بالشبكة الداخلية لوحدة URAER، **CDER** Ghardaïa. الهدف من هذه الدراسة هو التقييم النظرى والتجريبي لتأثير الظروف الجوية على أداء الطاقة لمحطات الطاقة الكهروضوئية. إن كسب الطاقة للنظام الكهروضوئي الذي يتم بواسطة تتبع أشعة الشمس في الوقت الفعلى مقارنة بالنظام الثابت نفسه هو 40%. من 1 جانفي إلى نهاية أوت 2019 ، بلغ إجمالي الطاقة المنتجة 17.422 ميجاوات ساعة ، تم ضخها في الشبكة الداخلية لوحدة URAER ، وبلغ إجمالي استهلاك وحدة URAER ، وبلغ ميجاوات ساعة ، لنفس الفترة. لذلك كان ما يقرب من 10.95 ٪ من إجمالي الطاقة المستهلكة من طرف وحدة URAER بواسطة الطاقة الكهروضوئية. يصل مؤشر الأداء العام لمحطة تتبع الطاقة الشمسية إلى الحد الأدنى لقيمته في جانفي (44٪) ، ويصل إلى الحد الأقصى في أفريل (88٪). بلغ إجمالي الطاقة التراكمية المحقونة في الشبكة الداخلية 27 ميغاواط ساعة بتاريخ 04/05/2018 و 67.28 ميغاواط ساعة بتاريخ 2019/10/31. تتراوح نسبة مساهمة الطاقة للمنصة بأكملها مقارنة بإجمالي استهلاك وحدة URAER من 6.60٪ في جانفي و 22.96٪ في أفريل. خلال هذه الفترة، تعادل الطاقة التي تنتجها المُحطات الشمسية 2090.64 يورو (DA 277706.68) ، والطاقة المستهلكة للشراء من Sonelgaz تبلغ 4772.82 يورو (664853.826 .(DA الكلمات المفتاحية : محطة الطاقة الشمسية الكهروضوئية ، تعقب الطاقة الشمسية ، الشبكة الكهربائية ، المموج ، الأداء.

Sommaire

Chapitre 1 : Les énergies renouvelables dans le monde et en Algérie	3
1. Le système énergétique de l'Algérie changement climatique, énergie et environnement	3
1.1. Développement d'un modèle de phases pour une transformation durable	3
1.2. Développement durant les phases de transition	3
1.3. Les facteurs retenus pour l'étude des phases	3
2. Transfert du modèle de phases au cas de l'Algérie	4
2.1.Collecte de données	4
2.1.1. Développement avant la phase I	5
2.1.2. Phase 1 - « Décollage des Energies renouvelables »	5
2.1.3. Phase II : « intégration du système Energie Renouvelable »	5
2.1.4. Phase III : « Electricité en carburant / Gaz (PtF/G)	6
2.1.5. Phase IV : « Vers 100 % Energie Renouvelable »	6
3. Catégorisation de la transformation du système énergétique en Algérie selon le modèle de phases	7
3.1. Evaluation de l'état actuel du pays	7
3.2. L'offre et la demande d'énergie	8
3.3. Les hydrocarbures dominaient le mix énergétique en 2018	8
3.4.La demande d'électricité	9
3.5. La consommation énergétique	9
3.6. L'Algérie possède d'importantes réserves en hydrocarbures	10
 4. La contribution des hydrocarbures au produit brut (PIB) est de 45,9%. Les hydrocarbures Algériens sont exportés 	10
5. Énergies renouvelables	11
5.1. L'Algérie dispose de	11
5.2. Le projet pilote d'énergie solaire à concentration (ESC) de l'Algérie	11
5.3.SKTM	11
5.4.Energie éolienne	12
6. Projets ER opérationnels en Algérie	12
7. Programme des ER 2030 en Algérie en (MWc)	13
8. Réseau de transport d'électricité de l'Algérie	13
9. Structure du marché de l'électricité avec les autorités et les entreprises concernées	14
10. Les émissions de gaz à effet de serre (GES)	15

Chapitre 2 : Introduction à l'énergie solaire photovoltaïque	19
1. Gisement solaire	19
1.1. La déclinaison (δ)	19
1.2. L'angle solaire horaire, et l'angle horaire du coucher (ou du lever) du soleil	19
1.3. Rayonnement global hors atmosphère G0	20
2. Calcul de l'irradiation solaire	20
2.1. Estimation de l'irradiation à ciel clair	21
3. Principe de fonctionnement des cellules photovoltaïques	26
3.1. Rendement d'une cellule photovoltaïque	27
3.2. Caractéristiques théoriques	27
3.3. Modèle du générateur photovoltaïque	29
3.3.1. Modèle à cinq paramètres	29
3.3.2. Modèle de la température de la cellule	30
3.4. Application	31
3.4.1. Corrections à d'autres conditions de température et d'éclairement	31
3.4.2. Méthode selon la norme CEI 891	31
4. Dimensionnement d'un système photovoltaïque	32
4.1. Le modèle de calcul de l'irradiation	33
4.2. Irradiation globale sur plan incliné	33
4.3. Système PV isolé	33
4.3.1. Dimensionnement du champ PV	33
4.3.2. Bilan énergétique du système	34
4.3.3. Dimensionnement du parc de stockage	38
4.4. System PV connecté au réseau	38
5. Les différents types de systèmes PV	39
5.1. Les systèmes photovoltaïques autonomes	39
5.2. Systèmes hybrides	41
5.3. Systèmes Hybride multi sources d'énergie solaire photovoltaïque raccordée	e 13
au réseau et autoconsommation	43
5.4. Systèmes PV raccordés au réseau	44
5.5. Système photovoltaïque en mode autoconsommation avec stockage	46

Chapitre 3 : Etude expérimentale des performances et efficacité économique des systèmes pv reliés au réseau de 16,28 kwp en climat semi-aride		49
1.	Model du champ photovoltaïque	49
2.	Gain de puissance	51
3.	Présentation des systèmes PV étudié	51
4.	Saisie des données et monitoring	53
5.	Description des systèmes de la plate-forme	53
5.1.	Première mini-centrale PV fixe	53
5.2.	Seconde mini-centrale portée par une structure avec suiveur réel du soleil	57
5.3.	La troisième mini-centrale de puissance crête 11.28kWc porté par des	61
suive	urs du soleil	01
6.	Résultats et discussion	68
7.	Etude économique	73

Chapitre 4 : Etude des performances d'un système photovoltaïque		78
1.	Présentation du système	79
2.	Modèle du champ photovoltaïque	81
3.	Rendement du champ Photovoltaïque	82
4.	Modèle de l'onduleur	85
5.	Etude des performances des systèmes photovoltaïques	88
5.1.Comparaison entre un système avec suiveur reel du soleil et un système fixe		88
5.2.	5.2. Les performances du système	
5.2.1.	Rendement de surface Ya	91
5.2.2.	Rendement du champ Yf	91
5.2.3.	Le rendement de référence Yr	92
5.2.4.	Indice de performance Pr	92

Liste des figures

LISTE DES FIGURES

CHAPITRE1 : Les énergies renouvelables dans le monde et en Algérie		ie
Figure 1-1	Energies renouvelables 2021 - Analyse et prévisions jusqu'en 2026	02
Figure 1-2	Le budget alloué aux énergies renouvelables	02
Figure 1-3	Cartographie sommaire permettant de visualiser la structure et les nœuds du réseau électrique du projet Desertec	06
Figure 1-4	Consommation totale d'énergie en Algérie 1990-2018, par secteurs	07
Figure 1-5	Production totale d'énergie en Algérie, selon le type d'énergie	08
Figure 1-6	Consommation d'énergies totale tous types d'énergies confondu	09
Figure 1-7	Consommation totale de l'énergie selon l'énergie fossile ou renouvelable	09
Figure1-8	Production d'énergies en Algérie	10
Figure 1-9	Réseau de transport d'électricité de l'Algérie	14
Figure 1-10	Marche Algérien de l'électricité et de l'énergie.	15
Figure 1-11	Le profil du CO2 algérien (2018).	16
Figure 1-12	Les émissions résultant de la production de chaleur et d'électricité (2018).	16

CHAPITRE 2 : Introduction à l'énergie solaire photovoltaïque		
Figure 2-1	Caractéristique (I-V) d'une cellule photovoltaïque	26
Figure 2-2	Circuit équivalent d'une cellule photovoltaïque	28
Figure 2-3	L'énergie journalière mensuelle moyenne fournie à la charge durant l'année	37
Figure 2-4	L'énergie journalière mensuelle moyenne produite par le champ photovoltaïque et l'énergie journalière mensuelle moyenne fournie à la charge durant l'année.	39
Figure 2-5	Schéma de principe d'un système PV isolé avec stockage	40
Figure 2-6	Système PV autonome sans stockage (pompage)	41
Figure 2-7	Système hybride photovoltaïque groupe électrogène avec stockage	41
Figure 2-8	Système photovoltaïque Hybride groupe électrogène utiliser au sud Algérien	43
Figure 2-9	Systèmes Hybride multi sources d'énergie solaire photovoltaïque raccordée au réseau et autoconsommation	44
Figure 2-10	Système photovoltaïque à injection totale sans stockage (totale vente)	45
Figure 2-11	Système photovoltaïque en mode vente de l'excédent	46
Figure 2-12	Système photovoltaïque en mode autoconsommation avec stockage	46

CHAPITRE 3 : Etude expérimentale des performances et efficacité économique		mique
de	es systèmes PV reliés au réseau de 16,28 kWc en climat semi-aride	
Figure 3-1	Circuit équivalent de la cellule modèle à une seule diode	50
Figure 3-2	Localisation de la plate-forme à Ghardaïa, Algérie par Google Earth	52
Figure 3-3	Plate-forme des trois systèmes PV et la cabine des onduleurs et	53
Figure 2 4	Saisie des doinnées.	51
Figure 3-4	Représente le système de saisie des données électrique du système	54
Figure 3-5	électriques DC et AC ainsi que l'onduleur	55
Figure 3-6	La caractéristique $I(V)$ et $P(V)$ du module photovoltaïque Inventux series X .	55
Figure $3 - 7$	Les variations de l'énergie CD et AC durant l'année 2018.	56
Figure 3 - 8	Structure porteuse, champ PV, armoire électrique et onduleur.	58
Figure 3 - 9	Evolution de la production de puissance du système durant la journée 09 Aout 2018 à ciel couvert	58
Figure 3-10	Evolution de la production de puissance du système durant la journée ensoleillée 28 Septembre 2019, ciel clair.	59
Figure 3-11	Représente les énergies mensuelles produites durant l'année 2019.	60
Figure 3-12	Les trois champs portés par des structures suiveuses du soleil.	61
Figure 3-13	Les onduleurs monophasés et leurs armoires électriques de connexion aux trois phases du réseau.	62
Figure 3-14	Diagramme de connexion des trois champs PV montés sur suiveurs du soleil aux onduleurs et aux trois phases du réseau.	62
Figure 3-15	Effet de l'irradiation sur la caractéristique I(V) du champ PV 16 modules en série	63
Figure 3-15	Effet de l'irradiation sur la caractéristique P(V) du champ PV 16	64
«2»	modules en série	
Figure 3-16 « 1 »	Effet de la température sur le caractéristique I(V) du champ PV 16 modules en série	64
Figure 3-16 « 2 »	Effet de la température sur le caractéristique P(V) du champ PV 16 modules en série	65
Figure 3-17	Le profil de puissance de sortie des trois champs durant une journée à ciel partiellement couvert en fin de journée le 21 Septembre 2018	65
Figure 3-18	Le profil de puissance de sortie des trois champs durant une journée à ciel partiellement couvert en milieu de journée 26 Juin 2018	66
Figure 3-19	Profil de la puissance produite durant une journée à ciel claire, 25 Octobre 2018	66
Figure 3-20	L'énergie produite par le système durant une journée à ciel peu couvert, le 31 Aout 2018	67
Figure 3-21	La production journalière de la puissance durant une journée totalement couverte, le 12 Aout 2018	67
Figure 3-22	Profil de puissance totale de sortie le 07/10/19 et 30/09/19	68
Figure 3-23	Influence des tempêtes de sables sur la surface de captation des champs PV	69
Figure 3-24	Les énergies journalières produites par toutes les centrales durant les mois de Juillet et Octobre 2019.	70

Figure 3-25	Evolution de l'énergie injectée dans le réseau interne de	70
	I'UKAEK.	
Figure 3-26	L'énergie mensuelle produite par tous les systèmes du 1 Janvier au	71
	31Aout 2019.	
Figure 3-27	L'énergie consommée par l'URAER durant la période du 1 Janvier	71
	2019 au 31 Aout 2019.	
Figure 3-28	Le rapport d'intégration %de la production PV totale dans le	72
	réseau interne de L'URAER du 1 Janvier 2019 au 30 Aout 2019.	
Figure 3-29	Le rapport d'intégration %de la production PV totale dans le	72
_	réseau interne de L'URAER du 1 Janvier 2019 au 30 Aout 2018.	
Figure 3-30	Energie PV et énergie fossile consommées	74
Figure 3-31	Le cout de l'énergie PV produite et de l'énergie fossile	74
_	consommée a) En euro et b) en DA	

CHAPITRE 4 : Etude des performances d'un système photovoltaïque		
Figure 4-1	Système photovoltaïque monté sur suiveur réel du soleil.	79
Figure 4-2	L'irradiation journalière avec suiveur et sur le plan fixe, ainsi que	80
	la température ambiante le 08 Février 2017.	
Figure 4-3	Représente les différentes parties d'un système photovoltaïque	81
	connecté au réseau.	
Figure 4-4	Module de cellule photovoltaïque	81
Figure 4-5	Evolution du rendement théorique et du rendement expérimentale	84
	durant la journée du 08.Fubrary.2017.	
Figure 4-6	Evolution de l'irradiation sur le plan des modules et de la	85
	température de jonction des deux systèmes fixe et avec suiveur.	
Figure 4-7	Rendement de l'onduleur en % par rapport à la tension Vdc DC	87
	[V], durant la journée du 08.Février.2017.	
Figure 4 - 8	Rendement de chaque journée type de chaque mois de l'année.	87
Figure 4 - 9	Rendement mensuel moyen de l'onduleur.	88
Figure 4-10	Irradiation journalière mensuelle moyenne sur la surface des	89
	champs PV.	
Figure 4-11	Energie journalière mensuelle moyenne DC calculée et mesurée	90
	pour les deux systèmes.	
Figure 4-12	Energie mensuelle produite par le champs PV (Epv) porté par le	90
	traker, et l'énergie mensuelle moyenne injecté dans le réseau (Eac)	
	de l'URAER.	
Figure 4-13	Rendement de surfaces Ya.	91
Figure 4-14	Le coefficient de la productivité finale normalisée généré par le	92
	système	
Figure 4-15	Indice de référence normalisé de productivité	92
Figure 4-16	Indice de performance Pr	93

Liste des tableaux

LISTE DES TABLEAUX

CHAPITRE1 : Les énergies renouvelables dans le monde et en Algérie		
Tableau 1-1	Projets ER opérationnels en Algérie	12
Tableau 1-2	Programme des énergies renouvelables ente 2015 et 2030 Algérie	13

CHAPITRE 2 : Introduction à l'énergie solaire photovoltaïque		
Tableau 2-1	Les jours types standards des mois	25
Tableau 2-2	Les numéros des journées types dans l'année	25
Tableau 2-3	Les paramètres appliqués au site de Ghardaïa	25
Tableau 2-4	Puissances crêtes des modules pour différents éclairements.	31
Tableau 2-5	Caractéristiques électriques des modules	31
Tableau 2-6	Gisement solaire du site de Ghardaïa	37
Tableau 2-7	Bilan énergétique de l'installation	37
Tableau 2-8	Bilan énergétique de l'installation	38

CHAPITRE 3 : Etude expérimentale des performances et efficacité économique des systèmes PV reliés au réseau de 16,28 kWc en climat semi-			
aride			
Tableau 3-1	Caractéristiques du module PV X3-125, et de l'onduleur Sunny	56	
	Boy SB 3000TL-20		
Tableau 3-2	Les caractéristiques des modules Sunmodule 150W, et les	60	
	propriétés électriques de l'onduleur Sunny Boy SB 3000HF		
Tableau 3-3	Caractéristiques électriques du module CentroSolar S 235 P60 et	63	
	de l'onduleur Sunny Boy SB 4000 TL		
Tableau 3-4	Les énergies PV produite et les énergies consommées	73	
Tableau 3-5	Résume le cumule de l'énergie PV produite et de l'énergie	74	
	conventionnelle consommée par l'Unité, ainsi que les couts des		
	deux énergies en DA et en EURO.		

CHAPITRE 4 : Etude des performances d'un système photovoltaïque			
Tableau 4-1	Les valeurs significatives de la journée étudiée	83	
Tableau 4-2	Les valeurs significatives de la journée étudiée	84	
Tableau 4-3	Les valeurs max et min des irradiations des deux systèmes.		
Tableau 4-4	Les valeurs spécifiques des énergies mesurés et calculées des deux	88	
	systèmes.		
Tableau 4-5	Les paramètres de différentes installations dans le monde	89	
Tableau 4-5	les paramètres de différentes installations dans le monde	93	

Introduction général

Introduction Générale

Au début des années 1970, l'environnement devient un sujet de préoccupation importante pour les États. Les problèmes d'épuisement des réserves de combustibles fossiles dans le future, le niveau élevé de pollution de la planète par les gaz à effet de serre et l'augmentation de la demande potentiel énergétique, ont donné de nouvelles orientations pour la production de l'énergie électrique partout dans le monde. La communauté internationale (accord de Kyoto) a établi des lignes directrices pour le développement des énergies renouvelables, avec la libéralisation du marché de l'électricité l'exploitation de nouvelles énergies propres et durables. Cette libéralisation du marché de l'électricité et le développement de la fabrication décentralisée amènent dans le domaine du génie électrique de nombreux problèmes scientifiques et techniques nouveaux.

Les sources d'énergie renouvelables comprennent l'énergie solaire et l'énergie éolienne, qui ont le plus grand potentiel énergétique dans le monde. Ce sont des énergies durables, non polluantes et économiquement viables. Le développement des technologies de conversion d'énergie a permis le développement rapide de ces énergies renouvelables.

L'Algérie s'est engagée avec détermination sur la voie des énergies renouvelables afin d'apporter des solutions globales et durables aux défis environnementaux et aux problématiques de préservation des ressources énergétiques d'origine fossile. Ce choix stratégique est motivé par l'immense potentiel en énergie solaire. Cette énergie constitue l'axe majeur du programme qui consacre au solaire thermique et au solaire photovoltaïque une part essentielle. Le solaire devrait atteindre d'ici 2030 plus de 37% de la production nationale d'électricité. Le programme national n'exclut pas l'éolien, qui est le deuxième axe de développement et dont la participation devrait être de l'ordre de 3 % de la production d'électricité en 2030.

Le développement des énergies renouvelables en Algérie est motivés par :

- Les énergies renouvelables constituent une solution économique fiable pour fournir des services énergétiques en particulier pour les régions éloignée du réseau électrique,
- Grace à leur caractère inépuisable et de leur impact limité sur l'environnement, elles permettent un développement durable du pays.
- Le développement de ces ressources énergétiques a des effets positifs sur la stabilité démographique, l'équilibre régional, et la création d'emplois.

Dans ce contexte ma thèse sera divisée en quatre chapitres qui ont pour but l'étude des performances énergétiques selon l'effet des perturbations météorologiques ainsi que selon les indices de performance énergétiques et l'injection totale de l'énergie d'un système photovoltaïques raccordé au réseau photovoltaïque.

Dans le premier chapitre a été exposée la croissance de la puissance installée des énergies renouvelables qui devrait atteindre des niveaux très élevé afin de réaliser le scénario de l'IEA [1]. Les défis de la région MENA sont toutes de type énergétique, malgré l'abondance des énergies fossiles et hydrocarbures. La stratégie de la transition énergétique vers les systèmes renouvelables représente la seule issue pour répondre à la demande croissante de l'énergie interne.

Dans le second chapitre a été présenté le dimensionnement d'une installation photovoltaïque, il est primordial d'avoir les données météorologiques du site sur lequel doit être implanté la station. Au cas où il y'a un manque dans les données météorologiques alors on doit faire une estimation des données météorologiques. [20, 21,22]. Ce chapitre présente toutes les étapes pour dimensionner un système PV, ainsi qu'une étude de la production énergétique du système.

Dans le troisième chapitre on a procédé à l'étude des performances énergétiques selon l'effet des perturbations météorologiques sur la sortie des champs photovoltaïques ainsi que les bénéfices économique d'un système énergétique ayant une puissance crête totale égale à 16.28 kWc, constitué par plusieurs centrales connecté au réseau, aux conditions réelles de site Ghardaïa, basé sur les données mesurées et saisies, dans des conditions réelles de site.

Dans le quatrième chapitre a été faite une étude expérimentale énergétique annuelle des performances énergétiques d'un système photovoltaïque monté sur une structure doté d'un suiveur réel du soleil. La puissance crête du champ PV est de 2.25kWc, un onduleur monophasé connecté au réseau de puissance de 1.3kWc. L'indice de performance du système est au minimum au mois de janvier et à une valeur de 0.44, et atteint son maximum au mois d'avril et à une valeur de 0.88 ces résultats ont été comparé à de résultats obtenus dans le monde entier et a montré que notre centrale est performante.

CHAPITRE 1

Introduction

La croissance de la puissance installée des énergies renouvelables devrait atteindre des niveaux très élevé afin de réaliser le scénario [1]. L'augmentation de la puissance des énergies renouvelables doit être en moyenne environ 305 GW par an entre 2021 et 2026 dans les prédictions de l'IEA, soit une accélération de 60% par rapport à l'expansion des énergies renouvelables durant les cinq dernières années. La capacité installée en énergies renouvelables (en particulier éolienne et photovoltaïque) doit être égale à 1800 GW à la fin de l'année 2026, soit un taux de croissance de la capacité électrique de 95% de la capacité mondiale actuelle. Les défis à soulever pour atteindre les objectifs du scénario de l'IEA sont :

- l'incertitude politique,
- défis de mise en œuvre,
- le financement,
- les autorisations,
- l'acceptation sociale,
- l'intégration au réseau.

Dans l'ensemble, (Figure 1 - 1) les 10 premiers pays continuent de dominer les énergies renouvelables, ils représentent près de 80 % de la croissance totale des capacités renouvelables au cours de la période 2021-2026. La République populaire de Chine à elle seule fournit près de 45 % de toute l'expansion des énergies renouvelables, suivis des États-Unis, de l'Inde et de l'Allemagne. Ces quatre marchés fournissent à eux seuls près de 80 % de l'expansion des capacités renouvelables dans le monde. [2]

L'hydroélectricité sera la principale filière renouvelable productrice d'électricité avec un taux de 15,6% du mix électrique jusqu'en 2026 indique l'AIE. L'éolien offshore est la filière renouvelable connaissant la plus forte croissance dans les prochaines années, elle comptera pour 1,5% de la production mondiale d'électricité en 2026, selon les prévisions de l'AIE.

* Cumulative capacity = installed renewable capacity at the end of each five-year period.

Figure 1 - 1: énergies renouvelables 2021 - Analyse et prévisions jusqu'en 2026

L'Agence internationale de l'énergie annonce les budgets alloués aux énergies renouvelables par chaque gouvernement dans le monde (Figure 1 - 3). Les capacités électriques renouvelables atteindront des niveaux record en fin 2021 [2] comme indiqué sur la figure suivante.

Figure 1 - 2: Le budget alloué aux énergies renouvelables pour chaque région du monde

Le budget alloué aux énergies renouvelables pour chaque région du monde est :

- Europe 350 Billions USD,
- Asie Pacifique 90 Billions USD,
- Amérique du Nord 45 Billion USD,
- Autres régions 5 Billion USD.

1. Le système énergétique de l'Algérie changement climatique, énergie et environnement :

1.1 Développement d'un modèle de phases pour une transformation durable:

Les défis de la région MENA sont toutes de type énergétique, malgré l'abondance des énergies fossiles et hydrocarbures. Le développement démographique, et l'utilisation croissante des technologies par les habitants de cette région a forcé les gouvernements a développé ce secteur en particulier. La demande énergétique croissante dépasse souvent l'offre. La stratégie de la transition énergétique vers les systèmes renouvelables représente la seule issue pour répondre à la demande croissante de l'énergie interne.

L'Institut de Wuppertal en Allemagne a adapté les étapes du model de phases qui doivent assurer un glissement du système à énergie fossiles vers un système du mix énergétique au début, puis vers un système à énergies renouvelables dé-carbonisé, tout en assurant la sécurité énergétique ainsi que la sécurité économique des pays de la région MENA, et sans perturber le développement du pays, ce modèle est soutenu par la fondation Friedrich Ebert [3], [4]. Il s'appuie sur les modèles de phases pour la transformation du système énergétique allemand [5], [6]. Les phases pour la région MENA sont basées sur l'offre, la demande, les infrastructures économiques, les marchés et la société...

1.2 Développement durant les phases de transition :

Les phases de transition pour la région MENA sont :

- Développement avant la phase I
- Phase I : « Décollage des Energies Renouvelables »
- Phase II : « intégration du système Energie Renouvelable »
- Phase III : « Electricité en carburant / Gaz (PtF/G)*

- Phase IV : « Vers 100 % Energie Renouvelable »

Durant l'étape développement avant la phase I, le model analyse l'état de développement actuelle du pays, et évalue l'état finale de l'arrivée à la fin du processus.

1.3 Les facteurs retenus pour l'étude des phases sont :

Parmi tous les facteurs de transition, il a étais retenus les facteurs suivants :

- Les changements climatiques et les accords sur les changements climatiques, les plans de dé-carbonisations des pays industrialisés ;

- Les conflits régionaux et mondiaux notamment sur le commerce;

- Les effets à long termes du COVID -19 sur l'économie mondiale ;

- Les ressources naturelles et les conditions géographiques du pays en étude ;
- La répartition des habitants dans le pays, et le développement démographique.

2. Transfert du modèle de phases au cas de l'Algérie :

Le model appliqué en Allemagne a été adapté aux conditions de la région MENA. Le cas de l'Algérie a été sérieusement étudié selon les phases à suivre. L'illustration des résultats finaux a pris en considération toutes les phases du développement continu de tous les secteurs économiques du pays, afin de réaliser le transfert vers les énergies renouvelables sans perturber le développement économique du pays des phases

2.1. Collecte de données :

Dans le but d'appliquer le model des phases des données détaillées ont étaient recueillis sur (l'offre, la demande, les infrastructures, les réseaux d'acteurs et développement du marché), ont été compilées. Les bases de données de l'Agence Internationale de l'Energie (AIE) et de l'Agence Internationale pour les Energies Renouvelables (AIER), ont servi pour rassembler les données pour analyser l'état actuel du pays et évaluer les tendances futures.

2.1.1. Développement avant la phase I :

Au court de cette étape de prés phase, il y'a la formation de la niche, les premiers indicateurs de l'état actuelle pris en considérations sont :

- L'évaluation du potentiel régional,
- Les projets pilotes locaux,

- La constitution de réseaux d'acteurs,

- Le partage des compétences et des connaissances sur le système énergétique domestique.

Durant cette prés-phase et grâce à ces indicateurs, des scénarios de mise en œuvre de plans pour l'expansion de la production d'énergie à base d'énergies renouvelables (ER) sont développées.

2.1.2. Phase 1 - « Décollage des Energies renouvelables » :

Globalement la phase une consiste au lancement et mise en service des premières centrales pilotes photovoltaïques et éoliennes, et l'introduction de leurs productions dans le réseau électrique conventionnelle.

2.1.3. Phase II : « intégration du système Energie Renouvelable » :

Durant la phase II L'installation et la mise en service de grande envergure se poursuit tout en maintenant la production de l'énergie d'origine fossile. L'extension du réseau électrique et le début des réseaux interconnectés entre des pays voisins. Ce qui marque le début de l'ère du mix énergétique. A ce stade, évolution du système législatif, tarification, législation des centrales renouvelables (pour les centrales de particuliers). Retour d'expérience des centrales pilotes et correction des systèmes toute en continuant l'installation de centrale de plus grande puissance installée. Mise en place de l'infrastructure TIC (technologie de l'information et de la Communication) est entièrement intégrée au système Énergétique (numérisation).

Préparation de la phase III « niche » par la mise en place de centrales mixte à gaz et énergie solaire thermique.

2.1.4. Phase III : « Electricité en carburant / Gaz (PtF/G)* :

Cette phase est caractérisée par l'augmentation de l'énergie d'origine renouvelable dans le mix énergétique.

La production d'hydrogène vert et de carburant synthétique devient plus compétitive en raison de la disponibilité d'une électricité à bas prix.

Développement du réseau de transport électrique à long distance, et augmentation de la production d'électricité d'origine carburant/gaz. Développement des infrastructures hydroélectriques.

En préparation de la phase IV « niche », réaliser des expérimentations de centrales de carburant /gaz pour l'alimentation électrique des secteurs difficiles l'industrie lourde (béton, acier, chimie).

2.1.5. Phase IV : « Vers 100 % Energie Renouvelable » :

Les énergies renouvelables remplacent progressivement l'énergie électrique fossile. Les centrales de carburant/gaz sont pleinement développées.

3. Catégorisation de la transformation du système énergétique en Algérie selon le modèle de phases :

L'Algérie possède une importante réserves de pétrole et de gaz, c'est pourquoi son système énergétique est très dépendant des combustibles fossiles. Les hydrocarbures occupent plus de 90% parmi ses exportations. L'Algérie est l'un des plus grands exportateurs de pétrole, et est membre à l'organisation mondiale des pays exportateurs de pétroles (OPEP). Toutefois le pays possède 3000h d'ensoleillement par an sur la majeure partie du territoire, et a la plus grande superficie des pays du continent Africain. Alors qu'actuellement le pays n'exploite qu'une infiniment partie de ce potentiel. La politique du pays fait des efforts énormes pour développer son système énergétique afin d'exploiter ce type d'énergies propres, et de devenir un acteur majeur dans le système géopolitique énergétique de la région. [7]. Voir Annexe : Développement selon les phases de transitions.

Figure 1 - 3 : Cartographie sommaire permettant de visualiser la structure et les nœuds du réseau électrique du projet Desertec.

Afin d'aidé à formuler une politique énergétique appropriée à l'état actuelle et le développement d'une stratégie de la transition énergétique de l'Algérie, seront évalués en détails sur la base du modèle de phases proposé [8].

3.1. Évaluation de l'état actuel du pays :

Cette partie analyse l'état actuel du système énergétique de l'Algérie en termes d'offre, de demande, de secteur pétrolier et gazier, d'énergie renouvelable, d'infrastructure, de réseau d'acteurs et de développement du marché.

3.2. L'offre et la demande d'énergie : (Figure 1 - 4)

L'urbanisation, le développement industriel, ainsi que le boom démographique, sont les moteurs de l'augmentation de la demande énergétique en Algérie. En **2018**, la consommation totale d'énergie finale d'énergie s'élevait à 36 360 ktep (kilo tonnes d'équivalent équivalent en pétrole) (cf. voir AIE, 2020). Répartie comme suit :

- secteur industrie, le transport a la plus forte consommation d'énergie (42 %),
- les ménages et industrie (19 % chacun),
- autres secteurs industries (21 %) (AIE, 2020)

Figure 1-4 : Consommation totale d'énergie en Algérie 1990-2018, par secteurs

3.3. Les hydrocarbures dominaient le mix énergétique en 2018 : (Figure1 - 5)

La production d'énergie en Algérie selon le type d'énergie primaire utilisée est :

- le gaz naturel 63,8%,
- le pétrole 35,4%
- le charbon 0,6%,
- les énergies renouvelables 0,1%. (AIE, 2020).

Figure 1-5: Production totale d'énergie en Algérie, selon le type d'énergie

3.4. La demande d'électricité : (Figure 1 - 6)

La demande d'électricité en 2018 a atteint approximativement 66.7TWh, presque 5 fois la consommation électrique en 1990. Durant la période estivale, la consommation de l'énergie électrique atteint son maximum entre 13h et 15h, dû à l'utilisation des climatiseurs pour adoucir la température dans les habitations. En été 2019, à 14h30, la demande a atteint le sommet 15 656MW. La demande d'énergie en Algérie est estimée à 150TWh en 2030 et passera à 250TWh en 2050. Le boom industriel en Algérie ainsi que l'utilisation très importante des technologies par les consommateurs sont les principales causes de l'augmentation de la demande électrique [9]. Selon la banque mondiale [10] l'énergie produite ne couvrait pas la demande malgré la marge de capacité de réserve de 47%. La demande d'énergie du secteur économique a largement dépassée l'offre en 2003 et en 2012 [11].

3.5. La consommation énergétique : (Figure 1 - 7)

Entre 2000 et 2017, la consommation énergétique a augmenté de 5%. La commission des énergies renouvelables et de l'efficacité énergétique (CEREFE), a déclaré qu'en 2019 l'Algérie détenait une puissance totale de 20 963 MW [12], et que 96% de cette énergie était généré par des centrales à gaz. En 2028, l'Algérie projette détenir 36 000MW de capacité énergétique totale installée produite par les centrales à gaz naturel, dont 15% d'origine photovoltaïque (CREG) la Commission de régulation de l'énergie et du gaz [13].

Durant l'année 2018, l'énergie d'origine gaz naturel constituait 98% du total de l'offre de l'énergie en Algérie, alors que le taux des énergies renouvelables représentait environ 1%.

Figure 1 - 7: Consommation totale de l'énergie selon l'énergie fossile ou renouvelable

3.6. L'Algérie possède d'importantes réserves en hydrocarbures et est :

Le classement de l'Algérie selon ses réserves en hydrocarbures :

- le troisième exportateur mondial de gaz de pétrole liquéfié,
- le quatrième exportateur mondial de gaz naturel liquéfié (GNL),
- le cinquième exportateur mondial de gaz naturel.

4. La contribution des hydrocarbures au produit brut (PIB) est de 45,9% :

Les hydrocarbures Algériens sont exportés à :

Europe (49%),

- Amérique du nord (36%). [14].

4.1. Cependant, l'Algérie détient :

La réserve d'Algérie en gaz de schiste et pétrole de schiste :

- la troisième réserve au monde en gaz de schiste 19,800 milliards de mètres cubes,
- 5,7 milliards de barils de pétrole de schiste [15].

5. Énergies renouvelables :

Sur la figure 1- 8 est exposé le mix de production d'énergie en 2018 qui est totalise 1% de production totale est qui est partagé comme suite :

- Energie solaire 84%,
- Hydroélectricité 15%,
- Energie éolienne 1%.

Le Sahara couvre 86% de la surface totale de l'Algérie. L'irradiation moyenne quotidienne est de 6,57 kWh /m2, ce qui induit un total annuel entre 2 000 kWh/m2 et

2 650 kWh/m2.

5.1. L'Algérie dispose de :

En termes des énergies propres l'Algérie dispose des potentiels suivant :

- Le potentiel solaire thermique est d'environ 170 000 TWh par an,
- le potentiel Photovoltaïque s'élève à environ 13,9 TWh par an,
- 500 GWh d'électricité hydraulique par an. [14].

L'Algérie a une capacité hydroélectrique installée de 313 MW, en 2018 l'énergie hydraulique produite ne dépassait pas 117 GWh. [14].

5.2. Le projet pilote d'énergie solaire à concentration (ESC) de l'Algérie :

En 2011, à Hassi R'Mel a été mise en service la première centrale hybride ESC-gaz. Le cout d'investissement de ce projet était de 313 millions d'euros. La centrale a une capacité de 25 MWc ESC et 125 MW de gaz.

5.3. SKTM :

La Sonelgaz a créé la branche SKTM pour installer des systèmes à énergies renouvelables sur le territoire Algérien. Cette branche a installé et mis en service plus de 22 centrales photovoltaïques totalisant une capacité installée crête de 343 MWc (le tableau 1 - 4).

Dans les sites isolés, au grand sud éloigné du réseau électrique national, SKTM a construit 16 réseaux insulaires qui fournissent une énergie totale annuelle de 1.5GWh [14].

- La centrale photovoltaïque de Oued Nachou Ghardaïa a été mise en service en 2014, cette centrale a une capacité installée de 1,1 MWc.

- La centrale photovoltaïque de BirRebaa a été mise en service en 2018, cette centrale a une capacité crête installée de 10 MWc.

- La première ferme éolienne, Kabertène Adrar, a été mise en service en 2014, cette centrale a une puissance installée de 10,2 MWc (tableau 1 - 1).

5.4. Energie éolienne :

La vitesse moyenne du vent est de 7.5m/s à l'ouest et au centre du territoire Algérien, l'énergie éolienne annuelle qui peut être produite est de 35 TWh [14].

La capacité totale installée en énergies renouvelables toutes les sources confondues est 389,3 MWc.

6. Projets ER opérationnels en Algérie :

Le ministère de l'Énergie Algérien a lancé le « Programme national d'énergies renouvelables et d'efficacité énergétique » (PNEREE), en 2011, ce programme coutera environ 86,55 milliards d'euros. La capacité totale installée en énergie renouvelable est de 22 GWc, l'objectif à atteindre en 2030 est de 27% dans le mix énergétique [16] et de 40% de l'énergie totale produite du pays [14].

Centrales éoliennes opérationnelles							
Site	Kabertène (Adrar)						
Année opérationnelle	2014						
Capacitè installée (MWp)	10.2						
Energie solaire opérationnelle	e (CSP et PV)	-					
Site	Hassi-R'Mel	Ghardaia	BirRebaa Nord (Ouargla)	Programme de SKTM			
Туре	Solaire thermique et vapeur (gaz naturel)	PV	PV	PV			
Année opérationnelle	2011	2014	2018	2018			
Capacitè installée (MWp)	25 (CSP)	1.1	10	343			

Source : infos basées sur CEREFE, 2020

Tableau 1 – 1 : Projets ER opérationnels en Algérie

Le tableau 1 - 2, expose les deux phases du programme des énergies renouvelables entre 2015 à 2030, qui fixe un objectif d'augmenter la capacité de l'énergie solaire installée à 13.5GWc en 2030. L'installation de l'énergie solaire de concentration commence en 2021, et cela est dû à son cout très élevé.

	Phase 2015-2020	Phase 2021-2320	Total
PV (photovoltaïque)	3,000	10,575	13,575
Eolien	1,010	4,000	5,010
CSP		2,000	2,000
Cogénération	150	250	400
Biomasse	360	640	1,000
Géothermal	5	10	15
Total	4,525	17,475	22,000

7. Programme des ER 2030 en Algérie en (MWc) :

Tableau 1 - 2 : Programme des énergies renouvelables ente 2015 et 2030 Algérie

Le programme national Algérien 'Tafouk1' consiste en l'installation d'une capacité de 800MWc en cinq fois, le totale d'énergie renouvelable installée est 4000 MWc [13]

8. Réseau de transport d'électricité de l'Algérie : (Figure 1 - 9)

Le réseau algérien est actuellement confronté à plusieurs défis. Il s'agit notamment de la communication à sens unique :

- des niveaux élevés d'émissions de carbone,
- des longues lignes de transport pour fournir de l'électricité,

- des coûts d'électricité élevés et des fluctuations à l'avenir si des niveaux croissants d'énergie renouvelable sont injectés dans le réseau [17].

Actuellement, 389,3 MWc d'énergie renouvelable sont injectés dans le réseau algérien, qui offre des conditions préférentielles d'accès audit réseau, car il garantit la priorité de distribution [18].

Source : infos basées sur CEREFE, 2020

Figure 1 - 9 : Réseau de transport d'électricité de l'Algérie

9. Structure du marché de l'électricité avec les autorités et les entreprises concernées : (Figure 1 - 10)

Ministère de l'énergie de la transition énergétique et des énergies renouvelables :

- Commission de régulation de l'énergie et du gaz CREG,
- Centre de développement des énergies renouvelables,
- Sonatrach,
- Agence pour la promotion de la rationalisation de l'utilisation de l'énergie APRUE,
- Commission des énergies renouvelables et de l'efficacité énergétique CEREFE,
- Société national d'électricité et de gaz SONELGAZ,

Société national d'électricité et de gaz SONELGAZ :

- Société d'électricité et d'énergies renouvelables SKTM,
- Société Algérienne de gestion du réseau de transport de gaz GTRG,
- Société algérienne de production d'électricité SPE,
- Société algérienne de gestion du réseau de transport d'électricité GTRE,
- Société algérienne de distribution de l'électricité et du gaz SADEG.

Société privé de producteur d'électricité.

Figure 1-10 Marche Algérien de l'électricité et de l'énergie.

10. Les émissions de gaz à effet de serre (GES) : (Figure 11)

En 2014, la consommation d'énergie par individu était de 1 327 kg en équivalent pétrole (Banque mondiale, 2014). L'Algérie est classé troisième en Afrique en terme d'émission de CO2 [13].

En 2018, les émissions de CO2 sont produites par secteurs :

- le secteur des transports 32%,
- les producteurs d'électricité et de chaleur de 28%,
- le secteur résidentiel avec 19%,
- le secteur industrie avec 9%.

Le développement industriel en Algérie ainsi que la croissance démographique et le changement climatique, ont induit une augmentation dans les émissions de CO2 de 77% entre 2005 et 2018. (Figure 1- 11). L'annexe 1 du chapitre I illustre l'Algérie dans le model de transition du système énergétique.

Figure 1-11 le profil du CO2 algérien (2018).

Les émissions résultant de la production de chaleur et d'électricité (2018) : (Figure 12)

- 98 % de Gaz,
- 2 % Pétrole,

Soit un totale de 38.6 Mt CO₂.

Conclusion

Le long de ce chapitre a été exposé l'état actuel de la production électrique en Algérie, on énumérant les énergies fossiles et toutes les énergies renouvelables dont dispose notre pays. Le model des phases du développement continu de tous les secteurs économiques du pays appliqué en Allemagne a été adapté aux conditions de l'Algérie afin de réussir la transition énergétique.

CHAPITRE 2

1. Gisement solaire:

Avant de faire le dimensionnement d'une installation photovoltaïque, il est primordial d'avoir les données météorologiques du site sur lequel doit être implanté la station. Au cas où il y'a un manque dans les données météorologiques alors on doit faire une estimation des données météorologiques. [20, 21,22].

1.1. La déclinaison (δ) :

La déclinaison est la position angulaire du soleil par rapport au plan équatorial à midi du méridien local. Elle est définie en degrés d'après Cooper au jour par [20] :

 $\delta = 23.45 * \sin[0.986 * (2846 + N)] \tag{2.1}$

Un jour quelconque de l'année sera défini par son quantième N : pour le 1er janvier N = 1

La déclinaison varie ente -23°,45 au 21 Décembre et +23°,45 au 21 Juin.

1.2. L'angle solaire horaire, et l'angle horaire du coucher (ou du lever) du soleil

L'angle solaire horaire représente le mouvement du soleil à travers le ciel par rapport à un site donné. L'angle solaire horaire est l'angle de déplacement du soleil de l'est à l'ouest du méridien local. Il est égal à 0° à midi et il varie à chaque heure de 15° degrés.

L'angle horaire du coucher de soleil ω c correspond à l'angle ou le coucher de soleil a lieu. Il est exprimé par l'équation :

$$w_c = \cos^{-1}(-\tan \delta * \tan L)$$
 en degrés est l'angle horaire au lever du soleil (2.2)

$$\frac{w_c}{15}$$
 est la durée de la demi-journée solaire (2.3)

où est la déclinaison définie par l'équation (1-1) et L représente latitude du site.

1.3. Rayonnement global hors atmosphère G0 :

L'irradiation solaire en dehors de l'atmosphère terrestre est appelée l'irradiation extraterrestre. Depuis 1960 la valeur conventionnelle de l'éclairement est fixée à

$$I'0 = 1367Wm - {}^{2}$$

En 1982 on proposés une valeur de $I'_o = 1373 Wm^{-2}$

Pour un jour N, en un lieu de latitude L

- éclairement hors atmosphère en Wm^{-2} : $I'o(N) = 1383 * (1 + 0.034 * \cos(0.986 * (N - 3)))$ (2.4)
- Ou encore en fonction de la déclinaison :

$$l'o(\delta) = 1383 * \left(1 - \sin^{\delta}/_{11.7}\right)$$
(2.5)

Le calcul de l'irradiation journalière global hors atmosphère sur un plan horizontal est aisé :

$$Go = I'o * \sin(h * dt)$$
 sur la durée du jour (2.6)

Soit :

$$G0 (N) = 2 I'0 ((\omega s / 15) * (sin \delta . sin L + (12/3.14) cos \delta . cos L. sin \omega s)$$

$$Go(N) = 2 * I'o * \left((ws/15) * \left(\sin \delta * \sin L + \left(\frac{12}{3.14} \right) * \cos \delta * \cos L * \sin ws \right) \right)$$
(2.7)

δ: est la déclinaison du jour N

L: est la latitude du lieu

h : est la hauteur angulaire solaire

2. Calcul de l'irradiation solaire [20]

L'irradiation solaire qui atteint le module PV peut être divisée en deux composantes : la première est directe provenant du disque solaire, cependant -l'autre est diffuse qui interprète le reste du rayonnement qui se dégage du ciel. Afin d'optimiser le calcul de ces deux composantes, nous utilisons une méthode qui se base sur le calcul du rayonnement diffus et direct par heure. Sur le plan de la simulation nous pouvons décrire cette méthode en trois étapes qui se succède:

• Premièrement, nous calculons l'irradiation globale horaire, l'irradiation directe horaire et l'irradiation diffuse horaire sur une surface horizontale pour toutes les heures du lever du jour au coucher du soleil.

• Ensuite, on fait le calcul du rayonnement horaire direct incliné, le rayonnement diffus incliné, et le rayonnement réfléchi par la voûte céleste, qui atteignent la surface du module photovoltaïque.

• Ainsi en dernière étape, et par une simple sommation on obtient le rayonnement global (journalier) quotidien qui atteint le module photovoltaïque.

2.1. Estimation de l'irradiation à ciel clair [20] :

Calcul de l'irradiation horaire directe et diffuse :

D'après les formules d'HOTTEL (1976)

2.1.1. Eclairement direct sur plan horizontal :

éclairement direct sur plan horizontal B (0) peut être estimé par la formule de Hottel [20,21,22]

$$B(o) = Tb * Ge \tag{2.8}$$

avec :

$$G_e = B_0 \left(1 + 0.033 \cos\left(\frac{360N}{365}\right) \right)$$
(2.9)

$$T_b = A_0 + A_1 Exp\left[-\frac{K}{(\cos(L)\cos(\delta)\cos(w) + \sin(L)\sin(\delta))}\right]$$
(2.10)

avec :

$$A_0 = 0.97 \left[0.4237 - 0.0821 (6 - ALT)^2 \right]$$
(2.11)

$$A_1 = 0.99 \bigg[0.5055 - 0.00595 (6.5 - ALT)^2 \bigg]$$
(2.12)

$$K = 0.02 \bigg[0.2711 - 0.01858 (2.5 - ALT)^2 \bigg]$$
(2.13)

avec : ALT : Altitude du lieu.

2.1. 2. Irradiation horaire direct sur plan horizontal [20] :

L'irradiation horaire s'obtient par l'intégration de l'équation (1-8) ; ce qui donne :

$$B(o) = Tb * Ge * \sin h \tag{2.14}$$

$$\sin(h) = \sin(L) * \sin(\delta) + \cos(L) * \cos(\delta) * \cos(w)$$
(2.15)

Avec

H : hauteur du soleil.

$$T_d = 0.271 - 0.293T_b \tag{2.16}$$

2.1.3. Eclairement diffus sur plan horizontal :

L'éclairement diffus peut être estimé par la formule empirique de lieu et Jordan [20]:

$$D(o) = Td * Go \tag{2.17}$$

G0 : éclairement extraterrestre sur plan horizontal

2.1.4. Irradiation horaire diffuse sur plan horizontal :

L'irradiation horaire s'obtient par l'intégration de l'équation (1-14) qui donne :

$$Dh = Tb * Ge * \sin(h) \tag{2.18}$$

2.1.5. Irradiation globale horaire sur plan incliné [20,21] :

L'irradiation globale recueillie sur une surface inclinée est donnée en fonction de celle reçue sur une surface horizontale par l'expression :

$$Gh(\beta) = R * Gh(o) \tag{2.19}$$

$$\cos(i) = \cos(L) \cos(\delta) \cos(AH) + \sin(L) \sin(\delta)$$
(2.20)

$$R_{b} = \frac{\cos(L)\cos(\delta)\cos(AH) + \sin(L-\beta)\sin(\delta)}{\cos(L)\cos(\delta)\cos(AH) + \sin(L)\sin(\delta)}$$
(2.21)

$$R = \frac{Irradiation \text{ totale sur une surface inclinée}}{Irradiation \text{ totale sur une surface horizontale}} = \frac{I_T}{I}$$
(2.22)

$$R = \frac{I_b}{I}R_b + \frac{I_d}{I}\left(\frac{1+\cos(\beta)}{2}\right) + I\left(\frac{1-\cos(\beta)}{2}\right)\rho$$
(2.23)

_		Ð
D	25	

- Ib: Irradiation directe.
- *Id* : Irradiation diffuse.

Rb: rapport de l'irradiation directe sur un plan incliné et celle sur un plan horizontal.

- R : Rapport de l'irradiation globale sur un plan incliné et celle sur un plan horizontal.
- B(o): Irradiation directe sur le plan horizontale
- D(o): Irradiation diffuse sur le plan horizontal
- ρ : L'albédo du sol

2.1.6. Repère dans le temps [23] :

Le soleil passe au méridien d'un lieu P à midi solaire ou 12 h tous les jours. La durée d'ensoleillement théorique est symétrique par rapport à cet instant, ce temps solaire moyen local TSM est le plus simple à utiliser pour décrire une journée.

- Il est local : au même instant il n'est midi que sur le méridien passant par le lieu.

On définit donc un temps solaire vrai local "TSV" par une correction dite Equation du temps ET.

$$TSV = TSM + ET \qquad TSV = TSM + ET \tag{2.24}$$

Cette correction varie de 14 minutes (11 février) à - 16 minutes (3 novembre) On peut calculer ET selon le développement suivant :

 $ET = 0.0002 - 0.4197 * \cos x + 3.2265 * \cos 2x + 0.0903 * \cos 3x + 7.3569 *$ $\sin x + 9.3912 * \sin 2x + 0.3361 \sin 3x$ (2.25)

x : Radians

N : étant le quantième du jour.

A l'échelle mondiale on utilise le temps universel TU qui est le temps solaire moyen du méridien origine de Greenwich.

26

Donc, pour un lieu de longitude Ln en degrés :

$$TU = TSL * Ln/15 \tag{2.26}$$

+ Pour longitudes Est;

- pour longitudes Ouest.

Le globe terrestre est divisé en 24 fuseaux horaires (15 degrés) numérotés de 0 à 23. Le fuseau 0 étant centré sur le méridien de Greenwich, le fuseau est centré sur le méridien + 15 degrés donc vers l'est et ainsi de suite

2.1.7. Durée du jour [20] :

C'est le nombre d'heures d'ensoleillement de jour, il est donné par l'équation :

$$D_J = \frac{2}{15} \operatorname{Arc} \cos[-tg(L)tg(\delta)]$$
(2.27)

L : Latitude du lieu

2.1.8. Définition des jours type [20, 24,25] :

On appel « jour type du mois », pour une grandeur donnée, le jour du mois se rapprochant le plus de la moyenne mensuelle de cette grandeur.

Tableau exposant les jours types standards des mois :

MOIS	J	OUR TYP	E DU MOIS		JOUR TYPE
ANVIER	17	18	17	17	17
FEVRIER	15	15	15	15	15
MARS	16	16	16	16	16
AVRIL	15	15	15	15	15
MAI	15	15	15	15	15
JUIN	28	11	11	11	11
JUILLET	17	17	17	17	17
AOUT	17	16	16	16	16
SEPTEMBRE	16	15	16	16	16
OCTOBRE	16	16	16	16	16
NOVEMBRE	15	14	15	15	15
DECEMBRE	11	11	11	11	11
Latitude	30°N	60°	Inc	66° N 66°S	STANDARD
Grandeur	Global hors	-atmos G ^e	Déclin	Durée du jour	STANDARD

Tableau 2-1 : Les jours types standards des mois

2.1.9. Inclinaison [26] :

C'est en définissant la fonction du générateur que l'on choisira son inclinaison, alors pour un usage annuelle : l'inclinaison optimale du générateur est égale à la latitude du lieu.

Mois	Janvier	février	Mars	Avril	Mai	Juin	Juil	Aout	Sept	Octob	Nove	Decm
Ј Туре	17	15	16	15	15	11	17	16	16	16	15	11
NJ	17	46	75	105	135	162	198	228	259	289	319	345

Tableau des numéros des journées types dans l'année :

Tableau 2- 2 : Les numéros des journées types dans l'année

Les paramètres appliqués au site de Ghardaïa :

Month	date	Day year	δ	ЕТ	β
1	17	17	23.4498313	-1.2035692	8.55016872
2	16	47	-6.02587724	0.23290978	38.0258772
3	16	75	18.6252462	-0.0163557	13.3747538
4	15	105	9.06549001	-0.02450763	22.93451
5	15	135	-23.2178081	0.0728866	55.2178081
6	11	162	1.58025676	0.12193593	30.4197432
7	17	198	-19.9421822	-0.09849268	51.9421822
8	16	228	16.9864074	0.01032219	15.0135926
9	15	258	11.336897	-0.07175813	20.663103
10	15	288	-22.7296602	0.11156211	54.7296602
11	14	318	0.17791042	0.03115009	31.8220896
12	10	344	-11.3146419	-0.06637269	43.3146419

Tableau 2-3 : Les paramètres appliqués au site de Ghardaïa

3. Principe de fonctionnement des cellules photovoltaïques [27] :

Les cellules photovoltaïques sont des composants électroniques à semiconducteurs qui, lorsqu'ils sont éclairés par le rayonnement solaire, développent une force électromotrice capable de débiter un courant dans un circuit extérieur. La différence de potentiel aux bornes de la cellule en circuit ouvert (Voc). Si les bornes sont fermées sur une résistance d'utilisation (Rc), un courant Ic s'établira dans le circuit ainsi constitué. Le courant maximal Isc est obtenu quand on court-circuite les bornes de la cellule (Rc = 0). La cellule se comporte donc comme un générateur de puissance électrique, dont les caractéristiques sont résumées par la courbe courant-tension.

Figure 2-1 : Caractéristique (I-V) d'une cellule photovoltaïque

D'après la figure 2-1, la caractéristique courant-tension se divise en trois parties :

1- la cellule photovoltaïque se comporte comme un générateur de courant

2- la cellule photovoltaïque se comporte comme un générateur de tension

3- la zone qui encadre le point de puissance maximale MO

$$P_M = I_M * V_M \tag{2.28}$$

La pente de la courbe au point Voc représente l'inverse de la résistance série de la diode (1/Rs), la pente au point Isc représentant l'inverse de la résistance shunt (1/Rsh). Le courant Isc étant proportionnel au nombre de paires électron-trou collectées, on définit un rendement de collecte, en formant le rapport entre le courant Isc et le courant Ils équivalent au flux total des photons incidents :

$$\eta_c = \frac{I_{SC}}{I_{\lambda}} \tag{2.29}$$

3.1. Rendement d'une cellule photovoltaïque : [21]

La puissance fournie au circuit extérieur par la cellule éclairée dépend de la valeur de la

résistance de la charge Rc ; cette puissance est maximale quand la surface délimitée par les tirés de la courbe de la figure (2-3) est maximale, soit PM =VM *IM. C'est pourquoi la quantité :

$$f_c = \frac{V_M I_M}{V_\infty I_\infty} \tag{2.30}$$

Dite facteur de courbe, toujours inférieure à l'unité (généralement de l'ordre de 0,85), est importante pour l'efficacité de conversion, le rendement de la cellule photovoltaïque étant défini par le rapport :

$$\eta = \frac{V_M I_M}{\acute{e}nergie.totale.incidente}$$
(2.31)

3.2. Caractéristiques théoriques [21] :

Le circuit équivalent simplifié d'une cellule photovoltaïque (figure 2-4) peut être décrit comme un générateur de courant égal à Isc, shunté par une diode qui a les caractéristiques de la cellule à l'obscurité. Dans ces conditions, l'expression générale du courant est :

$$I = I_L - I_0 \left[\exp\left[\frac{q(V + IR_s)}{mKT}\right] - 1 \right] - \frac{V + IR_s}{R_{sh}}$$
(2.32)

$$q = n * e \tag{2.33}$$

Où I0 représente le courant de saturation de la diode (I0 = 10-12 à 10-13 A.cm⁻² pour une diode au silicium).

Figure 2-2 : Circuit équivalent d'une cellule photovoltaïque

_		Ω
0	30	

Dans le cas où Rsh est très grand et Rs négligeable, on obtient une expression approchée de la tension :

$$V = \frac{kT}{q} Ln \left(1 + \frac{I_L - I}{I_0} \right)$$
(2.34)

Avec

I0 = 10-12 A.cm-2,

kT/q = 0,025 V

Isc = 4 10-2 A.cm-2.

On trouve alors Voc = 0,6 V.

IL : courant photo-généré ou photo-courant

IO : courant de saturation de la diode.

K : constante de Boltzmann, (K=1.38*10-23 J/°K).

e : charge d'électron,(e=1.6 10-19 C).

- M : facteur d'idéalité de la diode, (m=1-1.3).
- T : température de la jonction, (°K).
- Rs : résistance série due à la résistivité des grilles, (Ω) .

Rsh : résistance parallèle due à un courant de fuite, (Ω) .

N : le nombre de porteurs de charge

3.3. Modèle du générateur photovoltaïque [21, 22] :

3.3.1. Modèle à cinq paramètres [21, 22] :

Le modèle dont les équations décrivent le champ photovoltaïque avec précisions est le modèle à cinq paramètres. Son circuit équivalent est donné par la figure (2-2).

Le modèle dont les équations décrivent le champ photovoltaïque avec précisions est le

modèle à cinq paramètres. Son circuit équivalent est donné par la figure (2-2).

Comme la résistance RSh n'est pas négligeable, alors elle est traversée par un courant I RSh défini par l'expression suivante:

$$I_{Rsh} = \frac{V + IR_s}{R_{Sh}}$$
(2.35)

L'expression de la caractéristique I-V est :

$$I = I_L - I_0 \left[\exp\left[\frac{q(V + IR_s)}{mKT}\right] - 1 \right] - \frac{V + IR_s}{R_{sh}}$$
(2.36)

Les cinq paramètres IL, IO, RS, Rsh et m définissant ce modèle, peuvent être déterminer, pour un couple (éclairement, température) donné, et on tenant compte de des données spécifiques physique de la cellule et qui sont:

La tension à circuit ouvert (VOC),

Le courant de court-circuit (Isc),

La tension et le courant au point de maximum de puissance (Vm et Im)

Les pentes au voisinage de Voc et de ISC.

$$\left(\frac{dV}{dI}\right)_{V=Voc} = -R_{s0} \tag{2.37}$$

$$\left(\frac{dV}{dI}\right)_{I=Isc} = -R_{sh0}$$
(2.38)

Les équations ainsi obtenues sont :

$$m = \frac{V_{M} + I_{M} \times R_{S0} - V_{OC}}{V_{T} \left[Ln \left(I_{SC} - \frac{V_{M}}{R_{SH}} - I_{M} \right) - Ln \left(I_{SC} - \frac{V_{OC}}{R_{SH}} \right) + \left(\frac{I_{M}}{I_{SC} - \frac{V_{OC}}{R_{SH0}}} \right) \right]}$$
(2.39)

32

$$I_{0} = \left(I_{SC} - \frac{V_{OC}}{R_{SH}}\right)^{*} \exp\left(-\frac{V_{OC}}{mV_{T}}\right)$$

$$R_{SH} = R_{SHO}$$
(2.40)
(2.41)

Avec Vt la tension thermique:

$$V_T = \frac{KT}{q} \tag{2.42}$$

3.3.2. Modèle de la température de la cellule [21] :

La température de la cellule s'exprime en fonction de la température ambiante (Ta) et de l'éclairement (G) :

$$T = T_a + \left(\frac{NOCT - 20}{800}\right) * G$$
(2.43)

NOCT est la température de fonctionnement nominal de la cellule (normal operating cell temperature) en °C, définie comme la température que les cellules atteint quand G est de 800W/m2 ,Ta est de 20°C la vitesse du vent est de 1m/s et la distribution spectrale est AM 1.5 . Cette expression est considérée valable pour des dimensionnements et simulations horaires de systèmes photovoltaïques.

3.4. Application :

Les différentes puissances crêtes en [watt] obtenues par le concepteur pour les différentes puissances de l'éclairement des modules les plus utilisés sur le marché:

Module/éclair.	1000W/m ²	800w/m ²	600W/m ²	400W/m ²	200W/m ²
50 Wc	50.0	39.8	29.6	19.2	9.0
70 Wc	70.3	55.9	41.5	27.0	12.6
90 Wc	91.3	72.5	53.7	34.9	16.4
150 Wc	150.1	119.6	88.7	57.7	26.8
170 Wc	169.5	133.8	98.5	63.6	29.7
230 Wc	230.3	183.3	135.8	88.1	41.1

Tableau 2-4 : Puissances crêtes des modules pour différents éclairements.

33

Module	Rs (ohm)	Isc (A)	Voc (V)	Im (A)	Vm (V)
50W	0.44	3.2	21.5	2.94	17
70W	0.27	4.5	21.3	4.20	16.7
90W	0.71	2.85	43.0	2.70	33.6
150W	0.61	4.75	43.5	4.35	34.5
170W	0.17	5	44.0	4.70	36.0
230W	0.35	7.20	43.6	6.60	34.9

Tableau des caractéristiques des modules retenus pour la simulation

Tableau 2-5 : Caractéristiques électriques des modules

3.4.1. Corrections à d'autres conditions de température et d'éclairement [21] :

Afin de nous permettre de simuler les comportements des modules à différents éclairements, on doit recourir à des méthodes de translations de la caractéristique I-V.

3.4.2. Méthode selon la norme CEI 891 :

La présente norme est appliquée aux caractéristiques I-V données de dispositifs photovoltaïques au silicium cristallin seulement [21]. Avec cette méthode, la caractéristique courant-tension peut être corrigée par rapport aux valeurs de température et d'éclairement choisis.

$$I_{2} = I_{1} + Isc\left(\frac{G_{2}}{G_{1}} - 1\right) + \alpha \left(T_{2} - T_{1}\right)$$
(2.44)

$$V_{2} = V_{1} - R_{s} \left(I_{2} - I_{1} \right) - K \cdot I_{2} \left(T_{2} - T_{1} \right) + \beta \left(T_{2} - T_{1} \right)$$
(2.45)

I1, V1 : Coordonnées d'un point de la courbe de référence

I2, V2 : Coordonnées d'un point de la courbe corrigée

Isc : Courant de court-circuit de la courbe de référence

G1, T1: Eclairement et température dans les conditions de mesure

G2, T2: Eclairement et température dans les conditions désirées

 α , β : Coefficients de température du courant et de la tension

K : Facteur de correction de la courbe (0,00125 Ohm/°C)

Cette méthode présente des limitations : la gamme de l'éclairement à corriger maximum est de +/- 30%, celle de la température n'est pas spécifiée.

4. Dimensionnement d'un système photovoltaïque :

Dimensionner un système photovoltaïque c'est déterminer en fonction de sollicitations telles que l'ensoleillement et la charge, l'ensemble des éléments de la chaîne photovoltaïque, à savoir la taille du générateur, la capacité de stockage, le cas échéant la puissance d'un convertisseur, voire l'inclinaison des modules et la tension d'utilisation.

Quelle que soit la méthodologie utilisée et la précision avec laquelle sont pris en compte les différents composants de la chaîne. On reste confronté à deux types d'estimations :

La première

- sur la demande qui dans la plupart des cas est assez grossièrement définie car souvent mal connue et qui subit des fluctuations journalières hebdomadaires ou saisonnières,

La seconde

- Sur le gisement solaire au sujet duquel on se heurte à un manque crucial de données représentatives.

Ces deux sollicitations constituent les entrées du problème à résoudre.

4.1. Le modèle de calcul de l'irradiation : [25]

Perrin de brichambaut

$$T = 0.5 * (T1 + T2) \tag{2.46}$$

$$k = 0.13 * (T).0.5 \tag{2.47}$$

$$IGH = Ge.* (0.91 - 0.15.* log(T)).* (cos(L - delta))^{K}$$
(2.48)

$$Dfh = Gh * 0.07.* (T - 1).* (cos (L - delta))^{-7}$$
(2.49)

$$Drh = Ge.* exp(-T./(7.5.* (cos(L - delta))^{0.75}))$$
(2.50)

4. 2. Irradiation globale sur plan incliné :[21]

$$IGI = R * IGH$$

$$R = \frac{Drh}{IGH} R_b + \frac{Dfh}{IGH} \left(\frac{1 + \cos(\beta)}{2}\right) + \left(\frac{1 - \cos(\beta)}{2}\right) \rho$$
(2.52)

- Drh: Irradiation directe horizontale,
- Dfh : Irradiation diffuse horizontale,
- **IGH**: Irradiation globale horizontale,
- IGI : Irradiation globale inclinée.

4.3. Système PV isolé :

4.3.1. Dimensionnement du champ PV [26] :

Une fois que le gisement du site est effectué, il nous reste à choisir les éléments constituants le système PV (modules, régulateur de charge de batteries, onduleur).

Définition de la charge

Soit une charge ayant une consommation journalière mensuelle moyenne de : 20kWh.

4.3.2. Energie journalière fournie par le module :

Sous les conditions standards de température et de l'éclaire (T=25°c, Gcs=1000)

L'énergie délivrée par un module est exprimée sous la forme suivante :

$$Ep = Pm^* \left(\frac{IGI}{Gcs}\right)^* P \tag{2.53}$$

E_p : Energie journalière fournie par le module (**Wh**)

 P_m : Puissance du module dans les conditions désirées (W)

IGI : Irradiation moyenne journalière annuelle minimale (KWh/m2)

P : Facteur de correction global, contenant les divers rendements ainsi qu'un
 Coefficient de sécurité (%).

4.3.3. Le nombre total des panneaux Np constituant le générateur PV :

Est donné par l'expression suivante :

$$Np = \frac{Ech}{Ro^*Rr} * \frac{1}{Ep}$$
(2.54)

Ro : Rendement de l'onduleur

Rr : Rendement du régulateur

E_p : Energie journalière fournie par le module (**Wh**)

Ech : Energie journalière consommée par la charge (kWh).

4.3.4. Le nombre de module en série Np $_{S\,:}$

Est le rapport entre la tension de l'onduleur utilisé Veo et la tension maximale du module V_{max} :

Nps = Veo/Vmax.	(2.55)
Veo : Tension entrée onduleur	
4.3.5. Le nombre de branches en parallèle Nbp :	
Est calculé comme suit :	
Nbp = Np/Nps.	(2.56)
4.3.6. La puissance du générateur et la surface totale du générateur :	
PG = Nps * Nbp * Pm.	(2.57)
$\mathbf{St} = \mathbf{Np}^*\mathbf{Sm}$	(2.58)
Sm : Surface d'un module.	
4.3.7. Dimensionnement du l'onduleur :	
La puissance du générateur est :	
PG = (120%)*Po	(2.58) bis
Po : puissance de l'onduleur.	
4.3.8. Bilan énergétique du système [27] :	
Pour le bilan énergétique du système, choisi :	
4.3.8.1. Energie sortante des champs photovoltaïque :	
ESG = Ep * NP	(2.59)
4.3.8.2. Energie entrante dans les batteries :	
$\boldsymbol{EEB} = ESG - (Ech * DJ)/(24 * Rb)$	(2.60)
4.3.8.3. Energie sortante des batteries :	
ESB = (Ech/Rb) * (1 - DJ/24)	(2.61)

4.3.8.4. Energie entrante dans les convertisseurs :	
EEC = (Ech/Rc)	(2.62)

4.3.8.5. Energie entrante dans le convertisseur de jour :	
EECJ = EEC * (DJ/24)	(2.63)
4.3.8.6. Energie entrante dans le convertisseur de nuit :	
EECN = EEC - EECJ	(2.64)
4.3.8.7. Energie sortante du convertisseur de jour :	
ESCJ = Ech * (DJ/24)	(2.65)
4.3.8.8. Energie sortante du convertisseur de nuit :	
ESCN = Ech * (1 - DJ/24)	(2.66)
ESG : Energie sortie des champs photovoltaïques (kWh)	
EEB : Energie entrant dans les batteries (kWh)	
ESB : Energie sortant des batteries (kWh)	
EEC : Energie entrant dans les convertisseurs (kWh)	
EECJ : Energie entrant dans le convertisseur de jour (kWh)	
EECN : Energie entrant dans le convertisseur de nuit (kWh)	
ESCJ : énergie sortant du convertisseur de jour (kWh)	
ESCN : énergie sortant du convertisseur de nuit (kWh)	
Ech : Consommation journalière mensuelle de la charge (kWh)	
<i>Rc</i> : <i>Rendement convertisseur</i>	

- : Rendement convertisseur
- Rb : Rendement batterie

4.3.8.9. Dimensionnement du parc de stockage :

La détermination du parc batterie est réalisée à partir de la prise en compte d'un certain nombre de jours d'autonomie à assurer à production nulle. Ce nombre de jours varie suivant les auteurs mais également suivant les applications et la situation géographique (entre 3 jours et 3 semaines).

4.3.8.10. Capacité de Stockage :

Aut = [1; 2; 3; 4; 5; 6; 7; 8]

Csto = (Ech/(Pf * Rb) * Aut)	(2.67)
4.3.8.11. La capacité de stockage en ampère heure (Ah) :	
Cah = Csto/Veo	(2.68)
4.3.8.12. Nombre d'éléments batteries en série :	
Nes = Veo/Veb	(2.69)
Veb : Tension entrée batterie	
4.3.8.13. Nombre de branches d'éléments en parallèle :	

Nbp = Cah/Ce

(2.70)

Gisement du site Ghardaïa :

Mois	Janvier	Février	Mars	Avril	Mai	Juin	Juillet	Aout	Septembr	Octobre	Novembre	Décembre
IGH(Wh/	3988.6	535.4	6446.3	7602.1	8255	8431.5	8186.5	7582.1	6582.6	5326.1	4178.6	3626.4
m²/mois)												
IGI(Wh/m	6078.9	6552.2	6931.1	7523.3	8153.2	8443.1	8155.6	7489.8	6827	6378.3	6049.1	5846.4
²/mois)												
Ta (°)	10.1	14.6	18.3	21.1	26.3	31.8	35.1	33.8	29.1	22.7	17.0	13.8
Charge	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
(KWc)												

Tableau 2-6: Gisement solaire du site de Ghardaïa

Bilan énergétique de l'installation

MOIS	IGI(Wh/m ²)	ESG	EEB	EECJ	EECN	ESCJ	ESCN
JAN	6078.9	23.077	12.152	10.924	14.958	9.286	12.714
FEV	6552.2	24.873	13.171	11.703	14.180	9.947	12.053
MAR	6931.1	26.312	13.591	12.721	13.162	10.812	11.188
AVR	7523.3	28.560	14.751	13.809	12.073	11.738	10.262
MAI	8153.2	30.0951	16.218	14.733	11.149	12.523	9.477
JUN	8443.1	32.052	16.856	15.196	10.686	12.917	9.083
JUL	8155.6	30.960	15.973	14.987	10.896	12.739	9.261
AUT	7489.8	28.433	14.237	14.196	11.686	12.067	9.933
SEP	6827	25.917	12.810	13.107	12.776	11.141	10.859
ОСТ	6378.3	24.213	12.192	12.021	13.861	10.218	11.782
NOV	6049.1	22.964	11.851	11.112	14.770	9.445	12.555
DEC	5846.4	22.194	11.512	10.682	15.200	9.080	12.920

Tableau 2-7 : Bilan énergétique de l'installation

Figure 2-3 : L'énergie journalière mensuelle moyenne fournie à la charge durant l'année

4.4. System PV connecté au réseau:

4.4. 1. L'énergie entrante au convertisseur :

L'énergie entrante au convertisseur est l'énergie produite par le champ photovoltaïque tel que :

$$ESG = EEC = Ep * NP \tag{2.71}$$

4.4. 2. Energie sortante du convertisseur est :

$$ESC = EEC * Ro \tag{2.72}$$

		D
D	40	

Bilan énergétique de l'installation :

MOIS	IGI(Wh/m ²)	ESG= EECJ	ESCJ
JAN	6078.9	23.077	21,78752
FEV	6552.2	24.873	23,47728
MAR	6931.1	26.312	24,83664
AVR	7523.3	28.560	26,96064
MAI	8153.2	30.0951	28,40496
JUN	8443.1	32.052	30,2552
JUL	8155.6	30.960	29,22624
AUT	7489.8	28.433	26,83792
SEP	6827	25.917	24,46848
ОСТ	6378.3	24.213	22,85424
NOV	6049.1	22.964	21,67424
DEC	5846.4	22.194	20,94736

Tableau 2-8 : Bilan énergétique de l'installation

Figure 2-4 : L'énergie journalière mensuelle moyenne produite par le champ photovoltaïque et l'énergie journalière mensuelle moyenne fournie à la charge durant l'année.

5. Les différents types de systèmes PV :

5.1. Les systèmes photovoltaïques autonomes :

5.1.1. Système PV autonome avec stockage:

Fonctionnement :

Durant la journée, le générateur photovoltaïque alimente les récepteurs en fonctionnement (en courant continu et / ou en courant alternatif) et charge la batterie de stockage en courant continu. Un contrôleur de charge évite la surcharge de la batterie en cas de surproduction solaire. Durant la nuit et par mauvais temps, les récepteurs sont alimentés par la batterie. Un limiteur de décharge protège la batterie en cas de décharge profonde. En présence de récepteurs fonctionnant en alternatif, un onduleur autonome convertit la tension continue en tension alternative, permettant ainsi leur alimentation.

Figure 2-5 : Schéma de principe d'un système PV isolé avec stockage

Utilisations :

- alimentation autonome de produits grand public (lampes solaires ou bornes de jardin) par générateur photovoltaïque de faible puissance,
- électrification de bâtiments (de quelques centaines de watts à quelques kW),
- ONG, centre Radio et TV, écoles,
- alimentation d'applications professionnelles (de quelques dizaines de watts à quelques

kW), signalisation, protection cathodique, télécom...

5.1.2. Système PV autonome sans stockage :

Fonctionnement :

Ils fonctionnent au fil du soleil.

Durant la présence du soleil, le générateur photovoltaïque alimente l'utilisation directement ou via un convertisseur Courant Continu/Courant Continu (CC/CC) un hacheur ou Courant Continu/Courant Alternatif (CC/AC) un convertisseur de vitesse. La puissance délivrée à l'utilisation est fonction de l'ensoleillement.

Pour ces systèmes au lieu de stocker de l'électricité, ils stockent de l'eau dans des bassins qu'ils utilisent en l'absence du soleil. Durant la nuit, le système est à l'arrêt.

Figure 2-6 : Système PV autonome sans stockage (pompage)

Utilisations :

Le pompage, la ventilation, la production de froid, le dessalement de l'eau de mer.

5.2. Systèmes hybrides :

5.2.1. Systèmes hybrides avec stockage :

Fonctionnement :

Durant la présence du soleil, le générateur photovoltaïque alimente simultanément l'onduleur pour faire fonctionner les charges en alternatifs, et alimente le régulateur de charge de batteries pour charger la batterie en courant alternatif. Le chargeur de batteries évite la

surcharge de la batterie, et limite la décharge profonde des batteries. Durant la nuit, l'onduleur est alimenté par la batterie de stockage.

En cas d'insuffisance d'ensoleillement ou de plus forte consommation des récepteurs, un groupe électrogène de secours ou d'appoint permet l'alimentation directe des récepteurs et la recharge de la batterie pour assurer la continuité de service.

Figure 2-7 : système hybride photovoltaïque groupe électrogène avec stockage

Tout systèmes Photovoltaïque utilisant des batteries de stockage doit être doté d'une diode anti retour afin d'éviter que la batterie ne se décharge dans les champs Photovoltaïques quand le soleil est couvert, ou durant la nuit.

Tout système photovoltaïque utilisant des batteries de stockage leur régulateur de batterie doit être doté d'un circuit électronique d'hystérésis, pour que durant la charge de la batterie, elle sera limiter au niveau de charge max sans passer à la surcharge et la sulfatation des batteries, et pour qu'à la décharge la batterie n'atteigne pas la décharge profonde, et éviter ainsi la perte la batterie.

Utilisation :

Les systèmes hybrides avec stockage (de quelques kW à quelques centaines de kW) :

- sont très utilisés notamment pour l'alimentation d'habitations individuelles,
- de refuges de montagne,
- des relais de télé communications de forte puissance,

- pour l'électrification rurale et villageoise.

5.2.2. Systèmes photovoltaïques hybrides sans stockage :

Fonctionnement :

Les groupes électrogènes alimentent en permanence un réseau électrique de distribution. Et donc permettent de délivrer la tension et le courant de référence du réseau, le générateur photovoltaïque grâce à la boucle de verrouillage de phase de l'onduleur injecte la production du générateur sur le réseau, et soulage les groupes électrogènes durant la présence du soleil, donc économie de carburant. Les groupes électrogènes ne sont pas totalement déconnectés, ils restent alimentés sans délivrer de puissance. Dès qu'il y'a une perturbation de la production du générateur photovoltaïque, les groupes se mettent à délivrer de l'énergie pour maintenir la stabilité du réseau. C'est le principe des réseaux insulaires.

Figure 2-8 : Système photovoltaïque Hybride groupe électrogène utiliser au sud Algérien

Utilisation :

Les systèmes hybrides sans stockage (de quelques dizaines de kW à quelques MW) sont essentiellement utilisés pour :

- l'électrification d'administration,
- l'électrification de centres de sécurité d'entreprises isolées,
- l'électrification des centres villes (électrification province, rurale),

- l'alimentation électrique de mines d'extraction de matières premières nécessitant une puissance élevée.

5.3. Systèmes Hybride multi sources d'énergie solaire photovoltaïque raccordée au réseau et autoconsommation :

Fonctionnement :

Le groupe électrogène fourni la tension et la fréquence de fonctionnement du réseau que toutes les autres sources d'énergies doivent suivre pour le bon fonctionnement du réseau. Le générateur électrogène fonctionne en permanence, mais ne délivre pas toute sa puissance maximale. Le gestionnaire de puissance doit avoir un ordre de priorité selon la disponibilité de l'énergie délivré par les différentes sources :

- Photovoltaïque,
- Eolienne,
- Hydraulique,
- Pile à combustible,
- Le groupe électrogène.

En générale les systèmes hybrides de grandes puissances utilisent plusieurs groupes électrogènes, car le groupe qui délivre la tension et la fréquence du réseau, doit fonctionné en permanence, alors que les autres groupes n'entrent en fonctionnement qu'en cas de manque d'énergie sur le réseau. Les groupes électrogènes sont toujours alimenté afin qu'ils se mettent à délivrer l'énergie perdu sur le réseau ,si l'une des autres sources ne fournis plus d'énergie. Les temps de réponses de toutes les sources d'énergie sont très élevés par rapport au temps de réponse du groupe électrogène.

46

Figure 2-9 : Systèmes Hybride multi sources d'énergie solaire photovoltaïque raccordée au réseau et autoconsommation

Utilisation :

- dans les sites isolé et éloigné du réseau,
- dans les iles.

5.4. Systèmes PV raccordés au réseau :

5.4.1. Injection totale sans stockage :

Fonctionnement :

La production totale de l'énergie du système photovoltaïque est injectée dans le réseau électrique via un onduleur. Cet onduleur dispose d'un circuit électronique appelé boucle de verrouillage de phase pour synchroniser la fréquence et la tension délivré par le champ photovoltaïque à la fréquence et à la tension du réseau. Au point de connexion de l'onduleur au réseau ils installent un compteur pour comptabiliser l'énergie vendu à la société de distribution d'électricité, en Algérie la société de distribution d'électrique est la SONELGAZ. Si il y a une coupure électrique au niveau du réseau, il y a perte de l'image de la fréquence et de la tension au niveau de la boucle de verrouillage alors automatiquement le système arrêt de fournir de l'énergie jusqu'au retour des deux paramètres, alors le système se remettra à fournir de l'énergie au réseau. Dans le but d'alimenter les charges du fournisseur d'énergie photovoltaïque, il doit installer un second compteur pour l'achat de l'énergie de la société de distribution électrique.

Figure 2-10 : Système photovoltaïque à injection totale sans stockage (totale vente)

Utilisation :

- Utilisation par les particuliers.

5.4.2. Système photovoltaïque en mode vente de l'excédent :

Le système photovoltaïque est connecté au réseau via un onduleur doté d'une boucle de recherche de phase et de tension. L'énergie produite est consommée par les charges du fournisseur, s'il y a un excédent d'énergie il est vendu à la société de distribution électrique via un compteur d'énergie, si la production d'énergie ne couvre pas la charge alors il ya un appelle d'énergie du réseau via un compteur d'achat d'énergie. Dans ce cas particulier de système photovoltaïque connecté au réseau, le réseau est considéré comme une batterie de stockage.

Figure 2-11 : Système photovoltaïque en mode vente de l'excédent

_		Ð
D	48	

Utilisation :

- Utilisation par les particuliers.

5.5. Système photovoltaïque en mode autoconsommation avec stockage :

Le principe de fonctionnement du système photovoltaïque connecté au réseau en mode vente de l'excèdent avec stockage est le même que le précédent en intégrant une batterie de stockage d'énergie, ce qui permet de stocker de l'énergie produite par le champ photovoltaïque durant la journée et de la restituer le soir. Cependant pour des raisons purement économiques, le stockage est limité à quelques heures de fonctionnement et ne permet pas de s'affranchir totalement du réseau électrique.

L'autoconsommation se définit comme le fait de consommer sa propre production d'énergie. Elle est directement associée à la notion d'autoproduction qui est le fait de produire sa propre consommation.

Figure 2-12 : Système photovoltaïque en mode autoconsommation avec stockage

Utilisation :

- Utilisation par les particuliers.

Conclusion :

Dans ce chapitre a été détaillé les généralités sur le gisement solaire, le calcul de l'irradiation solaire ainsi que le principe de fonctionnement des cellules photovoltaïques. Une méthode simple pour dimensionner les installations photovoltaïques isolés et connectés au réseau, a été décrite.

A la fin de ce chapitre a été exposé les différents types de systèmes photovoltaïques les plus utilisés dans le monde.

		D
]	50	

CHAPITRE 3

Introduction

Dans ce chapitre on a fait l'étude des performances et ainsi que les bénéfices économique d'un système énergétique avant une puissance crête de 16.28 kWc, connecté au réseau, aux conditions réelles de site Ghardaïa, situé dans une zone semi-aride du désert Algérien. En premier lieu, on a étudié le système selon les conditions réelles du lieu la température, l'irradiation, le vent de sables... En second lieu l'étude fait la lumière sur l'intégration de systèmes PV au réseau dans les zones arides et semi arides. Basé sur les données mesurées et saisies, dans des conditions réelles de site, il a été tenu compte de l'apport économique de ses systèmes aux utilisateurs. Du premier Janvier à la fin Aout 2019, l'énergie totale produite est 17.422MWh, qui a été injecté dans le réseau interne de l'URAER, la consommation totale de l'Unité est 159,094 MWh, pour la même période. Donc approximativement 10,95 % de l'énergie totale consommée par l'Unité était d'origine renouvelable. L'énergie totale injectée dans le réseau interne a atteint 27 MWh le 05/04/2018, le record maximum est 67.28 MWh le 31/10/2019. Le pourcentage de l'apport d'énergie de toute la plate-forme varie de 6, 60% en Janvier et 22, 96% en Avril. Durant cette période d'étude l'énergie produite et consommée par l'URAER équivaut à 2090,64 euro soit 277706,68 DA, alors que l'énergie consommée acheter à la Sonelgaz est 4772,82 euro soit 664853,826 DA, (le prix du kWh est celui pratiqué par la Sonelgaz et subventionné par l'état).

1. Model du champ photovoltaïque :

Le circuit équivalent de la cellule photovoltaïque model à une seule diode est représenté sur la figure 1. L'équation du courant générée par la cellule est [28,29]:

$$I = I_{ph} - I_0 N_{pp} \left[exp\left(\frac{V + R_s\left(\frac{N_{ss}}{N_{pp}}\right)I}{V_t a N_{ss}} - 1\right) \right] - \frac{V + R_s\left(\frac{N_{ss}}{N_{pp}}\right)}{R_p\left(\frac{N_{ss}}{N_{pp}}\right)}$$
(3.1)

Ou I : courant du champ PV, Iph : courant photo-généré, et Io courant inverse.

- V : tension du champ, Vt : tension thermique.
- a : facteur d'idéalité de la diode,
- rs : résistance série, Rsh : résistance shunt,

Nss : nombre de modules en série, Npp : nombre de modules en parallèles.

L'équation de la température interne de la cellule est fonction de la température ambiante, du rayonnement solaire et du NOCT, comme suite [28, 30]:

$$T_c = T_a + \left(\frac{NOCT - 20}{800}\right) \mathbf{G}$$
(3.2)

Figure 3 -1 : circuit équivalent de la cellule modèle à une seule diode

Ou, Ta est la température ambiante, Tc est la température de cellule PV.

Le rendement expérimentale du champ PV est calculé par l'expression suivante [31, 32]:

$$\mu_{exp} = \frac{V_{dc}I_{dc}}{GA} \tag{3.3}$$

Ou, Vdc : tension de sortie du champ PV, Idc : courant généré par le champ PV, A : surface totale du champ PV (m²).

L'expression de calcul de la surface PV du champ est la suivante [33]:

$$P = P_{stc}\mu_{stc}A[1 - \delta(T_c - 25)] \tag{3.4}$$

L'effet de la température sur les paramètres de sortie du champ PV est calculer selon les expressions suivantes [34][35]:

$\begin{cases} P_{mpp}(T) = P_{mpp}[1 - \gamma(T - 25^{\circ}C)] \\ V_{mpp}(T) = V_{mpp}[1 - \beta(T - 25^{\circ}C)] \\ I_{mpp}(T) = I_{mpp}[1 - \alpha(T - 25^{\circ}C)] \end{cases}$	
$\begin{cases} V_{oc}(T) = V_{oc}[1 - \beta(T - 25^{\circ}C)] \\ I_{sc}(T) = I_{sc}[1 - \alpha(T - 25^{\circ}C)] \end{cases}$	(3.5)

Ou, Impp : courant de court-circuit selon les conditions standards, Vmpp : la tension de court-circuit selon les conditions standards. Voc : tension de circuit ouvert, Isc : courant de court-circuit, α : est le coefficient de courant/température, β : est le coefficient de tension/température, et γ : est le coefficient puissance/température.

2. Gain de puissance :

L'expression de calcule du gain de puissance du système est la suivante [36]:

$$P_{Gain} = \frac{P_{track} - P_{fix}}{P_{track}} 100 \tag{3.6}$$

Ou, Ptrac : est la puissance de sortie du système suiveur du soleil, Pfix : puissance de sortie du système fixe, P_{Gain} : est le gain de puissance.

3. Présentation des systèmes PV étudié :

Cette étude est réalisée dans un environnement désertique, à l'URAER (Applied Research Unit for Renewable Energies) Ghardaïa au sud Algérien ($32,29^{\circ}N - 3,40^{\circ}E$). L'URAER est affilié au CDER (Renewable Energy Development Center) Alger. Cette plate-forme de système PV est constituée de trois systèmes.

- Le premier système est monté sur le toit du parking de voitures sur une structure fixe avec un angle de 32° par rapport à l'horizontale, et orienté plein sud, il a une puissance installée de 2.25 kWc, il est connecté au réseau interne de l'URAER via un onduleur SMA Sunny Boy 3000 TL 20, l'énergie totale produite par le système est injecté dans le réseau interne de l'unité, cette centrale a été mise en service en Octobre 20104, et est opérationnelle à ce jour.
- Le second système est porté par une structure de poursuite solaire réelle, il a une puissance installé de 2.25 kWc, la totalité de l'énergie produite par ce système est injecté dans le réseau au interne de l'Unité via un onduleur Sunny Boy 3000 HF, et opérationnelle depuis 2015 à ce jour.

 La troisième centrale a une puissance installée de 11.2 8kWc, est constituée de trois minicentrale de 3.76 kWc portée par trois suiveur du soleil aveugle, chacune connecté à une phase du réseau interne de l'URAER via trois onduleurs Sunny Boy 4000 TL et est opérationnel depuis 2016 à ce jours.

La figure 3 - 2 représente la plate-forme sur le site de l'URAER vue par Google earth. Ghardaïa a un climat spécifique et désertique [37, 38], avec des températures de 35 ° C à 45 ° C et dépasse les 48°C en été, il pleut rarement. Durant les mois de Mars Avril et Mai il y'a ce qu'on peut appeler la tempête du désert, le vent de sable occulte le rayonnement solaire et se dépose sur la surface des modules et diminue ainsi la surface du champ recevant le rayonnement solaire [39, 40].

Figure 3-2 : localisation de la plate-forme à Ghardaïa, Algérie par Google Earth

Figure 3 - 3 : Plate-forme des trois systèmes PV et la cabine des onduleurs et saisie des données.

4. Saisie des données et monitoring :

L'Agélente 34970A avec son module multiplieur 34902A ayant seize Canales sont connecté au système pour collectés les données DC et AC du système PV (énergie, puissance, courant, tension...), ainsi que les données météorologiques, la température ambiante grâce à un thermocouple, et l'irradiation globale sur le plan du champ PV avec un pyromètre (KIPP&ZONEN CM11 type). Le pas de saisie des données est de 5minutes et sont stockées et sauvegardé suivant des registres journaliers dans PC via une interface RS232, (figure 3 – 4).

5. Description des systèmes de la plate-forme :

5.1. Première mini-centrale PV fixe :

Cette centrale PV pilote est installée sur le toit du parking des voitures de l'URAER, sa puissance installée est 2.25 kWc, depuis son inauguration par Mr le Wally de la Willaya de

Ghardaïa et son staff exécutif ainsi que Mr le Directeur du CDER MR N. Yassa le 14/10/2014 durant le séminaire internationale des énergies renouvelables au sein de l'Unité. La totalité de production énergétique de cette centrale est injecté dans le réseau interne de l'Unité. Le champ photovoltaïque de cette centrale est constitué de 18 modules amorphe couche mince, de 110Vc et 1A chacun, regroupé en 9 branches de 2 modules en série, connecté à un onduleur Sunny Boy SMA 3000 TL ayant deux entrées DC (150V, 15A) et monophasé en sortie sinusoïdale (220 V 50Hz).

La figure 3 – 4 représente le système de saisie des données électrique du système ainsi que les données météorologiques utilisant Agilent 34970A data-logger.

La figure 3 - 4 représente le système de saisie des données électrique du système

La figure 3 - 5 représente l'emplacement de la centrale sur le toit du parking, sur une structure fixe à 32° et orientée plein sud et les armoires électriques DC et AC ainsi que l'onduleur.

Figure 3 -5 la centrale montée sur le toit du parking , et les armoires électriques DC et AC ainsi que l'onduleur

La figure 3 - 6 représente la caractéristique I(V) et P(V) du module photovoltaïque Inventux series X à T = 25 ° C and G = 1000 W/m².

Figure 3 - 6 : la caractéristique I(V) et P(V) du module photovoltaïque Inventux series X .

Sur le tableau 3–1 est reporté toutes les caractéristiques de module photovoltaïque X3-125, et les propriétés électriques de l'onduleur Sunny Boy SB 3000TL-20.

PV Module : Thin Film Inventux Solar technologies		SB 3000TL-20	
Туре	X3- 125	Max DC power	3200 W
Typical maximum power	127 W	Max DC voltage	550 V
Voltage at maximum power (Vmp)	127 V	PV voltage range, MPPT (UPV, max)	125 V – 440 V
Current at maximum power (Imp)	1.01 A	Recommended range at nominal power	188 V – 440 V
Short-circuit current (Isc)	1.22 A	Max input current (IPV, max)	17 A
Open-circuit voltage (Voc)	168 V	Number of MPP trackers	1

Tableau 3 - 1 : caractéristiques du module PV X3-125, et de l'onduleur Sunny Boy SB 3000TL-20

La figure 3 - 7 représente les variations mensuelles de l'énergie DC produite par le champ PV et AC produite par l'onduleur du système durant l'année 2018.

Figure 3 - 7: les variations de l'énergie CD et AC durant l'année 2018.

La figure 3 - 7 représente le cumule des énergies produites de la centrale pilote 2.25 kWp fixe, durant l'année 2018. L'énergie DC produite par le champ PV varie de 229, 86 kWh/kWc en Février et 317, 0074 kWh/kWc en Juin, cependant l'énergie AC mensuelle injecté dans le réseau interne de l'unité varie de 218,367 kWh en Février et 298,938 kWh en Juin. L'énergie totale DC générée par le champ PV durant l'année 2018 est 3,327 MWh alors que l'énergie totale AC délivrée par l'onduleur au réseau durant la même période est 3,152 MWh.

5.2. Seconde mini-centrale portée par une structure avec suiveur réel du soleil :

Cette centrale a été inaugurée par Mr le Walli de la wilaya de Ghardaïa accompagné de son staff exécutif et de Mr le Directeur du CDER Pr Yassa. N. durant les festivités de la journée de l'énergie solaire le 19 Mai 2016, et est opérationnelle à ce jour. Le suiveur réel du soleil fait augmenter le gain d'énergie de 45% par rapport un même système portée par une structure fixe avec un angle égale à la latitude du lieu d'implantation, et orienté plein sud. Le champ PV est constitué de 15 modules poly-cristallins silicone solaire modules 150Wc (tableau 3 - 2), sa puissance crête installée est de 2.25kWc, sa surface totale est 30m². Les modules sont connectés en série en une seule branche, liée au primaire d'un onduleur monophasé Sunny Boy SB3000 HF (tableau 3 - 2), sa sortie AC a les caractéristiques suivantes 230 V, 50 Hz, son rendement minimum est 96%. La saisie des données électriques se fait automatiquement, courant et tension DC, courant et tension AC, la puissance de sortie du système avec un pas de 5 minutes, en plus du cumule journalier de l'énergie, toutes les données sont stocké sur PC sous formes de fichiers journaliers et registre mensuels.

La figure 3 - 8 représente le Champ photovoltaïque porté par le suiveur réel du soleil DEGGER Tracker 3000NT, L'armoire électrique et l'onduleur monophasé Sunny Boy SB3000 HF.

Figure 3 - 8 : Structure porteuse, champ PV, armoire électrique et onduleur.

La figure 3 - 9 représente la puissance produite par le système durant la journée 09 Aout 2018 à ciel couvert, l'énergie totale produite durant cette journée est 12,95 kWh, avec un pic de puissance 1700W. Les perturbations des productions d'énergie sont dues au passage des nuages devant le soleil.

Figure 3 - 9 : évolution de la production de puissance du système durant

la journée 09 Aout 2018 à ciel couvert

61

La figure 3 - 10 représente l'évolution de la puissance produite par le système durant la journée ensoleillée 28 Septembre 2019. L'énergie totale injectée dans le réseau interne de l'URAER cette journée est 18,376 kWh, et a atteint son maximum de puissance 1848 W.

Figure 3 - 10 : évolution de la production de puissance du système durant la journée ensoleillée 28 Septembre 2019, ciel clair.

Le tableau 3 - 2 regroupe les caractéristiques des modules Sunmodule 150W, et les propriétés électriques de l'onduleur Sunny Boy SB 3000HF.

Parameters	PV	PV array	SB 3000 HF	
	Module			
Туре	Sunmodule	Sunmodule	Max DC power	3150W
Typical	150 Wp	2250 kWp	Max DC	700 V
maximum	-		voltage	
power				
Voltage at	18.3 V	274.5 V	PV voltage	210 V
maximum			range, MPPT	- 560
power (Vmp)			(UPV, max)	V
Current at	8.27A	8.27 A	Recommended	530 V
maximum			range at	
power (Imp)			nominal power	
Short-circuit	8.81 A	8.81 A	Max input	15 A
current (Isc)			current (IPV,	
			max)	
Open-circuit	22.5V	337.5 V	Number of	1/2
voltage			MPP trackers	
(Voc)				
Rendement n	14,3 %		Nominale	3000
			power AC (230	W
			V, 50 Hz)	
Number of	1	15	Efficiency	96,3 %
module in				
series (Ns)				

Tableau 3 - 2 : les caractéristiques des modules Sunmodule 150W, et les propriétésélectriques de l'onduleur Sunny Boy SB 3000HF

La figure 3 - 11, représente les énergies mensuelles produites durant l'année 2019, du 1^{er} Janvier au 31 Décembre. L'énergie injectée dans le réseau interne de l'Unité varie de 313,629 kWh/kWc en Février et 575,117 kWh/kWc en Juin. L'énergie totale produite par le système et consommée par l'Unité durant l'année 2019 est 5,423 MWh.

Figure 3 - 11 : représente les énergies mensuelles produites durant l'année 2019.

5.3. La troisième mini-centrale de puissance crête 11.28kWc porté par des suiveurs du soleil :

Cette centrale a été inaugurée par Mm F.Z. Zergouaty Ministre des énergies renouvelables et son staff, Monsieur le Wally de Ghardaïa et son Staff, et Mr le Directeur du CDER durant le mois de Novembre 2017, et est opérationnelle à ce jour. Les champs PV des trois mini-centrales d'une puissance crête de 3.75kWc chacune, formée par 16 modules polycristallin 235 Wc 24 V 9 A « CentroSolar S-Class Professional», la surface totale de chaque champ est 30m², et sont protées par des structures suiveuses du soleil, chacune est liée à une phase du réseau interne de l'Unité à travers un onduleur monophasé Sunny Boy 4000 TL. Toute l'énergie produite par cette centrale est injectée dans le réseau interne de l'Unité.

Les figures 3 - 12, 3 - 13 et 3 - 14 représentent respectivement les champs PV porté par des structures suiveuses du soleil, les onduleurs et les armoires électriques de connections au réseau, et le diagramme de connexion de tous les éléments constituants la centrale.

Figure 3 - 12 : Les trois champs portés par des structures suiveuses du soleil.

Figure 3 - 13 : Les onduleurs monophasés et leurs armoires électriques de connexion aux trois phases du réseau

Figure 3 - 14 : Diagramme de connexion des trois champs PV montés sur suiveurs du soleil aux onduleurs et aux trois phases du réseau.

Parameters	PV	PV	SB 4000TL	
	Module	array		
Туре	CentroS	CentroS	Max DC	4200
	olar	olar	power	W
Typical	235 Wp	3513.51	Max DC	550 V
maximum			voltage	
power				
Voltage at	28,70	429	PV voltage	175 V
maximum	V		range, MPPT	- 440
power (Vmp)			(UPV, max)	V
Current at	8,19 A	8.19	Recommended	400 V
maximum			range at	
power (Imp)			nominal power	
Short-circuit	8,59 A	8.59	Max input	15 A
current (Isc)			current (IPV,	
			max)	
Open-circuit	36,46 V	546.9	Number of	1/2
voltage (Voc)			MPP trackers	
Rendement n	14,3 %		Nominale	4000
			power AC	W
			(230 V, 50 Hz)	
Number of	1	16	Efficiency	97 %
module in				
series (Ns)				

Tableau 3 - 3 : caractéristiques électriques du module CentroSolar S 235 P60 et de l'onduleur Sunny Boy SB 4000 TL

Figure 3 - 15 « 1 » : Effet de l'irradiation sur la caractéristique I(V) du champ PV 16 modules en série

Figure 3 - 15 « 2 » : Effet de l'irradiation sur la caractéristique P(V) du champ PV 16 modules en série

Figure 3 -16 « 1 » : Effet de la température sur le caractéristique I(V) du champ PV 16 modules en série

Figure 3 - 16 « 2 » : Effet de la température sur le caractéristique P(V) du champ PV 16 modules en série

Figure 3 - 17 : Le profil de puissance de sortie des trois champs durant une journée à ciel partiellement couvert en fin de journée le 21 Septembre 2018

Figure 3 - 18 : Le profil de puissance de sortie des trois champs durant une journée à ciel partiellement couvert en milieu de journée 26 Juin 2018

La figure 3 - 17 représente la puissance instantanée du champ PV durant la journée du 21 Septembre 2018 à ciel partiellement couvert. A partir du levée du jour jusqu'à 12h la puissance augmente normalement à la puissance instantanée 3kW par champs, le ciel se couvre et la puissance décroit jusqu'à l'annulation et mise hors service de la centrale à la fin du jour, l'énergie produite par chaque champ PV est 19.392kWh.

La figure 3 - 18 représente l'évolution de la puissance électrique le 26 juin 2018, journée à ciel partiellement couverte entre 11h00 à 15h00. L'énergie produite par chaque champ PV est 19.111kWh.

Figure 3 - 19 : Profil de la puissance produite durant une journée à ciel claire, 25 Octobre 2018

La figure 3 - 19 montre le profil journalier de la puissance produite par chaque champ la journée 25 Octobre 2018, à ciel claire. Elle varie selon une Gaussienne de 0W à 3000W. Le cumule de l'énergie produite durant cette journée par chaque champ PV est 21.553 kWh.

Figure 3 - 20 : L'énergie produite par le système durant une journée à ciel peu couvert, le 31 Aout 2018

La figure 3 - 20 illustre l'énergie produite par le système durant une journée à ciel peu couvert, le 31 Aout 2018. L'énergie totale produite durant cette journée par chaque champ PV est : 20.834 kWh.

Figure 3 - 21 : la production journalière de la puissance durant une journée totalement couverte, le 12 Aout 2018

La figure 3 - 21 représente la production journalière de la puissance produite par les champs durant une journée totalement couverte, le 12 Aout 2018, le cumule journalier de l'énergie produite par chaque champ PV ce jour est 10.722kWh.

6. Résultats et discussion :

Etude des performances de toutes les centrales connectées au réseau selon les changements climatiques avec des mesures réels sur site.

La figure 3 - 22 illustre le profil de l'énergie totale produite par les systèmes. L'énergie totale produite par tous les champs installés durant la journée du 07 Octobre 2019 est 79.975kWh, alors que l'énergie totale produite le 30 Septembre 2019 est 75.975kWh. On constate que les champs PV produisent une puissance nettement inférieure à leurs puissances crêt installée, dues aux pertes. Les pertes d'énergies peuvent êtres dues à l'occultation du rayonnement solaire, par les nuages, ou dépôt de poussières sur les surfaces des panneaux, vent de sables. Le second type de pertes est électriques est dus aux connexions électriques, le

troisième type de pertes est dues à la température élevée région semi-aride (Figure 23). Les pertes dues aux salissures pendant la période hivernale varie de 4–5%, alors que les pertes dues aux salissures durant la période estivale varient de 6–7%. Ce qui résulte les pertes annuelles dues aux pertes par les salissures des surfaces des champs PV dans le site d'implantation des champs PV sont 5.86% [36]. Le nettoyage des surfaces de captation des champs PV doit être exécuté à la fin de chaque vent de sable, à la fin de chaque tempête surtout à la fin du printemps et à la fin de l'automne à cause des tempêtes et vents de sables permanant durant ces périodes de l'année. Sans oublier de prendre en compte les valeurs très élevée de la température ambiante et de ce fait la température de jonction des cellules PV, qui abaissent les puissances de sorties des champs.

La figure 3 - 22 illustre le profil de ma puissance totale de sortie durant la journée du 30Septembre à ciel claire, et la journée du 7 Octobre à ciel partiellement couvert.

Figure 3 - 22 : Profil de puissance totale de sortie le 07/10/19 et 30/09/19

La figure 3 - 23, montre le dépôt des graines de sables sur la surface de captation des champs PV dues aux tempêtes de sables fréquentes dans la région.

Figure 3 - 23 : influence des tempêtes de sables sur la surface de captation des champs PV

Sur la figure 3 - 24 est reportée les énergies journalières produites par toutes les installations durant les mois de Juillet et Octobre 2019. Durant le mois d'Octobre les énergies varient entre 64kWh et 94kWh, alors que durant le mois de Juillet elles varient entre 71kWh et 91kWh. L'énergie mensuelle produite durant le mois d'Octobre est 2.566MWh et celle produite durant le mois de Juillet est 2.658MWh.

Figure 3 - 24 : Les énergies journalières produites par toutes les centrales durant

les mois de Juillet et Octobre 2019.

Figure 3 - 25 : évolution de l'énergie injectée dans le réseau interne de l'URAER.

La figure 3 - 25 représente de cumule d'énergie produite par toutes les centrales de l'URAER depuis leurs mise en service jusqu'à la date de relevé de l'énergie. La premier relevé est le 05 Avril 2018, 27MWh, le second relevé 6 mois plus tard le 15 Octobre 2018 est 37.62MWh soit 10.62MWh en 6mois, le troisième relevé est le 05 Janvier 2019 plus de 2 mois 45.16 MWh soit 7.54MWh de plus. L'énergie totale injectée dans le réseau interne de l'URAER depuis la mise en service de toutes les centrales au 31 Octobre 2019 est 67.28MWh.

Sur la figure 3 - 26 on constate que la production d'énergie est élevée en été (Juillet– Aout) car l'irradiation est très élevée, et la durée du jour est grande. Par contre l'énergie produite durant la saison hivernale est beaucoup plus petite en particulier en Janvier et Février. L'énergie mensuelle totale produite par les systèmes a atteint son maximum durant le mois de Juillet 2.656MWh, alors que l'énergie mensuelle minimale délivrée au réseau interne de l'URAER a atteint son minimum durant le mois de Janvier et est 1.623MWh. Durant la période de saisie des énergies mensuelles du 1^{er} Janviers 2019 au 31 Aout 2019 l'énergie totale est de 17.422MWh.

Figure 3 - 26 : L'énergie mensuelle produite par tous les systèmes du 1 Janvier au 31Aout 2019.

Figure 3 - 27 : L'énergie consommée par l'URAER durant la période du 1 Janvier 2019 au 31 Aout 2019.

La figure 3 - 27 exprime la consommation d'énergie du début Janvier à la fin Aout 2019. Les pics d'utilisation d'énergies sont durant la période hivernale et la période estivale dû à la grande utilisation de la climatisation pour le refroidissement en été le réchauffement en hivers. La consommation en Aout n'est pas élevée à cause du congé de la majorité du personnel sauf pour cas de nécessité.

Figure 3 - 28 : le rapport d'intégration %de la production PV totale dans le réseau interne de L'URAER du 1 Janvier 2019 au 30 Aout 2019.

Le rapport d'intégration % du PV dans le réseau interne de l'URAER durant les huit premier mois de l'année 2019 est reporté sur la figure 3 - 28. Le rapport d'intégration varie entre 6.60% en Janvier 2019 et 22.96% en Avril 20109. On considère que l'intégration de l'énergie totale photovoltaïque est satisfaisante durant l'année 2019.

Figure 3 - 29 : le rapport d'intégration %de la production PV totale dans le réseau interne de L'URAER du 1 Janvier 2019 au 30 Aout 2018.

Le rapport d'intégration mensuel de l'énergie photovoltaïque au réseau interne de l'URAER durant la période du 1 Janvier au 31 Aout 2018 est reporté sur la figure 3 - 29. Le rapport mensuel de l'intégration de l'énergie totale renouvelable varie de 8.20% en Janvier et 25.96% en Aout 2018. L'intégration de l'énergie renouvelable PV est considérée satisfaisante durant l'année 2018.

Tableau 3 - 4 Résume toutes les énergies PV produite et les énergies consommées (de la Sonelgaz) par l'unité et le rapport d'intégration dans le réseau interne de l'unité.

	All system PV production	URAER unit consumption	Rate integration (%)
January	1623,314	24568,314	6,61
February	1834,244	22276,244	8,23
Mars	2232,58	14787,58	15,10
April	2409,738	10492,738	22,97
May	2439,539	12735,539	19,16
June	1707,416	24922,416	6,85
July	2655,981	33117,981	8,02
August	2519,44	16193,44	15,56
Tolal	17422,252	159094,252	10,95

Tableau 3 – 4 : Les énergies PV produite et les énergies consommées

7. Etude économique :

Sur le journal officiel Algérien numéro 23 (23 Avril 2014) il a été stipulé que le kWh vaut 15.94DA soit (0.12 euro/kWh), pour plus de 1725h le gouvernement Algérien a fixé le cout de l'énergie à 4,179 DA /kWh (0, 03 euro /kWh) [41]. Du début Janvier à fin Aout 2019 l'énergie totale consommée par notre unité est 159.094 MWh, l'énergie totale photovoltaïque injectée dans le réseau interne de l'unité a atteint 17.422 MWh, avec un rapport de 10, 95 % de l'énergie totale consommée 159,094 MWh.

Le tableau 3 – 5 : résume le cumule de l'énergie PV produite et de l'énergie conventionnelle consommée par l'Unité, ainsi que les couts des deux énergies en DA et EN euro.

1 st January to 31 August 2019	Energy (MWh)	Unitary price Euro/kWh (DA/ kWh)	Total price (Euro)	Total price (Algerian dinars)
Production	17.422	0.12	2090,64	277706,68
		(15,94)		
Consumpti	159.09	0.03	4772,82	664853,826
on	4	(4,179)		

Figure 3 – 31 : Le cout de l'énergie PV produite et de l'énergie fossile consommée

a) En euro et b) en DA

La figure 3 – 31 représente les couts des énergies PV et fossile consommées par l'URAER, en euro et en DA. 2090.64 euro est le cout de l'énergie PV consommée équivalent à 277706,68DA, économisée par l'URAER sur la facture électrique, alors que 4772,82 euro 664853, 826DA consommé par l'Unité comme énergie acheté à la Sonelgaz.

Conclusion :

Tout le long de ce chapitre on a procéder à l'étude et analyse des performances basée sur des mesures expérimentales d'une plate-forme de centrales photovoltaïques d'une puissance crête installée de 16.28 kWh implantées à l'URAER, CDER. Les conclusions suivantes sont tirées à la fin de ce travail :

Durant la période du 1 Janvier au 31 Aout 2019, l'énergie totale injectée dans le réseau interne de l'URAER est 17.422 MWh, alors que l'énergie d'origine fossile est 159.096 MWh pour la même période, ce sont des résultats satisfaisants.

Les systèmes Photovoltaïques portés par des systèmes suiveurs du soleil ont un gain de production d'énergie supérieur par rapport au même système porté par une structure fixe de 30% à 40%.

L'exploitation de l'énergie produite par les mini-centrales au sein de notre unité prouve l'intérêt, l'efficacité énergétique et la fiabilité de ce type de système.

Le taux d'intégration de l'énergie solaire par l'ensemble des générateurs PV du réseau interne de l'URAER a varié entre 6,60% en janvier et 22,96% en avril. .L'intégration de cette production d'énergie renouvelable dans le réseau de transport dans l'URAER a été jugée satisfaisante en 2019.

Les couts des énergies PV et fossile consommées par l'URAER, en euro et en DA. 2090.64 euro est le cout de l'énergie PV consommée équivalent à 277706,68DA, économisée par l'URAER sur la facture électrique, alors que 4772,82 euro 664853, 826DA consommé par l'Unité comme énergie acheté à la Sonelgaz.

Du début Janvier à fin Aout 2019 l'énergie totale consommée par notre unité est 159.094 MWh, l'énergie totale photovoltaïque injectée dans le réseau interne de l'unité a atteint 17.422 MWh, avec un rapport de 10, 95 % de l'énergie totale consommée 159,094 MWh.

Pour une production optimale des systèmes photovoltaïques il faut des conditions météorologiques compétitives telles que ciel clair, une température relativement basse, et la surface de captation des panneaux doit être propres et ne présentent aucune occultation au passage du rayonnement solaire vers les photodiodes.

En conclusion, la généralisation de ce type de systèmes est conseillé sur le territoire national, vue que toutes les conditions sont satisfaites en termes de conditions météorologiques, en termes de la maitrise de ce types de systèmes par nos chercheurs et fonctionnaires de soutient pour la généralisation sur le territoire nationale, et retour d'expériences par nos équipes de recherches, surtout pour les zones éloignées du réseau électriques, le grand sud.

L'étude présentée dans ce travail peut servir de référence pour la réalisation d'une feuille de route pour la réalisation de ce type de systèmes sur le territoire national. Mon équipe et moimême sommes prêt à maitre notre expériences et notre savoir-faire au service de l'état pour l'étude la conception la réalisation la mise en service et le suivis des centrales photovoltaïques isolées et connectées aux réseau sur tout le territoire nationales, et formés une main d'œuvre spécialisé.

CHAPITRE 4

		D
P	80	

Introduction

Cette étude consiste en l'étude expérimentale énergétique annuelle des performances d'un système photovoltaïque monté sur une structure doté d'un suiveur du soleil. Ce système a été acquis par l'Unité de Recherches appliquées en énergies renouvelables Ghardaïa. Le champ photovoltaïque est constitué des modules photovoltaïques poly-cristallins (voir annexe). La puissance crête du champ PV est de 2.25kWc, un onduleur monophasé connecté au réseau FRONIUS IG15 de puissance de 1.3kWc. L'énergie annuelle produite par le système est de 3.61MWh, qui totalement injecté au réseau interne de l'unité, l'énergie annuelle calculée produite par le système simulé durant la même période est de 3.79MWh, l'énergie annuelle produite par le même système porté par une structure fixe avec un angle d'inclinaison fixe annuel est de 2.13MWh. L'indice de performance du système est au minimum au mois de janvier et a une valeur de 0.44, et atteint son maximum au mois d'avril et a une valeur de 0.88. Le site d'implantation du système a les coordonnées géo spatiales suivantes :

Latitude = 32.4° , Longitude : 3.80° , Altitude = 468.4m, est localisé à 600km au sud de la capitale Alger.

L'Algérie est un pays qui dispose d'un nombre très important de jours ensoleillés. Le territoire Algérien est le plus grand pays sur le continent Africain, et possède de larges zones arides et semi-arides. La distribution des habitants sur le territoire Algérien ne permet pas d'avoir un réseau électrique unique. Le réseau électrique algérien ne peut pas couvrir tout le territoire national Algérien. La production d'énergie électrique en Algérie est basée sur les énergies fossiles. La durée d'ensoleillement sur le territoire Algérien est de 2000h par an au nord, et 3500h par an au sud. L'énergie journalière moyenne reçue par une surface horizontale de 1m² est de 5kWh, elle est comprise entre 1700 kWh/m2/année au nord et 2263 kWh/m2/année au sud. « Portail des énergies renouvelables »

Le programme national de développement des énergies renouvelables (2015-2030) stipule que 37% de l'énergie produite nationale doit être d'origine renouvelables en l'an 2030. Le volume du gaz naturel ainsi sauvé par la production des énergies renouvelables atteint 22000 MW est approximativement égale à 300 Billion m3 de gaz naturel, et équivaut à 8 fois la consommation de l'année 2014. « Portail des énergies renouvelables »

1. Présentation du système :

Le champ photovoltaïque est monté sur un suiveur réel du soleil la figure 4- 1, le suiveur du soleil Degger Tracker 3000NT (les caractéristiques du suiveur sont en annexe). Le Degger Traker est équipé de deux circuits basé sur des photodiodes, l'une fixée sur le point le plus élevé du champ PV pour le balayage horizontale, le second est fixé sur l'arrête latérale pour le balayage verticale, afin suivre le point de focale du soleil, et de positionner le champ PV toujours perpendiculaire au rayonnement solaire, afin de capter l'énergie maximale. Le panneau solaire a une puissance de 2.25KWc, et est formée de 15 modules monocristallins noirs (les caractéristiques du module sont en annexe du chapitre), tous branché en série en une seule branche. L'onduleur IG15 Fronius connecté au réseau et a une puissance crête de 1.3kWc (les caractéristiques sont annexe). Pour les besoins de la simulation on procéder à la saisie des données météorologique, pour un système identique de même puissance formé par les même modules et le même onduleur, pour un système monté sur une structure fixe orientée plein sud et d'un angle d'inclinaison horizontale.

Figure 4-1 : Système photovoltaïque monté sur suiveur réel du soleil.

Le système est équipé d'une station météo pour saisir les paramètres du site (température, irradiation globale sur la surface des modules), ainsi que les paramètres électriques de l'onduleur (courant et tension continu CC, courant et tension alternatif AC). Le pas de saisie des données météorologiques et électriques est de 10 minutes, ils sont capturer par une agélente et sont stoker dans un ordinateur. La période de saisie des données est de
Mai 2016 à Mai 2017. L'énergie totale délivrée par le système 3.16MWh est injectée au réseau interne de l'URAER, procédant ainsi à la réduction de la facture électrique de l'Unité.

La figure 4- 2 représente l'irradiation journalière sur le plan des modules PV du suiveur réel du soleil et sur le plan du panneau PV du système horizontale fixe, et la température ambiante durant la journée du 08 Février 2017. Le système fonctionne en régime de croisière entre 9h et 16h. L'énergie maximale est 1152W/m² pour le suiveur du soleil, et 785.67W/m² pour le système fixe. Au début de la journée à 07h30 la température est de 10.6°c et en fin de journée à 16h00 la température a atteint 19.7°c.

Figure 4-2 : L'irradiation journalière avec suiveur et sur le plan fixe, ainsi que la température ambiante le 08 Février 2017.

La figure 4- 3 représente les différentes parties d'un système photovoltaïque connecté au réseau en mode totale vente de l'énergie produite :

- le champ PV est constitué par l'ensemble des modules connecté en série et/ou en parallèle pour obtenir la tension et le courant imposé par l'onduleur. Le champ PV est caractérisé par son rendement, sa puissance crête et sa surface en m².

 L'onduleur est le cœur du système PV, il transforme l'énergie continue produite par le champ PV en énergie alternative injectée dans le réseau. Un onduleur est caractérisé par sa puissance délivrée et son rendement.

- La charge pour notre cas est le réseau, qui est caractérisé par sa tension 220Vet sa fréquence 50Hz

Figure 4- 3 : représente les différentes parties d'un système photovoltaïque connecté au réseau.

2. Modèle du champ photovoltaïque :

Le circuit équivalent de la cellule photovoltaïque est le model électrique à cinq paramètres. Le circuit équivalent est représenté sur la figure 4.

Figure 4- 4 : Module de cellule photovoltaïque

L'expression du courant de la cellule est [42], [43], [44], [45], [46], [47], [48], [49], [50] :

(4.1)

$$I = I_L - I_0 \left[\exp\left[\frac{q(V + IR_s)}{mKT}\right] - 1 \right] - \frac{V + IR_s}{R_{sh}}$$

IL: photocurrent ou courant photo-généré;

I₀: courant de saturation de la diode;

K: constant de Boltzman (
$$K=1.38*10^{-23} J/^{\circ}K$$
);

- e: charge de l'électron , $(e=1.6 \ 10^{-19} \ C)$;
- m: facteur d'idéalité de la diode (m=1-1.3);
- T: temperature de jonction (°*K*);
- R_s: résistance series due à la resistivity du réseau, (Ω);

 R_{sh} : Resistance shunt, (Ω).

Neglecting the effect of different resistances (very high Rsh, very small Rs), le electric current is expressed by:

$$I = I_L - I_0 \left[\exp\left[\frac{qV}{KT}\right] - 1 \right]_{2}$$
Si, I0 = 10–12 A.cm–2,
$$(4.2)$$

kT/q = 0,025 V,

 $Isc = 4 \times 10-2 \text{ A.cm}-2,$

Voc = 0,6 V

3. Rendement du champ Photovoltaïque :

On introduit le model du rendement du champ photovoltaïque grâce aux mesures prise sur le champ PV. Il est fonction de la puissance maximale du champ PV Pmax, l'irradiation reçue sur la surface des modules PV G, ainsi que la surface totale du champ PV Apv, selon l'équation suivante [43] :

$$\eta_{\rm PV} = \frac{P_{\rm max}}{G * A_{\rm PV}} \tag{4.3}$$

D'autre part, la relation communément utilisé pour mesurer le rendement du champ du champ photovoltaïque est fonction de la température de référence Tref = 25° C, la température de jonction TC, et le coefficient de température [51], est :

$$\eta_{\rm PV} \, \text{th} = \eta_{\rm ref} [1 - \beta * (\text{Tc} - \text{Tref})] \tag{4.4}$$

Ou

 η_{ref} : est le coefficient de référence du champ PV (donné selon les conditions standards);

$$\eta_{\rm ref} = \eta_{\rm refModule} * \eta l_{\rm losses} \tag{4.5}$$

 $\eta_{losses}=0.95~$, représente les pertes dans le champs PV du aux diodes et au câbles...

$$\eta_{\text{losses}} = 0.085 * 0.95 = 0.08075 \tag{4.6}$$

La littérature sur les études des systèmes PV montrent que le paramètre β a pour valeurs: $\beta = 0.0025 K^{-1}$, et $\beta = 0.008 K^{-1}$, $\beta = 0.0043 K^{-1}$.

L'équation de la température interne de la cellule est fonction de la température ambiante et du NOCT température de fonctionnement de la cellule [43] et [52] est :

$$Tc = Ta + \left(\frac{NOCT - 20}{800}\right) * G$$
 (4.7)

La figure 4- 5, représente le graphe de l'évolution du rendement durant la journée du 08 Février 2017, et montre clairement l'effet de la température sur le rendement. Rendement théorique du champ PV suit parfaitement le rendement réel du champ PV durant la journée, du début du jour 7h40 (levé du jour) à 6:20 PM (fin de journée). Le tableau 4-1représente les valeurs significatives de la journée étudiée :

86

Heure	Rendement PV réel	Rendement PV théorique
07 :40	0.0139	0.1467
13 :20	0.1188	0.1215
18 :20	0	0.1472

Tableau 4-1 : Les valeurs significatives de la journée étudiée

En déduit que l'équation (4-4) décrit parfaitement l'évolution du rendement du système PV durant la journée.

Figure 4-5 : Evolution du rendement théorique et du rendement expérimentale durant la journée du 08.Fubrary.2017.

Sur la figure 4- 6 est reporté l'irradiation et la température de jonction du module fixe, et l'irradiation et la température de jonction du module fixé sur le suiveur du soleil, sur le tableau 4-2 sont reportés les valeurs significatives de la journée étudiée :

Time	Irradiation [W/m ²] fixe	Tc [°C] fixe	Irradiation [W/m ²] mobile	Tc [°C] mobile
07 :40	15.36	11.013	183.85	17.31
13 :20	785.67	46.28	1152.49	58.53
18 :20	11.69	18.48	19.16	18.137

Tableau 4-2 : Les valeurs significatives de la journée étudiée

Le cumule de l'irradiation globale reçue par le panneau fixe est : 4.42 (kWh/m²), et le cumule de l'irradiation globale reçue par le panneau avec suiveur réel du soleil est : 7.95

(kWh/m²), cette énergie est le double de l'énergie reçue par le système monté sur une structure fixe.

Figure 4-6 : Evolution de l'irradiation sur le plan des modules et de la température de jonction des deux systèmes fixe et avec suiveur.

4. Modèle de l'onduleur :

L'onduleur est complétement définit par son rendement instantané qui est fonction de la puissance de la charge.

Le rendement de l'onduleur est défini comme suite [51], [52], [53] :

$$\eta_{DC/AC} = \frac{P_{out}}{P_{in} - P_{out}} \tag{4.8}$$

Ou le dénominateur représente les pertes de l'onduleur :

$$P_{lost} = P_{in} - P_{out} \tag{4.9}$$

Selon la référence [53], les pertes de l'énergie sont données par :

$$p_{lost} = p_0 + kp^2 \tag{4.10}$$

Ou,

 p_0 : Constante des pertes de charge,

k : exprime les pertes résistive de l'onduleur,

p: la puissance nominale de l'onduleur,

Le rendement s'écrit:

$$\eta_{DC/AC} = \frac{p}{p + p_0 + kp^2}$$
(4.11)

Les constantes spécifiques de l'onduleur po et k sont exprimées en fonction du rendement de l'onduleur à 10% et 100% de sa charge nominale :

$$\begin{cases} \eta_{10} = 87 \% \\ \eta_{100} = 93.5\% \end{cases}$$

Alors,

$$\begin{cases} p_0 = \frac{1}{99} \left(\frac{10}{\eta_{10}} - \frac{1}{\eta_{100}} - 9 \right) \\ k = \frac{1}{\eta_{100}} - p_0 - 1 \end{cases}$$
(4.12)

Dans ce cas :

$$\begin{cases} p_0 = 0.01439\\ k = 0.0055129 \end{cases}$$

Le coefficient de corrélation est de 99.7%, donc les valeurs calculer et les valeurs mesurées sont presque égales.

L'onduleur est de type limiteur, alors la puissance de sortie ne peut pas dépasser la puissance nominale de l'onduleur. Donc on peut mesurer instantanément la puissance de sortie et calculer la production du système.

Alors,

$$\begin{cases} p = 1 & if \ p \ge 1 \\ p = 0 & if \ P_(out - PV)/P_(nom - inverter) \le p_0 \\ kp^2 + p + (p_0 - P_(out - PV)/P_(nom - inverter)) = 0 & if \ p_0
(4.13)$$

Sur la figure 4- 7, représente le graphe du rendement en fonction de la tension continues. Au début du jour quand Vdc=212.6V, le rendement est $\eta_{DC/AC} = 22\%$, et quand

la tension DC Vdc= 272V, le rendement est $\eta_{DC/AC} = 94\%$ pour la journée, à 16h30, le rendement décroit jusqu'à l'annulation et donc arrêt totale du système.

Figure 4-7 : Rendement de l'onduleur en % par rapport à la tension Vdc DC [V], durant la journée du 08.Février.2017.

La figure 4- 8 illustre l'évolution des rendements pour chaque journée type de chaque mois de Mai 2016 à Avril 2017. Du levé du jour , le rendement évolue au plus tard à 9h00 et selon la saison il se stabilize à 94%, et jusqu'à 16h00 et selon les saisons, il commence à diminuer jusqu'à l'arrêt total de l'onduleur .

Figure 4 - 8 : Rendement de chaque journée type de chaque mois de l'année.

La figure 4 - 9, montre le rendement mensuel moyen de chaque de toute l'année. Le rendement de période Hivernale est élevé à cause des temperature basse, il est faible durant toute la

période chaude de l'année car la température est inversement proportionnelle au rendement. Le rendement annuel moyen de l'onduleur est 93.33%.

Figure 4 - 9 : Rendement mensuel moyen de l'onduleur.

5. Etude des performances des systèmes photovoltaïques :

Afin de conduire une étude des performances des deux systèmes photovoltaïques, l'un porté par une structure avec suiveur réel du soleil, et l'autre porté par une structure fixe, une compagne de mesures réels et des mesure par simulation a été entreprise.

5.1.Comparaison entre un système avec suiveur réel du soleil et un système fixe:

La figure 4-10, représente les valeurs des irradiations journalières mensuelles moyennes sur la surface des modules PV du système fixe horizontal, et des irradiations journalières mensuelle moyenne sur le plan des modules PV du système avec suiveur reel du soleil.

Le tableau 4 - 3: Représente les valeur	s max et min de	es irradiations des	deux systèmes.
---	-----------------	---------------------	----------------

	Fixe	Suiveur reel du soleil
Janvier (min)	4.42kWh/m ²	7.954kWh/m ²
Juin (max)	6.635kWh/m ²	10.265kWh/m ²

Tableau 4 - 3: Les valeurs max et min des irradiations des deux systèmes.

Pour les memes caractéristiques de systèmes PV, la configuration avec suiveur reel du soleil produit une énergie significativement importante par rapport à l'énergie produite par un système ayant les meme caractéristiques porté par une structure fixe et horizontale.

L'irradiation journalière annuelle moyenne sur une surface fixe horizontale est (5.6215kWh/m²), et l'irradiation journalière annuelle moyenne sur une surface mobile avec suiveur reel du solei est (9.227kWh/m²). L'énergie reçue par un système avec suiveur reel du soleil est plus importante que celle reçu par le meme système fixe avec un rapport de 64%.

Figure 4 - 10 : Irradiation journalière mensuelle moyenne sur les surfaces des champs PV.

Figure 4 -11, représente l'énergie produite par un champ photovoltaïque compose de 15 modules (12V, 150W), afin d'avoir des mesures calculés on a utilisé l'irradiation réel sur un plan horizontale et irradiation sur un plan avec suiveur. Les mesures réels ont été instantanément sur le système. Les résultats ont étaient reportés sur la figure 4-11. Les valeurs minimales sont au mois de Janviers alors que les valeurs maximales sont apparues au mois de Juin.

Le tableau 4 - 4: reporte toutes les valeurs spécifiques de l'énergie:

	Epv fixe calculé	Epv suiveur calculé	Epv suiveur mesuré
Janvier (min)	4.97 kWh	8.94 kWh	8.80 kWh
Juin (max)	7.46 kWh	11.55 kWh	10.88 kWh

Tableau 4 - 4: les valeurs spécifiques des énergies mesurés et calculées des deux systèmes.

On observe que les valeurs des énergies calculées sont plus importantes que celles mesurées car, les valeurs calculées sont prises dans des conditions idéales, alors que pour les valeurs réelles elles prennent en considération les pertes de connections les pertes du à la température élevée...

Figure 4 - 11 : énergie journalière mensuelle moyenne DC calculée et mesurée

pour les deux systèmes.

La figure 4 - 12, représente l'énergie mensuelle produite par le champ photovoltaïque monté sur le DEGGER TRAKER, et l'énergie mensuelle injecté dans le réseau interne de l'URAER. Le rapport entre l'énergie Epv et l'énergie Eac est égale à 93%, qui est le rendement de l'onduleur.

5.2. Les performances du système:

Dans des conditions normales, la production d'énergie d'un système photovoltaïque suit toujours les changements de l'irradiation solaire. Une etude détaillée des paramètres

décrivant clairement et précisément comment varie les composantes énergétiques d'un systèmes PV pour une durée de temps précise. Pour cela des paramètres de performances normalisées (standard IEC 61724) (IEC, 1998), sont utilisée pour évaluer les performances du système en termes d'énergie produite, énergie solaire ainsi que les pertes du systèmes. Les paramètres de performances normalisées ont été établis pour avoir les informations nécessaires pour dimensionner et évaluer les performances des systèmes photovoltaïques. Ils sont normalises pour comparer des systèmes PV selon la localisation géographie, la technologie, le dimensionnement et la réalisation du système. Ces paramètres sont (Haeberlin and Beutler, 1995; Marrion et al, 2005), [53],[54],[55],[56]:

5.2.1. Rendement de surface Ya, Figure 4 -13:

Rendement de surface Ya représente la production d'un système PV Durant une période t de temps (jours, semaine, mois, an, ...). Ce parameter est define comme le rapport entre l'énergie produite par le système PV Durant une période de temps t, à la puissance PV installée.

Figure 4 - 13 : Rendement de surfaces Ya.

5.2.2. Rendement du champ Yf, figure 4 - 14:

Rendement du champ Yf est comme le rapport entre l'énergie utilisée produite par le système durant une période de temps t, à la puissance installée.

$$Y_f = \frac{EGPV, t}{P_{nom,G}}$$
(4.15)

Figure 4 - 14 : le coeffiecient de la productivité finale normalisée généré par le système

5.2.3. Le rendement de référence Yr, figure 4 -15 :

Le rendement de référence Yr est le rapport de l'irradiation solaire reçue par le champ PV par rapport à l'irradiation dans les conditions standards.

Figure 4 - 15 : Indice de référence normalisé de productivité

5.2.4. Indice de performance Pr, figure 4 - 16 :

Indice de performance Pr défini comme étant le rendement global du système. C'est le rapport entre le rendement final et le rapport de référence. Ce paramètre est indépendant de la taille du champ PV et de son emplacement. Il est utilisé pour comparer différents systèmes PV.

$$\Pr = \frac{Y_f}{Y_R} \tag{4.17}$$

Figure 4 - 16 : Indice de performance Pr

L'indice de performance Pr d'un système PV prend en considération toutes les pertes réelles d'un système PV. L'indice de performance annuel moyen de notre système PV est 80%, donc les résultats de ce système sont très satisfaisants.

Dans le tableau 4 - 4, est reporté les rendements de modules PV, le rendement de l'onduleur, et l'indice de performance Pr, pour des systèmes PV installé autour du monde, ainsi que les paramètres de notre système dans le but de les comparer.

Sur le tableau 4 - 5, est reporté les paramètres de différentes installations dans le monde, afin de les comparer.

Country	η_{pv} (%)	$\eta_{inverter}$ (%)	Pr	Reference
Spain	13.7	89.5	0.69	[57]
Italy	3.7	90-91	0.66	[58]
Brazil	3.7	91	0.5 - 0.81	[59]
Ireland	7.5-10	87	0.6 - 0.62	[60]
Malaysia	10.11	95.15	0.77	[61]
North Algeria	7-10	87-96	0.62 - 0.82	[62]
South Algeria	11-15	92-94	0.44 - 0.88	Present system

Tableau 4 - 5 : les paramètres de différentes installations dans le monde

CONCLUSION

La centrale photovoltaïque pilote connecté au réseau, formé par des modules polycristallin, installée dans le Sahara Algérien et mise en service en Octobre 2014, est toujours opérationnelle. Une compagne de saisie de données a été exécutée durant la période de Mai 2016 à Avril 2017, toute l'énergie produite par ce système a été injectée dans le réseau interne

de l'URAER, et a permis de soulager la facture électrique de l'Unité. Durant cette période ont été mesuré et analysées les paramètres journaliers et mensuels du système, avec un pas de mesure de 5 minutes. L'énergie journalière annuelle moyenne injectée dans le réseau interne de l'URAER est de 9.89kWh.

L'irradiation annuelle journalière moyenne reçue par un système PV fixe horizontale est 5.6215kWh/m², et l'énergie annuelle journalière moyenne reçu par un système PV avec suiveur réel du soleil est 9.227kWh/m². L'énergie produite par un système mobile est supérieur à l'énergie produite par un système fixe de 64%.

97

Conclusion Générale

Conclusion Générale

L'exploitation de l'énergie produite par les mini-centrales au sein de notre unité prouve l'intérêt, l'efficacité énergétique et la fiabilité de ce type de système.

Le taux d'intégration de l'énergie solaire par l'ensemble des générateurs PV du réseau interne de l'URAER a varié entre **6,60%** en janvier et **22,96%** en avril. .L'intégration de cette production d'énergie renouvelable dans le réseau de transport dans l'URAER a été jugée satisfaisante en 2019.

Du début Janvier à fin Aout 2019 l'énergie totale consommée par notre unité est **159.094 MWh**, l'énergie totale photovoltaïque injectée dans le réseau interne de l'unité a atteint **17.422 MWh**, avec un rapport de **10, 95 %** de l'énergie totale consommée, pour la même période, ce sont des résultats satisfaisants.

Les couts des énergies PV et fossile consommées par l'URAER, en euro et en DA. **2090.64 euro** est le cout de l'énergie PV consommée équivalent à **277706,68DA**, économisée par l'URAER sur la facture électrique, alors que **4772,82 euro**, **664853**, **826DA** consommé par l'Unité comme énergie acheté à la Sonelgaz, (les couts du kWh a été calculée selon la Sonelgaz, prix du kWh subventionné par l'état).

A l'URAER, CDER Ghardaïa, l'irradiation annuelle journalière moyenne reçue par un système PV fixe horizontale est **5.6215kWh/m²**, et l'énergie annuelle journalière moyenne reçu par un système PV avec suiveur réel du soleil est **9.227kWh/m²**. L'énergie produite par un système mobile est supérieur à l'énergie produite par un système fixe horizontal de **64%**, alors que l'énergie générée par une centrale portée par une structure mobile est supérieur à celle d' un même système fixe avec un angle d'inclinaison égale à la latitude du site d'implantation, de **30%** à **40%**.

Pour une production optimale des systèmes photovoltaïques il faut des conditions météorologiques compétitives telles que ciel clair, une température relativement basse, et la surface de captation des panneaux doit être propres et ne présentent aucune occultation au passage du rayonnement solaire vers les photodiodes.

En conclusion, la généralisation de ce type de systèmes est conseillé sur le territoire national, vue que toutes les conditions sont satisfaites en termes de conditions météorologiques, en termes de la maitrise de ce types de systèmes par nos chercheurs et fonctionnaires de soutient pour la généralisation sur le territoire nationale, et retour d'expériences par nos équipes de recherches, surtout pour les zones éloignées du réseau électriques, le grand sud.

Les perspectives de ce travail sont :

- Ce travail peut être complété par l'ajout d'autres sources d'énergies renouvelables (éolienne, pile à combustible, système hydroélectrique) et/ ou fossile (groupe électrogène), et formé ainsi un système hybride et maitriser la gestion de son énergie, qui peut être utilisé pour les zones éloignées du réseau électrique.
- Ce travail peut être compléter par la gestion d'énergie dans une maison ayant déjà un système PV et est connectée au réseau électrique selon la méthode totale vente de l'énergie produite ou selon la vente de l'énergie excédante.
- Ce travail peut être compléter par l'interconnexion de plusieurs maisons ayant des systèmes PV et les connecter ensemble pour former un SMART GRID toute en gérant la transition de l'énergie dans le réseau et avec le réseau Sonelgaz.

REFERENCES

- 1. https://www.iea.org/reports/net-zero-by-2050
- 2. https://www.iea.org/reports/renewables-2021
- Holtz, G., Fink, T., Amroune, S., & Fischedick, M. (2018). Development of a phase model for categorizing and supporting the sustainable transformation of energy systems in the MENA region. Wuppertal Institut f
 ür Klima, Umwelt, Energie.
- Fischedick, M., Holtz, G., Fink, T., Amroune, S., & Wehinger, F. (2020). A phase model for the low-carbon transformation of energy systems in the MENA region. Energy Transitions, 4, 127-139. https://doi.org/10.1007/s41825-020-00027-w
- Fischedick, M., Samadi, S., Hoffmann, C., Henning, H.-M., Pregger, T., Leprich, U., & Schmidt, M. (2014). Phasen der Energiesystemtransformation (FVEE – Themen). FVEE.

https://www.fvee.de/fileadmin/publikationen/Themenhefte/th2014/th2014_03_01.pdf

- Henning, H.-M., Palzer, A., Pape, C., Borggrefe, F., Jachmann, H., & Fischedick, M. (2015). Phasen der Transformation des Energiesystems. Energiewirtschaftliche Tagesfragen, 65 (Heft 1/2), 10-13.
- Hochberg, M. (2020, October 20). Algeria charts a path for renewable energy sector development. Middle East Institute. <u>https://www.mei.edu/publications/algeria-charts-path-renewable-energy-sector-development</u>
- 8. https://en.wikipedia.org/wiki/Desertec
- Bouznit, M., Pablo-Romero, M., & Sánchez-Braza, A. (2020). Measures to promote renewable energy for electricity generation in Algeria. Sustainability, 12(4), 1468. <u>https://doi.org/10.3390/su12041468</u>
- Banque mondiale. (2013). Middle East and North Africa Integration of electricity networks in the Arab world: Regional market structure and design. (Report No: ACS7124).

http://documents.worldbank.org/curated/en/415281468059650302/pdf/ACS71240ES W0WH0I0and0II000Final0PDF.pdf

11. AHK – Deutsch-Algerische Industrie-und Handelskammer. (2018). Algerien – Erneuerbare Energien und Energieeffizienz in Gewerbe und Landwirtschaft. https://www.german-energy-

solutions.de/GES/Redaktion/DE/Publikationen/Marktanalysen/2018/zma_algerien_20 18.pdf?__blob=publicationFile&v=3

- CEREFE Commission for Renewable Energy and Energy Efficiency. (2020). Transition énergétique en Algérie.
- Hochberg, M. (2020, October 20). Algeria charts a path for renewable energy sector development. Middle East Institute. <u>https://www.mei.edu/publications/algeria-charts-path-renewable-energy-sector-development</u>
- 14. DENA Deutsche Energie-Agentur. (2014). Länderprofil Algerien. <u>https://www.dena.de/fileadmin/dena/Dokumente/Pdf/3217_Laenderprofil_Algerien_R</u> <u>EG.pdf</u>
- 15. Boersma, T., Vandendriessche, M., & Leber, A. (2015). Shale gas in Algeria: No quick fix. Brookings Institution. <u>https://www.brookings.edu/wp-content/uploads/2016/07/no_quick_fix_final-2.pdf</u>
- 16. https://www.ren21.net/wp-content/uploads/2019/05/gsr_2019_full_report_en.pdf
- 17. Harrouz, A., Abbes, M., Colak, I., & Kayisli, K. (2017). Smart grid and renewable Energy in Algeria. 6th International Conference on Renewable Energy Research and Applications.
- RCREEE- Regional Center for Renewable Energy and Energy Efficiency (2019). Arab future energy index (AFEX) – Renewable energy 2019. https://www.rcreee.org/content/arab-future-energy-indexrenewable-energy-2019reportREN21. (2019). Renewables 2019 global status report. REN21 Secretariat. https://www.ren21.net/gsr-2019/
- 19. Banque
 mondiale
 2014

 https://openknowledge.worldbank.org/handle/10986/20093?locale-attribute=fr

20. John A. Duffy, William A. Beckman « Solar ingineering of thermal processes », second edition. By John Wiley et sons inc. USA, (1991).

21. Roget A. Messenger, Jerry Ventre « Photovoltaic systems engineering » second edition, by CRC press LLC USA 2004

20. Jimmy Royer and al, sous la direction de Eric Schiller « Le pompage photovoltaïque, Manuel de cours à l'intention des ingénieurs et des techniciens » IEPF Université de d'Ottawa 1998

22. Claure Delorme « Système énergétique solaire » Professeur à l'Université d'Avignon tome 1 et 2, novembre (1987)

23. M. Capderou « Atlas solaire de l'Algérie », Tome 2 : Aspect énergétique, OPU Juin (1985)

24. M. Capderou « Atlas solaire de l'Algérie », Tome 1 : modèles théoriques et expérimentaux, EPAU, OPU Décembre (1987)

25. F. Benyanous « conception assistée par ordinateur des systèmes photovoltaïques, modélisation, dimensionnement et simulation » Thèse d'état soutenu le 7 Juillet (2004), Université de Tlemcen

26. S. Busquet « étude d'un système autonome de production d'énergie couplant un champ photovoltaïque, un électrolyseur et une pile à combustible : réalisation d'un banc d'essais et modélisation » Thèse de Doctorat d'état « énergétique » Ecole des Mines de Paris soutenu le 15 Décembre 2003

27. S. Labed « PV sizing : une méthode simple pour dimensionner les installations photovoltaïques » CEME (1997) CDER

28. Zaghba L, Khennane M, Fezzani A, Borni A, Hadj Mahammed I. Experimental performance assessment of a 2.25 kWp Rooftop PV system installed in the desert environment: a case study of Ghardaia, Algeria, International Journal of Sustainable Engineering.2020. https://doi.org/10.1080/19397038.2020.1743377.

29. Zaghba L, Khennane M, Fezzani A, Borni A, Hadj Mahammed I. Experimental outdoor performance evaluation of photovoltaic plant in a sahara environment (Algerian Desert). International Journal of Ambient Energy. 2019;1–11. https://doi.org/10.1080/01430750.2019.1636865.

30. Rawat R, Kaushik SC, Lamba Ravita. A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system. Renew Sustain Energy Rev 2016;57:1506–19.

31. Ayompe LM, et al., Measured performance of a 1.72 kW rooftop grid connected photovoltaic system in Ireland. Energy Convers Manage. 2010;52 (2):816–25. https://doi.org/10.1016/j.enconman.2010.08.007.

32. Necaibia A et al, Analytical assessment of the outdoor performance and efficiency of grid-tied photovoltaic system under hot dry climate in the south of Algeria, Energyconversion and Management. 2018; 171:778-786.

33. Skoplaki E, Palyvos JA. On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations, Sol. Energy. 2009;83:614-624. <u>https://doi.org/10.1016/j.solener.2008.10.008</u>.

34. Tian H, Mancilla-David F, Ellis K, Muljadi E, Jenkins P. 2012. A cell-to-module-toarray detailed model for photovoltaic panels. Sol Energy. 2012; 86:2695–706.

35. Boutana N, Mellit A, Haddada S. Rabhi A, Massi Pavan A. An explicit I-V model for photovoltaic module technologies, Energy Conversion and Management. 2017; 138:400–412.

36. Supriyono, Hassan Khamis Hassan, Marwan Effendy. Smart Detection of Sunlight using Arduino on Solar Power Systems. Test engineering& Management. 2019;81:6576 – 6584.

37. Gairaa K, Khellaf A, Messlem Y, Chellali Y. Estimation of the Daily Global Solar Radiation Based on Box–Jenkins and ANN Models: A Combined Approach. Renewable and Sustainable Energy Reviews. 2016;57:238–249.

38. Guermoui, Mawloud, Abdelaziz Rabehi. Soft Computing for Solar Radiation Potential Assessment in Algeria. International Journal of Ambient Energy. 2018;41(13). https://doi.org/10.1080/01430750.2018.1517686.

39. Zaghba L, Khennane M, Hadj Mahamed I, Oudjana HS, Fezzani A, Bouchakour A, Terki N. A combined simulation and experimental analysis the dynamic performance of a 2 kW photovoltaic plant installed in the desert environment, Int J Energy Environ Eng. 2016;7:49–260. https://doi.org/10.1007/s40095-016- 0216-2.

40. Zaghba L, Khennane M, Terki N, Borni A, Bouchakour A, Fezzani A, Hadj Mahamed I, Oudjana SH. The effect of seasonal variation on the performances of grid connected photovoltaic system in southern of Algeria. AIP Conference Proceedings 2017;1814:020005. https://doi.org/10.1063/1.4976224.

41. Sahouane N, Dabou R, Ziane A, Neçaibia A, Bouraiou A, Rouabhia A, Mohammed B. Energy and economic efficiency performance assessment of a 28 kWp photovoltaic grid connected system under desertic weather conditions in Algerian Sahara. Renewable. Energy. 2019;143:1318-1330 <u>https://doi.org/10.1016/j.renene.2019.05.086</u>.

42. Ali H. Abdullah, Adel A. Ghoneim, Ahmad Y. Al-Hasan, « Assessment of gridconnected photovoltaic systems in the Kuwaiti climate», Renewable Energy 26 (2002) 189– 199. 43. M.Koussa, M.Haddadi, D.Saheb, A.Malek, S.Hadji : «Sun tracking mechanism effects on flat plate photovoltaic system performances for different step time and main parameters affecting the obtained gains: case of North Africa and Mediterranean site», Energy Procedia 18 (2012) 817 – 838.

44. A. Habbati Bellia,1 Y. Ramdani,1F. Moulay,1K. Medles: «1IRRADIANCE AND TEMPERATURE IMPACT ON PHOTOVOLTAIC POWER BY DESIGN OF EXPERIMENTS», Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 58, 3, p. 284–294, Bucarest, 2013

45. A. H. A. Azzeddine, M. Tioursi, D.-E. Chaouch, B. Khiari: «An offline trained artificial neural network to predict a photovoltaic panel maximum power point», Rev. Roum. Sci. Techn.– Électrotechn. et Énerg.Vol. 61, 3, pp. 255–257, Bucarest, 2016

A. Attou, A. Massoum, M. Chadli: « Comparison study of two tracking methods for photovoltaic systems», Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 60, 2, p. 205–214, Bucarest, 2015

47. S. Mirić, M. Nedeljković : « The solar photovoltaic panel simulator», Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 60, 3, p. 273–281, Bucarest, 2015

48. M. N.AMRANI, A .DIB : « Direct power control for a photovoltaic conversion chain connected to a grid », Rev. Roum. Sci. Techn.– Électrotechn. et Énerg. Vol. 61, 4, pp. 378–382, Bucarest, 2016

49. M. A. Ozcelik, A. Serdar Yilmaz : « Modification of the incremental conductance algorithm in grid connected photovoltaic systems », Rev. Roum. Sci. Techn.– Électrotechn. et Énerg. Vol. 61, 2, pp. 164–168, Bucarest, 2016

50. P. Sarothi Sikder, N. Pal2: « Incremental conductance based maximum power point tracking controller using different buck-boost converter for solar photovoltaic system», Rev. Roum. Sci. Techn.– Électrotechn. et Énerg. Vol. 62, 3, pp. 269–275, Bucarest, 2017

51. Macagnan M.H., Lorenzo E., (1992), «On the optimal size of inverters for grid connected PV systems». 11th E.C. Photovoltaic Solar Energy Conference, Montreux, 1167-1170.

52. Poggi P., «intégration des systemes energetiques a sources renouvelables dans les reseaux electriques insulaires», universite de corse pasquale paoli, Discipline : ÉnergÉtique et GÉnie des ProcÉdÉs,15 Décembre 2007

53. Schmid J., H. Schmidt. H., (1991), «Inverters for Photovoltaic Systems", 5th Contractor's Meeting of the EC Photovoltaic Demonstration Projects», Ispra, Italie, 122-132.

54. A. Hadj Arab , F.Cherfa , A.Chouder and F. Chenlo, «Grid-connected photovoltaic system at CDER, Algeria», 20th European Photovoltaic Solar Energy Conference, 6-10 June 2005, Barcelona, Spain.

55. Haeberlin H. et Beutler Ch., (1995), «Normalized Representation of Energy and Power for Analysis of Performance and On-line Error Detection in PV Systems», 13th European Photovoltaic Solar Energy Conference, Nice, October 23-27.

56. Marion B., Hayden H., (2005), «Performance Parameters for Grid-Connected PV Systems», 31st IEEE Photovoltaic Specialists Conference and Exhibition - Lake Buena Vista, Florida.

57. AD.Miguel and Al., «Performance analysis of a grid-connected PV system in rural site in the Northwest of Spain». World Renew able Energy Congress VII 2002, Cologne, Germany

58. EW. Dunlop and Al., «Electrical characterization and analysis of operating conditions of amorphous silicon building integrated photovoltaic modules». In: 14th European PV solar energy conference 1997, Barcelona, Spain. p. 2037–41.

59. R. Ruther, MM. Dacoregio, «Performance assessment of a 2 kWp grid-connected, building integrated, amorphous silicon photovoltaic installation in Brazil». Prog. Photovoltaic's: Res Appl 2000; 8:257–66.

60. J.D. Mondol and Al., « Long-term performance analysis of a grid connected photovoltaic system in Northern Ireland». Energy Conversion and Management Vol.47 (2006) 2925–2947

61. M. Farhoodnes, 1A. Mohamed, T.Khatib, W. Elmenreich « Performance evaluation and characterization of 3-kWp grid connected photovoltaic system based on tropical field

experimental results: new results and comparative study», Renewable and Sustainable Energy Reviews 42 (2015) 1047-1054.

62. Cherfa, F., Hadj Arab, A., Oussaid, R., Abdeladim, K., Bouchakour, S.

«Performance analysis of the mini-grid connected photovoltaic system at Algiers» (2015) Energy Procedia, 83, pp. 226-236.

ANNEXES

CHAPITRE 1

Etat actuel de l'Algérie dans la transition énergétique et donne des perspectives :

1) Développement durant les phases de transition :

Développement Durant les Phases de Transition

	Développement Avant la phase l	Phase I : * Décollage ER *	Phase II : * Intégration du système ER *	Phase III : " Eléctricité-en-carburant /Gaz (PtF/G "	Phase IV : " Vers 100% ER "
	* La formation de niche ER	* Lancée RE * Option de flexibilité de formation de niche	* Croissance basée sur le marché ER * Option de flexibilité révolu- tionnaire * Formation de niche PtF/G	 Option de flexibilité de crois- sance basée sur le marché Lancée des PtF/G Application spécial PtF/G de formation de niche et exportations 	* Croissance basée sur le marché. PtF/G * Application et exportations révolutionnaire spéciales
Nive au paysage	 * Plans et cadres intern * Efforts de décarboni écologique après la pa * Conflits internationa * Impacts à long term * Conditions géograpi * Développement dén 	nationaux sur le changemer sation des pays industrialisé indémie de COVID-19) ux et régionaux (affectant l e de la pandémie de COVII hiques et la distribution des nographique	nt climatique is (notamment les programmes de récu e commerce) D-19 sur l'économie mondiale ressources naturelles	pération	

			* Parts des ER dans le système énergétique en- viron 0%-20%	* Parts des ER dans le système énergétique environ 20%-50%	* Parts des ER dans le système énergétique environ 50%- 80%	* Parts des RE dans le système énergétique environ 80%- 100%
			* Introduction sur le marché des ER s'appuyant sur la disponibilité dans le monde et entrainée par la baisse des prix mondiaux	* Nouvelle extension du réseau (national et international)	* Extension du stockage à long terme (ex. stockage du gaz de synthèse)	* Construction à grande échelle des infrastructures pour l'exportation des PtF/G
			* Extension et modernisation du réseau électrique	* Les structures TIC s'intègrent aux systèmes énergétiques (ex. l'introduction des compteurs intelligents)	* La première infrastructure PtF/G est construite (répondant à la demande grandissante nationale et étrangère)	* Elimination progressive des infrastructures de modèles commerciaux à combustible fossiles
			* Réglementations et schémas de prix pour ER	* Entrée des options de flexibilités du système (ex. stockage sur batteries)	* Charges résiduelles négatives temporairement élevées en raison des parts élevées des ER	* Consolidation des modèles d'exportation basés sur ER
Secteur d'énergies	Niv eau sys tème	ouche Techno-economique	* Développer et renforcer les chaines d'approvisionnement national pour ER	* Électrification directe des applications dans le secteur du bâtiment, de la mobilité et de l'industrie ; évolution des modèles commerciaux dans ces secteurs(ex. pompes à chaleur, véhicules électriques, système de maison intelligente, commercialisation du délestage des charges industrielles)	* Les volumes de ventes des combustibles fossiles commencent diminuer	* Remplacement complet des combustibles fossiles par des ER
		0	* Pas de remplacement des combustibles fossiles en raison de la croissance du marché	* Pas de remplacement (ou seulement un remplacement limité) des combustibles fossiles en raison de la croissance du marché	* Les modèles commerciaux existants basés sur les combustibles fossiles commencent à changer	* Stabilisation des modèles commerciaux PIF/G et des capacités de production (ex. investissement à grande échelle)
				* Développement et extension des mini-réseaux comme solution pour les applications hors-réseau et les sites éloignés	* Augmentation des volumes des Pt6/G dans le transport, en remplacement des combustibles fossiles et du gaz naturel	
				* Faire progresser la transition énergétique dans les secteurs d'utilisation finale(transports, industries et bâtiments)		
				* Faire progresser la transition énergétique dans le secteur de l'industrie, réduire la teneur élevée du carbone de certains produits et les émissions élevées de certains procédés		

ANNEXES

			Développement Avant la phase I	Phase I : * Décollage ER *	Phase II : " Intégration du système ER "	Phase III : " Eléctricité-en-carburant /Gaz (PtF/G "	Phase IV : " Vers 100% ER "
			* La formation de niche ER	* Lancée RE * Option de flexibilité de formation de niche	* Croissance basée sur le marché ER * Option de flexibilité révolu- tionnaire * Formation de niche PtF/G	* Option de flexibilité de crois- sance basée sur le marché * Lancée des PtF/G * Application spécial PtF/G de formation de niche et exportations	* Croissance basée sur le marché PtF/G * Application et exportations révolutionnaire spéciales
			* La reconnaissance fondamentale que l'efficacité énergétique est le deuxième pilier stratégique de la transformation du système énergétique	* Soutenir l'adoption des ER (ex. tarifs de rachat), mettre en place des réglementations et des barèmes de prix pour les ER	* Faire pression sur le régime électrique basé sur les combustibles fossiles (ex. réduction de subventions et tarification du carbone)	* Faire pression sur les composants du système qui contrecarrent la flexibilité (ex. éliminer progressivement les centrales électriques de base)	* Faire pression sur les combustibles fossiles (ex. éliminer la production)
				Participation croissante des investisseurs institutionnels (fonds de pension, compagnies d'assurances, dotations et fonds souverains) à la transition	* Retrait du soutien aux ER (ex. élimination progressive des tarifs d'achat)	* Retrait du soutien aux options de flexibilité	* Retrait du soutien aux PtF/G
				* Sensibilisation croissante aux enjeux environnementaux	* Mesures pour réduire les effets secondaires involontaires des ER (le cas échéant)	* Mesures pour réduire les effets secondaires involontaires des options de flexibilité (le cas échéant)	* Mesures pour réduire les effets secondaires involontaires du PtF/G (le cas échéant)
8		ance		* Fournir un accès aux infrastructures et aux marchés pour les énergies renouvelables (ex. mettre en place des règlementations pour l'accès au réseau)	 * Adaptation de la conception du marché pour tenir compte des options de flexibilité 	* Mettre en place des règlementations et des schémas de prix (ex. transport, remplacement des combustibles fossiles et du gaz naturel)	* Accès aux infrastructures et aux marchés (ex. connecter les sites de productions aux pipelines)
Secteur d'énergi	Niveau système	uche de Gouvern		* Des efforts modérés pour accélérer les améliorations de l'efficacité	* Fournir un accès aux marches pour des options de flexibilité (ex. l'adaptation de la conception du marché, l'alignement des règlementations relatives à l'électricité, mobilité et à la chaleur)	* Réduire les prix payés pour l'électricité à base de combustibles fossiles	* Soutenir l'adoption (ex. les subventions)

ANNEXES

		Développement Avant la phase l	Phase I : " Décollage ER "	Phase II : " Intégration du système ER "	Phase III : * Eléctricité-en-carburant /Gaz (PtF/G *	Phase IV : * Vers 100% ER *
		* La formation de niche ER	* Lancée RE * Option de flexibilité de formation de niche	* Croissance basée sur le marché ER * Option de flexibilité révolu- tionnaire * Formation de niche PtF/G	* Option de flexibilité de crois- sance basée sur le marché * lancée des PtF/G * Application spécial PtF/G de formation de niche et exportations	* Croissance basée sur le marché PtF/G * Application et expor- tations révolutionnaire spéciales
		* Évaluation du potentiel des ER	* Évaluation des potentiels régionaux pour les différentes options de flexibilité	* Évaluation du potentiel des différentes voies de conversion PtF/G	* Expérimenter des applications PtF/G dans des secteurs tels que l'industrie (ex. les secteurs de l'acier, du ciment et de la chimie) et les transports spéciaux (l'aviation et le transport maritime)	
	mique	* Projets pilotes locaux en ER	* Expérience avec des options de flexibilité	* Projets pilotes locaux avec génération de PtF/G basée sur l'hydrogène ER et la capture du carbone (ex. CCU/CCS)	* Investir dans l'exportation des modèles d'entreprises PtF/G	
	uche Techno-écono		* Exploration des modèles commerciaux autour des options de flexibilité, y compris les startups TIC et les nouveaux modèles commerciaux numériques pour le jurnelage sectoriel	* Exploration des modèles commerciaux de base PtF/G	* Exportations pilotes des carburants synthétiques	
	8			Exploration de nouveaux potentiels DSM (ex. recharge intelligente, chauffage et refroidissement par pompes de chauffage flexible, stockage thermique alimenté par l'électricité)		
ie:				* Puiser dans les expériences globales des PtF/G		

CHAPITRE 2

Simulation du comportement des modules pour différentes irradiations :

Figure Les caractéristiques I-V du module 50Wc et 70Wcpour différentes éclairements simulation.

ANNEXES

Figure : Les caractéristiques I-V du module 90Wc 150Wc pour différentes éclairements simulation.

Figure : Les caractéristiques I-V du module 170Wc 230Wc pour différentes éclairements simulation.

Table 1 Module Performance under standard test conditions (STC): SW150

Maximum power	Pmax	150W
Open circuit voltage	Uoc	22.5V
Maximum power point voltage	Umpp	18.3V
Short circuit current	Isc	8.81A
Maximum power point current	Impp	8.27A

Table 2 Inverter Fronius IG15 :

Specifications Input:	<u>IG15 :</u>
Recommended connection power	1300 – 2000 Wp
MPP voltage range	150 - 400 V
Max input voltage at (STC)	500V
Max input current	10.75 A
Output characteristics:	<u>IG15 :</u>
Rated output power	1.3kW
Max output power	1.5kW
Rated network voltage	230V +10/-15%
Nominal output current	5.7A
Rated frequency	50 +/- 0.2 Hz
Distortion	< 3%
Power factor	1
maximum efficiency	94.2 %
Euro yield	91.4 %