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Introduction

Fractional calculus is known as a generalization of classical derivatives and integrals. In recent

years, this type of calculus has been developed, which has given more accurate and realistic results.

For example, if we talk about epidemics, the order of the fractional derivative represents individuals

who are facing the outbreak of disease based on previous diseases, and this is what is known in epide-

miology as memory .

The memory factor has an important role in studying the outbreak of epidemics as it can help

stop the spread of the disease in the community. Due to this great role of fractional calculus, many

researchers have used it in conducting research related to describing, predicting, and controlling the

behavior of epidemics Among them ; Models to study control and treatment effects on the spread of

HIV disease [6] , models to predict the behavior of the coronavirus epidemic in countries [7], models

for anthrax [15], and a toxoplasmosis model[19] .

Some have also used this type of calculas in studying the dynamics of hepatitis B disease, such

as ; modeling and analysis of the fractional HBV model with Atangana-Baleanu derivative in [5], a

fractional order model for Hepatitis B virus with treatment in [17], analysis of a model of HBV infection

with an antibody immune response using Caputo fractional derivative in [4], and in [11] Nadia Gul

and others have studied the dynamics of fractional order Hepatitis B virus model with asymptomatic

carriers.

It is worth noting that the non-locality represents the correlation between the real problem and the

mathematical problem, so that the greater the nonlocality in the mathematical problem, the greater

the accuracy in depicting the problem with mathematical equations. Non-local operators aimed to at-
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tract more non-local natural problems, In pursuit of more realistic models , Abdon Atangana proposed

new operators for fractiona calculus that allow linking between fractal calculus and fractional calculus

, and aimed to attract more non-local natural problems that display at the same time fractal behaviors

thus facilitating prediction of a complex systems (see [2]for more informations).This new operators will

be called fractal-fractional differential and integral operators. With these new derivatives, researchers

presented important works that studies the dynamics of epidemics, including : in [8] Sina Etemad and

others have made some novel mathematical analyses on the fractal-fractional model of the AH1N1/09

virus and its generalized Caputo-type version, and in [19] we have a mathematical model of the trans-

mission cycle of CC-Hemorrhagic fever via fractal-fractional operators and numerical simulations.

As we know, many differential problems have very complex analytical answers that we are unable

to make use of ; therefore, it is necessary to use numerical approximations to better understand the

results. Several researchers have proposed different methods of numerical approximation. The most

widely used method in approximating solutions to nonlinear fractional differential equations that mo-

del epidemiological dynamics in the last few years has been the Adams-Bashforth numerical method,

which is based on Lagrange polynomial and has given very satisfactory results, but recently, Abdon

Atangana and Seda Igret Araz found that Newton polynomial is more accurate than Lagranges, so they

proposed a new numerical scheme based on Newtons polynomial (see [16]for more information). Some

researchers have used this new numerical method in their research, such as ; [14] studied the dynamics

of CD4+ T-cells under the effect of HIV-1 infection based on a mathematical fractal-fractional model

via the Adams-Bashforth scheme and Newton polynomials, a fractal-fractional model and numerical

scheme based on Newton polynomials for Q fever disease under the Atangana-Baleanu derivative [3],

and other limited papers such as ;[16].

The aim of this research is to analyze, study and explain the article[9] , while recalling the most

important topics that are relied upon in this research In the first chapter, epidemiology was mentioned

in general. The second chapter has been referred to some definitions of fractional derivatives The last

chapter in which the main topic in the reference [9]was studied.
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Notations

ä N(t) the total Population.

ä R Set of real numbers.

ä N the set of natural integers.

ä C set of camplex numbers.

ä Ω Omega set.

ä R0 the basic reproduction number.

ä V −1 the invertible matrix of V.

ä JF Jacobian matrix of F.

ä FV −1 the next generation matrix.

äρ(FV −1) the matrix spectral radius K

ä DFE Disease-Free equilibrium point.

ä EE point of endemic equilibrium .
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Chapitre 1

MODELING IN EPIDEMIOLOGY

1.1 Introduction

A mathematical model is an abstract representation or interpretation of reality in different domains

which is accessible to analysis and calculation based on a set of assumptions. Compartmental models

are among the first mathematical models to have been used in epidemiology, which plays an important

role in studying the evolution of infectious diseases and eradicating them and, at most, should make

it possible to better understand epidemic phenomena and therefore better control them.

The idea has become to study demographic variations in societies. To model, it is first necessary to

know the biology of the disease well [10] making a model of deterministic or stochastic compartments

in discrete or continuous time depending on the disease to be studied, except the use of stochastic

models is more complicated than the other. In this chapter, we are interested in this last type of model,

which is based on two concepts : compartments and rules, compartments divide the population into

various possible states by disease (susceptible, infected, etc.), rules specify the proportion of indivi-

duals moving from one compartment to another.
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1.2. THE CLASSIC MODELS IN COMPARTMENTS :

1.2 The classic models in compartments :

1.2.1 The SI, SIS model

The SI model is one of the classic models created by W. Hamar and developed in 1906 where

individuals can be divided into two compartments :

The compartment or box of susceptible (healthy) individuals are receptive to the infectious agent who

are not contaminated but can catch the disease and become contagious noted (S).

The compartment of infected individuals noted (I) are those affected and who are therefore infec-

tious.

The infection is spread by direct contact between the susceptible and the infected. We see that in this

model, there are no cures and is only relevant in incurable diseases or if the phenomenon of acquired

immunity can be neglected [12]. An individual changes state (either infected or susceptible... etc.) he

therefore changes his compartment with outgoing or incoming flows which indicate the rate of transfer

between them. On the other hand, as the change in the number of infected people occurs over time,

compartment I includes I(t) and the same for S(t). By the assumption of the constant of the size of

the population the model is formed as follows :

Figure 1.1 – SI model diagram.

The system of differential equations is written :
dS(t)

dt
= −βI(t)S(t)

dI(t)

dt
= βI(t)S(t)

(1.1)

With N(t) = S(t) + I(t) is the total population and is constant through time t.

There are cases where susceptible becomes infected and the infected are cured at the rate γ but do not

develop immunity and become susceptible like the case of tuberculosis, the following graph concisely

summarizes the model :

6



1.2. THE CLASSIC MODELS IN COMPARTMENTS :

Figure 1.2 – The SIS model.

The associated differential equations are :
dS(t)

dt
= −βI(t)S(t) + γI(t)

dI(t)

dt
= βI(t)S(t)− γI(t)

(1.2)

With :

β : is the infection rate per unit time.

γ : the rate of each infected heals.

1.2.2 The SIR, SIRS model

The SIR model is the model proposed by kermack and MC Kendrick, consists of three categories of

population : healthy people S(t), infected people I(t), recovered or cured people R(t) who are conferred

a immunization against reinfection or death.

The following figure schematizes the transfers of individuals between each group.

Figure 1.3 – SIR model.
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1.2. THE CLASSIC MODELS IN COMPARTMENTS :

Mathematically, the SIS model is given by the following system :

dS(t)

dt
= −βI(t)S(t)

dI(t)

dt
= βI(t)S(t)− γI(t)

dR(t)

dt
= γI(t)

(1.3)

Where :β is the transmission rate,γ is the recovery rate.

The term βI(t)S(t) represents the number of contacts between healthy and infected people. On the

other hand, we only encounter diseases, the individual has not acquired permanent immunization, he

loses his immunity and returns to the S compartment at the rate η, this is the SIRS model schemati-

zing as follows :

Figure 1.4 – The SIRS model.

This model is formulated as follows :

dS(t)

dt
= −βI(t)S(t) + ηR(t)

dI(t)

dt
= βI(t)S(t)− γI(t)

dR(t)

dt
= γI(t)− ηR(t)

(1.4)

With :

β : is the transmission rate. γ : the rate of each infected heals. η : the rate of loss of immunity (each

removed becomes healthy again).

1.2.3 The SEI, SEIR model

The constitution of these models are based on a subpopulation is already infected but not yet

contagious (non-infectious) i.e. susceptible subpopulations before go to class I, it requires spending a

8



1.2. THE CLASSIC MODELS IN COMPARTMENTS :

period to make infectious s ’calls the latency period or incubation at an intermediate compartment

denoted E(exposed), taking into account β the incubation rate of a disease. Schemes and ED are

developed as follows :

Figure 1.5 – SEI model.

The model is translated as follows :

dS(t)

dt
= −βI(t)S(t)

dE(t)

dt
= βI(t)S(t)− αE(t)

dI(t)

dt
= αE(t)

(1.5)

As well as :

Figure 1.6 – SEIR model .

The EDO system is elaborated to the following :

dS(t)

dt
= −βI(t)S(t)

dE(t)

dt
= βI(t)S(t)− αE(t)

dI(t)

dt
= αE(t)− γI(t)

dR(t)

dt
= γI(t)

(1.6)
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1.3. THE FORCE OF INFECTION

1.3 The force of infection

The key parameter in all epidemiological models of infectious diseases is the force of infection.

The latter accounts for the contamination process by expressing the probability that a susceptible

individual will contract the disease so that each infected encounters at the rate C, each of these

encounters with a type C individual causes contamination with the probability P , we score β = CP .

It is this force of infection which moves individuals from compartment S to compartment I in the

previous figures and which can be written in two different ways :

Λ = βI (1.7)

If disease transmission increases with population density like (the influenza virus.

Λ =
βI

N
(1.8)

If the transmission does not depend on it as (HIV).

1.4 The threshold theorem (basic reproduction number R0) :

One of the first questions the epidemiologist asks is whether there is going to be an epidemic or not.

The answer to this question in a very simple way by examining the system of differential equations.

The first step is to translate our question into mathematical form. Then we calculate a quantity that

describes the average number of secondary cases, generated by a typical infectious individual during

his period of infectivity, when he is introduced into a population consisting entirely of susceptible, this

quantity is called basic reproduction number, noted by R0 , so the first idea of this number was by

Théophile Lotz (1980) (Nichiura, Dietz, Eichner 2006). He finds that R0 is a threshold and after Ross

describes the first differential model and gives the threshold conditions as follows :

If R0 ≤ 1, then the disease-free point is globally stable, i.e. an individual infects on average less than

one, which means that the disease disappears from the population. Conversely, if R0 > 1, then the

endemic point is globally stable, i.e. the disease can spread in the population. Note that is determined

10



1.4. THE THRESHOLD THEOREM (BASIC REPRODUCTION NUMBER R0) :

according to the parameters of the model and later, it is used in the equilibrium stability theorems of

the disease of the population.

Figure 1.7 – transmission dynamics of an infectious disease between individuals to estimate secondary
cases R0

11



Chapitre 2

Some functions used in fractional
calculus

2.1 The Euler gamma function

Definition 1 One of the basic functions of fractional calculus is Euler’s gamma function denoted Γ

the function which is defined dy the following integral

Γ(α) =

+∞∫
0

tα−1e−tdt, α > 0, t ∈ R

where Γ(1) = 1 ,Γ(0+) = +∞

Γ is a strictly increasing function for 0 < α ≤ 1.

Example 2 let calculate Γ(2) :

Γ(2) = lim
ε→+∞

ε∫
0

t2−1e−tdt

= lim
ε→+∞

ε∫
0

te−tdt

= lim
ε→+∞

[
−te−t − e−t

]ε
0

= lim
ε→+∞

(− ε

eε
− 1

eε
+ 0 + e0)

= 1.

12



2.1. THE EULER GAMMA FUNCTION

2.1.1 Some useful properties of the Gamma function

Proposition 3

(1). Γ(n+ 1) = nΓ(n), ∀n ∈ N∗

,

(2). Γ(n+ 1) = n!, ∀n ∈ N∗,

(3). Γ

(
1

2

)
=
√
π.

Proof.

(1). Γ(n+ 1) =

+∞∫
0

t(n+1)−1e−tdt

=

+∞∫
0

tne−tdt

=
[
−tne−t

]t=+∞
t=0

+ n

+∞∫
0

tn−1e−tdt

= nΓ(n).

(2). Since Γ(1) = 1, hence by using (1) we get

Γ(2) = 1.Γ(1) = 1!

Γ(3) = 2.Γ(2) = 2.1! = 2!

Γ(4) = 3.Γ(2) = 3.2! = 3!

Γ(n+ 1) = nΓ(n) = n.(n− 1)! = n!

which can easily be proved by induction.

(3).From Definition 2.1.1,we can write :

Γ

(
1

2

)
=

+∞∫
0

t−
1
2 e−tdt

If we take t = y2 then, we obtain

Γ

(
1

2

)
) = 2

+∞∫
0

e−y
2

dy (2.1)

13



2.2. THE EULER BETA FUNCTION

In a similar way

Γ

(
1

2

)
= 2

+∞∫
0

e−x
2

dx (2.2)

By multiplying(2.1)and(2.2)we get :

[
Γ

(
1

2

)]2
= 4

+∞∫
0

+∞∫
0

e−(x
2+y2)dxdy (2.3)

the last equation represents a double integral,which can be evaluated in polar coordinates to obtain :

[
Γ

(
1

2

)]2
= 4

π
2∫

0

+∞∫
0

re−r
2

drdθ = π, (2.4)

consequently,

Γ

(
1

2

)
=
√
π.

2.2 The Euler beta function

The beta function is defined by the Euler integral of the first Kind as

β(p, q) =

1∫
0

xp−1(1− x)q−1dx, p > 0, q > 0. (2.5)

Example 4 Let calculate β(2, 3)

β(2, 3) =

1∫
0

x(1− x)2dx

=

1∫
0

x(1− 2x+ x2)dx

=

1∫
0

x(1− 2x2 + x3)dx

=

[(
x2

2
− 2x3

3
+
x4

4

)]1
0

=
1

2
− 2

3
+

1

4

=
1

12
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2.2. THE EULER BETA FUNCTION

2.2.1 Relationship between the gamma and the beta function

The gamma and beta are connected by the following expression

β(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
(2.6)

Proof. . Consider the set D = [0,+∞[×[0,+∞[. We wave

Γ(p)Γ(q) =

+∞∫
0

e−xxp−1dx

+∞∫
0

e(−y)xq−1dy

=

+∞∫
0

+∞∫
0

e−(x+y)xp−1yq−1dxdy

performing the change of variables y = u− x, we find

Γ(p)Γ(q) =

+∞∫
0

+∞∫
0

e−uxp−1(u− x)q−1dxdy

=

+∞∫
0

e−u
+∞∫
0

e−uxp−1(u− x)q−1dxdy

let s use the change of variables x = tu, we obtain

Γ(p)Γ(q) =
+∞∫
0

e−u
1∫
0

tp−1up−1(1− t)q−1uqdtdu

=
+∞∫
0

e−uup+q−1du
1∫
0

tp−1(1− t)q−1dt

Γ(p)Γ(q) = Γ(p+ q)β(p, q)

consequently,

β(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
(2.7)

Example 5

β(2, 3) =
Γ(2)Γ(3)

Γ(2 + 3)

1!2!

4!
=

1

12
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2.2. THE EULER BETA FUNCTION

2.2.2 Some properties of the beta function

β(p, q) = β(q, p)

We can also take the form of an integral

β(p, q) = 2

1∫
0

(sin θ)2p−1(cos θ)2q−1dθ

withe the change of variables t = sin2 θ

the Gamma function can be represented also by the limit

Γ(z) = lim
n→+∞

n!nz

z(z + 1)...(z + n)

where we assume that Re(z) > 0.

2.2.3 The Mittag-Leffler function

The Mittag-Leffler function plays a very important role in the theory of whole order differential

equations, and it is found widely used in solving fractional differential equations. This function was

presented by G. M. Mittag-Leffler, and studied by A. Wiman.

Definition 6 The Mittag-Leffler function Eα(x) is defined by :

Eα(x) =
+∞∑
n=0

xn

Γ(nα + 1)
, (x ∈ C, α > 0), (2.8)

and the generalized Mittag-Leffler function Eα,β(z) is defined as follows :

Eα,β(x) =
+∞∑
n=0

xn

Γ(nα + β)
, (α, β > 0), (2.9)

Example 7 For special values given to α and β we have :

E1,1(x) =
∞∑
k=0

zk

Γ(k + 1)
=
∞∑
k=0

xk

k!
= ex.

E1,2(x) =
∞∑
k=0

xk

Γ(k + 2)
=
∞∑
k=0

xk

(k + 1)!
=

1

x

∞∑
n=0

xk+1

(k + 1)!
=
ex − 1

x
.

16



2.2. .

E1,3(x) =
∞∑
k=0

xk

Γ(k + 3)
=
∞∑
k=0

xk

(k + 2)!
=

1

x2

∞∑
k=0

xk+2

(k + 2)!
=
ex − 1− x

x2
.

2.3 Caputo fractional derivatives

Definition 8 Let f a function such that
dn

dtn
f ∈ L1([a, b]) and α ∈ ]n− 1, n[ with n ∈ N∗. The

fractional derivative of order α of f in the Caputo sense on the left and on the right are defined by :

CDαa+f(t) =
1

Γ(n− α)

∫ t

a

(t− r)n−α−1f (n)(r)dτ, (2.10)

and

CDαb−f(t) =
(−1)n

Γ(n− α)

∫ b

t

(r − t)n−α−1f (n)(r)dτ, (2.11)

respectively.

Remark 9

Taking into account the Definition 8, we have :

CDαa+f(t) = (In−αa+ Dnf)(t), (2.12)

and
CDαb−f(t) = (−1)n(In−αb− Dnf)(t). (2.13)

Specifically, when o < α < 1 we have :

CDαa+f(t) = (I1−αa+ D1f)(t), (2.14)

and
CDαb−f(t) := (−1)(I1−αb− D1f)(t). (2.15)

If α = n ∈ N and the usual derivative f (n)(t) of order n exists, then CDna+ and CDnb− are represented

by :
CDna+ = f (n)(t) and CDnb− = (−1)nf (n)(t), (2.16)

where

Dn =
dn

dtn
.

17



2.3. .

Example 10 — The derivative of a constant function in the Caputo sense.

The derivative of a constant function in the Caputo sense is zero

CDαC = 0. (2.17)

— The derivative of f(t) = (t− a)β in the Caputo sense.

Let α be an integer and 0 ≤ n− 1 < α < n with β > n− 1, then we have

f (n)(t) =
Γ(β + 1)

Γ(β − n+ 1)
(t− a)β−n, (2.18)

hence
CDα(t− a)β =

Γ(β + 1)

Γ(n− α)Γ(β − n+ 1)

∫ t

a

(t− r)n−α−1(r − a)β−ndτ, (2.19)

When changing the variable r = a+ r(t− a), we get

CDα(t− a)β =
Γ(β + 1)

Γ(n− α)Γ(β − n+ 1)

∫ t

a

(t− r)n−α−1(r − a)β−ndr

=
Γ(β + 1)

Γ(n− α)Γ(β − n+ 1)
(t− a)β−α

∫ 1

a

(1− r)n−α−1rβ−ndr

=
Γ(β + 1)B(n− α, β − n+ 1)

Γ(n− α)Γ(β − n+ 1)
(t− a)β−α

=
Γ(β + 1)Γ(n− α)Γ(β − n+ 1)

Γ(n− α)Γ(β − n+ 1)Γ(β − α + 1)
(t− a)β−α

=
Γ(β + 1)

Γ(β − α + 1)
(t− a)β−α.

2.3.1 Properties of the fractional derivation

Theorem 11 Let α > 0 and n = [α] + 1 such that n ∈ N∗ then the following equations :

1/
CDαIαa f = f. (2.20)

2/

Iαa (CDαf(t)) = f(t)−
n−1∑
k=0

f (k)(a)(t− a)k

k!
, (2.21)

are true for almost for all t ∈ [a, b].
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2.3. .

Theorem 12 Let fand g be two functions whose fractional derivatives of Caputo exist, for λ and

µ ∈ R, then : CDα(λf + µg) exists, and we have :

CDα(λf(t) + µg(t)) = λCDαf(t) + λCDαg(t).
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Chapitre 3

Mathematical modeling and theoretical
model analysis

3.1 Introduction

Since long time ago, scientists and researchers have sought to control the epidemics sweeping the

world each in its specialty. With a mixture of mathematics and data, mathematicians have provided

important work that allows us to better understand the way epidemics spread, and thus help in de-

veloping precautionary measures and health policies to confront them. In order to better understand

how mathematics contributes to the analysis of epidemiological systems. We do a study HIV dynamics

with fractional operator of Caputo type. First, we give brief mathematical formulation of HIV/AIDS

population in integer order derivative. Then, we present some background results related to the model.

The integer model is then generalized by using the Caputo derivative and present the mathematical

results that associated to the model. We use novel technique for the solution of fractional mathematical

model of HIV using Newton polynomial approach and obtain the numerical solution graphically.
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3.2. HIV MODEL FORMULATION

3.2 HIV model formulation

The section determine the model formulation of the HIV transmission with awareness effect. The

HIV model is divided into five human populations, susceptible unaware class (Su), the susceptible aware

class (Sa), the HIV infected class (I), the HIV infected under ART treatment class (C) and individuals

with AIDS class (A).Thus the total population denoted by N is given as N(t) = Su + Sa + I +C +A

.

Figure 3.1 – The plot represents the HIV/AIDS transition diagram.

Table 1 : Descriptions of the parameters of the model

parameter Description
Λ Recruitment rate
β Transmission rate by HIV
α Change rate from Su to Sa
µ Natural death rate
ε The proportion of Sa become infected
η Rate of individuals in the class C leave to the class I
ν Transition rate from A to I
ρ Rate at which I leads to C
γ Progression rate from I to A
δ AIDS induced death rate

3.2.1 Interaction between HIV compartment individuals

The assumption used in the mathematical model of the spread of HIV/AIDS in the presence of an

aware population are as follows :

1. Su populations can move to Sa populations, but not vice versa .
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3.2. HIV MODEL FORMULATION

2. Population C is assumed not to spread HIV because it is considered to be aware of the dangers of

HIV by following routine ART treatment .

3. Population A is assumed not to spread HIV because the AIDS population is considered to be so ill

(until isolated).

4. The population of HIV and AIDS sufferers is considered to be able to access ART treatment.

5. Population A who starts ART treatment will enter the HIV infected class (I) ,and if they continue

to routinely follow treatment will enter population C.

6. The death rates due to HIV/AIDS only occur in populations affected by AIDS.

The completing information about the flow of the parametrs from one compartment to another is

briefly schown in figure (3.1).

The system of differential equations describing the HIV model with awareness effect is described as :



dSu
dt

= Λ− βSuI
N

(α + µ)Su

dSa
dt

= αSu − (1− ε)βSaI
N
− µSa

dI

dt
= βI

N
(Su + (1− ε)Sa) + ηC + νA− (ρ+ γ + µ)I

dC

dt
= ρI − (η + µ)C,

dA

dt
= γI − (ν + δ + µ)A.

(3.1)

subject to the initial conditions,



Su(0) = Su0 ≥ 0

Sa(0) = Sa0 ≥ 0

I(0) = I0 ≥ 0

C(0) = C0 ≥ 0

A(0) = A0 ≥ 0

(3.2)

the description of the parameters for the HIV model is displayed in table 1.

the model(3.1) has the biologically feasible region on Ω withe

Ω =

{
(Su, Sa, I, C,A) ∈ R5

+ : 0 ≤ N ≤ Λ

µ

}
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3.3. A FRACTIONAL MODEL

It should be noted that the region shown by Ω in positively invariant .The region shown for the

model(3.1) is well-posed and the entire solutions for the initial values belonging to Ω, remains in Ω

for every time t ≥ 0.

3.3 A fractional model

The present section describes the dynamics of HIV with fraction derivative of Caputo type. We

generalize the model(3.1) by applying the definition of Caputo and obtained the following system :



C
0D

p
tSu = Λ− βSuI

N
(α + µ)Su

C
0D

p
tSa = αSu − (1− ε)βSaI

N
− µSa

C
0D

p
t I = βI

N
(Su + (1− ε)Sa) + ηC + νA− (ρ+ γ + µ)I

C
0D

p
tC = ρI − (η + µ)C,

C
0D

p
tA = γI − (ν + δ + µ)A.

(3.3)



Su(0) = Su0 ≥ 0

Sa(0) = Sa0 ≥ 0

I(0) = I0 ≥ 0

C(0) = C0 ≥ 0

A(0) = A0 ≥ 0

3.4 positive of the solution

Theorem 13 The solution (Su, Sa, I, C,A) of the given model (3.1)-(3.3) are positive and belongs to

R5
+.

Proof.

1) For the first equation we have :

c
0D

p
tSu = Λ− βSuI

N
− (α + µ)Su (3.4)
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3.4. POSITIVE OF THE SOLUTION

First we have : N > I then
I

N
< 1 the equation (3.4) becomes :

c
0D

p
tSu = Λ− βSu − (α + µ)Su

=⇒ c
0D

p
tSu(t) ≥ −(β + α + µ)Su(t)

we solve the inequality using the Laplac Transform (L.T)

L(c0D
p
tSu(t)) = −L(β + α + µ)Su(t) (3.5)

on the one hand we have the L.T of the caputo derivative

L{c0D
p
t f(t)} = SpF (s)−

n−1∑
k=0

Sα−k−1f (k)(0)

since 0 < p < 1 permission n = [α] + 1 = 1

hence L.T derivative caputo be

L{c0D
p
t f(t)} = SpF (s)−

n−1∑
k=0

Sp−1f (k)(0)

we go back to (3.5)

LcDpSu(t) = −L(β + α + µ)Su(t)

=⇒ LtpSu(t)− tp−1S(0)
u (0) = −(β + α + µ)Su(t)LSu(0)

=⇒ (tp + β + α + µ)LSu(t) = tp−1S
(0)
u (0)

=⇒ LSu(t) =
tp−1

tp + (β + α + µ)
Su(0)

we use Laplace transform inverse

=⇒ LSu(t) = L−1
(

tp−1

tp + (β + α + µ)
Su(0)

)

now from the L.T table we find that
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3.4. POSITIVE OF THE SOLUTION

Sα−β

Sα − a
= tβ−1.Eα,β(atα) (3.6)

we use (3.6) to find

Su(t) = S(0), Ep(−(β + α + µ)tp)

since we have Su(0) > 0 and 0 ≤ Ep(−(β + α + µ)) ≤ 1

then Su(t) ≥ Su(0)Ep(−(β + α + µ)tp) ≥ 0

2) c
0D

p
tSa(t) = αSu(t)− (1− ε)βSaI

N
− µSa(t) ≥ −(((1− ε)β + µ)Sa(t))

It follows that Sa(0) > 0 and 0 ≤ Ep(−((1− ε)β + µ)) ≤ 1

Ep(−((1− ε)β + µ)tp) ≥ 0

3) c
0D

p
t I(t) = βI

N
(Su + (1− ε)Sa) + ηC + νA− (ρ+ γ + µ)I(t) ≥ −(ρ+ γ + µ)I(t)

Wich implies I(0) > 0 and 0 ≤ Ep(−(ρ+ γ + µ)) ≤ 1

Ep(−(ρ+ γ + µ)tp) ≥ 0

4) c
0D

p
tC(t) = ρI − (η + µ)C(t) ≥ −(η + µ)C(t) ,

This gives C(0) > 0 and 0 ≤ Ep(−(η + µ)) ≤ 1

Ep(−(η + µ)tp) ≥ 0

5) c
0D

p
tA(t) = γI − (ν + δ + µ)A(t) ≥ −(ν + δ + µ)A(t).

25



3.5. ANALYSIS OF MODEL EQUILIBRIA :

This A(0) > 0 and 0 ≤ Ep(−(ν + δ + µ)) ≤ 1

Ep(−(ν + δ + µ)tp) ≥ 0

The solution (Su, Sa, I, C,A) of the given models (3.3)are positive and belongs to R5
+.

3.5 Analysis of model equilibria :

We have analyzed the existence and stability of all equilibria for this model which are composed

of two states of equilibria :

- The point of equilibrium without disease DFE (Disease-Free Equilibrium).

- The endemic equilibrium point EE.

Definition 14 The endemic equilibrium point is an equilibrium solution where the disease persists in

the population.

Definition 15 The disease-free equilibrium point DFE is an equilibrium point where disease occurs

in the population.

3.5.1 Equilibrium point without DFE disease :

Theorem 16 The system (3.3) admits a point of equilibrium called « point of equilibrium without

disease »,given by :

E0 =

(
Λ

µ+ α
,

αΛ

µ(µ+ α)
, 0, 0, 0

)

Proof. In the absence of HIV the invectious compartment (exposed symptomatic and asymptomatic

)are empty that :

I(t) = C(t) = A(t) = 0

26



3.5. ANALYSIS OF MODEL EQUILIBRIA :


c
0D

p
tSu = Λ− βSuI

N
− (α + µ)Su = 0

c
0D

p
tSa = αSu − (1− ε)βSaI

N
− µSa = 0

(3.7)

From(3.7), we get

Su =
Λ

µ+ α
; Sa =

αΛ

µ(µ+ α)
.

then

E0 =

(
Λ

µ+ α
,

αΛ

µ(µ+ α)
, 0, 0, 0

)

3.5.2 The estimated basic reproduction number R0 :

Basic reproductive number control is the central concept in the study of the spread of commu-

nicable diseases. Biologically, it is the number of secondary infections caused by a single infectious

in a population, this number is calculated at the DFE by the method of Van den Drissche and

Watmough (the next generation method) [18]. We have in this method a matrix F (X) for the rate

of appearance of new cases of infections and V (X) for the rate of transfer of individuals, for this, we

assemble the compartments which are infected (I(t), C(t), A(t)) by the system and we compose the

right part in
dX

dt
= F (X)− V (X)

F =

βI(Su + (1− ε)Sa
0
0

 ,V =

−ηC − νA− (ρ+ γ + µ)I
−ρI + (η + µ)C
−γI + (ν + δ + µ)A



Then : the Jacobian matrices F and V at the point E0 =

(
Λ

µ+ α
,

αΛ

µ(µ+ α)
, 0, 0, 0

)
(DFE) of F

and V are respectively :
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F = J(F) =
∂F
∂X

=


β(µ+ (1− ε)α)

µ+ α
0 0

0 0 0
0 0 0

 ,

and

V = J(V) =
∂V
∂X

=

ρ+ γ + µ −η −ν
−ρ η + µ 0
−γ 0 µ+ δ + ν

 ,

The invertible matrix of V is :

V −1 =



k2k1
(ρ+ γ + µ)k2k1 − ηρk1 − νγk2

ηk1
(ρ+ γ + µ)k2k1 − ηρk1 − νγk2

k2γ

(ρ+ γ + µ)k2k1 − ηρk1 − νγk2

ρη

(ρ+ γ + µ)k2k1 − ηρk1 − νγk2
(ρ+ γ + µ)k1 − γν

(ρ+ γ + µ)k2k1 − ηρk1 − νγk2
− ρν

(ρ+ γ + µ)k2k1 − ηρk1 − νγk2

γk2
(ρ+ γ + µ)k2k1 − ηρk1 − νγk2

γη

(ρ+ γ + µ)k2k1 − ηρk1 − νγk2
(ρ+ γ + µ)k2 − ρη

(ρ+ γ + µ)k2k1 − ηρk1 − νγk2


,

Where k1 = µ+ δ + ν and k2 = η + µ .

The matrix of the new generation is defined by :

FV −1 =


β(µ+ (1− ε)α)k2k1

(µ+ α)[(ρ+ γ + µ)k2k1 − ηρk1 − νγk2]
β(µ+ (1− ε)α)ηk1

(µ+ α)[(ρ+ γ + µ)k2k1 − ηρk1 − νγk2]
β(µ+ (1− ε)α)k2γ

(µ+ α)[(ρ+ γ + µ)k2k1 − ηρk1 − νγk2]
0 0 0
0 0 0

 ,

Hence the value of R0 is mathematically defined as the spectral radius of FV −1, the largest eigenvalue

of matrix FV −1.

R0 = ρ(FV −1) so the

R0 =
β[µ+ (1− ε)α]k1k2

(µ+ α) (µ[k2(k1 + γ) + ρk1 + γδ] + ηγδ)

28



3.5. ANALYSIS OF MODEL EQUILIBRIA :

3.5.3 Stability of equilibrium point :

DFE local stability :

Theorem 17 The disease-free equilibrium (DFE) E0 =

(
Λ

µ+ α
,

αΛ

µ(µ+ α)
, 0, 0, 0

)
of system (3.3) is

locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof. We analyze the local stability of the DFE E0. the Jacobian of the model (3.3) at the

DFE is given by

J(E0) =



−(µ+ α) 0 − βµ

µ+ α
0 0

α −µ −βα(1− ε)
µ+ α

0 0

0 0 k3 − k4 η ν
0 0 ρ −k2 0
0 0 γ 0 −k1



Where k3 =
β(µ+ (1− ε)α)

µ+ α
and k4 = ρ+ γ + µ.

The eigenvalues of J(E0) are λ1 = −µ,λ2 = −(µ+ α) and the other three eigenvalues are solution of

λ3 + b1λ
2 + b2λ+ b3 = 0 (3.8)

Where

b1 = k1 + k2 − k3 + k4 = k1 + k4 + η +
(µk1k2 −MR0)

k1k2
,

b2 = k1k2 + (k1 + k2)(k4 − k3)− (ρη + γν),

b3 = (1−R0)(µ+ α) (µ[k2(γ + k1) + ρk1 + γδ] + ηγδ),

M = (µ[k2(k1 + γ) + ρk1 + γδ] + ηγδ).

Using Routh-Hurwitz criteria,we will examine that all the solutions of Eq(3.8) have negative real

parts if only if b1, b3 > 0 and b1, b2 > b3. The coefficient b1 > 0 if (µk1k2 −MR0) > 0 or equivalent to

R0 <
µk1k2
M

< 1, while b3 > 0 if R0 < 1. Now,

b1b2 − b3 = (k1 + k2 − k3 + k4) (k1k2 + (k1 + k2) + (k4 − k3)− (ρη + γν))

− (1−R0)(µ+ α) (µ[k2(γ + k1) + ρk1 + γδ] + ηγδ)
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=
M

k1k2

(
µk1k1k2
M

−R0(k1 + k2 + 2k4)

)

=
M(k1 + k2 + 2k4)

k1k2
(R1 −R0)

With

R1 =
µk21k2

M(k1 + k2 + 2k4)
=

µk21k2
(µ[k2(k1 − γ) + ρk1 + γδ] + ηγδ) (k1 + k2 + 2k4)

<
µk21k2
µk21k2

= 1.

So, b1b2 − b3 > 0 in only if R0 < R1 < 1.

3.5.4 The endemic equilibrium point EE :

During the propagation of HIV , system (3.3) admits another equilibrium point which coexists

with the disease-free equilibrium point given by :

E1 = (S∗u, S
∗
a, I
∗, C∗, A∗)

Obtaining the endemic equilibrium point tends to solve the following equations :



Λ− βSuI
N

(α + µ)Su = 0

αSu − (1− ε)βSaI
N
− µSa = 0

βI
N

(Su + (1− ε)Sa) + ηC + νA− (ρ+ γ + µ)I = 0

ρI − (η + µ)C = 0

γI − (ν + δ + µ)A = 0

(3.9)

Solving the system above, we find the endemic equilibrium point :

E1 = (S∗u, S
∗
a, I
∗, C∗, A∗)
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S∗u =
Λ

k∗ + µ+ α

S∗a =
εΛ

((1− ε)k∗ + µ)(k∗ + µ+ α)

I∗ =
K1K2k

∗Λ((1− ε)(k∗ + α) + µ)

((1− ε)k∗ + µ)(k∗ + µ+ α)M

C∗ =
K1ρk

∗Λ((1− ε)(k∗ + α)µ)

((1− ε)k∗ + µ)(k∗ + µ+ α)M

A∗ =
K2γk

∗Λ((1− ε)(k∗ + α)µ)

((1− ε)k∗ + µ)(k∗ + µ+ α)M

(3.10)

where

K∗ =
βI∗

N∗
.

Using some algebraic calculation, we have

a1k
∗2 + a2k

∗ + a3 = 0,

where

a1 = (1− ε),

a2 = (1− ε)(µ+ α) + µ−
(

(1− ε)(µ+ α)µR0

µ+ (1− ε)α

)
a3 = µ(µ+ α)(1−R0).

Here, coefficient a1 is always positive, while the positivity of the cofficient a3 depends on the sign of

R0. If R0 < 1 then a3 > 0 while R0 > 1,then a3 < 0.More discussion on these can be shown in the

following statement :

Theorem 18 For the HIV system (3.3) the following are exists :

(i) if a3 < 0 or R0 > 1, then there exists a unique endemic equilibrium,

(ii) a2 < 0 and eiter a3 = 0 or a22 − 4a1a3 = 0, then we have a unique endemic equilibrium,

(iii) if a3 > 0 , a2 < 0 and a22 − 4a1a3 > 0, then, the possibility of the two endemic equilibria

(iv) no possibility of the endemic equilibia otherwise.

31



3.5. ANALYSIS OF MODEL EQUILIBRIA :

Numerical Simulation

Table 2 : Parameter values of HIV model (3.3) for Indonesia.

parameter Value reference
Λ 229.800.000

6.7.39
Estimated

β 0.3465 Fitting
α 0.2351 Fitting
µ 1

67.39
Estimate

ε 0.3243 Fitting
η 0.2059 Fitting
ν 0.7661 Fitting
ρ 0.1882 Fitting
γ 3.6523e-04 Fitting
δ 0.7012 Fitting

A brief explanation of the numerical scheme is shown below for the fractional differential equation :

C
0D

P
t z(t) = f(t, z(t)) (3.11)

where the derivative is Caputo and f represents a nonlinear function. In order to have a numerical

algorithm for the solution of the above fractional differential equations, we reformulate the problem

given by :

z(t)− z(0) =
1

Γ(p)

∫ t

0

(t− τ)p−1f(τ, z(τ))dτ, see[9] (3.12)

Our purpose in this part is to analyze the dynamics of HIV transmission in the presence of aware

individuals under the influence of the change in the fractional order. We carried out the numerical

simulations for our fractional model using the numerical method based on the Newton polynomial

approach [1]. We used the parameter values listed in [13] to obtain the graphical results.The numerical
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simulation is performed for the classical order (P = 1), and for various values of the fractional order

(P = 0.98, P = 0.96, and P = 0.8).

In figure (3.2), we see that when the number of susceptible aware people increases, the number of

susceptible unaware,infected, and individuals with AIDS decreases. On the other hand, the number

of people under ART treatment increases.The fractional order has a clear effect on the spread of HIV

infection in the community, such that we observe in the five groups that the growth and decay rates

are faster in the small value of the memory index P compared to the larger values.

Figure 3.2 – dynamics of the fractional model for different values of fractional order P
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To determine the effect of the transmission rate β on the spread of HIV among people, we performed

a numerical simulation of infected classes for different values of transmission rate β, and the fractional

order P. The graphical results are illustrated in figure(3.3).

We observed that the high value of β led to an increase in the number of people infected with HIV .

(a) (b)

(c)

Figure 3.3 – The effect of the transmission rate beta on the dynamics of HIV-infected individuals
with different values of P such that (a) : P =1,(b) : P =0.96,(c) : P =0.8.
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Conclusion

We formulated and analyzed anew mathematical model for HIV/AIDS infected individuals in

Indonesia for the years 2006−2018. We computed the basic reproduction number R0 for the model for

the real data of the years 2006−2018. Some mathematical results related to the model are shown. The

local stability of the model for R0 < 1 are provided. We presented a novel numerical approach for the

solution of the HIV/AIDS model which is based on the Newton polynomial approach and presented

the results by considering different orders of p. The local asymptotic stability of the fractional model

for the case when R0 > 1 and R0 < 1 are shown. Some parameters effect on the HIV, infected with

ART treatment and those infected with AIDS are shown. The analysis and the results provided are

useful for the public health authorities of Indonesian government to make necessary steps in order to

reduce the burden of HIV infection by making their citizen to aware about the HIV and their possible

controls/prevention.
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Abstract 

This work aims to study the epidemiological model related to the dynamics of the spread of 

HIV disease by modeling the epidemiological problem in a mathematical problem using the 

system of differential equations using partial Caputo derivatives. First of all we discuss the 

basic characteristics of the model, present some background results related to the model, the 

biologically feasible region, then we calculate the basic reproduction number  𝑅0 , and discuss 

the stability of our system. Finally, we calculate the numerical solutions of the fractal epidemic 

model and obtain the numerical solution graphically using Newton polynomial . 

key words:  modeling - Caputo derivatives - Newton polynomial . 

 الملخص 

 المناعة نقص فيروس مرض انتشار بديناميكيات المتعلق الوبائي النموذج دراسة إلى العمل هذا يهدف

  ستخدامإب  التفاضلية المعادلات نظام باستخدام رياضية مسألة  في الوبائية المشكلة نمذجة   خلال  من البشرية

 الخلفية  نتائجال بعض  ونقدم ، للنموذج الأساسية الخصائص نناقش  ، بدء ذي بادئ. كابتو الجزئيةمشتقات 

.  نظامنااستقرار وناقشنا     الأساسي التكاثر رقم نحسب ثم  بيولوجيًا ، المجدية المنطقة ،  بالنموذج المتعلقة

ً  العددي  الحل على ونحصل  الكسري الوباء لنموذج العددية الحلول نحسب أخيرًا كثير حدود    باستخدام بيانيا

 نيوتن. 

 الكلمات المفتاحية: نمذجة – مشتقات كابتو –  كثير حدود نيوتن . 

𝑅0 

Résumé 

Ce travail vise à étudier le modèle épidémiologique lié à la dynamique de propagation de la 

maladie à VIH en modélisant le problème épidémiologique en un problème mathématique 

utilisant le système d’équations différentielles utilisant les dérivées partielles de Caputo. 

Tout d’abord, nous discutons des caractéristiques de base du modèle, présentons quelques 

résultats de base liés au modèle, la région biologiquement réalisable, puis nous calculons le 

nombre de reproduction de base 𝑅0 et discutons de la stabilité de notre système. Enfin, nous 

calculons les solutions numériques du modèle épidémique fractal et obtenons la solution 

numérique graphiquement à l’aide du polynôme de Newton. 

Mots clé : modélisation - Dérivées de Caputo - Polynôme de Newton. 
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