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Quote : “Clustering is in the eye of the beholder”
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Multi-view is a kind of rich data thanks to the several features that are laid out in
the form of multiple data matrices ; these matrices are obtained through different measu-
rements, experiments, or transformations. Multi-view data analysis involves dealing with
different features simultaneously to get the most out of their information and achieve
a practical decision. In many real-life applications, multi-view data is naturally raised,
particularly in computer vision and image analysis. Each feature representation corres-
ponds to a view and may represent distinct formulations or statistical properties. It is
agreed that multi-view data share common information as well as contain some com-
plementary information ; the crucial step in machine learning and knowledge discovery
is learning how these two understandings can be appropriately manipulated and levera-
ged, and since we are focusing on one of the unsupervised learning techniques, namely
clustering, the objectives of this thesis are managed by grasping the basic concepts to
build a multi-view clustering framework based on mining and learning from multi-view
data. Regarding the high dimensionality and data complexity, it is better to study the
extrinsic non-linearity of the data structures by carrying multi-view data into a reliable
feature space. Thus, an anchor-based kernelization takes place based on the similarity
measures to map the original data points into higher dimensional space and increase the
understandability and linear separability. In contrast to the real-valued paradigms that
make most of the clustering approaches non-scalable, not to mention that they may suffer
from computational complexity and memory costs. Hashing is another flexible and worth-
noting strategy to efficiently compact the dimensionality and enable working in hamming
space, which offers more robustness to noise and outliers. In our research direction, we
employed the kernelization process and the common binary codes learning to develop
an effective approach called “Automatically Weighted Binary Multi-View Clustering via
deep initialization (AW-BMVC).” The work introduced a one-step joint learning model
by synthesizing two components, the common discrete representation and the binary ma-
trix factorization. A self-estimation of each view/sample during the learning process is
considered. The problem is perfectly solved using an alternating optimization scheme,
which has been positively influenced by our innovative deep binary matrix initialization.
Experimental results on several challenging datasets demonstrate the effectiveness and
superiority of the proposed approach over state-of-the-art methods.

Keywords :Multi-view Clustering, Large Scale, Anchors, Machine Learning, Discrete
Representation, BD-FFT, Dimentionality Reduction, Binary Hashing, Deep Learning.



La multivue est définie comme une sorte de données riches grâce aux nombreuses fonc-
tionnalités présentées sous la forme de plusieurs matrices de données ; ces matrices sont
obtenues par différentes mesures, expériences ou transformations. L’analyse de données
multivues implique de traiter simultanément l’ensemble des différentes fonctionnalités
dans le but de tirer le meilleur parti de leurs informations afin de prendre une décision ef-
ficace. Dans de nombreuses applications réelles, les données multivues sont naturellement
générées, en particulier, en vision par ordinateur et en analyse d’image. Chaque représen-
tation de caractéristique correspond à une vue et peut représenter une formulation ou des
propriétés statistiques distinctes. Il est convenu que les données multivues partagent une
information commune ainsi que contiennent des informations complémentaires ; l’étape
cruciale de l’apprentissage automatique et de la découverte des connaissances consiste à
apprendre comment ces deux compréhensions peuvent être correctement manipulées et
exploitées, et puisque nous nous concentrons sur l’une des techniques d’apprentissage non
supervisé, à savoir le clustering, les objectifs de cette thèse sont gérés en saisissant les
concepts de base pour construire un framework de multivues clustering basé sur l’ex-
ploration et l’apprentissage à partir de données multivues. En ce qui concerne la haute
dimensionnalité et la complexité des données, il est préférable d’étudier la non-linéarité
extrinsèque des structures de données en transportant les données multivues dans un es-
pace de caractéristiques fiable. Ainsi, une kernelisation en fonction des points d’ancrages
est effectuée sur la base des mesures de similarité afin de mapper les points de données
d’origine dans un espce de dimension supérieure et d’augmenter la compréhensibilité et
la séparabilité linéaire. Contrairement aux paradigmes à valeur réelle qui rendent la plu-
part des approches de clustering non évolutives sans parler de la complexité de calcul
et des coûts de mémoire. Le hachage est une autre stratégie flexible à noter qui permet
de compacter efficacement la dimensionnalité et permettre de travailler dans l’espace de
Hamming qui offre plus de robustesse au bruit et aux valeurs aberrantes. Dans notre di-
rection de recherche, nous avons employé le processus de kernelisation ainsi que les codes
binaires communs en apprenant à développer une approche efficace appelée Automatically
Weighted Binary Multi-View Clustering via deep initialization (AW-BMVC). Le travail
en question a introduit un modèle d’apprentissage conjoint en une étape en synthétisant
deux composants, la représentation discrète commune et la factorisation de la matrice
binaire. Une auto estimation de chaque vue/sample pendant le processus d’apprentissage
est prise en considération. Le problème est parfaitement résolu en utilisant un système
d’optimisation alterné, qui a été positivement influencé par notre initialisation innovante
de matrice binaire profonde. Les résultats expérimentaux menés sur plusieurs ensembles



de données défiants démontrent l’efficacité et la supériorité de l’approche proposée par
rapport aux méthodes de la littérature.

Mots-clés : Multivues clustering, Grande échelle, Points d’ancrages, Apprentissage
machine, Représentation discrète, BD-FFT, Réduction de la dimensionnalité, Hachage
binaire, Apprentissage en profondeur.
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General Introduction
In the era of big data, raw data is considered the core building block for many appli-

cations and companies. Witten et al.[1], described in their book "Data Mining", that data

must be analyzed and interpreted to explore valuable structures or hidden information.

The mining task can generate a new vision and better decisions for future trend predic-

tion. In the past decades, data mining has been known as an entire field of study that

has been investigated intensively [2].

One of the exciting topics in data mining is clustering. It is the process of grouping

data based on similarity, correlation, or other statistical properties [3], with the help

of techniques and algorithms. As the source and channels of information evolved, data

could be extracted from multiple applied areas, and observed by various models, where

the same physical object, concept, or phenomenon [4], is described from different sources

or perspectives. For example, an image comprises different features (descriptors); pictures

on the web have tags and narratives attached to them; news originating from multiple

news organizations; Sensor information consists of time and frequency. All these cases

are just a sub-part of big data known as multi-source or multi-view data [5].

The view can represent the same data captured from a different perspective, called

multi-view, or from a different type of sensor, called multi-source. These data types

show heterogeneous characteristics, but it is still possible to find links between them.

Accordingly, improvements were made to the traditional clustering algorithms for multi-

view data clustering.
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Chapter 1. General Introduction

The key to the success of the clustering process heavily relies on how multiple-view data

is appropriately integrated and leveraged. Meanwhile, machine learning tasks become

challenging since are built upon empirical measurements where the data may be corrupted

or incomplete due to the noise.

To step further, the easy and natural idea of multi-view data integration is concate-

nating different views into a single data matrix. In fact, dependencies between features

within one view are likely to be more relevant than dependencies between two views

[6]. Not to mention that it is not wise to ignore the diversities and just consider mul-

tiple distinct views as a single representation once all features are simply connected [7].

Consequently, it is better to treat multi-view data independently as different constructed

similarity matrices (kernels) and get the summation of kernels for multi-view clustering.

The kernel trick is an apparent benefit to handling the non-linearity for most ma-

chine learning problems by projecting each view into higher dimensional space. To take

advantage of the previous task, and mitigate the kernelization dimensionality curse, an

anchor-based representation is performed based on the RBF kernel, in which the similarity

measure relies on only a few data samples being selected.

Assigning weights is another outstanding strategy to facilitate the clustering and fusing

of multi-view information properly, to distinguish between different views and alleviate

or delete the noisy kernel (view), and provide a boundary error guarantee [6].

Finally, to boost data scalability, a crucial extension is introduced for embedding and

learning in a feature space named binary hashing, where the real dense feature dimensions

are converted into discrete compact similarity-preserving codes. This promotes significant

gains in storage efficiency and computational speed.

More insightful, the first objective is to learn a unified discrete representation using the

kernelized multi-view data, hence refining the fusion process by utilizing an automatically

view-weighted as well as an automatically sample-weighted strategy to differentiate each

view/sample based on their degree of contribution, which is self-estimated by the learning

model. Any popular signal-view algorithms could serve the purpose of returning to the

primary subject, which is clustering the reached consensus representation. Like K-means,

that factorizes the data matrix into two low-rank matrices, center matrix, and assignment

University Kasdi Merbah Ouargla 2022/2023 page 2



Chapter 1. General Introduction

vectors.

As such, a one-step learning algorithm is adopted to combine the discrete represen-

tation and binary matrix factorization simultaneously. Here we mention that the pivotal

factor lies in the optimal solution, which is highly dependent on the initial setup. A novel

technique is carried out by deep features extracted from Vgg16 and compressed into 128

bits using FFT domain transformation. Finally, the results obtained are very interest-

ing. Indeed, we achieved an average accuracy improvement over four real-world datasets

of 16%, compared to the second-best baseline scores, which translates to our system’s

scalability, robustness, and efficiency.

1.1 Context and Motivation

In the era of big data, it is natural to have data with different modalities or come from

multiple sources, known as a "multi-view dataset". Unlike single-view clustering, multi-

view clustering comes out to study alternative solutions in order to achieve consistent

partitioning from such data. In light of the Multi-view Clustering (MVC) literature,

intermediate-level fusion is the most expressive approach for representing the shared and

individual view features; on the other hand, Non-negative Matrix Factorization (NMF)

represents one typical learning model that has attracted sustaining attention in MVC and

brought several fascinating advantages: (1) The ability to handle high-dimensional data

and create a low-rank approximation, (2) Interpretability of the mathematical factors that

reflect conceptual properties within the data, and clustering capability [8][9].

Assume we have a matrix of data X ∈ RM×N , The aim of NMF is to find two low-rank

matrices V ∈RM×k, and U ∈RN×k, whose multiplication provides a good approximation,

i.e., X ≈ VUT . i.e., each observation can be explained as an additive linear combination

of nonnegative basis vectors. The nonnegativity constraints on the factor matrices are

usually enforced to promote the interpretability of the NMF models. Please refer to [10],

for an overall conceptualization of NMF-based approaches and domains. For MVC, we

admit the hypothesis that different views should share the same underlying structure

where the learned matrices from the distinct views should be as consistent as possible.

For this purpose, a regularization term was presented to superimpose the distinct views
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Chapter 1. General Introduction

coefficient matrices toward a unified consensus [11].

Assume we have a multi-view dataset with V views, X = {X1, ....,XV }, The partition of

X into k clusters can be conducted through the following objective function:

min
Vv

,Uv

V∑
v=1

||Xv −VvUvT

||2F +
V∑

v=1
λv||Uv −U∗||2F

s.t. Vv ≥ 0,Uv ≥ 0,U∗ ≥ 0
(1.1)

where U∗ is a learned consensus matrix that captures the latent individual clustering

structures within all views, and λv, is a hyperparameter used to distinguish the relative

view significance and balance between the reconstruction error term and the disagreement

term. λv is set to be small enough to make the model in Eq.1.1, less sensitive to low-

quality views, and thus not require that all views share a common U∗; correspondingly, He

et al. premised a similarity constraint on each pairwise view Instead of a rigid consensus

constraint [12], it is expected that this scenario of pairwise co-regularization results in

complementary action of the two coefficient matrices acquired from each view during the

factorization learning. The target function of this method can be defined as:

min
Vv

,Uv

V∑
v=1

λv||Xv −VvUvT

||2F +
V∑

p,q=1
λpq||Up −Uq||2F

s.t. Vv ≥ 0,Uv ≥ 0

(1.2)

where λv is an additional parameter associated with the factorization operation to draw

the importance of each view and λpq is assigned to weight the pairwise similarity con-

straint on Up and Uq.

It is noted that when adopting the vector-based l2-norm, the column vector in the as-

signment matrix U indicates the membership information; consequently, each element of

UT U provides a measure of the cosine similarity between every two discrete partitions.

For multiple-view data, the clustering consistency (similarity of clusters) between different

views should be emphasized, which is expressed by the cluster-wise CoNMF framework

[12]. The pairwise regularization term in Eq. 1.2, is replaced by the Cluster-wise CoNMF

as follows: ∑V
p,q=1 λpq||UpT

Up −UqT

Uq||2F , (1.3)
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Chapter 1. General Introduction

The above NMF models work with real raw datasets and may not improve perfor-

mance, and this occurrence is experimentally observed when views differ in quality.

In fact, NMF-based methods have recently been developed by adding new criteria or

revising old constraints specifically to reach the desired solution and improve the perfor-

mance of clusters for multi-view clustering. To mention a few, Feng et al. [13], proposed a

Graph-based NMF algorithm using Graph regularization terms to preserve the latent data

structure during the factorization. Furthermore, Huang et al. [14] introduced a Deep Ma-

trix Factorization (DMF) framework to achieve factorization via multi-hierarchical layers.

The concept of “deep” gives the ability to explore non-linearity structure among different

views and acquire a consensus low-rank representation that exposes a final partitioning.

In many cases, the advances made by multi-view clustering technologies do not treat the

problem of scaling time complexity and increasing memory needs. Under the hypothesis

that real-world multi-view representation, which usually holds high-dimensional features,

may reveal the unavoidable spread of noises during the fusion process. Few studies have

been conducted on the clustering of large binary data sets. Gong et al. [15] have devel-

oped a method for binary clustering in a view that consists of two separate steps: binary

code generation and binary k-means clustering. The main drawback is that the binary

code is generated using a data-independent method, Iterative Quantization (ITQ). The

work described in [16] adopted a two-level clustering that breaks the link between bi-

nary representation and data partitioning. Shen et al. [17] combined binary structural

Support Vector Machine (SVM) and conventional k-means in an optimization algorithm

to accelerate the large-scale clustering of single views. However, neither method can be

applied to large-scale MVC, and the characteristics of multi-view data have yet to be

thoroughly investigated. In the meantime, the binary codes generated by. [17] obtained

unsatisfactory results due to the lack of a complete joint representation. Zhang et al. [18]

have developed an interesting approach called "Binary Multi-View Clustering" (BMVC) to

overcome a major problem that requires less computation time and storage cost. BMVC

has uncovered two essential elements: collaborative discrete representation learning and

binary clustering structure learning in a standard model. By considering only the com-

plementary features, this framework has considered encoding multi-view features into a
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common compact binary code. This model provides a non-negative normalized vector

to weight the views, with an additional adjustable parameter to balance the importance

of the different views. This method suffered from the proper distinction between shared

and individual information, which can lead to the loss of local structure preservation in

binary code learning. As an alternative working solution to the above problem, the HSIC

method has jointly learned a common binary representation and robust discrete cluster

structures [19]. The former decomposes each projection into a combination of shareable

and individual projections across multiple views to capture the underlying correlations;

the latter can significantly improve the computational efficiency and robustness of cluster-

ing. However, the above work is very sensitive to the initialization of the binary clustering

process, and even the performance degrades when trying to get rid of the extra parameter

and learn the weighting factor of each view automatically. The contribution elements will

be discussed in the next section to fill the gaps in previous works.

1.2 Contributions

The main goal of our proposal is to design a fast and high-performance model in order

to address the problem of large-scale binary multi-view clustering. In this sense, the thesis

work is essentially built on four specific inquiries:

(1) Learning in feature space: How could anchor-based representation improve the

understandability and the separability ?

(2) The integration(fusion) quality: What kind of knowledge can be transferred

between related data views during the combination within the learning model?

(3) The joint learning strategy: Could the unified learning strategy contributes to

the overall effectiveness of the model?

(4) The initialization procedure: Why is it necessary to care about the initialization

procedure in NMF optimization?

1. Our first contribution concerns the study of anchor selection (sampling) to extract

a few representative samples that can explore the entire dataset’s structure. Sam-

pling comes as a universal tackler for the computational cost. A smaller random

(in terms of ideally manageable) sample from the whole dataset is selected to get
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a small, representative subset, and the mining task is performed on that. Thus,

these anchors are exploited by a powerful and flexible mapping referred to as a

non-linear RBF Kernel. We settled on the K-medoids as the encouraging sampling

method compared to random sampling and K-means. Finally, the crucial kernel-

ization step is to generate a new data matrix (similarity matrix) by projecting the

original data into a higher dimensional feature space.

2. Our second contribution was about the different types of information that con-

tribute to the enrichment of the fusion system. To achieve this purpose, we have

introduced the objective of having views automatically weighted and samples au-

tomatically weighted as two independent variables to distinguish the individual

characteristics between different views and samples, respectively, while enhancing

the consensus representation. This mode is characterized by a self-evaluation based

on learning loss. As a result, the noise and outlier effects are perfectly minimized;

moreover, adding extra hyperparameters to the model is avoided.

3. In our third scenario, we offered a one-step objective learning strategy to combine

two criteria, the discrete representation and the binary clustering in Hamming

space, and get the final clustering results without any post-processing. This mode

would maintain the coherence and safe handover of the loss rate throughout the

learning operation. The overall objective is optimized using an alternating strategy

through three regularization parameters; the first is associated with the mapping

function to treat the ill-posed problem, the second is conceived for the need of

binary code learning (maximum entropy principle), and the third is necessary to

sidestep domination between the two aforementioned criteria.

4. Finally, we focus on non-negative matrix factorization as the ultimate multi-view

clustering stage. Whatever the constraints imposed, all the NMF approaches are

popular iterative algorithms that are very sensitive to the initialization procedure.

Therefore, we have developed a highly efficient solution to initialize our binary clus-

tering algorithm by projecting new deep features from Vgg16 into a low-dimensional

Hamming space using a "Bidirectional FFT technique" (BD-FFT).
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Chapter 1. General Introduction

1.3 Organization of the Manuscript

The rest of the thesis is organized as follows:

Chapter 2: represents some background about multi-view domain and applications,

specifically unsupervised machine learning challenges in terms of different stages of data

integration and mining processes.

Chapter 3: This chapter reviews the literature on multi-view based clustering,

whereby a clear taxonomy is schematized, and different popular frameworks are grouped

into various categories, including Multi-View Spectral Clustering; Multi-View Subspace

Clustering; Multi-View NMF Clustering.

Chapter 4: This chapter presents the proposed work founded upon the mentioned

four elements of contribution; Anchor selection technique, View auto-weighted, Sample

auto-weighted, and Binary clustering initialization. A flowchart depicts the combined

components and the optimization variables; furthermore, we conduct a series of experi-

ments on well-known datasets that are elaborated and discussed to evaluate the model’s

robustness and efficiency in clustering benchmarks.

Chapter 6: This chapter concludes the thesis work, discusses the implications and

limitations of AW-BMVC and promotes future work.
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Multi-view data and multi-view

learning
2.1 Introduction

The gist of this work revolves around multi-view data, which is a dataset containing

different sub-divisions of the data (it could be of different types), each one describing the

same set of entities [20][21]. Besides, the observed entity can be described in all of the

views, with possibly missing data in at least one of the views. Since each view describes the

same phenomena, multi-view data has, in some respects, inherently correlated features.

An example of multi-view data is a news article, which often has text and images about the

same event. Another example is an image of something passed through multiple filters;

each output version of the raw image data can represent a view. Multi-view learning,

which employs multiple distinct representations, forms an important section of machine

learning models [22]. These “representations” can be original features of the data or

features acquired through specific measurements.

2.2 Data Integration Stages

When building a data analysis workflow, the developer can choose to conduct the in-

tegration step in different stages; we can then discern between early (direct combination),

middle (sharing a similar structure combination), and late integration (combination after
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projection) [23]. The preference for one method over another depends on the specific

aspects of the problem, such as the heterogeneity of the raw data and the statistical prob-

lem to be treated. Generally, the characteristics of each stage are illustrated in (Fig 2.1).

Early integration is the ordinary learning methodology that was resorted to by simply

concatenating all the raw variables from the multiple views into a single representation

before fitting the unsupervised model. The main drawback of this strategy is the increase

in the dimensionality of the feature space against the small dataset, hence generating

over-fitting and redundancy of information and wasting the statistical properties of each

view. The intermediate strategy involves applying some transformation to each raw view

data separately before integrating them into an expressive unified feature space, thus

alleviating the problem of increasing data dimensionality. Finally, in late integration, dis-

criminant partitions are first learned independently without understanding the specificity

of every single view, and then the outputs are further integrated to make the optimal

determination.

Figure 2.1 – Data Integration Stages
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2.3 Multi-view application domains

MVC has been employed in many scientific fields, including computer vision, Natu-

ral Language Processing, Textural documents, Bioinformatics, Health informatics, and

Social-based data. Figure 2.2 illustrates some multi-view learning application domains.

Figure 2.2 – Multi-view learning application domains.

A) Computer Vision: MVC has been vastly utilized in image categorization [24],

[25],[26], and motion segmentation tasks [27], [28]. Typically, different image fea-

ture species, e.g., HOG [29],CENTRIST [30], Color Moment [31], SIFT [32], and

LBP [33], could be extracted and collected for cluster analysis.

B) Natural Language Processing and Textural Document: In natural language

processing, we usually deal with text documents in multiple languages. To clas-

sify documents, it is natural to apply MVC [34],[11],[35] by taking each language

as one view. Another perspective regarding textual clustering, we could recog-
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nize text documents from multiple representations such as syntactic features, i.e.,

term occurrences [36], topical [37], and semantic links between words [38]. MVC

is a powerful way to conduct document categorization [4], [39], with each view

corresponding to one feature and capturing an aspect of the text.

C) Health Informatics and Bioinformatics: Clustering has many applications in

the biomedical and healthcare fields, such as discovering modules of co-regulated

genes and finding subtypes of diseases in the context of precision medicine [40].

In medical care, patient information may be distributed in numerous forms, such

as nursing notes, pathology tests, genomic data, radiology images, etc. Extract-

ing features from these heterogeneous data presents different and multiple views

for the same subject. [41],[42]. These pieces of information could be effectively

utilized to develop intelligent models. Garg et al. have introduced "Collective Ma-

trix Factorization" (CMF) to integrate the extracted features from multiple views

of clinical records towards locating both subjective and objective guesstimates of

patient’s conditions and improving healthcare systems. Moreover, the biological

applications domain helped deliver a new common set of samples named multi-

omics datasets for multi-view analysis. These measurements were obtained from

different platforms (e.g., DNA methylation and gene expression). Therefore, clus-

tering multi-omics data has the potential to develop methods [43], [44],[45], for

fusing different types of omics and capturing a comprehensive statement of latent

disease, particularly as a biological process that is necessary to improve disease

detection, treatment, and prevention.

D) Social Multimedia: Social media networks often generate human interactions

with many types of data within social-based data. For example, different kinds of

interactions could be raised on Twitter, such as following or retweeting (network

data), as well as non-network data content, such as images or text. Multi-view

clustering is of particular importance to combine heterogeneous correspondent data

into a meaningful analysis. Twitter topic/event detection is one hot thematics em-

braced to characterize communities. A multi-view clustering model may integrate
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multi-relations among tweets, such as semantic relations, social tag relations, and

temporal relations, into a group of keywords, where each cluster of keywords is fi-

nally represented as an event [46], [47], [48]. In addition, multi-view clustering has

been dedicated to group news stories [49], multimedia collections [50], and social

web videos [51].

2.4 Challenges in Multi-View Analysis

Conventional machine learning algorithms, such as discriminant analysis, spectral clus-

tering, artificial neural networks, support vector machines and kernel machines, are de-

signed to operate on single-view data. In contrast, the nature of multi-view data must be

carefully considered and highlights the following open problems.

1. Data Heterogeneity: The most straightforward approach to driving multi-view

datasets using traditional machine learning algorithms is concatenating all the fea-

tures across different views and constructing one single view. Nonetheless, this

concatenation is neither compatible nor expressive, as each view has distinct sta-

tistical properties and is usually measured in terms of scale, unit, and variance.

Unbiased fusion of multi-view data implies dealing with a transformed feature space

that preserves the intrinsic properties of each view. Clustering may be conducted

individually on each view, but a late fusion of clustering assignments may fail to

capture cross-view correlations.

2. High-Dimension Low-Sample Size Nature: In real-life data analysis, we usu-

ally deal with many observed variables, such as 106 pixels in images, thousands of

words in documents, nearly 20K genes in DNA microarrays, etc. The number of

samples in these datasets is typically smaller than the dimensions. The small train-

ing samples cause system overfitting and poor performance generalization. How-

ever, a multi-collinearity issue has occurred when dealing with high-dimensional

data like images, in which features are highly correlated. This degrades the con-

sistency properties of the eigenvalues and eigenvectors of the sample covariance

matrix [52]. Moreover, in the context of clustering algorithms, features in high-

dimensional space are geometrically sparse, resulting in an expensive computation.
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3. Noisy and Redundant Views: In real-world data, the observations in different

views are often influenced by noise due to measurement errors. This noise can be

propagated into different views or amplified during the data integration process

if it is not well taken care of. Under the assumption that each view provides

individual and consensus information about the data’s underlying patterns, all the

available views are crucial for multi-view learning. However, within each view,

one can encounter redundant, disparate, or even worse information, which reduces

the quality of multi-view fusion and destroys the cluster structures and decision

boundaries learned from the data.

4. Incomplete Views: Due to measurement and pre-processing errors, some multi-

view approaches institute the study of incompleteness, assuming that part of the

samples was not observed in one view (missing sample) or the sample was partially

observed (missing variables). Therefore, incomplete views require the employment

of a connection between views and restoring the missing samples with the help of

interconnected samples in the complete views [53].

5. Multiple Solutions: Most of the existing MVC approaches, including single-view

clustering, yield a single clustering solution. However, data may reveal different

possible groupings in real-world applications where the ground truth is unknown.

Only a small number of these are likely to be feasible and meaningful, according to

the exploratory analysis problem. To simplify the perception, let us consider parti-

tioning the fruits, such as grapes, apples, and bananas, depending on their color or

fruit kind. To date, few works have examined this trend [54], which has discovered

multiple clustering structures of multi-view data embedded in different subspaces

that are orthogonal to each other; hence, non-redundant clustering solutions were

obtained. In another work, Donglin et al. [55] adopted the Hilbert-Schmidt in-

dependence criterion to measure non-linear dependencies across different views.

Each view was then subjected to a spectral clustering solution. Finally, Chang et

al. [56] addressed the problem of how to automatically learn multiple expert views

and the clustering structure corresponding to each view based on a novel Bayesian
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probabilistic model.

Some of the aforementioned challenges are inherent to multi-view data, like data het-

erogeneity and incomplete views. In contrast, others, like high-dimension low-sample

size nature and low-rank non-linear geometry, exist either in single-view data. Hence,

the presence of multiple representations increases the problem’s complexity. Therefore,

new evolved frameworks must be conceived to mine meaningful patterns embedded in

multi-view datasets and efficiently conduct the outlined challenges.

2.5 Learning in Feature Space

Because of the complexity of real-world applications, the target task to be learned

from data cannot be treated as a simple linear combination of the given abstract fea-

tures. Instead, it is strongly related to the power of its representation. Accordingly, the

difficulty of the learning function can vary. Therefore, changing the data representation

to match the typical learning problem is one of the common pre-processing strategies in

machine learning. To raise the computational learning power of the linear algorithm, one

solution is to map our features into a high-dimensional space where there exist linear re-

lationships between data points in that space, then perform a linear algorithm. However,

it is computationally challenging to represent data in (possibly high-dimensional) space

as a workaround to the original problem without explicitly considering the transformed

coordinates of the data. We conduct pairwise similarity comparisons (dot product) in

the lower-dimensional original space, and then we carry out algorithms that only need

the values of that metric. The function that takes the vectors in the original space as its

inputs and returns the dot product of the vectors in the feature space is called a kernel

function or kernel trick. Other theorems guarantee the existence of such kernel functions

under certain conditions. This step describes the mapping of the input space X into a

new space, F = {ϕ(x)|x ∈ X}. The function called a kernel “K” if there exists a Hilbert

space H and a map ϕ: X → F such that

K(x,x′) := ⟨ϕ(x),ϕ(x′)⟩F,∀x,x′ ∈ F. Where ϕ: Feature map and F: Feature space.

Figure 2.3 illustrates a simple example of two-dimensional data that is non-linearly

separable from the original space mapped into a two-dimensional linearly separable feature
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space using a kernel function.

Figure 2.3 – Transformation from input space into feature space using a kernel function.

Before we can complete this path, we should first define the properties of the function

X(x,y) necessary to ensure that it is a kernel for some feature distance. Before traversing

this path, to ensure that the function is a kernel for some feature distance, we must

first define the necessary properties of the function X(x,y). The obvious condition is

symmetry:

K(x,y) = ⟨ϕ(x) ·ϕ(y)⟩ = ⟨ϕ(y) ·ϕ(x)⟩ = K(y,x)

and it also should satisfy the inequalities that follow from the Cauchy-Schwarz in-

equality,

K(x,y)2 = ⟨ϕ(x) ·ϕ(y)⟩2 ≤ ||ϕ(x)||2||ϕ(y)||2 = ⟨ϕ(x) ·ϕ(x)⟩⟨ϕ(y) ·ϕ(y)⟩

= K(x,x)K(y,y).

However, these conditions are insufficient to guarantee a feature space’s existence;

other approaches, such as Mercer’s Theorem, have introduced a series of Mercer kernel

functions described in this book [57].

2.5.1 Kernel Function

Kernel methods can be mainly classified based on the effect of translation into two

functions of interest: (1) shift-invariant and (2) dot product kernels [58]. The first class
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of kernels denoted translation invariance, while this property is not maintained in the

second category of kernels.

2.5.1.1 Shift invariant kernels

A shift-invariant kernel comprises every kernel function K whose values rely exclusively

on the differences between the input vectors.

K(x,y) = K(x−y)

The most widely used function that falls under this section is the Gaussian kernel.

K(x,y) = exp− ||x−y||2
2σ2

Gaussian kernel(RBF): It is a complete form of the Gaussian function to estimate

the distance between two vectors given the width σ2 (variance). This function offers

excellent scale for a large number of input features.

Laplacian kernel : It is a modified form of the radial basis function kernel (Man-

hattan distance metric) given the width σ (standard deviation). It has some similar

properties to the previous exponential kernel and is less affected by changes in the data.

K(x,y) = exp− ||x−y||1
σ

For the two previous functions, estimating the correct value of "σ" is important to

measure how close two points are to each other.

2.5.1.2 Dot product kernels

As the name suggests, the result of this type of kernel can be expressed as the dot

product across the input vectors.

Linear Kernel: It is the basic type of kernel with a one-dimensional structure that

represents a linear scale of one vector with another.

K(x,y) = xT y+c

where c, denoted the bias or shift which sometimes added to the result.

Polynomial kernel: It computes a degree q polynomial of the dot product of two

vectors x and y. The polynomial kernel deals with the degree/order of the features, thus

allowing the learning of non-linear models by computing a degree q polynomial of the

original variables.

K(x,y) = (xT y+c)q
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The constant c ≥ 0 is a trading-off parameter between higher-order and lower-order

terms in the polynomial. When c = 0, the kernel prescribed as homogeneous.

Sigmoid Kernel: This type of kernel employs the tanh function. It is mainly used

as an activation function for neural networks.

K(x,y) = tanh(mxT y+c)

where m is the slope, and c refers to the intercept term.

By elaborating an RBF kernel, we can Intuitively restrained the number of implicit

comparisons over a few selected points(anchors). One approach is to think about anchors

as being statistically representative of each dataset by focusing on 3 different selection

methods: Random Sampling; K-medoids; SMRS (Sparse Modeling Representative Selec-

tion); moreover, we suppose that the number of the selected anchors for each view is

limited to 1000 (m = 1000).

2.5.2 Anchor selection (Sampling)

Sampling comes as a universal tackler for the computational cost, where a smaller

(ideally controllable) random samples is selected from the entire data set in order to get a

few representative subset and the mining task is performed on that [59]. There are 2 main

types of sampling: (A) Probability (random) sampling (B) Non-probability sampling.

A) Probability sampling method

A probability sampling method is considered a selection procedure that serves as a

form of random selection, knowing that each instance of the dataset has an oppor-

tunity of being chosen. It is generally held to be the most precise type of sampling.

Furthermore, we will discuss two techniques, Discrete uniform distribution and

K-medoids.

(a) Discrete uniform distribution

Suppose a given finite population that we need a sample So that each subject

has an equal chance of selection with no replacement (Within the selected sam-

ples, all its subjects must be different). The discrete uniform distribution [60],

represents the theoretical concept of the random sampling model. In MATLAB

random sampling is achieved by the function “randsample” (Statistics toolbox).

University Kasdi Merbah Ouargla 2022/2023 page 18



Chapter 2. Multi-view data and multi-view learning

the original dataset is coded as a vector population by the indices and a random

sample of size k are founded.

(b) Sampling with K-medoids (Cluster sampling)

Partitioning Around Medoids (PAM) or the K-medoids [61], is a well-known

clustering technique that is slightly modified from the K-means algorithm. They

both attempt to minimize the squared-error but the K-medoids algorithm is

more robust to noise than the K-means algorithm [62]. A medoid can be defined

as that object of a cluster, whose average dissimilarity to all the objects in the

cluster is minimal. It starts from an initial select of k representative medoid

data items arbitrarily, and iteratively replaces one of the medoids by one of the

non-medoids if it improves the total distance of the resultant clustering.

For each pair of non-medoid data item Xi and selected medoid Ci, the total

swapping cost J is calculated. If J<0, Ci is replaced by Xi. Thereafter each

remaining data item is assigned to cluster based on the most similar represen-

tative medoid. This process is repeated until there is no change in medoids.

The dissimilarity of the medoid (Ci) and object (Xi) is calculated by using

J =
∑
Ci

∑
Xi∈Ci

||Xi −Ci||2 (2.1)

B) Non-probability sampling methods

A core characteristic of non-probability sampling technique is that samples are

selected based on subjective judgment and utilizes a convenient selection of units

from the population rather than random selection.

(a) Sampling using Sparse Modeling Representative Selection (SMRS)

Draw inspiration from sparse coding, as a universal method for data modeling;

we introduce the problem of finding data representatives using dimensionality

reduction in the object space [63]. Specifically, collecting N data points of a

dataset in Rm as columns of a data matrix Y ∈ Rm×n; we wish to find at most

k ≪ N representatives that best reconstruct the data collection.
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Learning Compact Dictionaries:

Consider a set of points in Rm Organized as a column matrix of a single view

data Y = [y1 . . .yN ]. The dictionary learning approach is interpreted as linear

combination that is able to efficiently approximate a compact dictionary D =

[d1 . . .dl] ∈ Rm×l and coefficients X = [x1 . . .xN ] ∈ Rl×n simultaneously, from a

collection of given data points. We may typically convey the best representation

by only optimizing an objective criterion subject to verified constraints. In the

sparse dictionary learning model, we must satisfy the sparsity condition over

the coefficient matrix X by solving the following objective:

min
D,X

= ||Y−DX||2F s.t||Xi||0 ≤ s, ||dj ||2 ≤ 1,∀i, j, (2.2)

where ||Xi||0 denotes the number of nonzero components among Xi. In this

case, we are still far apart from the efficient representation because of incomplete

learned atoms of the dictionary. Therefore, we enforce selecting representatives

from the extant data points; otherwise, approximate each data point based on

the reconstruction error as a linear mapping of all the data.

To achieve that, we impose the matrix of data points as a dictionary Y and

optimize the formulation with standard L1 relaxation (A minimal L − norm

solution is also the sparsest solution); given by a Lagrangian form:

minλ||C||1, q + 1
2 ||Y−YC||2F s.t 1T C = 1T (2.3)

where λ is a parameter that balances the tradeoff between sparsity and recon-

struction error and C is the coefficient matrix. This convex optimization prob-

lem is solved based on Alternating Direction Method of Multipliers (ADMM)

space [64]. Practically the sampling is achieved by ranking the examples based

on the L2 norm of the associated rows in a coding matrix C.
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2.5.3 Hashing for dimensionality reduction

Hashing is a family of popular approaches that rely on approximate nearest neigh-

bor search towards an efficient dimensionality reduction and is employed as a primary

machine learning aspect in many large-scale search and retrieval including feature com-

pression [65], re-ranking [66], and computing environments [67]. The need for hashing

techniques is becoming more crucial due to the huge growth in data sizes. In the context

of clustering, the actual size of the raw feature dataset is often very large in terms of mem-

ory requirement, and it is often time-consuming to compare any two images. Therefore,

to speed up the target task, hashing came up with a beneficial technology of compres-

sion referred to as binary-code representation in the Hamming space by mapping nearby

points in the original feature space into low-dimensional (compact codes) closer binary

codes in the hash code space. The distance computed on a compact representation is very

efficient, as the codes are much smaller than the original data items. As a result, we can

achieve a sub-linear or constant search time complexity. Moreover, such encoding results

in great memory cost reduction and scalable ability to large-scale datasets. For example,

with only 16 MB of memory, we can store a dataset of 1 million points with 128 bits of

encoding for each data point.

2.5.3.1 Hashing function

Assume a dataset with n data points X = [x1,x2 . . .xn] ∈ Rd.

The hashing function h(·) can be used to map each sample within the data into hash

values (hash codes) as h(X) = [h(x1),h(x2) . . .h(xn)] ∈ [0,1].

To accomplish the hashing task, three key terminologies associated with the hash

learning techniques must be considered:

1. Nature of hash function According to the hash function nature, different algo-

rithms can be counted based on kernels [68], linear projections [69], neural networks

[70], etc. A common model is the linear hash approach, where each bit sequence

output is associated with a projection vector w and a quantization function (usu-

ally the signum). For example, y = sign(wT x) ∈ {0,1},

where sign(wT x) = 1 if wT x ≥ 0 and 0 otherwise.
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Assigning a hash function is a pivotal decision that affects the flexibility of hash

codes and the computational feature space partitioning.

2. Similarity Measure

A set of binary codes of length N : To measure the distance between two binary

equal-length vectors, the Hamming distance stipulates the number of positions

where the bits differ.

Hdis (0011000,0111011) = 3

Hdis (1011001,1011001) = 0

Hdis can be computed using a bitwise XOR operation.

Due to its computation efficiency and low memory footprint, it should be pointed

out that an exhaustive search in the Hamming space is quite faster than in the

original feature space.

3. Approximate Nearest Neighbour (ANN)

The nearest neighbor is defined as the process of finding a data point among n

data points X = [x1,x2 . . .xn] ∈ Rd, previously preprocessed into a data structure,

which is closest to the query point y ∈ X.

NN(y) = argminx∈X dist(x,y)

where dist(x,y) is the distance between y and x.

Typically, if X lies in d-dimensional space Rd , p-norm (usually p = 2) distance is

induced:

||x−y||p =
(∑d

i=1 |xi −yi|s
) 1

s

Nearest Neighbour Search (NNS) is the optimization algorithm or similarity search,

proximity search, which addresses the process of finding the most similar data

points. Given any positive real ϵ; ANN returns a (1 + ϵ) point or multiple points

of the distance between a query point y and the true nearest neighbor x∗,

d(x,y) ≤ (1+ ϵ)dist(x∗,y).

Curse of dimensionality: As the number of features characterizing each sample

in the data set increases, the measurement of Euclidean distances between data points

becomes similar, making achieving efficient clustering challenging.

University Kasdi Merbah Ouargla 2022/2023 page 22



Chapter 2. Multi-view data and multi-view learning

2.5.3.2 Hashing function learning

Similarity-preserving hashing models go through two phases: (1) projection learning

and (2) quantizing the projected data into binary codes. The first stage focuses on achiev-

ing low-dimensional feature embedding with linear or non-linear projections to encourage

similar points to be closer. In the second stage, a quantizer is introduced to quantify each

real-valued projection dimension into binary code using a thresholding operation. Based

on the projection, the traditional hashing methods can be further divided into two big

classes [16], [71]: Data-independent methods and Data-dependent methods. Please see

Hashing methods Categorizing chart 2.4.

Figure 2.4 – Hashing methods Categorization.

Most works focus on the projection stage, which seeks to find good projection func-

tions. For example, Locality Sensitive Hashing (LSH) [72] is one of the representative

data-independent approaches. It employed a projection function derived from a random

Gaussian matrix. Like LSH, shift-invariant kernel hashing (SIKH) [73] adopted a random

projection and a shifted cosine function to produce hash values. Both LSH and SIKH are

built on the hypothesis that points with the greatest similarity have a high probability
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of being exposed to the same hash codes. All data-independent methods fall into the

trade-off between satisfactory performance and the need for short codes, which makes

them less efficient due to the higher storage and computational cost. From the literature,

it has been shown that the ability to capture a data structure positively affects the per-

formance of several tasks, such as retrieval and clustering. Therefore, most recent works

take up data-driven approaches whose hash functions are learned from the training data.

Torralba et al. [74], proposed spectral hashing for similarity graph partitioning. Binary

reconstruction embedding (BRE) [75] is another hash function learning that optimizes the

reconstruction loss between the original and Hamming distances. For feature presentation

learning and hashing, numerous end-to-end (i.e., feature extraction followed by binariza-

tion) based deep learning approaches have been proposed, Xia et al. introduced the first

end-to-end work, CNNH [76], to learn the hash functions based on the deep convolutional

network and pairwise similarity matrix. Zhu et al. [70] proposed a DHN approach based

on two learning criteria similarity-preserving by improving the pairwise entropy loss while

controlling the hash quality by improving the pairwise quantization error. Finally, DMDH

[77] addresses the original discrete problem to transform it into a differentiable optimiza-

tion by minimizing the objective discrepancy through the Taylor series expansion. The

above works summarize hashing techniques driven by single-view shallow learning or al-

gorithms based on deep hashing. With the progress attained by multi-view learning, it is

substantiated that integrating multiple descriptors enables learning more informative hash

functions [78], [79]. Several multi-view hashing works have emerged by pursuing binary

code compactness and exploiting the complementary information across hash functions.

For example, the work in [80] learns computationally feasible multiple discriminative hash

tables fusion based on the exemplar-based approximation techniques to leverage multi-

view information and table correlations. For Unsupervised methods, [81] produced hash

codes by exploring the global and local structures. In [82], Shen et al. suggested a ma-

trix factorization technique to generate hash codes with adaptive kernel space learning.

In contrast, supervised methods utilize information from the semantic labels to reinforce

similarities between views. In [83], Zhang et al. learned hash codes by employing multi-

view graphs, in accordance with a view weighting to value different contributions. Finally,
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Kim et al. presented an anchor graph multi-view hashing [84], which induced a low-rank

form of the averaged similarity matrix.

2.6 Evaluation criteria

Broadly, the evaluation of the clustering algorithm is assessed as a measurement of

goodness. On the other hand, clustering stability is known as the sensitivity of the

algorithm to the different tunable parameters, for example, the number of clusters. In

contrast, clustering tendency evaluates the cluster-ability, that is, whether the dataset

comprises meaningful clusters. It exists several statistical functions and validity metrics

for each of the aforesaid schemes, which can be categorized into three basic classes:

External: As its name indicates, it represents a validation procedure where the cri-

teria is independent of the dataset, so usually, additional information is needed or prior

knowledge about the groups is determined by experts for example, the true label for each

datapoint.

Internal: It defines a validation procedure and utilizes criteria that are related to

the dataset itself, for example, cluster compactness can measure the intra-cluster and

inter-cluster distances to acquire respectively how similar or far apart the datapoints.

Relative: Relative validation metrics are used to directly evaluate the clustering

structures obtained from the same version of the algorithm which is generally triggered

by different parameters; for instance, we can try a different number of clusters, in order

to select its optimal value.

1. External measures

Following the above definition of external validation, we assume that the true class

labels (ground truth) are provided. This external information plays a major role in gaug-

ing the extent to which partition labels match the supplied ground truth. Considering

X = {xi}n
i=1 which represents a dataset comprises n points in a d-dimensional feature

space, grouped into k partitions. Given yi ∈ {1,2, . . . ,k} which indicates for each point,

the membership information (true class label). T = {T1,T2, . . . ,Tk}, represents a given

ground-truth vector, where the partition Tj denotes all datapoints with j label , i.e.,

Tj{xi ∈ X|yi = j}. Let also designate C = {C1,C2, . . . ,Cr} over the same dataset, that
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identify the obtained partitioning into r clusters of a specific clustering algorithm. For

clarification, the ground-truth clustering will refer to Tvect and each partition to Ti.

moreover, the clustering will be referred to C where will call each Ci, as a cluster. Typ-

ically, the clustering algorithm will be driven with the true number of classes, i.e r = k.

Nonetheless, for the generalization purpose, we hold the distinction notation between r

and k. Note that we will report the experimental results using the three most widely used

external evaluation metrics, including, Accuracy (ACC), Normalized mutual information

(NMI) and Purity; thereby, a theoretical summary of these techniques is reviewed in the

following section.

1. Unsupervised clustering accuracy

Unsupervised clustering accuracy (ACC)[85] is roughly the same as classification

accuracy; It differs from its predecessor in that it uses a function to find the best

mapping between the output indicator vector c and the ground truth y. This

designation is necessary since an unsupervised algorithm may use a distinct label

than the real ground truth to describe the same data collection. This metric for

assessing the quality of clustering is described as follows:

Acc=
∑n

i=1 δ(yi,map(ci))
n ,

Where n is the number of objects, yi and ci denote the true category label and the

obtained cluster label of the image respectively. δ(y,c) is a function that equals 1

if y = c and equals 0 otherwise. map(·) is a permutation function that maps each

cluster label to a category label, and the optimal matching can be found by the

Hungarian algorithm [86].

2. Entropy-based Measures

•Conditional Entropy The entropy of a clustering C is defined as

H(C) = −∑r
i=1 pCi logpCi

where pCi = nin is the probability of cluster Ci. Likewise, the entropy of the

partitioning T is defined as

H(T) = −∑k
j=1 pTj logpTj

where pTj = mj

n is the probability of partition Tj . The cluster-specific entropy of,
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that is, the conditional entropy of T with respect to cluster Ci is defined as [87],

H(T|Ci) = −∑k
j=1

nij

ni
log nij

ni

The conditional entropy of T given clustering C is then defined as the weighted

sum:

H(T|C) = −∑r
i=1

nin H(T|Ci) = −∑r
i=1

∑k
j=1

nij

n log nij

ni

= −∑r
i=1

∑k
j=1 pij log pij

pCi

where pij = nij

n is the probability that a point in cluster i also belongs to partition

j.

The greater the conditional entropy, the more a cluster’s members are divided into

various partitions. The conditional entropy value for flawless clustering is zero,

while the worst potential conditional entropy value is logk. Extending on the

preceding statement, we can see that,

H(T|C) = −∑r
i=1

∑k
j=1 pij(logpij − logpCi)

= −
(∑r

i=1
∑k

j=1 pij logpij

)
+∑r

i=1
(
logpCi

∑k
j=1 pij

)
= −∑r

i=1
∑k

j=1 pij logpij +∑r
i=1 pCi logpCi

= H(C,T)−H(C)

Where H(C,T) = −∑r
i=1

∑k
j=1 pij logpij

is the joint entropy of C and T .

The conditional entropy H(T|C) thus gauges the residual entropy of T when the

clustering C is taken into account. H(T|C) = 0 if and only if T is totally specified

by C, which corresponds to the ideal clustering. If C and T are uncorrelated, then

H(T|C) = H(T), implying that C has no information about T.

•Normalized Mutual Information

The mutual information [88],is defined as the amount of common information be-

tween clustering C and partitioning T, as follows

I(C,T) =∑r
i=1

∑k
j=1 pij log( pij

pCi·pTj
)
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It quantifies the relationship between the observed joint probability pij of C and T,

and the predicted joint probability, under the independence assumption, pCi ·pTj .

When C and T are unrelated, pij = pCi · pTj , and so I(C,T) = 0. There is,

however, no upper constraint on mutual information. Extending on the previous

expression, we see that I(C,T) = H(C)−H(C,T)

Using the conditional entropy, we obtain the two equivalent expressions:

I(C,T) = H(T)−H(T|C)

and I(C,T) = H(C)−H(C,T)

Finally, because H(C,T) ≥ 0 and H(T|C,) ≥ 0

Given the inequality formulations I(C,T) ≤ H(C) and I(C,T) ≤ H(T).

By taking into account the ratios, we may derive a normalized version of mutual

information.

I(C,T)|H(C) and I(C,T)|H(T), The geometric mean of these two ratios is known

as the normalized mutual information (NMI):

NMI(C,T) =
√

I(C,T)
H(C) · I(C,T)

H(T) = I(C,T)√
H(C)·H(T)

The NMI value is between 0 and 1, with a higher value indicating a better clustering

outcome.

3. Matching Based Measures

•Purity

Purity measures how much of a cluster Ci includes items from just one partition.

In other words, it assesses the "purity" of each cluster. Cluster purity Ci is defined

as [89], Pi = 1
ni

maxk
j=1{nij}.

Where Pi denotes the number of items in i that have the class label j. In other

words, Pi indicates a proportion of the total cluster size represented by the greatest

class of objects assigned to that cluster. The clustering solution’s total purity is

calculated as the weighted sum of the various cluster purities and is reported as:

Purity = ∑r
i=1

ni
n Pi = 1

n

∑r
i=1 maxk

j=1{nij}.

Where ni signifies the size of cluster i; r is the number of clusters, and n is the

total number of items; The proportion of points in cluster Ci is denoted by the
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ratio ni
n . The alignment with the ground truth is better when the purity of C is

higher. The greatest value of purity is 1 can be achieved when each cluster consists

of points from just one partition. A purity score of 1 indicates flawless clustering

with a one-to-one connection between clusters and partitions for r = k. The purity

can be 1 when each cluster is a subset of a ground-truth partition. Because at

least one cluster must comprise points from more than one partition, purity can

be 1 even when r > k. When r < k, purity can never be 1 since at least one cluster

must include points from more than one partition.

2.7 Conclusion

For various machine learning paradigms, especially the clustering task, exploiting

multi-view data may provide extra information and significantly improve performance.

Several multi-view clustering studies have focused on image, audio, and text. Recently,

genetic (medical) and social-based data have attracted many researchers. Different multi-

view fusion phases are present for these challenges. However, none of these stages is

considered a prior or superior because the clustering goal is also related to the math-

ematical design and large-scale efficiency. In contrast to the terminology of multi-view

analysis, we got onto an exciting theoretical concept about learning in feature space,

including Kernelization and hashing techniques. The main advantage of operating in a

kernel-defined feature space is to address the non-linearity problem, which is inherently

present in large-scale datasets, by mapping our data points onto a higher-dimensional

space without explicitly representing them (the kernel trick). The second blessing con-

cerns the super dimensionality reduction strategy known as hashing function learning

or binary code learning. It is recognized as an advanced indexing technique that can

significantly increase performance and memory savings. The real-value features are com-

piled into a compressed hash code with successful similarity preservation. We finalize

this chapter by taking a holistic view of the common clustering performance evaluation

known explicitly as the external measures; Accuracy, Normalized mutual information, and

Purity.
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3.1 Introduction

Similar to Multi-view clustering (MVC) direction, multi-view representation, multi-

view supervised, and multi-view semi-supervised learning methods are worth mentioning

paradigms. An apparent parallel between them is that they all learn with multi-view

data; however, they target different learning schemes. Multi-view representation aims to

learn a unified compact representation for subjects from all the views, whereas MVC aims

to achieve sample partitioning. Multi-view representational learning evokes three vital

factors:

— The correlation aims to be maximized across multiple views.

— The consensus seeks to maximize the agreement between different learned repre-

sentations on multiple views.

— The complementarity attempts to employ individual knowledge in each view to

represent the data comprehensively.

Multi-view supervised and semi-supervised learning methods employ full or partial sample

label information, whereas; label information is not included in MVC. In one way or

another, MVC methods are multifaceted and may exploit and/or adapt some integration

strategies related to previous modes to accomplish their mission.
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3.2 Taxonomy of MVC models

Based on the taxonomy of MVC, it can be categorized into two big classes: generative

and discriminative. In this work, the fact that we do not touch on the generative category

does not mean that it is less important, only because the context of our study is limited

to the discriminative approaches. Generative methods assume that each group comes

from a specific distribution in each view and group them for an MVC procedure, the

details of which can be found in the earlier survey [90]. Discriminative methods directly

optimize an objective function that minimizes the average intra-cluster similarity and

maximizes the average inter-cluster similarity. Depending on the common property of

different similar structures shared, a plethora of discriminative clustering methods can

be divided into three main classes: (1) a common eigenvector matrix (mainly multi-

view spectral clustering), (2) a common coefficient matrix (mainly multi-view subspace

clustering), and (3) a common indicator matrix (mainly multi-view non-negative matrix

factorization clustering). Figure 3.1 shows a taxonomy diagram of MVC models.

Figure 3.1 – The diagram of multi-view clustering models.

A) Common Eigenvector Matrix (Mainly Multi-View Spectral Clustering):

Multi-view spectral clustering methods, also known as graph-based algorithms,
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learn the data similarities from multiple views and achieve a common clustering

result by assuming that all the views share the same or a similar eigenvector ma-

trix. [91]. Before addressing different methods, we will define spectral clustering

first. 1) Spectral clustering is a technique of clustering that operates on graph

Laplacian properties. First, the graph is constructed, and its edges denote the

similarities between data points, where a relaxed normalized min-cut problem is

solved [92]. Different from the other popular methods, such as the k-means algo-

rithm, which only fits spherical-shaped clusters, spectral clustering can be applied

to arbitrary-shaped clusters, and its good performance has been demonstrated.

Most multi-view spectral clustering methods are subject to two principal stages: 1)

similarity graphs constructed from multi-view data; 2) spectral clustering applied

to the similarity graphs to acquire the final partition result. The first stage conveys

an approximation of the relationship and correlation between data samples. The

features of multi-view data are described in terms of diversity, redundancy, and

correlation due to diverse sources of data [93]. Hence, leveraging multi-view infor-

mation to construct the similarity graph and promote the clustering performance

in multi-view spectral clustering becomes a crucial problem. The second stage

concentrates on obtaining more accurate discrete assignment results from the pre-

constructed similarity graphs. Although several spectral clustering methods suf-

fer from the drawbacks of two-phase clustering, many strategies were followed to

meet the clustering results from the pre-constructed multi-view similarity graphs;

particularly, spectral embedding pursued by k-means. However, such a two-step

procedure generates loss and diminishes the clustering quality. Assuming the in-

ner product of an embedded matrix is a low-rank approximation of a similarity

graph, this represents a partial clustering structure with less noise in the similar-

ity graph. Therefore, combining the inner product of the embedded matrix and

the similarity graph can produce better results. Moreover, the noise and outliers

are inherent in the originally constructed graph; one of the multi-view clustering

solutions is to perform feature selection. In [94], they have utilized l21-norm reg-

ularization to mitigate the effect of noise and outliers. Following state-of-the-art
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methods, co-training and co-regularization are two basic implementations of multi-

view spectral clustering. Their common goal is to make multiple-view embeddings

consistent. Co-training mutually modified the Laplacian matrix, assisted by the

partitioning results of the other views [95]. Co-regularized utilizes a linear kernel

to minimize the disagreement between different spectral embeddings [96]. Another

approach to valuing the contribution of each view is by adding weight parameters;

however, these extra parameters are manually tunable [97], [53]. Other methods

in [98],[99],[100] adopt an auto-weighted learning strategy to get rid of the ad-

ditional parameters drawback. The authors in [101] proposed a method dubbed

’Adaptively Weighted Procrustes’ (AWP), which uses a spectral projection matrix

with K-connected components from overall graphs to learn the cluster indicator

matrix instantly. Two recent frameworks have been developed. The first approach

in [102] integrates three learning components into a combined learning scheme: the

similarity graph matrix, the unified graph matrix, and the clustering assignment

by automatically assigning a weight for each graph matrix to attain the joint graph

matrix. In addition, this method dictated a rank constraint on the Laplacian ma-

trix to assemble exactly K clusters. The second approach in [103] assumes that the

Laplacian matrix of each view is a perturbation of the consensus Laplacian matrix.

So, first, it constructs a similarity graph for each view. The second step refers to

consensus matrix learning, where weight is assigned to the Laplacian matrix of each

view. Then, under the spectral perturbation theory, the clustering ability between

each selected view and the consensus-clustering matrix is minimized to obtain the

final predicted labels. In [104], the authors designed two auto-weighted multi-view

clustering techniques that managed kernelized graph learning. The first approach

studied the mapping of data into a feature space where they are linearly separa-

ble using a single kernel. The second is characterized by its capacity to handle

multiple kernel matrices, capture complementary information from different views,

and force the similarity matrix S to be unified. In contrast, the performance of

the last technique is often sensitive to the type and parameters of each input ker-

nel. Furthermore, a novel one-step graph-based multi-view clustering framework
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has been implemented recently without any additional parameter [105] to explore

non-negative embedding (cluster label space) under the assumption that "if two

samples that have low similarity in the data space may have high similarity in the

cluster label space." Therefore, they introduced an extra graph using cluster label

correlation technique to the graphs associated with the data space; Therefore, they

introduced an extra graph using cluster label correlation technique to the graphs

associated with the data space; the smoothness of the cluster labels over all graphs

has been imposed, and the clustering result has directly provided without a post-

processing step which can be used as a cluster indicator matrix to perform the final

cluster assignment without further post-processing steps such as spectral rotation

or k-means.

B) Common Coefficient Matrix (Mainly Multi-View Subspace Clustering):

Even if the given data for many practical applications is high-dimensional, the

latent dimension of the problem’s scope could be higher. For example, a given

image holds many pixels, whereas only a few units are highlighted to describe a

scene’s geometry, appearance, and dynamics. This drives us to explore the latent

low-dimensional subspace, considering that the data could be sampled from mul-

tiple subspaces. Multiview subspace clustering [106] is the class of methods that

take care of learning a unified self-representation from multiple high-dimensional

subspaces while assuming that different views share the same underlying repre-

sentation. This joint information will be introduced as input to the clustering

model to derive the grouping results. Over the past few years, subspace-based

multiview clustering approaches have gained great attention due to their mathe-

matical interpretability. The key challenges for subspace-based methods are in the

robust multiview learning ability; hence, multiple perspectives have been set forth

to solve the problem efficiently, such as LMSC [107], ECMSC [108], and CSMSC

[109]. Despite proving its effectiveness in handling several computer vision and pat-

tern recognition concerns, the aforenamed methods show three critical points: (i)

learning the subspace structure in the original space, which unfortunately misses
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out on the valuable nonlinearity structure of multiview data. (ii) disregard the

linkage between subspace clustering and affinity matrix learning and treat them

independently, which may not perfectly figure out the latent representations within

data samples. Finally, (iii) most models react equally to different views, which are

badly affected by the low-quality views in multiview data. Aiming to relieve the

above three issues, Maria et al. [110] considered the low rank and sparse represen-

tation needed to fulfill multiview subspace clustering. Wang et al. [111] presented

an angular-based similarity to estimate the consensus correlation in multiple views.

Wang et al., in [25], adopted a similar concept to combine multiview information

while associating a multigraph regularization with each graph Laplacian to char-

acterize the view-dependent nonlinear data similarity. Finally, Zhang et al. [112],

combine each view representation with a neural network and linear correlation.

Different from the above approaches, the three works [113], [114], [115] treated

the problem of incomplete information and adopted general NMF formulation to

achieve unified representation for the samples while preserving the specificity of

each view. Diversity-induced Multiview Subspace Clustering (DiMSC) [116] ana-

lyzes complementary information within the self-representation scheme based on

the Hilbert-Schmidt Independence Criterion. In the same direction as diversity

induction, Tao et al. [117] proposed extra loss terms with regularization subject to

the contribution of consensus learning among different views. The method in [118]

merges different views to attain directly a common indicator matrix rather than

a joint subspace representation. Beyond these works, Chen et al. [119] addressed

the problem of subspace clustering in a one-step optimization strategy and directly

learned the non-negative transition probability matrix to ensure its optimality.

C) Common Indicator Matrix (Mainly Multi-View Non-negative Matrix

Factorization Clustering): NMF is customarily used in clustering. It is con-

ceived to split a given matrix into the bases matrix and the indicator matrix whose

nonzero entry points whether the sample belongs to which cluster [8]. For mul-

tiple views, forcing the indicator matrix to be the same or similar is the optimal
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way to accomplish the MVC task. Since the NMF strategy does not care about

preserving the geometrical structures of the data from complementary view spaces

during factorization, a big challenge was raised on how to split the data and earn

a meaningful clustering solution. Akata et al. [27] extracted a consensus indicator

matrix from two views to conduct MVC-based NMF. However, the view-specific

and consensus indicator matrices might not be comparable at the same scale. Liu

et al. [11] carried out the disagreement measurement between the coefficient ma-

trix of each view and the consensus coefficient matrix toward a common indicator

matrix. A view-dependent coefficient matrix normalization has been constrained,

inspired by the connection between the NMF and the probabilistic latent semantic

analysis. Cai et al. [120] proclaimed a k-means-based multi-view clustering method

by optimizing the L2,1 norm objective to alleviate the effect of outliers in original

data, together with weighting assignment to draw the importance of information

from different views. Xu et al. [121], introduced an individual mapping matrix for

each view and controlled the clustering model by promoting the common indicator

matrix. Furthermore, the Frobenius norm has been replaced with an L2 norm,

and each view-importance has been approximated. Recently, Liu and Fu [122]

presented a categorical utility function to measure the similarity between the two

partitions, the indicator matrix from each view, and the unified indicator matrix.

Generating basic partitions from each view and the fusion of consensus clustering

have been designed interactively in a one-step framework, and high-quality basic

partitions positively contribute to consensus clustering. However, NMF remains

unqualified to hold onto the intrinsic structure of data space. This prompted most

researchers to incorporate other techniques to satisfy the manifold learning scheme

efficiently. Cai et al. [123], [124] investigate the geometrical structure of data using

a graph-based NMF method; therefore, a similarity matrix has been constructed

with the parts-based data representation concept. Zhang et al. [125] combined the

consensus manifold and the joint coefficient matrix learning to maintain the local

geometrical structure of data space. Wang et al. [126] integrated a manifold regu-

larization term into a concept factorization to preserve the geometrical information.
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Further, Pu et al. [127] embraced the L2,1 norm with manifold regularization to

regularize the matrix factorization and mitigate the impact of outliers; this makes

the algorithm largely discriminative for multi-view data clustering. Motivated by

recent progress in discrete hashing techniques, Zhang et al. [18] deployed the first

meaningful work that addresses large-scale binary multi-view clustering problems.

By leveraging the view-specific feature information, the unified learning model has

founded upon the conversion of the kernelized features into a common compact

binary code powered by the weighting vector built-in additional adjustable pa-

rameter to draw the importance of each view. Meanwhile, the binary clustering

structure learning has been accomplished. Finally, as an alternative to previous

work, Zhang et al. [19] have jointly learned a common binary representation by

decomposing each projection into a combination of shareable and individual pro-

jections across multiple views to capture the underlying correlations; the latter can

greatly improve the computational efficiency and robustness of clustering.

D) Other MVC Methods:

CCA-Based MVC (View Combination after projection) Canonical correla-

tion analysis (CCA) was a commonly used technique to solve the problem of clus-

tering analysis in high dimensions and data integration from different data types by

introducing combinations after projection. For example, for two views of the same

data, the target was to find two projections to maximize the correlation between

them. Further, the CCA problem has transformed into a distance minimization

problem, which is widely used in many works [113], [115], [128]. Chaudhuri et al.

[129] stated the assumption that multiple views are uncorrelated conditioned on

which mixture component generated the views; thus, the low-dimensional subspace

spanned using the component distributions has been approximated via CCA pro-

jection and partitioning was conducted using single linkage clustering. Blaschko et

al. [130] offered a correlational spectral clustering based on kernel canonical cor-

relation analysis. First, the data were projected onto the top directions obtained

by the KCCA across different views, and then a conventional k-means method was
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applied to the projected space. Liu et al. [131] introduced tensor decompositions to

analyze the latent pattern (cluster structure) hidden in multi-view data. Based on

the assumption that the exemplar of a cluster in one view is always an exemplar of

that cluster in the other views. They formed a similarity tensor from the similarity

graph for each view, then performed a spectral analysis based on the obtained joint

dominant subspace. Afterward, k-means is run to acquire the cluster indices. Fol-

lowing a similar previous assumption, Zhang et al. [132] proposed a multi-view and

multi-exemplar fuzzy clustering method demonstrating performance improvement

against a single-view clustering.

Multi-kernel-based MVC (Direct view combination) Canonical correlation

analysis (CCA) was a commonly used technique to solve the problem of clustering

analysis in high dimensions and data integration from different data types by intro-

ducing combinations after projection. For example, for two views of the same data,

the target was to find two projections to maximize the correlation between them.

Further, the CCA problem has transformed into a distance minimization problem,

which is widely used in many works [113], [115], [128]. Chaudhuri et al. [129] stated

the assumption that multiple views are uncorrelated conditioned on which mixture

component generated the views; thus, the low-dimensional subspace spanned us-

ing the component distributions has been approximated via CCA projection, and

partitioning has been conducted using single linkage clustering. Blaschko et al.

[130] offered a correlational spectral clustering based on kernel canonical correla-

tion analysis. First, the data were projected onto the top directions obtained by

the KCCA across different views, and then a conventional k-means method was

applied to the projected space. Liu et al. [131] introduced tensor decompositions to

analyze the latent pattern (cluster structure) hidden in multi-view data. Based on

the assumption that the exemplar of a cluster in one view is always an exemplar of

that cluster in the other views. They formed a similarity tensor from the similarity

graph for each view, then performed a spectral analysis based on the obtained joint

dominant subspace. Afterward, k-means is run to acquire the cluster indices. Fol-

lowing a similar previous assumption, Zhang et al. [132] proposed a multi-view and
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multi-exemplar fuzzy clustering method demonstrating performance improvement

against a single-view clustering.

Deep-Based MVC In an early survey article [133], inspired by embedding-based

architectures, multi-view representation techniques have been classified broadly

into two categories: shallow methods and deep methods. The shallow methods

mainly focus on the traditional feature extraction schemes in the context of multi-

view learning, while the deep methods exploit deep visual and linguistic feature

embedding. Several works affiliated with MVC are based on multi-view representa-

tion learning. For example, Huang et al. [14] performed an MVC implementation

by using multiple-layer matrix factorization and sharing the same representation

matrix across distinct views.

proposed using multiple-layer matrix factorization and shared the same representa-

tion matrix across different views to conduct MVC. This framework outperformed

the state-of-the-art shallow clustering methods like co-training multi-view cluster-

ing, co-regularized multi-view clustering, and multi-view k-means clustering. Zhu

et al. [134] designed a convolutional auto-encoders architecture to learn a multi-

view self-representation matrix in an end-to-end manner with two sub-networks:

a diversity network (Dnet) to learn view-specific self-representation matrices, and

a universality network (Unet) to learn a common self-representation matrix for all

views. Li et al. [135] proposed a deep MVC method inspired by a generative ad-

versarial network (GAN). Based on adversarial learning and attention mechanism,

Zhou et al. [136] presented an MVC method by combining GAN and attention

mechanisms to align the latent feature distributions. It consists of three modules,

modality-specific feature learning, modality fusion, and cluster assignment to guide

the network training. Experiments support its effectiveness. Compared with tradi-

tional multi-view shallow clustering methods, the above multi-view deep clustering

methods showed better performance, which may be attributed to several reasons

summarized in two parts. First, deep networks adopted in multi-view deep cluster-

ing methods have better expressiveness and can capture the most realistic structure
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of multi-view data. Second, most of them adopt an end-to-end multi-view deep

clustering scheme. Thus, it can comprehensively reflect the representation reached,

which serves the ultimate goal of efficient clustering.

3.3 Conclusion

This section formally described shallow methodologies and presented a diverse bird’s-

eye view of multi-view clustering approaches. Most of models failed to perform satisfacto-

rily in the presence of noisy, redundant, and misleading views, while some achieved results

that deserve attention and development. Furthermore, we looked at recent alternatives

from deep approaches that have been considered in the literature. We would like to re-

emphasize here that the developed strategies for various MVC algorithms have not been

covered in depth, in order to facilitate access to information in a smooth form, and to give

an opportunity for those who are not familiar with the mathematical concepts of machine

learning to comprehend the basic building blocks and benefit from typical scenarios such

as choosing a specific MVC method to process certain task.
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4.1 Introduction

C
lustering , as subject of this study is one of the unsupervised learning approaches.

The vast majority of partitioning techniques are only appropriate for single-view

data [137] [138] [139]. Furthermore, combining all views into a single data matrix and then

applying the most sophisticated clustering techniques to that matrix may not enhance

clustering performance owing to information redundancy, which results in overfitting.

In contrast to conventional single-view clustering methods, multi-view clustering (MVC)

approaches [90, 140], may be roughly categorised into three distinct groups: (1) Shared

feature subspace (combination by projection), such as utilising Canonical Correlation

Analysis (CCA) [129] to minimise cross-correlation error and then grouping the data

with one of the clustering algorithms (e.g. k-means); (2) Multi-view spectral clustering

(common eigenvector matrix [141] and/or common graph similarity matrix [142]), which

generates numerous graphs to characterise the geometric structure, followed by data par-

titioning with one of the existing clustering algorithms; (3) Multi-view NMF clustering

42



Chapter 4. Automatically Weighted Binary Multi-View Clustering via deep initialization (AW-BMVC)

(common indicator matrix) [18] based on matrix factorization by decomposing the feature

matrix into a centroid matrix and a cluster indicator matrix.

Hashing techniques have become increasingly important for large-scale data analysis,

resulting in quick computation and reduced memory needs [143, 16, 144]. Multi-view hash

approaches have also evolved to encode high-dimensional feature vectors into binary low-

dimensional codes, preserving the original space and allowing for multi-view information

to be exchanged [143],[19]. Despite tremendous improvement in terms of quick computing

and somewhat satisfying outcomes, the majority of extant multi-view learning algorithms

suffer from the following three limitations:

1. The majority of current techniques use static or equal weights in conjunction with

extra factors to evaluate the contribution of each view, resulting in sub-optimal

representation learning.

2. In the process of clustering, most of the available models treat all samples identi-

cally.

3. The suggested procedures lack a practical and instructive initialization of the bi-

nary codes throughout the task of clustering, leading to a sub-optimum point.

In this research, a unique multiview clustering approach is devised to address the

aforementioned issues: Auto-Weighted Binary Multiview Clustering via deep initialization

(AW-BMVC). The main components of our contribution are as follows:

1. To take advantage of the heterogeneity of data with numerous views, we present

an automatic weighting technique adapts pairwise relevance of samples and views,

with view weight obtained from criterion term and sample weight explicitly deter-

mined.

2. We suggest an objective function the optimization of which enables the unified

estimate of the following entities: joint binary code, view mapping, view/sample

weights, binary centroids and cluster indicator matrix.

3. In order to acquire a solid initialization for the proposed optimization, Vgg16 net-

work is mined for deep features, which are then transfer the features into the

Hamming space and used to initialize the iterative clustering algorithm.
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4. On the basis of the offered objective function and alternating optimization method-

ology, several state-of-the-art multiview clustering approaches, including those us-

ing real values, can be outperformed by the suggested method.

The following is the remainder of the chapter: section 4.2 gives a thorough grasp

of the intended task. Performance evaluation using numerous experiments is covered in

section 4.3. In section 4.4, we conclude the chapter with a future study.

Table 4.1 – Summary of the main notations.

Notation Description
n Number of samples
c Number of clusters
V Number of views
m Number of anchors
dv Data dimensionality for view v

X1, ....,XM where Xv ∈ Rdv×n A set of V data matrices
xv

s s-th sample from the v-th view
av

1,av
2, ...,av

m A set of selected anchors from the v-th view
Φv ∈ Rm×n Nonlinear Radial Basis Function mapping for view v
σ Kernel width
sgn(·) Signum operator
|| · ||F Frobenius norm
Tr(·) Trace of a matrix
(·)T Transpose operator
I Identity matrix
h(·) Discrete hash function
l Binary code length
B = [b1, ...,bn] ∈ {−1,+1}l×n The common binary codes of the n samples
Uv ∈ Rl×m The mapping matrix for the v-th view
α View-weighting vector
W ∈ Rn×n Sample-weighting matrix (a diagonal matrix)
β,γ,λ,ρ Regularization parameters
C ∈ {−1,+1}l×c Clustering binary centroids
G ∈ {0,1}c×n Clustering assignment
1 Column vector of ones

4.2 The Proposed approach

This section describes the novel multi-view clustering approach known as Auto-Weighted

Binary Multi-View Clustering via deep initialization in detail. (AW-BMVC). It comprises

two shared learning objectives: a common discrete representation powered by the auto-

weighted sampling method and the auto-weighted view strategy. The global objective

function is also simultaneously initialised using an excellent binary matrix representation.

In brief, Figure 4.1 depicts the suggested framework’s diagram.
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Figure 4.1 – The flowchart of the proposed method. Common discrete representation, Binary
clustering initialization, Sample & view auto-weighting, and binary matrix factorization are
integrated into a unified learning framework.

4.2.1 Anchor-based representation

Consider an RBF (Radial Basis Function) that can clearly organise several views into

a single tensor of fixed dimensions and investigate the high-order latent structure inside

each view by projecting them into a higher dimensional space.

Assume a multi-view dataset consists of V representations (i.e. V views) for n in-

stances, that are identified by a collection of matrices {X1, ....,XV }; where Xv ∈ Rdv×n,

is the data matrix of the v-th view, and dv is the dimensionality of data features from

the v-th view. The data samples in each view are considered to be zero-centered. i.e.∑
s xv

s = 0 , to keep the data balanced.
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The first phase involves encoding data using non-linear RBF mapping. This encoding is

determined by the mapping formulation below:

Φ(xv
s) =

[
exp

(
−||xv

s −av
1||2

σv

)
, ..., exp

(
−||xv

s −av
m||2

σv

)]T

(4.1)

where σv is the kernel width for the v-th view, Φ(xv
s) ∈ Rm denotes the m-dimensional

nonlinear embedding of s-th sample from the v-th view, {av
1,av

2, ...,av
m} is a set of m

selected anchors from v-th view. Consider anchors to be statistically representative of the

whole dataset. Instead of random sampling or K-means, these anchors are obtained using

the K-medoids approach [62], which is more resilient to noise.

Remark:

Based on the reported experiments in [18], we set the number of chosen anchors for

each view to m = 1000. It is also important to note that the variance of the kernel width

parameter σv is critical as it defines the degree of smoothing. [145] and frequently manual

inquiry is required. The empirical establishment of a universal adaptive scaling through

each view is adjusted to the average of the Euclidean distances between the samples and

their respective anchors.

4.2.2 Common discrete representation

The primary objective of our unsupervised technique is to accomplish direct clustering

in a much lower-dimensional Hamming space by embracing common binary codes. In par-

ticular, multiple-view compression is accomplished. As a solution, hashing is a standard

technique that has been frequently employed, for retaining similarity in a computationally

efficient manner.

For each Φ(xv
s) to be quantized into a discrete representation, we investigate the

process of discovering a discriminative hashing function for each view as follows:

min
Uv

,bs

V∑
v=1

n∑
s=1

||bs −UvΦ(xv
s)||2 = min

Uv
,B

V∑
v=1

||B−UvΦ(Xv)||2F (4.2)
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bs = hv
s(Φ(xv

s);Uv) = sgn(UvΦ(xv
s)) (4.3)

where B = [b1, . . . ,bn] is the common binary codes from different views (i.e., xv
s ,∀v =

1, . . . ,V ), Φ(Xv) is the matrix nonlinear representation of all samples in view v, Φ(Xv) =

[Φ(xv
1), . . . ,Φ(xv

n)], Uv is the mapping matrix, sgn(·) is the element-wise sign operator.

Despite the fact that the model in Eq. (4.2) is linear, the entire projection from data space

to common binary code space is nonlinear because of the nonlinear mapping Φ(Xv).

4.2.3 Sample-view auto-weighting

Recognizing that multiple views show the same topic from distinct measurements, the

projection {Uv}V
v=1 should incorporate consensus information that optimises the similarity

between diverse views as well as the dissimilarity that distinguishes particular features.

In light of this, implicit automated view weighting will be implemented to define the link

between views. Global optimization, on the other hand, will estimate explicit sample

weighting factors. This technique enables the interchangeable highlighting of essential

samples and the promotion of complementary information across various views, resulting

in a comprehensive, consistent, uniform representation.

To advance, it is necessary, from an information-theoretic standpoint, to maximize the

amount of information conveyed by each bit of binary code [146]. Using the maximum

entropy principle [16], an extra regularizer is implemented for the binary codes B based

on this notion. So, our aim is to maximize the variance of the matrix B provided by:

var[B] = 1
n

V∑
v=1

var[UvΦ(Xv)] = 1
n

V∑
v=1

∥UvΦ(Xv)∥2

= 1
n

V∑
v=1

tr((UvΦ(Xv))(UvΦ(Xv))T ) (4.4)

This extra regularization on B may provide a balanced partition and decrease the
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duplication of the binary codes [19]. A relaxed regularization is constructed as a common

discrete representation learning problem:

minF (Uv,B,W) =
V∑

v=1

(
||(B−UvΦ(Xv

s))W||2F +β ||Uv||2F − γ

n
tr((UvΦ(Xv))(UvΦ(Xv))T )

)

s.t. B ∈ {−1,1}l×n,
∑

s
ws = 1,ws > 0,

(4.5)

where β and γ are two regularization parameters.

The second term is a regularizer that determines the scales of the parameters (con-

tribute to the stable solution). The diagonal sample-weighting matrix is denoted by

W = diag(w1,w2, ...,wn). By determining the weights of the samples, the more significant

ones will be given a large weight.

Inspired by previously suggested auto-weighted approaches [147], we offer a unique

formulation in which no explicit view weight components are provided. Here, the preced-

ing goal function is replaced with a new one which is the square root of the term to be

minimized. Thus, the issue may be phrased as follows:

min
Uv

,B,W
=

V∑
v=1

√
||(B−UvΦ(Xv)W||2F +β ||Uv||2F − γ

n
tr(UvΦ(Xv))(UvΦ(Xv))T )

s.t. B ∈ {−1,1}l×n,
∑

s
ws = 1,ws > 0

(4.6)

Following the other multi-view algorithms, this kind of criteria implicitly assigns a

weight to each view. Hence, minimizing Eq. (4.6) is the same as minimizing the following:

min
Uv

,B,W
=

V∑
v=1

αv
(

||(B−UvΦ(Xv))W||2F +β||Uv||2F − γ

n
tr(UvΦ(Xv))(UvΦ(Xv))T

)

s.t. B ∈ {−1,1}l×n,
∑

s
ws = 1,ws > 0,

(4.7)

where the auto-weight αv is given by the following expression:

αv = 1
2
√

||(B−UvΦ(Xv))W||2F +β||Uv||2F − γ
n tr(UvΦ(Xv))(UvΦ(Xv))T

(4.8)
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4.2.4 Binary matrix factorization and overall objective function

AW-BMVC takes into account the decomposition of the acquired discrete representa-

tion B into two matrices, the binary clustering centroids C and the discrete clustering

indications G, in accordance to the relevant constraints:

min
C,gs

||bs −Cgs||2F

s.t. CT 1 = 0,C ∈ {−1,1}l×c,gs ∈ {0,1}c,
c∑
i

gis = 1
(4.9)

where C and gs are the clustering centroids and the assignment vector for the sample s,

respectively.

The balancing criterion is granted by the clustering centres restriction (CT 1 = 0) in

order to optimize the information submitted by each bit. Referencing Equation (4.9), we

define the following factorization problem for all samples:

min
C,G

||(B−CG)W||2F

s.t. CT 1 = 0,C ∈ {−1,1}l×c,G ∈ {0,1}c×n,
c∑

i=1
Gis = 1

(4.10)

Hence, the overall joint AW-BMVC is stated as follows:

minF (Uv,B,C,G,W,α) =
V∑

v=1
αv(||(B−UvΦ(Xv))W||2F +

β ||Uv||2F − γ

n
tr((UvΦ(Xv

s))(UvΦ(Xv))T )+λ ||(B−CG)W||2F

s.t. CT 1 = 0,
∑

s
ws = 1,ws > 0,

B ∈ {−1,1}l×n,C ∈ {−1,1}l×c,G ∈ {0,1}c×n,
c∑

i=1
Gis = 1,

(4.11)

where λ is the regularization parameter.

Attention should be drawn to the existence of the sample auto-weighted matrix W

for the binary clustering learning phase. This would make sense in terms of information
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conservation and maintaining interrelation balance between discrete representation and

binary clustering structure.

4.2.5 Optimization

Due to the discrete constraints and nonlinearity of the objective function, the solu-

tion to the problem (4.11), is essentially a challenging combinatorial optimization prob-

lem. Therefore, To deconstruct the subject into smaller subproblems and update it with

rwspect to one variable while fixing the other variables, an alternating optimization strat-

egy is performed. Consequently, we specify each step to iteratively update the mapping

matrix Uv, the discrete representation B, the binary cluster centroids C and the indicator

G, the sample auto-weighting W and the view auto-weighting αv, respectively.

• Step 1: Update Uv,v = 1, ...,V .

By fixing other variables, the optimization formula for Uv is

minF (Uv) = ||(B−UvΦ(Xv))W||2F +β ||Uv||2F

− γ

n
tr((UvΦ(Xv))(UvΦ(Xv))T

(4.12)

We may derive the following solution by calculating the derivative of the objective

function with respect to Uv, and setting it to 0:

Uv = BWWΦ(Xv)T ·Q (4.13)

where Q =
[
Φ(Xv)WWΦ(Xv)T − γ

nΦ(Xv)Φ(Xv)T +β I
]−1

.

• Step 2: Update B.

The optimization formula for B is
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min
B

=
V∑

v=1
αv
(
||(B−UvΦ(Xv))W||2F

)
+λ ||(B−CG)W||2F

=
V∑

v=1
αv tr

(
(BW−UvΦ(Xv)W)T (BW−UvΦ(Xv)W)

)
+

λtr
(
(BW−CGW)T (BW−CGW)

)
= tr

BT

 V∑
v=1

αvWWT +λWWT

B
−2

tr

BT

 V∑
v=1

αvUvΦ(Xv)WW+λCGWW
+ cons

s.t. B ∈ {−1,1},

(4.14)

where cons indicates a constant value w.r.t. B.

The solution for B is given by:

B = sgn

 V∑
v=1

αvUvΦ(Xv)WW+λCGWW
 (4.15)

• Step 3: Update C and G.

Taking into consideration the discrete constraints, the regularised optimization formula

for C and G is as follows:

minF (C,G) = ||(B−CG)W||2F +ρ||CT 1||2

s.t. C ∈ {−1,1}l×c,G ∈ {0,1}c×n,
∑

i

gis = 1,
(4.16)

Maintaining the discrete constraints throughout the optimization phase, we repeatedly

optimize the cluster centroids using the Adaptive Discrete Proximal Linearized Minimiza-

tion (ADPLM) method [144].

Update C.

With G fixed we have the following minimization problem:

minF (C) = −2tr
[
(BW)T (CGW)

]
+ρ||CT 1||2 + cons (4.17)
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The following expression is the derivative of the obtained functional with regard to C:

∇F (C) = −2BW(GW)T +2ρEC

s.t. C ∈ {−1,1}l×c,

(4.18)

where ∇F (C) is the gradient of F (C) and E is l × l square matrix of ones.

Based on the rule of ADPLM, we update C in the p+1-th iteration by

Cp+1 = sgn

(
Cp − 1

µ
∇F (Cp)

)
(4.19)

where 1
µ is a step size. We set µp ∈ (L,2L), where L is the Lipschitz constant.

Update G.

minF (G) = ||(B−CG)W||2F (4.20)

Each column in G ∈ {0,1}c×n reflects the hard cluster assignment (i.e., the vector gs),

for sample s which is provided by:

gp+1
is =


1 i = argmink H(bs,cp+1

k )

0 otherwise
(4.21)

where H(bs,ck) is the Hamming distance between the s-th binary code bs and the k-th

cluster centroid ck.

• Step 4: Update the Sample weighting matrix W.

W is the sample weight diagonal matrix. It is initialized by w1 = ... = ws = ... = wn = 1
n .

It is updated using the following:

minF (W) =
V∑

v=1
αv(||(B−UvΦ(Xv))W||2F )+λ||(B−CG)W||2F

s.t.
n∑

s=1
ws = 1,ws > 0,

(4.22)

By adopting the following intermediate matrices, the loss function (4.22) is simplified:
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Pv = [pv
1, ...,pv

n] = B−UvΦ(Xv)

M = [m1, ...,mn] = B−CG

F (W) =
V∑

v=1
αv

(
n∑

s=1
w2

s ||pv
s ||2

)
+λ

n∑
s=1

w2
s ||ms||2 − ε

(
n∑

s=1
ws −1

)
(4.23)

∂F (W)
∂ws

= 0 =⇒
V∑

v=1
αv2ws||pv

s ||2 +2λws||ms||2 − ε = 0 (4.24)

=⇒ 2ws

 V∑
v=1

αv ||ps||2 +λ ||mv
s ||2

= ε (4.25)

=⇒ 2ws As = ε (4.26)

where As =∑V
v=1 αv ||pv

s ||2 +λ ||ms||2

=⇒ ws = ε

2As
(4.27)

n∑
s=1

ws = 1 =⇒ ε = 1∑n
s=1

1
2As

(4.28)

=⇒ ws =
1∑n

s=1( 1
2·As

)

2As
(4.29)

• Step 5: Update the View weight αv,v = 1, ...,n.

These are initialized by αv = 1
v , ∀v = 1, . . . ,V .

With fixed Uv, B, W; αv can be optimized using Eq. (4.8). Algorithm 1 summarizes

the proposed framework.
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Algorithm 1 : Auto-Weighted Binary Multi-View Clustering via deep initialization (AW-
BMVC)
Input: Multi-view features Xv ∈ Rdv×n, and Selected anchors Av ∈ Rdv×m, v = 1, ...,V , Parame-
ters β,γ,λ, Number of clusters c, Number of iterations r & t, Length of binary codes l.

Output: Binary representation B, Cluster centroid C, Cluster indicator G.

Initialization: Initialize view weights αv = 1
V , Initialize sample weights ws = 1

n , Initialize bi-
nary representation B (see section (4.2.6)).
Compute anchor-based representation Φ(Xv),v = 1, ...,V using (4.1).
repeat

Update Uv using (4.13).
Update B using (4.15).
repeat

Update C using (4.19).
Update G using (4.21).

until converge or reach "r" iterations;
Update W using (4.29).
Update α using (4.8).

until converge or reach "t" iterations;

4.2.6 Binary clustering initialization

Our approach to the issue of iterative clustering is very dependent on the initial config-

uration of the factorable binary matrix. The consequence of poor initialization is perceived

as the clustering algorithm being trapped in an undesirable local minimum.

Diverse Convolutional Neural Network (CNN) designs have better-recognized object

characteristics than novel hand-crafted feature detectors. [148]. exploiting this concept,

we introduce Bidirectional-Fast Fourier Transform (BD-FFT) method, which leverages

Fourier decomposition to build effective representative codes. [149].

Using the dense feature representation from the pre-trained Visual Geometry Group

model (VGG16), the initial job is to feed forward our image data collection and obtain

features from the second FC layer (4096 neurons). Each of these neurons is sensitive

to a certain feature, as shown by [150]. We regard each deep feature vector in this

transformation as a one-dimensional signal. Using a bidirectional FFT, the second goal

is to build a frequency domain representation as a series of sorted frequencies. On the

basis of this concept, the coefficients corresponding to low frequencies were chosen and

converted to binary codes. [151, 149], Using the mean of the frequency coefficients as the

threshold (See figure 4.2).

The deep features are not employed as an extra view in the suggested criteria (4.11),
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but rather to establish a decent initialization of the matrix B.

Figure 4.2 – Binary matrix generation for clustering initialization using BD-FFT.

4.3 Performance analysis

4.3.1 Experimental setup

4.3.1.1 Datasets

We conduct experiments on four publicly available multiview image datasets that

are often used to evaluate clustering techniques, including Caltech101-7, Caltech101-

20 1[152], NUSWIDE-Obj 2 [153], and Scene-15 3 [154]. To characterise each image,

multiview features are extracted. Table 4.2, provides a comprehensive exposition of these

datasets. The Caltech101 database comprises 9,144 images organised into 101 classes.

Figure 4.3 shows a number of images from various classes.

We chose the extensively used seven-category object recognition dataset by tracing

past work in [147]. i.e., motorcycle, face, Windsor, Garfield, chair, stop sign, Dolla-Bill,

1. https : //data.caltech.edu/records/20086
2. https : //lms.comp.nus.edu.sg/wp − content/uploads/2019/research/nuswide/NUS −

WIDE.html
3. https : //figshare.com/articles/dataset/15−SceneImageDataset/7007177
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and Snoopy. 1474 images are compiled from the data to create the so-called Caltech

101-7. In addition, 2386 images belonging to 20 classifications were chosen. i.e., motor-

cycle, Garfield, face, Windsor chair, stop sign, Dolla-Bill, Snoopy, brain, leopard, camera,

binoculars, ferry, camera, hedgehog, pagoda, car side, pagoda, yin-yang, water lily, rhino,

wrench, and stapler. This dataset is referred to as Caltech101-20. Caltech101-7 and

Caltech101-20 each include six distinctive features; namely, the 40-dim wavelet moments

(WM), 48-dim Gabor feature, 254-dim CENTRIST feature, 40-dim wavelet moments

(WM), 1984-dim HOG feature, 928-dim LBP feature and 512-dim GIST feature.

There are 30,000 images in NUSWIDE-Obj, spread among 31 classes. 4.4, shows an

assortment of images.

This dataset utilises five common descriptors: a histogram (CH), 65-bin colour, 145-

dim colour correlation (CORR), 226-dim colour moments (CM), wavelet texture (WT),

and 74-dim edge distribution (ED).

Scene-15 consists of 4485 images organised into 15 categories of interior and outdoor

scenes, including building, bedroom, living room, shop, industrial, seaside, kitchen, high-

way, office, inside city, mountain, woodland, suburb, open country, and street. Figure 4.5,

shows a selection of images. From each image, features are taken to create three views.

Figure 4.3 – Sample images(300×200 resolution) from Caltech-101 classes

4.3.1.2 Evaluation metrics and competitors

we verified the suggested methodology using the three most prevalent external as-

sessment criteria: Accuracy (ACC), Normalized Mutual Information (NMI), and purity,
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Figure 4.4 – Sample images(240x160 resolution) from NUSWIDE-Obj classes

Figure 4.5 – Sample images(300×250 resolution) from 15scene classes

[155]. Moreover, Our suggestion is supported by a comparison of eleven state of the art al-

gorithms: (RMSC)[156], (DiMSC)[116], (AWP)[101], (WMSC)[103], (BMVC)[18],

(OMSC)[157], (LMVSC)[158], (NESE)[159], (GMC)[102], (SMVSC) [160], (Co-

FW-MVFCM)[161].

We execute the comparison algorithms using the optimum parameter settings specified

for each work.
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Table 4.2 – Datasets used in our experiments. "dim" refers to the feature dimension.

Dataset #Samples #Views Feature descriptors #Classes

Caltech101-7/20 1474/2386 6

48-dim Gabor features

7/20

40-dim Wavelet moments
254-dim Centrist features
1984-dim HOG
512-dim GIST
928-dim LBP

NUSWIDE-Obj 30,000 5

65-dim Color Histogram

31
226-dim Color moments
145-dim Color correlation
74-dim Edge distribution
129-dim Wavelet texture

Scene-15 4485 3
20-dim GIST

1559-dim PHOG
40-dim LBP

4.3.2 Parameter sensitivity

The proposed approach is parameterized such that its behaviour may be customized

by adjusting three hyperparameters: β,γ, and λ. It is anticipated that these regularisation

parameters would lead to a stable solution. By adjusting these factors, we investigated

their impacts, λ to 1e-9 and empirically varying the values of β and γ from the grid {1e-5,

1e-4, 1e-3, 1e-2 1e-1 2, 4, 6, 10}.

Figure 4.6 depicts the variance in clustering accuracy for the four datasets and various

beta and gamma settings.

Moreover, the sensitivity across the Caltech101-7/20 datasets is similarly dependent

on the number of chosen anchors. which is advised to be fewer than one thousand anchors;

this is due to the numerical perturbation that will be handled in the convergence study

(section(4.3.6)).

Working with low beta values (β = 1e−5) and relatively large γ values (γ = 10), yields

outstanding clustering results. The performance of clustering is reasonably steady while

1e−5 < β < 1e−2; 2 < γ < 10; beyond this range, we risk losing efficacy.

Table 4.3 – Best parameter tuning.

Datasets β γ λ
Caltech101-7(20) 1e-05 10 1e-09
NUSWIDE-Obj 1e-05 2 1e-09
Scene-15 1e-05 10 1e-09
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The optimal parameter settings for the three parameters are summarised in Table

4.3, which demonstrates that despite the sensitivity noted before, we got good clustering

results for all datasets evaluated with a single tuning of γ within a short search range.

(a) (b)

(c) (d)

Figure 4.6 – Variability of accuracy with respect to β and γ parameters on: (a) Caltech101-7,
(b) Caltech101-20, (c) NUSWIDE-Obj, (d) Scene-15

4.3.3 Computational complexity

In the suggested study, the subject of binary code learning was examined as an in-

triguing research strategy for overcoming the challenge of large-scale clustering of various

views. The total complexity of AW-BMVC is O(nlm2V )t when six optimization opera-

tions are considered: Uv,B,C,G,W, and α,. This computation exceeds the complexity

of the preprocessing stage of deep feature extraction.

It may be noticed that l << n and m << n hold true. where n is the number of

data samples and "t" is the number of iterations, and due to the quick convergence of the

proposed model, its time complexity may be summed up as O(n), which is proportional

to n.

Our trials on running time are conducted on a computer with a 2.39 GHz Intel i5-

2430M processor and 6 GB of Memory. In Table 4.4, we provide the execution timings of

several multi-view techniques over Caltech101-7.

University Kasdi Merbah Ouargla 2022/2023 page 59



Chapter 4. Automatically Weighted Binary Multi-View Clustering via deep initialization (AW-BMVC)

It is evident that DiMSC (355.77 sec), OMSC (107.55 sec), LMVSC (135.79 sec),

SMVSC (236.32 sec) and Co-FW-MVFCM (1864.57 sec), compared to other techniques,

are considerably time-consuming (greater than 100 seconds). As shown in the table, our

method obtains clustering results for the Caltech101-7 dataset within 15.23 sec in just t=

3 iterations due to the self-weighted term of the samples, which somewhat increases the

time cost. The AWP, WMSC, and BMVC approaches are more time-efficient, but our

method produces the best clustering outcomes.

Table 4.4 – The running time (seconds) of different clustering approaches on the Caltech101-7
dataset.

Method Time(Sec) Method Time(Sec)
RMSC-2014 92.08 LMVSC-2020 135.79
DiMSC-2015 355.77 NESE-2020 63.18
AWP-2018 7.76 GMC-2020 92.81
WMSC-2018 7.73 SMVSC-2021 236.32
BMVC-2018 6.18 Co-FW-MVFCM-2021 1864.57
OMSC-2019 107.55 AW-BMVC(Ours) 15.23

4.3.4 Ablation study

We shorten our presented approach in three fundamental modules: automated sample

weighting, automatic view weighting, and initialization of binary clustering. In Table 4.5,

we detail the performance of two datasets when each module is deleted or added.

Observe that the combination of these three important elements results in the all-out

proposal, the supremacy of which is shown by the boldface outcomes. In comparison,

removing these components returns us to the BMVC architecture [18] (first row in Table

4.5).

We also observe that the BCI module plays a crucial role in enhancing clustering

performance since combining the two forms of sample and view auto-weighted without

considering the binary clustering initialization component cause a huge performance loss.

Furthermore, separating either one of the auto-weighted elements from the binary clus-

tering initialization diminishes the capacity of the model.

University Kasdi Merbah Ouargla 2022/2023 page 60



Chapter 4. Automatically Weighted Binary Multi-View Clustering via deep initialization (AW-BMVC)

Table 4.5 – Ablation experimental results. SAW: Sample Auto-Weighted. VAW: View Auto-
Weighted. BCI: Binary Clustering Initialization.

Removing or adding a component Dataset
SAW VAW BCI Caltech101-7 Caltech101-20 NUSWIDE-Obj Scene-15

ACC
✗ ✗ ✗

0.2856 0.2355 0.1680 0.2312
NMI 0.1079 0.1864 0.1621 0.1466
Purity 0.5916 0.4392 0.2872 0.2580
ACC

✔ ✗ ✗

0.2904 0.2921 0.1875 0.1739
NMI 0.1645 0.2149 0.1082 0.1062
Purity 0.6832 0.4715 0.2383 0.1835
ACC

✗ ✔ ✗

0.3209 0.3814 0.1336 0.2446
NMI 0.2065 0.4932 0.1457 0.2062
Purity 0.7123 0.7318 0.2721 0.2999
ACC

✗ ✗ ✔

0.5122 0.5159 0.1874 0.5032
NMI 0.4935 0.6830 0.1935 0.4322
Purity 0.8718 0.8688 0.3081 0.5574
ACC

✔ ✔ ✗

0.3141 0.2200 0.1695 0.2881
NMI 0.1583 0.1898 0.1676 0.2080
Purity 0.6784 0.4484 0.2714 0.3097
ACC

✔ ✗ ✔

0.4274 0.6144 0.1598 0.4330
NMI 0.2746 0.4900 0.1552 0.3986
Purity 0.7822 0.6174 0.2811 0.4384
ACC

✗ ✔ ✔

0.5102 0.4736 0.1853 0.4932
NMI 0.4931 0.6659 0.1957 0.3564
Purity 0.8718 0.8395 0.3137 0.5462
ACC

✔ ✔ ✔

0.9022 0.8734 0.2190 0.5634
NMI 0.8733 0.8180 0.2156 0.5089
Purity 0.9022 0.8873 0.3220 0.5884

4.3.5 Clustering initialization analysis

In our suggested optimization technique, we ran a series of experiments on four

datasets to evaluate the effect of various binary code initialization. Hence, in the algo-

rithm 1, the matrix of binary codes Bvect was initialized using three distinct algorithms:

a random binary matrix, non-linear PCA, and Deep-FFT. In the first plan, we construct a

random binary matrix;The second scenario demonstrates a non-linear PCA methodology

employed by the BMVC approach [18]; and the third approach is Deep-FFT, which is the

initialization scenario we suggest. As demonstrated in Table 4.6, the binary random ma-

trix, which is fully independent of the data, produces the poorest results. The non-linear

PCA approach yields homogenous but suboptimal scoring measures. We infer that this is

because the eigenvalue decomposition was performed on an embedded view. Specifically,

compared to the previous two instances, we can infer that our starting strategy yields

a considerable increase in clustering outcomes as a consequence of a new deep feature

extraction that directly enhances the optimization procedure.
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Table 4.6 – Clustering initialization study. RI: Random Initialization. PCA: One-view PCA
Initialization. Deep: Deep-FFT Initialization.

Initialization scenario
Dataset RI PCA Deep

ACC
Caltech-7 0.2863 0.2924 0.9022
Caltech-20 0.2393 0.2200 0.8734
NUSWIDE-Obj 0.1508 0.1956 0.2190
Scene-15 0.1445 0.2453 0.5634

NMI
Caltech-7 0.0622 0.2103 0.8733
Caltech-20 0.1471 0.1898 0.8180
NUSWIDE-Obj 0.0785 0.1500 0.2156
Scene-15 0.0476 0.1536 0.5089

Purity
Caltech101-7 0.5733 0.6934 0.9022
Caltech101-20 0.4510 0.4484 0.8873
NUSWIDE-Obj 0.2041 0.2634 0.3220
Scene-15 0.1521 0.2660 0.5884

4.3.6 Convergence analysis

Figure 4.7 illustrates the objective function value for every iteration across four datasets.

Alternating iterative optimization is used to iteratively update each variable: the map-

ping matrix Uv, the discrete representation B, the binary cluster centroids C, the cluster

indicator matrix G, the auto-weighted sample W, and the auto-weighted view α. The

subproblems Uv and B arising from Eq. (4.12) and Eq. (4.14) guarantee a closed-form

optimal solutions given by Eq. (4.13) and Eq. (4.15), respectively. The subproblem C in

Eq. (4.17) has an analytical solution using ADPLM [144], Eq. (4.19) effectively shows its

optimal solution, followed by the obvious solution for G in Eq. (4.21), which is compara-

ble to the K-means learning algorithm. The solution for automated sample weighting in

Eq. (4.29) as well as the automatic weighting of views in Eq. (4.8) is the exact minimum

points. Hence, the loss values of the globally adopted objective function have decreased

F (U;B;C;G;W;α) in Eq. (4.11), rapidly drop and achieve the lowest point after around

t = 5 iterations, as well as verify the monotonic bound, which is adequate for convergence.

Numerical perturbation on Caltech101-7/20: Particularly experimenting with

the Caltech101-7/20 datasets revealed a second phenomena that may provide light on the

stability challenge. A numerical disturbance caused a quick and transitory decline in the
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objective function’s value to its minimum. As the calculation of the mapping matrices

Uv becomes ill-conditioned, a succeeding sharp increase and/or halt was noticed. With

a small dataset such as Caltech-7 (n = 1474), the number of anchors may be constrained

to a maximum. Hence, an experimental extension is accomplished. We resolve the prior

perturbation problem by restricting the number of selected anchors to fewer than one

thousand, where m=700 anchors are tested and verified (see Figure 4.8).

Figure 4.9 displays the clustering performance according to the number of anchors

over the Scene-15 dataset. Clearly, the performance of clustering may be altered by this

quantity. The accuracy ranges from 0.4939 (m=400) to 0.5666 (m=700). There are no

exact criteria for finding the appropriate number of anchors. However, the number of

samples plays a significant role. In Scene-15, for instance, clustering efficiency degrades if

the number of anchors is fewer than 500. But, as m exceeds 500, performance peaks and

becomes steady.

Zoom in

Figure 4.7 – Objective function as a function of iteration number on all datasets. The number
of anchors m is set to 1000.
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Zoom in

Figure 4.8 – Objective function as a function of iteration number on all datasets. The number
of anchors m is set to 700.

Figure 4.9 – ACC and NMI variation versus the number of anchors on the Scene-15 dataset.

4.3.7 Comparison with state-of-the-art multi-view methods

To demonstrate the superiority of the proposed algorithm, we conducted thorough

trials using 11 state-of-the-art comparison approaches. Table 4.7, demonstrates the per-

formance of all competing clustering algorithms for each of the four datasets. The best

clustering performance in this table is shown in boldface.

According to Table 4.7, the OMSC technique has inconsistent performance, observable

at very low ACC, in contrast to the better NMI and Purity for all datasets; additional

adjustments may be required.

Based on the data shown in Tables4.4 and 4.7, the following conclusions may be

drawn: Analytically, the SMVSC and LMVSC algorithms demand a considerable amount

of processing time yet provide mediocre results. This is owing to the fact that graph
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filtering in SMVSC and the anchor graph approach in LMVSC accomplish the smooth

representation requirement. The three approaches WMSC, AWP, and DiMSC techniques

yield the third-best outcomes, correspondingly. The first strategy has a shorter duration.

It exposes a technique for decreasing the clustering ability of two sets of eigenvectors,

the Laplacian for each view and the Laplacian of the consensus matrix. The second

method employs Procrustes analysis, to assign clusters and skip eigenvalue decomposition

at each iteration step, making it more efficient. The third technique is the second most

time-consuming since it allows for the individual representation of each view through the

original raw space. In addition, it may need extending the fusibility investigation towards

a comprehensive diversity estimate. Even for small data sets, the NESE approach is time-

efficient and yields accurate findings. It makes use of consistent non-negative embedding

but need to handle the issue of heterogeneity across various views by describing the degree

of contribution made by each view. BMVC is computationally highly efficient due to its

simultaneous binary representation and clustering. Nevertheless, our suggested solution

has successfully addressed three fundamental flaws with this paradigm (automatic view

weighting, automatic sample weighting, and binary clustering initialization).

Due to the two independent phases of learning consensus graphs and clustering struc-

tures, RMSC performs poorly. The approach with the lowest performance is Co-FW-

MVFCM, which has a relatively lengthy runtime owing to the a priori clustering of the

individual views and the information exchanged between individual members. On top of

that, the technical method of feature reduction by thresholding each view and the empir-

ical exponent parameter used to manage the distribution of each view is insufficient.

In general, the majority of baselines perform better in clustering metrics for a particu-

lar dataset. BMVC, for instance, is superior for large datasets such as NUSWIDE-Obj. In

contrast, WMSC is superior for the Scene-15 dataset, GMC for the Caltech101-7 dataset,

and NESE for the Caltech101-20 dataset. In three assessment indices, AW-BMVC per-

forms excellently on four benchmark image datasets: Caltech101-7, Caltech101-20, NUS-

WIDE-obj, and Scene-15, and beats the results of the other approaches.
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Table 4.7 – The clustering performance comparisons on challenging datasets.
"-" indicates unavailable results due to out of memory.

Caltech101-7 Caltech101-20
Methods ACC NMI Purity ACC NMI Purity
RMSC-2014[156] 0.4037 0.3544 0.8026 0.4035 0.5073 0.7360
DiMSC-2015[116] 0.5611 0.4221 0.8318 0.4728 0.4935 0.7347
AWP-2018[101] 0.5685 0.4710 0.8554 0.4953 0.5590 0.7594
WMSC-2018[103] 0.5943 0.4960 0.8588 0.5310 0.5893 0.7682
BMVC-2018[18] 0.2856 0.1079 0.5916 0.2355 0.1864 0.4392
OMSC-2019[157] 0.0257 0.1770 0.9545 0.0255 0.3108 0.9241
LMVSC-2020[158] 0.7266 0.5193 0.7517 0.5306 0.5271 0.5847
NESE-2020[159] 0.4857 0.4614 0.8548 0.6085 0.6045 0.7556
GMC-2020[102] 0.6919 0.6056 0.8846 0.4564 0.3845 0.5549
SMVSC-2021[160] 0.7354 0.5204 0.8487 0.5692 0.5190 0.6442
Co-FW-MVFCM-2021[161] 0.4016 0.2819 0.7944 0.3051 0.3887 0.5746
Ours 0.9022 0.8733 0.9022 0.8734 0.8180 0.8873

NUSWIDE-obj Scene-15
RMSC-2014[156] 0.1473 0.1421 0.2624 0.3482 0.3483 0.3797
DiMSC-2015[116] 0.1330 0.1363 0.2165 0.2555 0.2083 0.2758
AWP-2018[101] 0.1440 0.1123 0.2446 0.3429 0.3366 0.4035
WMSC-2018[103] 0.1382 0.1344 0.2475 0.4370 0.4341 0.4807
BMVC-2018[18] 0.1680 0.1621 0.2872 0.2312 0.1466 0.2580
OMSC-2019[157] 0.0678 0.2530 0.4465 0.0084 0.3133 0.8403
LMVSC-2020[158] 0.1181 0.1063 0.1363 0.3134 0.3297 0.3551
NESE-2020[159] - - - 0.4312 0.4042 0.4822
GMC-2020[102] 0.1192 0.1128 0.1205 0.1400 0.1105 0.1464
SMVSC-2021[160] 0.1254 0.1123 0.1587 0.3583 0.3433 0.3861
Co-FW-MVFCM-2021[161] 0.1673 0.0913 0.2209 0.2856 0.2822 0.3257
Ours 0.2190 0.2156 0.3220 0.5634 0.5089 0.5884

4.4 Conclusion

We presented a large-scale approach called Auto-Weighted Binary Multi-View Cluster-

ing via deep initialization (AW-BMVC) to discover a common discrete representation of

multi-view data while optimizing binary clustering based on matrix factorization. Thanks

to the benefits of self-weighted samples and views as the initial component in this sys-

tem, which demonstrate its capacity to differentiate between views based on significant

samples and generate a comprehensive joint discrete representation. Regarding the clus-

tering initialization problem, we have additionally emphasized a novel deep representation

strategy. Consequently, our binary clustering initialization technique yielded final cluster-

ing with exceptional performance. Therefore, within a few iterations, rapid convergence

was reached. In addition, empirical findings on a number of well-known datasets have

validated our approach’s superiority over other multi-view clustering techniques of the

present day.
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Nevertheless, for the sake of the scientific integrity of the suggested method, three

associated shortcomings must be mentioned: (1) It is quite evident so long as the pre-

ferred number of anchors is fixed at 1000 samples; which makes the model selective as it

cannot handle smaller datasets. (2) Despite efforts to have the model autonomously learn

view and sample weights, the clustering performance is heavily dependent on manually

configurable regularisation parameters (β,γ,λ). (3) The use of pre-trained deep VGG16

as part of the binary matrix initialization approach confines the evaluation’s scope to just

image datasets. Extending our findings to text datasets using versions of feasible binary

clustering initialization techniques is seen as promising, however. It provides a remedy

for one of the most critical identified flaws.
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Perspectives
5.1 General Conclusion

This thesis aimed to develop an efficient large-scale framework that can cluster multi-

view data. Clustering is regarded as an important task in mining and data discovery.

Before formalizing the problem, we started with the definitions and theoretical concepts

related to data type domains and applications, including different data fusion and learning

stages. With the knowledge that data is inherently nonlinear and may be large in terms

of instances/features, and possibly carry some noise and missing values. Because of these

factors, the mining process has become much more difficult, and many methods have

been intensively proposed recently. We reviewed several state-of-the-art multi-view-based

clustering techniques, broadly categorized into three main classes: Multi-View Spectral

Clustering, Multi-View Subspace Clustering, and Multi-View NMF Clustering. We have

seen that the primary building block in our approach was data kernelization, where we

found a good representation of each raw-view data in terms of better structure under-

standing and linear separability. In this area, anchor-based representation is one major

technique achieved by considering RBF similarity measures through a preselected subset.

Following this line of thought, we targeted a particular and interesting case of learning

in a feature space called hashing. By opting for the intermediate data fusion, a unified
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discrete representation learning is accomplished using the projected kernelization data

matrices and governed by two configurations, an automatically implicit view weighted

and an automatically explicit sample weighted. We have realized that the decisive step

in our clustering task is not the partitioning of the learned discrete representation based

on the non-negative matrix factorization technique but a good initialization of the binary

matrix that drove the joint learning algorithm at least to the best local optimum.

5.2 Perspectives

Through several experiments and encouraging results that have been reached in this

thesis and continuing in the same research direction of multi-view learning and clustering,

we can identify further interesting and challenging perspectives, including:

1. It is mentioned that our developed model could handle only image datasets since

it employed a CNN for the binary matrix initialization. As a solution, we could

adopt several scenarios of fusing by diffusion in a pre-constructed similarity graph

to extend our work to the text, genes, or any other types of datasets, etc.

2. In contrast to the shallow approaches, it is very promising to exploit multi-auto-

encoder architectures to handle an end-to-end multi-view clustering problem.

3. For multi-view learning, another interesting application topic is “outlier detection,”

which represents abnormal behavior, fraud detection, system health monitoring,

contaminants, etc. Multi-view clustering could be helpful to complete the missing

information and analyze hidden patterns.
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Appendix
6.1 Cluster Analysis

Clustering is the process of partitioning objects into different groups (clusters) accord-

ing to their similarities and properties. Hence, more similar objects belong to the same

group than others in other clusters. Typically, the similarity measure is an estimation

process that influences the outputs based on the selected class of algorithms, including:

Centroid-based models, connectivity-based models, density-based models, etc. In this

project, we utilize the centroid-based algorithm. Below is a synopsis of each model and

its similarity concept. For each algorithm, the clustering results will be described based

on the original data represented in Figure 6.1a. The ground truth is illustrated in Figure

6.1b. The yellow data points are noise.
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Figure 6.1 – Example of clustering: (a) Synthetic data; (b) Ground truth. Yellow datapoints
are considered noise.

6.1.1 Centroid based clustering

The core idea behind this model is to find k sets of samples based on the proximity of

representative points called centroids. Several algorithms have been developed based on

the centroid selection/creation strategy. K-means initially defines the arbitrary centers,

then assigns samples to the nearest center, and subsequently moves the coordinates of

the centers according to the average of all belonging samples. Note that the centroid is

not necessarily a sample of the dataset. Therefore, k-medoids constrain the centroid to

be one sample of the dataset.

In contrast to the k-means, another algorithm called k-median is interested in the

median instead of the average of the belonging set. The common drawback among all

these algorithms is that the number of clusters k has to be predefined. The outlier

influence and their cluster tendency are other hot topics to be considered.

For better illustration, we select the k-means algorithm (see Figure 6.2a). Therefore,

the so-called Voronoi diagram represents a space partition in cells (see Figure 6.2b).

University Kasdi Merbah Ouargla 2022/2023 page 71



Chapter 6. Appendix

Figure 6.2 – k-means clustering example: (a) result with k = 3 clusters; (b) Voronoi diagram.
The centroids are denoted by a larger font size.

Given a dataset X = {x1,x2, . . . ,xn}, where x ∈ Rd and S = {S1,S2, . . . ,Sk}, is a set

of partitions. The objective of k-means is to minimize the intra-cluster square error, as

shown in Equation (6.1). Note that µi is the centroid average of all samples assigned to

the cluster Si.

argmin
S

∑
i=1

∑
xj∈Si

||Xj −µi||2 (6.1)

The problem is very hard to solve, and approximate solutions are sought for optimiza-

tion efficiency. Lloyd’s algorithm [162] is a commonly used approximation that finds a

local minimum iteratively through three differentiated steps: initialization, assignment,

and update.

1. Initialization step: This step selects the initial random positions (seeds) as cen-

troids. Note that this step is critical and significantly affects the solution obtained.

We run the algorithm multiple times with different initializations, and the best

score is picked. Some commonly used initializations are:

(a) Forgy’s method: A randomly selected centroids that are well separated.

(b) Randomly partition: K initial centroids are randomly selected, and points are

assigned to different classes based on the distance. The average distance is
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calculated. Afterward, we update the centroids and recompute the distance.

(c) K-means++: This algorithm updates the centroids based on two factors: the

squared distance, and the probability proportion derived from the point which

is close to existing cluster centroids. [163].

2. Assignment step: Each sample is assigned to the closest centroid that contributes

to a minimum intra-cluster quadratic error.

3. Update step: The new centroids µi are recalculated according to the average of

all samples within the cluster Si as expressed in Equation 6.2,

µt+1
i = 1

|St
i |

∑
xj∈St

i

xj (6.2)

6.1.2 Connectivity-based clustering

it is formally known as hierarchical clustering and is based on the premise that local

objects are more closely related to one another than distant ones. Therefore, the similarity

is measured by the distance between the two samples. This clustering model does not

locate a single data point, but rather presents a hierarchy of data clusters that have been

combined at specific distances. This hierarchy is depicted by dendrograms (see Figure

6.3b), in which the y-axis reflects the distance at which two clusters join and the x-axis is

arranged so that clusters do not mix. In general, connectivity-based clustering algorithms

are categorized according to the following strategies:

1. Agglomerative strategies: It produces a cluster tree; the top is a list of all samples,

and these are then joined to form subclusters as one moves down the tree until

all cases are merged into a single large cluster. Consequently, there is the same

number of clusters as samples.

2. Divisive strategies: Are a top-down clustering approach. Initially, all the samples

belong to the same unique cluster, and partitioning is performed recursively as one

moves down the hierarchy.
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Figure 6.3 – Example of clustering using ward: (a) Result with a number of clusters k=3; (b)
A dendogram with 50 samples.

Ward is a connectivity-based clustering algorithm, and its obtained result is illustrated

in Figure 6.3a. Ward follows an agglomerative strategy, starting with one cluster for each

sample at each step. The process makes a new cluster that minimizes total variance within

the cluster. The initial distances between clusters are the Euclidean distances between

samples; d(xi,xj) = ||xi − xj ||2. In each recursion, the pair of clusters that leads to a

minimum total variance increment within clusters are merged. This process is repeated

until the total number of clusters indicated by the user is reached.

6.1.3 Density based clustering

The key idea is to consider a cluster/group in a data space as a contiguous region

of high point density, separated from other clusters by sparse or empty regions. The

samples placed between two densely populated regions are considered noise. The popular

density-based clustering algorithm is DBSCAN. This method connects samples at a given

radius under the assumption that it must contain at least a minimum number of points

and must also fulfill density criteria. DBSCAN has a clear weakness in being unable to

group samples into clusters with very different densities. To solve this problem, Mihael

Ankerst et al. [164] provided a generalization of the Ordering Points to Identify Cluster

Structure method (OPTICS). First, the samples are ordered so that adjacent samples
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are close together in the sorted vector. Additionally, the acceptable distance between

two samples to retain them in the same cluster is stored. This length is known as the

reachability distance. They can then be represented as a unique sort of dendrogram. The

x-axis depicts the sorted samples, and the y-axis indicates their reachability distance.

Typically, clusters have short reachability distances to their nearest neighbors; therefore,

clusters are depicted as valleys in this depiction (see Figure 6.4b). The denser the cluster,

the deeper the valley. Figure 6.4a displays the outcome obtained for the initial synthetic

example.

Figure 6.4 – Example of clustering utilising optics: (a) Clustering result without defining the
number of clusters; (b) Samples ordered by their reachability distance, where valleys represent
clusters. Notate the presence of yellowed outliers with lesser sizes.

University Kasdi Merbah Ouargla 2022/2023 page 75



Personal Contribution
Publication

— Khamis, Houfar & Djamel, Samai & Fadi, Dornaika & Azeddine, Benlam-

oudi & Khaled, Bensid & Abdelmalik, Taleb-Ahmed. (2023). Automatically

Weighted Binary Multi-View Clustering via Deep Initialization (AW-

BMVC). Pattern Recognition. https://doi.org/10.1016/j.patcog.2022.109281.

76

https://doi.org/10.1016/j.patcog.2022.109281


Bibliography
[1] W.Ian, F.Eibe et al., “Practical machine learning tools and techniques,” in Data

Mining, no. 4th Edition, 2016.

[2] H.David, “Principles of data mining,” Drug safety, vol. 30, pp. 621–622, 2007.

[3] J.K.Anil, M.Narasimha et al., “Data clustering: a review,” ACM computing surveys

(CSUR), vol. 31, no. 3, pp. 264–323, 1999.

[4] Y.Yan and W.Hao, “Multi-view clustering: A survey,” Big Data Mining and Ana-

lytics, vol. 1, no. 2, pp. 83–107, 2018.

[5] B.Steffen and S.Tobias, “Multi-view clustering.” in ICDM, vol. 4, no. 2004. Citeseer,

2004, pp. 19–26.

[6] N.W.Stafford and B.Asa, “Integrating information for protein function prediction,”

Bioinformatics-From Genomes to Therapies, pp. 1297–1314, 2007.

[7] H.Chenping, Z.Changshui et al., “Multiple view semi-supervised dimensionality re-

duction,” Pattern Recognition, vol. 43, no. 3, pp. 720–730, 2010.

[8] L.D.Daniel and S. Sebastian, “Learning the parts of objects by non-negative matrix

factorization,” Nature, vol. 401, no. 6755, pp. 788–791, 1999.

[9] Y.Zuyuan, Z.Yu et al., “Non-negative matrix factorization with dual constraints for

image clustering,” IEEE Transactions on Systems, Man, and Cybernetics: Systems,

vol. 50, no. 7, pp. 2524–2533, 2018.

[10] W.Yu-Xiong and Z.Yu-Jin, “Nonnegative matrix factorization: A comprehensive

review,” IEEE Transactions on knowledge and data engineering, vol. 25, no. 6, pp.

1336–1353, 2012.

77



Bibliography

[11] L.Jialu, W.Chi et al., “Multi-view clustering via joint nonnegative matrix factor-

ization,” in Proceedings of the 2013 SIAM international conference on data mining.

SIAM, 2013, pp. 252–260.

[12] H.Xiangnan, K.Min-Yen et al., “Comment-based multi-view clustering of web 2.0

items,” in Proceedings of the 23rd international conference on World wide web, 2014,

pp. 771–782.

[13] F.Lin, L.Wenzhe et al., “Re-weighted multi-view clustering via triplex regularized

non-negative matrix factorization,” Neurocomputing, vol. 464, pp. 352–363, 2021.

[14] H.Shudong, K.Zhao et al., “Auto-weighted multi-view clustering via deep matrix

decomposition,” Pattern Recognition, vol. 97, p. 107015, 2020.

[15] G.Yunchao, P.Marcin et al., “Web scale photo hash clustering on a single machine,”

in Proceedings of the ieee conference on computer vision and pattern recognition,

2015, pp. 19–27.

[16] Y.Gong, S.Lazebnik et al., “Iterative quantization: A procrustean approach to learn-

ing binary codes for large-scale image retrieval, pattern analysis and machine intel-

ligence,” IEEE Transactions on, PP (99), vol. 1, 2012.

[17] S.Xiaobo, L.Weiwei et al., “Compressed k-means for large-scale clustering,” in Pro-

ceedings of the AAAI Conference on Artificial Intelligence, vol. 31, no. 1, 2017.

[18] Z.Zheng, L.Li et al., “Binary multi-view clustering,” IEEE transactions on pattern

analysis and machine intelligence, vol. 41, no. 7, pp. 1774–1782, 2018.

[19] Z.Zheng and L.Li, “Highly-economized multi-view binary compression for scalable

image clustering,” in Proceedings of the European conference on computer vision

(ECCV), 2018, pp. 717–732.

[20] L.Xin, L.Qiao et al., “A multi-view model for visual tracking via correlation filters,”

Knowledge-Based Systems, vol. 113, pp. 88–99, 2016.

[21] X.Chang, T.Dacheng et al., “A survey on multi-view learning,” arXiv preprint

arXiv:1304.5634, 2013.

[22] S.Shiliang, “A survey of multi-view machine learning,” Neural computing and ap-

plications, vol. 23, pp. 2031–2038, 2013.

University Kasdi Merbah Ouargla 2022/2023 page 78



Bibliography

[23] S.Angela, G.Paola et al., “Multiview learning in biomedical applications,” in Arti-

ficial Intelligence in the Age of Neural Networks and Brain Computing. Elsevier,

2019, pp. 265–280.

[24] Y.Qiyue, W.Shu et al., “Multi-view clustering via pairwise sparse subspace repre-

sentation,” Neurocomputing, vol. 156, pp. 12–21, 2015.

[25] W.Yang, Z.Wenjie et al., “Iterative views agreement: An iterative low-rank based

structured optimization method to multi-view spectral clustering,” arXiv preprint

arXiv:1608.05560, 2016.

[26] O.Mete, V.Fatos et al., “Fusion of image segmentation algorithms using consensus

clustering,” in 2013 IEEE International Conference on Image Processing. IEEE,

2013, pp. 4049–4053.

[27] A.Zeynep, T.Christian et al., “Non-negative matrix factorization in multimodal-

ity data for segmentation and label prediction,” in 16th Computer vision winter

workshop, 2011.

[28] D.Abdelaziz, F.Jean-Sebastien et al., “Multi-view object segmentation in space and

time,” in Proceedings of the IEEE International Conference on Computer Vision,

2013, pp. 2640–2647.

[29] D.Navneet and T.Bill, “Histograms of oriented gradients for human detection,” in

2005 IEEE computer society conference on computer vision and pattern recognition

(CVPR’05), vol. 1. Ieee, 2005, pp. 886–893.

[30] W.Jianxin and R.M.Jim, “Centrist: A visual descriptor for scene categorization,”

IEEE transactions on pattern analysis and machine intelligence, vol. 33, no. 8, pp.

1489–1501, 2010.

[31] Y.Hui, L.Mingjing et al., “Color texture moments for content-based image retrieval,”

in Proceedings. International Conference on Image Processing, vol. 3. IEEE, 2002,

pp. 929–932.

[32] L.G.David, “Distinctive image features from scale-invariant keypoints,” Interna-

tional journal of computer vision, vol. 60, pp. 91–110, 2004.

University Kasdi Merbah Ouargla 2022/2023 page 79



Bibliography

[33] O.Timo, P.Matti et al., “Multiresolution gray-scale and rotation invariant texture

classification with local binary patterns,” IEEE Transactions on pattern analysis

and machine intelligence, vol. 24, no. 7, pp. 971–987, 2002.

[34] K.Young-Min, A.Massih-Reza et al., “Multi-view clustering of multilingual docu-

ments,” in Proceedings of the 33rd international ACM SIGIR conference on Research

and development in information retrieval, 2010, pp. 821–822.

[35] Z.Peng, J.Yuan et al., “Multi-view matrix completion for clustering with side infor-

mation,” in Advances in Knowledge Discovery and Data Mining: 21st Pacific-Asia

Conference, PAKDD 2017, Jeju, South Korea, May 23-26, 2017, Proceedings, Part

II 21. Springer, 2017, pp. 403–415.

[36] H. Fawad, M.Muhammad et al., “Multi-view document clustering via ensemble

method,” Journal of Intelligent Information Systems, vol. 43, no. 1, pp. 81–99,

2014.

[37] B. M, N.Y.Andrew et al., “Latent dirichlet allocation,” Journal of machine Learning

research, vol. 3, no. Jan, pp. 993–1022, 2003.

[38] M.Tomas, C.Kai et al., “Efficient estimation of word representations in vector

space,” arXiv preprint arXiv:1301.3781, 2013.

[39] F.Maha, B.H.Mohamed.Aymen et al., “On the use of ensemble method for multi

view textual data,” Journal of Information and Telecommunication, vol. 4, no. 4,

pp. 461–481, 2020.

[40] P.Vinay, F.Tito et al., “Precision oncology: origins, optimism, and potential,” The

Lancet Oncology, vol. 17, no. 2, pp. e81–e86, 2016.

[41] C.J.Mitchell, G.D.Adam et al., “Identification of complex metabolic states in crit-

ically injured patients using bioinformatic cluster analysis,” Critical Care, vol. 14,

no. 1, pp. 1–11, 2010.

[42] W.Xiang, S.David et al., “Unsupervised learning of disease progression models,”

in Proceedings of the 20th ACM SIGKDD international conference on Knowledge

discovery and data mining, 2014, pp. 85–94.

University Kasdi Merbah Ouargla 2022/2023 page 80



Bibliography

[43] L.Wenyuan, L.Chun-Chi et al., “Integrative analysis of many weighted co-expression

networks using tensor computation,” PLoS computational biology, vol. 7, no. 6, p.

e1001106, 2011.

[44] S.K.Nora and P.Nico, “Integrating different data types by regularized unsupervised

multiple kernel learning with application to cancer subtype discovery,” Bioinfor-

matics, vol. 31, no. 12, pp. i268–i275, 2015.

[45] D.Daisy, L.Shuangning et al., “Cooperative learning for multiview analysis,” Pro-

ceedings of the National Academy of Sciences, vol. 119, no. 38, p. e2202113119,

2022.

[46] F.Yixiang, Z.Haijun et al., “Detecting hot topics from twitter: A multiview ap-

proach,” Journal of Information Science, vol. 40, no. 5, pp. 578–593, 2014.

[47] D.Shang, D.Xin-Yu et al., “A multi-view clustering model for event detection in

twitter,” in Computational Linguistics and Intelligent Text Processing: 18th Inter-

national Conference, CICLing 2017, Budapest, Hungary, April 17–23, 2017, Revised

Selected Papers, Part II 18. Springer, 2018, pp. 366–378.

[48] C.Chengyao, G.Dehong et al., “A constrained multi-view clustering approach to

influence role detection,” in Social Media Content Analysis: Natural Language Pro-

cessing and Beyond. World Scientific, 2018, pp. 237–252.

[49] W.Xiao, N.Chong-Wah et al., “Multimodal news story clustering with pairwise vi-

sual near-duplicate constraint,” IEEE Transactions on Multimedia, vol. 10, no. 2,

pp. 188–199, 2008.

[50] R.Bekkerman and J.Jiwoon, “Multi-modal clustering for multimedia collections,” in

2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2007,

pp. 1–8.

[51] V.Mekthanavanh, L.Tianrui et al., “Social web video clustering based on multi-

modal and clustering ensemble,” Neurocomputing, vol. 366, pp. 234–247, 2019.

[52] J.Sungkyu and M. Stephen, “Pca consistency in high dimension. low sample size

context,” Ann. Statist, 2009.

University Kasdi Merbah Ouargla 2022/2023 page 81



Bibliography

[53] X.Chang, T.Dacheng et al., “Multi-view learning with incomplete views,” IEEE

Transactions on Image Processing, vol. 24, no. 12, pp. 5812–5825, 2015.

[54] C.Ying, F.Z.Xiaoli et al., “Non-redundant multi-view clustering via orthogonal-

ization,” in Seventh IEEE international conference on data mining (ICDM 2007).

IEEE, 2007, pp. 133–142.

[55] N.Donglin, D.G.Jennifer, M. Jordan et al., “Multiple non-redundant spectral clus-

tering views,” in Proceedings of the 27th international conference on machine learn-

ing (ICML-10), 2010, pp. 831–838.

[56] C.Yale, C.Junxiang et al., “Multiple clustering views from multiple uncertain ex-

perts,” in International Conference on Machine Learning. PMLR, 2017, pp. 674–

683.

[57] K.S.Yuan, Kernel methods and machine learning. Cambridge University Press,

2014.

[58] F.P.Deena and R.Kumudha, “Major advancements in kernel function approxima-

tion,” Artificial Intelligence Review, vol. 54, pp. 843–876, 2021.

[59] G.A.Tsihrintzis, V.Maria et al., Machine Learning Paradigms: Applications of

Learning and Analytics in Intelligent Systems. Springer, 2019, vol. 1.

[60] B.Vidakovic, Engineering biostatistics: an introduction using MATLAB and Win-

BUGS. John Wiley & Sons, 2017.

[61] K.Leonard, “Clustering by means of medoids,” in Proc. Statistical Data Analysis

Based on the L1 Norm Conference, Neuchatel, 1987, 1987, pp. 405–416.

[62] B.Aruna, “K-medoids clustering using partitioning around medoids for perform-

ing face recognition,” International Journal of Soft Computing, Mathematics and

Control, vol. 3, no. 3, pp. pp. 1–12, 2014.

[63] E.Elhamifar, S.Guillermo et al., “See all by looking at a few: Sparse modeling for

finding representative objects,” in 2012 IEEE conference on computer vision and

pattern recognition. IEEE, 2012, pp. 1600–1607.

University Kasdi Merbah Ouargla 2022/2023 page 82



Bibliography

[64] B.Stephen, P.Neal et al., “Distributed optimization and statistical learning via the

alternating direction method of multipliers,” Foundations and Trends® in Machine

learning, vol. 3, no. 1, pp. 1–122, 2011.

[65] C.Dong, C.Xudong et al., “Blessing of dimensionality: High-dimensional feature and

its efficient compression for face verification,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2013, pp. 3025–3032.

[66] N.Apostol, H.Alexander et al., “Semantic concept-based query expansion and re-

ranking for multimedia retrieval,” in Proceedings of the 15th ACM international

conference on Multimedia, 2007, pp. 991–1000.

[67] L.Zhongyu, Z.Xiaofan et al., “Large-scale retrieval for medical image analytics: A

comprehensive review,” Medical image analysis, vol. 43, pp. 66–84, 2018.

[68] L.Wei, W.Jun et al., “Supervised hashing with kernels,” in 2012 IEEE conference

on computer vision and pattern recognition. IEEE, 2012, pp. 2074–2081.

[69] S.Malcolm and C.Michael, “Locality-sensitive hashing for finding nearest neighbors

[lecture notes],” IEEE Signal processing magazine, vol. 25, no. 2, pp. 128–131, 2008.

[70] Z.Han, L.Mingsheng et al., “Deep hashing network for efficient similarity retrieval,”

in Proceedings of the AAAI conference on Artificial Intelligence, vol. 30, no. 1, 2016.

[71] L.Wei, W.Jun et al., “Hashing with graphs,” ICML’11, 2011.

[72] A.Alexandr and I.Piotr, “Near-optimal hashing algorithms for approximate nearest

neighbor in high dimensions,” Communications of the ACM, vol. 51, no. 1, pp.

117–122, 2008.

[73] R.Maxim and L.Svetlana, “Locality-sensitive binary codes from shift-invariant ker-

nels,” Advances in neural information processing systems, vol. 22, 2009.

[74] T.Antonio, R.Fergus et al., “Small codes and large image databases for recognition,”

in 2008 IEEE Conference on Computer Vision and Pattern Recognition. IEEE,

2008, pp. 1–8.

[75] K.Brian and D.Trevor, “Learning to hash with binary reconstructive embeddings,”

Advances in neural information processing systems, vol. 22, 2009.

University Kasdi Merbah Ouargla 2022/2023 page 83



Bibliography

[76] X.Rongkai, P.Yan et al., “Supervised hashing for image retrieval via image repre-

sentation learning,” in Proceedings of the AAAI conference on artificial intelligence,

vol. 28, no. 1, 2014.

[77] C.Zhixiang, Y.Xin et al., “Deep hashing via discrepancy minimization,” in Proceed-

ings of the IEEE conference on computer vision and pattern recognition, 2018, pp.

6838–6847.

[78] S.Jingkuan, Y.Yang et al., “Multiple feature hashing for real-time large scale near-

duplicate video retrieval,” in Proceedings of the 19th ACM international conference

on Multimedia, 2011, pp. 423–432.

[79] L.Xianglong, H.Junfeng et al., “Multiple feature kernel hashing for large-scale visual

search,” Pattern Recognition, vol. 47, no. 2, pp. 748–757, 2014.

[80] L.Xianglong, L.Huang et al., “Multi-view complementary hash tables for nearest

neighbor search,” in Proceedings of the IEEE international conference on computer

vision, 2015, pp. 1107–1115.

[81] S.Jingkuan, Y.Yang et al., “Effective multiple feature hashing for large-scale near-

duplicate video retrieval,” IEEE Transactions on Multimedia, vol. 15, no. 8, pp.

1997–2008, 2013.

[82] S.Xiaobo, S.Fumin et al., “Multi-view latent hashing for efficient multimedia

search,” in Proceedings of the 23rd ACM international conference on Multimedia,

2015, pp. 831–834.

[83] Z.Dan, W.Fei et al., “Composite hashing with multiple information sources,” in

Proceedings of the 34th international ACM SIGIR conference on Research and de-

velopment in Information Retrieval, 2011, pp. 225–234.

[84] K.Saehoon and C.Seungjin, “Multi-view anchor graph hashing,” in 2013 IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing. IEEE, 2013,

pp. 3123–3127.

[85] Y.Yang, X.Dong et al., “Image clustering using local discriminant models and global

integration,” IEEE Transactions on Image Processing, vol. 19, no. 10, pp. 2761–

2773, 2010.

University Kasdi Merbah Ouargla 2022/2023 page 84



Bibliography

[86] K.W.Harold, “The hungarian method for the assignment problem,” Naval research

logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[87] A.Rosenberg and J.Hirschberg, “V-measure: A conditional entropy-based external

cluster evaluation measure,” in Proceedings of the 2007 joint conference on empirical

methods in natural language processing and computational natural language learning

(EMNLP-CoNLL), 2007, pp. 410–420.

[88] M.F.Aaron, G.Derek et al., “Normalized mutual information to evaluate overlapping

community finding algorithms,” arXiv preprint arXiv:1110.2515, 2011.

[89] Z.Ying and K.George, “Criterion functions for document clustering: Experiments

and analysis,” University of Minnesota, 2001.

[90] C.Guoqing, S.Shiliang et al., “A survey on multiview clustering,” IEEE transactions

on artificial intelligence, vol. 2, no. 2, pp. 146–168, 2021.

[91] N.Andrew, J.Michael et al., “On spectral clustering: Analysis and an algorithm,”

Advances in neural information processing systems, vol. 14, 2001.

[92] S.Jianbo and M.Jitendra, “Normalized cuts and image segmentation,” IEEE Trans-

actions on pattern analysis and machine intelligence, vol. 22, no. 8, pp. 888–905,

2000.

[93] W.Shiping and G.Wenzhong, “Sparse multigraph embedding for multimodal feature

representation,” IEEE Transactions on Multimedia, vol. 19, no. 7, pp. 1454–1466,

2017.

[94] G.Quanxue, W.Zhizhen et al., “Multi-view projected clustering with graph learn-

ing,” Neural Networks, vol. 126, pp. 335–346, 2020.

[95] K.Abhishek and D.Hal, “A co-training approach for multi-view spectral clustering,”

in Proceedings of the 28th international conference on machine learning (ICML-11),

2011, pp. 393–400.

[96] K.Abhishek, R.Piyush et al., “Co-regularized multi-view spectral clustering,” Ad-

vances in neural information processing systems, vol. 24, 2011.

University Kasdi Merbah Ouargla 2022/2023 page 85



Bibliography

[97] X.Tian, T.Dacheng et al., “Multiview spectral embedding,” IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 40, no. 6, pp. 1438–1446,

2010.

[98] N.Feiping, Li.Jing et al., “Self-weighted multiview clustering with multiple graphs.”

in IJCAI, 2017, pp. 2564–2570.

[99] N.Feiping, L.Jing et al., “Parameter-free auto-weighted multiple graph learning: a

framework for multiview clustering and semi-supervised classification.” in IJCAI,

2016, pp. 1881–1887.

[100] S.Shaojun, N.Feiping et al., “Auto-weighted multi-view clustering via spectral em-

bedding,” Neurocomputing, vol. 399, pp. 369–379, 2020.

[101] N.Feiping, T.Lai et al., “Multiview clustering via adaptively weighted procrustes,”

in Proceedings of the 24th ACM SIGKDD international conference on knowledge

discovery & data mining, 2018, pp. 2022–2030.

[102] W.Hao, Y.Yan et al., “Gmc: Graph-based multi-view clustering,” IEEE Transac-

tions on Knowledge and Data Engineering, vol. 32, no. 6, pp. 1116–1129, 2019.

[103] Z.Linlin, Z.Xianchao et al., “Weighted multi-view spectral clustering based on spec-

tral perturbation,” in Proceedings of the AAAI conference on artificial intelligence,

vol. 32, no. 1, 2018.

[104] H.Shudong, K.Zhao et al., “Auto-weighted multi-view clustering via kernelized

graph learning,” Pattern Recognition, vol. 88, pp. 174–184, 2019.

[105] S. Hajjar, F.Dornaika et al., “One-step multi-view spectral clustering with cluster

label correlation graph,” Information Sciences, vol. 592, pp. 97–111, 2022.

[106] V.Rene, “Subspace clustering,” IEEE Signal Processing Magazine, vol. 28, no. 2,

pp. 52–68, 2011.

[107] Z.Changqing, H.Qinghua et al., “Latent multi-view subspace clustering,” in Pro-

ceedings of the IEEE conference on computer vision and pattern recognition, 2017,

pp. 4279–4287.

University Kasdi Merbah Ouargla 2022/2023 page 86



Bibliography

[108] W.Xiaobo, G.Xiaojie et al., “Exclusivity-consistency regularized multi-view sub-

space clustering,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2017, pp. 923–931.

[109] L.Shirui, Z.Changqing et al., “Consistent and specific multi-view subspace cluster-

ing,” in Proceedings of the AAAI conference on artificial intelligence, vol. 32, no. 1,

2018.

[110] B.Maria and K.Ivica, “Multi-view low-rank sparse subspace clustering,” Pattern

Recognition, vol. 73, pp. 247–258, 2018.

[111] W.Yang, L.Xuemin, et al., “Robust subspace clustering for multi-view data by ex-

ploiting correlation consensus,” IEEE Transactions on Image Processing, vol. 24,

no. 11, pp. 3939–3949, 2015.

[112] Z.Changqing, F.Huazhu et al., “Generalized latent multi-view subspace clustering,”

IEEE transactions on pattern analysis and machine intelligence, vol. 42, no. 1, pp.

86–99, 2018.

[113] L.Shao-Yuan, J.Yuan et al., “Partial multi-view clustering,” in Proceedings of the

AAAI conference on artificial intelligence, vol. 28, no. 1, 2014.

[114] Z.Handong, L.Hongfu et al., “Incomplete multi-modal visual data grouping.” in

IJCAI, 2016, pp. 2392–2398.

[115] Y.Qiyue, W.Shu et al., “Incomplete multi-view clustering via subspace learning,”

in Proceedings of the 24th ACM International on Conference on Information and

Knowledge Management, 2015, pp. 383–392.

[116] C.Xiaochun, Z.Changqing et al., “Diversity-induced multi-view subspace cluster-

ing,” in Proceedings of the IEEE conference on computer vision and pattern recog-

nition, 2015, pp. 586–594.

[117] T.Hong, H.Chenping et al., “Multiview classification with cohesion and diversity,”

IEEE transactions on cybernetics, vol. 50, no. 5, pp. 2124–2137, 2018.

[118] G.Hongchang, N.Feiping et al., “Multi-view subspace clustering,” in Proceedings of

the IEEE international conference on computer vision, 2015, pp. 4238–4246.

University Kasdi Merbah Ouargla 2022/2023 page 87



Bibliography

[119] C.Yongyong, X.Xiaolin et al., “Adaptive transition probability matrix learning for

multiview spectral clustering,” IEEE Transactions on Neural Networks and Learn-

ing Systems, vol. 33, no. 9, pp. 4712–4726, 2021.

[120] C.Xiao, N.Feiping et al., “Multi-view k-means clustering on big data,” in Twenty-

Third International Joint conference on artificial intelligence, 2013.

[121] X.Jinglin, H.Junwei et al., “Re-weighted discriminatively embedded k-means for

multi-view clustering,” IEEE Transactions on Image Processing, vol. 26, no. 6, pp.

3016–3027, 2017.

[122] L.Hongfu and F.Yun, “Consensus guided multi-view clustering,” ACM Transactions

on Knowledge Discovery from Data (TKDD), vol. 12, no. 4, pp. 1–21, 2018.

[123] C.Deng, H.Xiaofei et al., “Non-negative matrix factorization on manifold,” in 2008

eighth IEEE international conference on data mining. IEEE, 2008, pp. 63–72.

[124] C.Deng and H.Xiaofei, “Graph regularized nonnegative matrix factorization for data

representation,” IEEE transactions on pattern analysis and machine intelligence,

vol. 33, no. 8, pp. 1548–1560, 2010.

[125] Z.Linlin, Z.Xianchao et al., “Multi-view clustering via multi-manifold regularized

non-negative matrix factorization,” Neural Networks, vol. 88, pp. 74–89, 2017.

[126] W.Hao, Y.Yan et al., “Multi-view clustering via concept factorization with local

manifold regularization,” in 2016 IEEE 16th International Conference on Data Min-

ing (ICDM). IEEE, 2016, pp. 1245–1250.

[127] P.Jiameng, Z.Qian et al., “Multiview clustering based on robust and regularized ma-

trix approximation,” in 2016 23rd International Conference on Pattern Recognition

(ICPR). IEEE, 2016, pp. 2550–2555.

[128] C.Guoqing and S.Shiliang, “Consensus and complementarity based maximum en-

tropy discrimination for multi-view classification,” Information Sciences, vol. 367,

pp. 296–310, 2016.

[129] C.Kamalika, K.M.Sham et al., “Multi-view clustering via canonical correlation anal-

ysis,” in Proceedings of the 26th annual international conference on machine learn-

ing, 2009, pp. 129–136.

University Kasdi Merbah Ouargla 2022/2023 page 88



Bibliography

[130] B. B and L.H.Christoph, “Correlational spectral clustering,” in 2008 IEEE confer-

ence on computer vision and pattern recognition. IEEE, 2008, pp. 1–8.

[131] L.Xinhai, J.Shuiwang et al., “Multiview partitioning via tensor methods,” IEEE

Transactions on Knowledge and Data Engineering, vol. 25, no. 5, pp. 1056–1069,

2012.

[132] Z.Yuanpeng, C.Fu-Lai et al., “A multiview and multiexemplar fuzzy clustering ap-

proach: theoretical analysis and experimental studies,” IEEE Transactions on Fuzzy

Systems, vol. 27, no. 8, pp. 1543–1557, 2018.

[133] L.Yingming, Y.Ming et al., “A survey of multi-view representation learning,” IEEE

transactions on knowledge and data engineering, vol. 31, no. 10, pp. 1863–1883,

2018.

[134] Z.Pengfei, H.Binyuan et al., “Multi-view deep subspace clustering networks,” arXiv

preprint arXiv:1908.01978, 2019.

[135] L.Zhaoyang, W.Qianqian et al., “Deep adversarial multi-view clustering network.”

in IJCAI, 2019, pp. 2952–2958.

[136] Z.Runwu and S.Yi-Dong, “End-to-end adversarial-attention network for multi-

modal clustering,” in Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition, 2020, pp. 14 619–14 628.

[137] S. Farial, B.Michael, et al., “Document clustering using nonnegative matrix fac-

torization,” Information Processing & Management, vol. 42, no. 2, pp. 373–386,

2006.

[138] H. Teny, H.Lely et al., “Intelligent kernel k-means for clustering gene expression,”

Procedia Computer Science, vol. 59, pp. 171–177, 2015.

[139] S.Gang, Y.Dongmei et al., “A distance-based spectral clustering approach with

applications to network community detection,” Journal of Industrial Information

Integration, vol. 6, pp. 22–32, 2017.

[140] P.Van, N.Pham et al., “Multi-view clustering and multi-view models,” in Recent

Advancements in Multi-View Data Analytics. Springer, 2022, pp. pp. 55–96.

University Kasdi Merbah Ouargla 2022/2023 page 89



Bibliography

[141] L.Yeqing, N.Feiping et al., “Large-scale multi-view spectral clustering via bipartite

graph,” in Proceedings of the AAAI conference on artificial intelligence, vol. 29,

no. 1, 2015.

[142] S. Hajjar, F. Dornaika et al., “Consensus graph and spectral representation for one-

step multi-view kernel based clustering,” Knowledge-Based Systems, vol. 241, p. pp.

108250, 2022.

[143] J.Wang, Z.Ting et al., “A survey on learning to hash,” IEEE transactions on pattern

analysis and machine intelligence, vol. 40, no. 4, pp. pp. 769–790, 2017.

[144] S.Fumin, Z.Xiang et al., “A fast optimization method for general binary code learn-

ing,” IEEE Transactions on Image Processing, vol. 25, no. 12, pp. 5610–5621, 2016.

[145] S.Weglarczyk, “Kernel density estimation and its application,” ITM Web Conf.,

vol. 23, p. pp. 00037, 2018.

[146] J.Wang, S.Kumar et al., “Semi-supervised hashing for scalable image retrieval,” in

2010 IEEE Computer Society Conference on Computer Vision and Pattern Recog-

nition, 2010, pp. 3424–3431.

[147] B.Wang, Y.Xiao et al., “Robust self-weighted multi-view projection clustering,”

2020, vol. 34, pp. pp. 6110–6117, Apr. AAAI Press.

[148] A.Laith, Z.Jinglan et al., “Review of deep learning: Concepts, cnn architectures,

challenges, applications, future directions,” Journal of big Data, vol. 8, no. 1, pp.

pp. 1–74, 2021.

[149] A.Jamil, M.Khan et al., “Efficient conversion of deep features to compact binary

codes using fourier decomposition for multimedia big data,” IEEE Transactions on

Industrial Informatics, vol. 14, no. 7, pp. pp. 3205–3215, 2018.

[150] A.Valdez, P.Megan et al., “Distributed representation of visual objects by single

neurons in the human brain,” Journal of Neuroscience, vol. 35, no. 13, pp. pp.

5180–5186, 2015.

[151] A.Jamil, M.Khan et al., “Medical image retrieval with compact binary codes gener-

ated in frequency domain using highly reactive convolutional features,” Journal of

medical systems, vol. 42, no. 2, pp. pp. 1–19, 2018.

University Kasdi Merbah Ouargla 2022/2023 page 90



Bibliography

[152] L.Fei-Fei, R.Fergus et al., “Learning generative visual models from few training

examples: An incremental bayesian approach tested on 101 object categories,” in

2004 Conference on Computer Vision and Pattern Recognition Workshop, 2004, pp.

178–178.

[153] C.Tat-Seng, T.Jinhui et al., “Nus-wide: a real-world web image database from na-

tional university of singapore,” Association for Computing Machinery, pp. 1–9, 2009.

[154] S.Lazebnik, S.Cordelia et al., “Beyond bags of features: Spatial pyramid matching

for recognizing natural scene categories,” IEEE, vol. 2, pp. 2169–2178, 2006.

[155] N.Liang, Z.Yang et al., “Multi-view clustering by non-negative matrix factorization

with co-orthogonal constraints,” Knowledge-Based Systems, vol. 194, p. pp. 105582,

2020.

[156] R.Xia, Y.Pan et al., “Robust multi-view spectral clustering via low-rank and sparse

decomposition,” AAAI, vol. 28, 2014.

[157] Z.Xiaofeng, Z.Shichao et al., “One-step multi-view spectral clustering,” IEEE Trans-

actions on Knowledge and Data Engineering, vol. 31, no. 10, pp. pp. 2022–2034,

2018.

[158] K.Zhao, Z.Wangtao et al., “Large-scale multi-view subspace clustering in linear

time,” AAAI, vol. 34, 2020.

[159] H.Zhanxuan, N.Feiping et al., “Multi-view spectral clustering via integrating non-

negative embedding and spectral embedding,” Information Fusion, vol. 55, pp. pp.

251–259, 2020.

[160] C.Peng, L.Liang et al., “Smoothed multi-view subspace clustering,” in Neural Com-

puting for Advanced Applications. Singapore: Springer Singapore, 2021, pp. 128–

140.

[161] Y.Miin-Shen and S.Kristina, “Collaborative feature-weighted multi-view fuzzy c-

means clustering,” Pattern Recognition, vol. 119, p. pp. 108064, 2021.

[162] L.Stuart, “Least squares quantization in pcm,” IEEE transactions on information

theory, vol. 28, no. 2, pp. 129–137, 1982.

University Kasdi Merbah Ouargla 2022/2023 page 91



Bibliography

[163] A.David and S.Vassilvitskii, “k-means++: The advantages of careful seeding,” Stan-

ford, Tech. Rep., 2006.

[164] A.Mihael, B.M.Markus et al., “Optics: Ordering points to identify the clustering

structure,” ACM Sigmod record, vol. 28, no. 2, pp. 49–60, 1999.

University Kasdi Merbah Ouargla 2022/2023 page 92


	Contents
	List of Figures
	List of Tables
	I  Context And Motivations
	General Introduction
	Context and Motivation
	Contributions
	Organization of the Manuscript
	Multi-view data and multi-view learning
	Introduction
	Data Integration Stages
	Multi-view application domains
	Challenges in Multi-View Analysis
	Learning in Feature Space
	Kernel Function
	Anchor selection (Sampling)
	Hashing for dimensionality reduction
	Evaluation criteria
	Conclusion
	Literature review and Related Works
	Introduction
	Taxonomy of MVC models
	Conclusion
	II Contributions
	Automatically Weighted Binary Multi-View Clustering via deep initialization (AW-BMVC)
	Introduction
	The Proposed approach
	Anchor-based representation
	Common discrete representation
	Sample-view auto-weighting
	Binary matrix factorization and overall objective function
	Optimization
	Binary clustering initialization
	Performance analysis
	Experimental setup
	Parameter sensitivity 
	Computational complexity
	Ablation study
	Clustering initialization analysis
	Convergence analysis
	Comparison with state-of-the-art multi-view methods
	Conclusion
	General conclusion and Perspectives
	General Conclusion
	Perspectives
	Appendix
	Cluster Analysis
	Centroid based clustering
	Connectivity-based clustering
	Density based clustering
	Bibliography

