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Abstract—In this paper an Extended Kalman Filter (EKF) has
been proposed for the filtering of ECG Signals. The method is
based on a nonlinear dynamic model, previously introduced for
the generation of synthetic ECG signal. The results show that the
EKF may be used as a powerful tool for ECG signal denoising;
our study was performed on artificial and real ECG signals.
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I. INTRODUCTION

An electrocardiogram describes the electrical activity in the
heart, and can be decomposed in characteristic components,
named P, Q, R, S and T waves [1]. The cardiac electrical
activity is a convenient non-invasive tool for the detection,
prediction and monitoring of rare cardiac events and related
anomalies such as arrhythmias, primary concerns in ECG
recording included distortion due to noise contamination,
artifacts, and interference from other signals. Hence extraction
of pure cardiological indices from noisy measurements has
been one of the major concerns of biomedical signal processing
and needs reliable techniques to preserve the diagnostic
information of the recorded signal.

On the other hand, in recent, years some research has been
conducted towards the generation of synthetic ECG signals.
Regarding the physiological bases of ECG signals, a true ECG
model should consider the morphology of the PQRST complex,
together with the RR-wave timing. In previous work, a
synthetic model has been proposed which has unified the
morphology and pulse timing of the ECG signal in a single
nonlinear dynamic model [2].

In this paper the EKF based on the nonlinear dynamic ECG
model has been used to extract the ECG components
contaminated with the background noise.

The paper is organized as follows. Section II provides
backgrounds on the EKF theory and summarizes the ECG
artificial model. The third section deals with the details of the
proposed method. Simulation results are provided in section
VI. Finally discussion and conclusion are provided in section
V.

II. THEORY

A. Extended Kalman Filtre Review

The EKF is a nonlinear extension of conventional Kalman
filter[3], that has been specifically developed for systems
having nonlinear dynamic model. For a discrete nonlinear
system with the state vector and observation vector ,the
dynamic model and its linear approximation near a desired
reference point may be formulated as follows:
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Here, and are the process and measurement noises,
respectively, with covariance matrices = { } and= { } . In order to implement the EKF, the time
propagation, and the measurement propagation equation are
summarized as follows:
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where = { | , , … , } is the a priori estimate of
the state vector, , at the ℎupdate,using the observations ,
to , and = { | , , … , } is the a posteriori
estimate of the state vector after adding the ℎ observations

. and are defined in the same manner to be the
estimations of the covariance matrices in the ℎ stage, before
and after using the ℎ observation, respectively.

B. ECG Dynamic Model

McSharry et al. have proposed s synthetic ECG generator,
which consists of a three dimensional state equation, which
generate a trajectory with the Cartesian coordinate( , , )[2].This model has several parameters, which makes it
adaptable to many normal and abnormal ECG signals. As it
may be seen in (4) the dynamic model consists of a three
dimensional state equation.
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Where: = 1 − + , ∆ = ( − ) (2 )= 2( , ) ( the four quadrant arctangent of  the real
parts of  the elements of and ,with − ≤ 2( , ) ≤ ,
and is the angular velocity of the trajectory as it moves
around the limit cycle. The baseline wander of the ECG signal
has been modeled with , which is coupled with the
respiratory frequency := (2 ) = 0.15 = 0.25 (5)

The values of the parameters of (4) are listed in Table I

TABLE I
PARAMETRES OF THE ECG MODEL OF (4)

Inde(i) P Q R S T
Times (Sec) -0.2 -0.05 0 0.05 0.3

(rads) -π/3 -π/12 0 π/12 π/2
1.2 -5.0 30.0 -7.5 0.75

0.25 0.1 0.1 0.1 0.4

In fact the three dimensional trajectory which is generated
from (4),consists of a circular limit cycle which  pushed up
and down when it approaches one of the P,Q,R,S or T
points. The projection of these trajectory points on the z
axis gives a synthetic ECG signal. The three dimensional
trajectory and a typical synthetic ECG generated from the
values of Table I may be seen in fig.1 and 2.

Figure 1. The synthetic ECG trajectory generated by (4).

Figure 2. A typical synthetic ECG signal generated by (4).

III. METHOD

A. Descretization of the Nonlinear Dynamic ECG Model

The nonlinear dynamic ECG model (4) is a continuous-
time model, and since the Kalman filter is a discrete algorithm,
then, a discretization of the nonlinear dynamic ECG model (4)
is necessary. Usually the discretization is done using the Euler
method[4]. Thus, the nonlinear dynamic ECG model (4) in its
discrete form is given by:

 

2

02
, , , ,

( 1) (1 ) ( ) ( )

( 1) (1 ) ( ) ( )

( 1) exp (( 1) ( ) )
2

i
i i

i P Q R S T i

x k h x k hy k

y k h y k hx k

z k a h h z k hz
b

 
 






   
   

 
        

 


Where ℎ is a sampling time.

B. Quasi real ECG Model

The nonlinear discrete ECG model (6), can be rewritten in
the following compact form:

1 ( )k kX f X  (7)

Where is the state vector given by = [ ] .
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The vectorial equation (8) represents the state equation
without noise of the discrete ECG model. To represent a more
real ECG signal, we need to introduce some random noises to
the model (7) as follows:

1 ( , )k k kX f X w  (9)

Where = [ ] is a random vector of the
additive, normal and Gaussian noise, then, (8) becomes as
follows:
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The measurement equation corresponding to the state
representation (10) can be joined to the state vector= [ ] by the following relation:
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with is the considered measure, and, is the measurement
additive, normal and Gaussian noise.

C. Linearization of the Nonlinear dynamic ECG model

In order to use an EKF it is necessary to drive a linear
approximation of (10). Therefore, the second step was to
linearize the nonlinear model using (1) and (2). According
(12), (13) and (14) represent a linearized version of (10) and
(11) with respect to the state variable x,y and z.
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D. Evaluation

For evaluating the performance of the proposed method we
have used the Signal to noise ratio (SNR),SNR improvement
(imp) and  Mean squared error (MSE) measures by the means
of the expressions:
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Where denotes the clean ECG, is the denoised signal and
represents the noisy ECG. The power of the signal is given

by ∑ / ,and the power of the noise is merely his
variance and is the number of the samples.
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IV. RESULTS

In what follows, we will test the proposed method for
filtering an electrocardiogram signals. In a first step, the signal
considered to be filtered will be the signal generated by the
quasi real ECG model (10) (Filtering of an artificial ECG),
then a real ECG signal will be filtered directly.

A. Artificial ecg signal Denoising

The considered ECG signal is generated by the model (10)
and (11). The period of this signal is 1 sec, which the
parameters are given in the TABLE.I. With random noise as
follows:

 process noise: ( ) = 10 .
 Measurement noise : ( ) = 10

The simulation results are given in fig.3, 4 and 5, where we
notice although the filtering operation has been well
established (denoised ECG follows the morphology of the
signal generated). To see the quality of filtering numerically
and evaluate the performances, the formulas (15),(16) and (17)
are used, which gives us the following results in TABLE.II.

Figure 3. A typical synthetic ECG signal generated by (4)

Figure 4. A typical synthetic ECG signal generated by (4) with White
Gaussian noise.

Figure 5. The EKF output for ( ) = 10 and ( ) = 10
TABLE II

PERFORMANCE RESULTS ( ( ) = 10 )
and ( ) = 10

Noisy ECG Denoised ECG

SNR [db] MSE MSE Imp[db] SNR[db]28.8370 1.2235 10 9.3522 10 11.1193 39.9563
The results presented in TABLE II approve that the

proposed method minimized the effect of the noises on the
generated ECG signal. The visualization of these results is
presented in the Fig.6 and 7, where we have given the curves
corresponding errors (errors before and after filtering).

Figure.6 Error before Filtering

Figure 7. Error after Filtering
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To evaluate and see the performance of the proposed
method, increasing the power of the measurement noise
as, ( ) = 10 , The results are shown in fig. 8,9 and
10 and Fig.11 and 12 and TABLE.III.

TABLE III
PERFORMANCE RESULTS ( ( ) = 10 )

and ( ) = 10
Noisy ECG Denoised ECG

SNR [db] MSE MSE Imp[db] SNR[db]9.2466 1.2848 10 3.1121 10 26.1578 35.4044

Figure 8. A typical synthetic ECG signal generated by (4)

Figure 9. A typical synthetic ECG signal generated by (4)
with White Gaussian noise.

Figure 10. The EKF output for ( ) = 10
and ( ) = 10 on a time interval of 0.25 seconds

Figure.11 Error before Filtering

Figure.12 Error after Filtering

B. Real ecg signal Denoising

The ECG consisted is a normal sinus rhythm, taken from
the PhysioNet ECG database[6], referenced by 16786.dat. The
sampling frequency of this signal is 128 Hz, The values of the
parameters of (4) for this real ECG signal are listed in Table
IV.

TABLE IV
PARAMETRES OF THE ECG MODEL (4) FOR THE REAL ECG

SIGNAL 16786.DAT .
Inde(i) P Q R S T

Times (Sec) -0.2 -0.05 0 0.05 0.3
(rads) -π/3 -π/12 0 π/12 π/2

120 -500 3000 -750 75
0.15 0.1 0.1 0.05 0.3

The simulation results are given in fig.13, 14 and 15, where
we notice although the filtering operation has been done
(denoised ECG is very smooth compared to the real noisy
ECG).

0 0.5 1 1.5 2 2.5 3
-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 0.5 1 1.5 2 2.5 3
-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 0.5 1 1.5 2 2.5 3
-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 0.5 1 1.5 2 2.5 3
-0.01

-0.005

0

0.005

0.01

0.015

0 0.5 1 1.5 2 2.5 3
-4

-3

-2

-1

0

1

2
x 10-3



Figure 13. The EKF output for ( ) = 14
on a time interval of 6seconds.

Figure 14. The EKF output for ( ) = 14
on a time interval of 2 seconds.

Figure 15. The EKF output for ( ) = 14
between time instants 4 and 4.8 seconds.

To validate the proposed method, several   ECG signal
have been chosen from the PhysioNet ECG database. The
results are presented in the fig.16. The curves suggest that the
proposed method functioned and can be applied to anyone
ECG signals.

I. CONCLUSION

In this paper an EKF was designed for the filtering of
ECG signals. The EKF’s dynamic model was based on a
three dimensional nonlinear dynamic model previously
introduced for the generation of synthetic ECG signals. This
nonlinear model was descretized and linearized in order to
be used in an EKF, The designed filter was later applied to
artificial and real ECG signals.

The results of this paper approve the applicability of the
Extended Kalman Filter (EKF),for  the filtering of noisy
ECG signals.

Figure 16. The EKF output for several real ECG signals.
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