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Abbreviations and Notations

The various abbreviations and notations used throughout this memo are explained below

Q : The possible result set.
Tribe on (2.
P : Probability.
R4 . Enclidian real space of dimension d.
B(R?) : The Borilian tribe on R
(Q, F,P) : Probability space.

(Q, F,{Fi}+>0,P) : Filtered probability space.

E[X] :  Mathematical expectation or mean of random variable X.
Var[X] : Variance of random variable X.

Cov :  Covariance function.

SNt : min(s, ).

p.s : Almost surely.

P—p.s : Almost surely for the probability measure P.

W (t) : Brownian motion.

M(RI*™) . Is a space of matrices of dimension d x n.

EDS : . Stochastic differential equation.

J() : The cost function.

u . Optimal control.
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uc(t)
H(t,z, 1, p,q)

()

Perturbed control.
Hamiltonian

The scalar product in R¢.
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General introduction

Stochastic differential equations are equations that relate functions and their derivatives
in the course of random action. The history of this type of differential equations dates back to
ancient times, where they were used to solve several problems, the scientist Joseph Lobatal
presented a pioneering report on what is known as the random walk in 1827, and Albert
Einstein developed the theory of Brownian motion in 1905, and Norbert Wiener presented
the theory of thermal vibrations that represent stochastic differential equations in 1944. this
mode of equation are an important field in applied mathematics, optimal control, partial
differetial equation, engineering, economics, and many other fields. There are several types
of stochastic differential equations.

In this work, we are interested in a stochastic optimal control problem which consists

in minimizing a given cost function as follows

where X(+) is a solution of the stochastic differential equation of the following form :

dX; = b(t,x(t), u(t))dt + o (t, z(t))dW(t),
X(0) =,

where b is called the drift and o is called the diffusion coefficient and W (¢) a Brownian motion.
Within the framework of stochastic optimal control theory, our objective is to obtain the
necessary conditions of optimality, these conditions are known as the stochastic maximum

principle for a stochastic differential system with the drifte b controlled and the diffusion



General introduction

coefficient o does not contain the control variable. The proof of this result is based on the
strong perturbation and It6’s formula. This work is organized as follows :

The first chapter is consacred to introduces the concepts and results of stochastic analysis
and essential mathematical tools for stochatic calcul. In the second chapter, we are interested
for the weak and strong solution fo stochastic differetial equation and the existence and uni-
queness of solution under Lipschitz condition, also we study the linear stochastic differential
equation. Finaly, in the third chapter, we begin by presenting the main results of stochastic
controls in general ways. This chapter is devoted to the study of the problem of principle
of the stochastic maximum where the differential system is governed by SDEs. For this, we
assume that the optimal control exists and that the cost function J(u(-)), is differentiable
and accepts a minimum in «*(-) which we will call optimal control. The interest of the per-
turbation of the optimal control u*(-) is to introduce a perturbed control u¢(-) on which we
can derive the cost function J(u(+)). The control domain is not assumed to be convex. The

necessary conditions verified by the control u*(-) will call Principle of the maximum.



Chapitre 1

Stochastic analysis

In this chapter we introduce some definitions and basic notions of stochastic calcul,
we start by defining a conditional expectation, stopping times, stochastic process, Brownian

motions, martingales, then we recall stochastic integral (It6 integral, It6 Process, [t formula).

1.1 Conditional expectation

Let X € LE(;R™) and let G be a sub-o-field of F. Define a function p : G — R™ as
follows :

w(A) £ E(X14) —/ X(w)dP(w), VA e g. (1.1)
A
Then p is a vector-valued measure on G with a bounded total variation

lull 2 / X (w)] dP(w) = B|X]|.

Moreover, u is absolutely continuous with respect to Pg, the restriction of P on G. Thus, by
the Radon-Nikodym theorem, there exists a unique f € L;(Q;R™) = LY(Q, G P, R™) (called

the Radon-Nikodim derivative of p with respect to ]P’g) such that

M(A):Af(w)dPg(w)E/Af(w)dIP’(w), VAeg. (1.2)
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Here, note that P is an extension of ]f"g. The function f is called the conditional expectation

of X given G, denoted by E( X|G). Using this notation, we may rewrite (|1.2)) as follows :

/X(w)dIP’(w) :/E(X|g)(w)dIP(w), VA€ g, (1.3)
A A

or

E( X14]G) =E(E( X|G)|14), VAed. (1.4)

Indeed, we can alternatively define E( X|G) to be the unique G-random variable satisfying

(i)

Let us collect some basic properties of the conditional expectation.
Proposition 1.1 Let G be a sub-o-field of F. Then

1.Map E(-|G) : LE(R™) — L§(Q;R™) is linear and bounded.
2.E( a|G) =a, P —a.s, Va € R.
3.If X,V € LL(;R™) with X >V , then

E( X|G) > E(Y|G) P—a.s. (1.5)
In particular,
X >0, P —as. = E(X[G)>0 P —a.s. (1.6)

4.Let X € LL(Q;R™),Y € LL(Q;R™) and Z € LE(Q;R™) with XZ7,Y ZT € LL(Q; R™*5).
Then
E(YZ"|G) =YE(Z|G)". P-as. (1.7)

In particular

B(B(X|9)2"/9) = B(X|9B(2"|9) (L8)
E(Y|G) =Y |

5. A random variable X is independent of G if and only if for any Borel measurable function

4
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f such that E (f(X)) exists, it holds

E( f(X)|G) =E(f(X)), P —a.s. (1.9)

In particular, if X is independent of G, then E( X |G) =E(X), P—a.s.
6.Let G; C Gy C F. Then

E(E( X|G)[G:) = B(B( X|G1)|G2) =E( X|G1),  P—as. (1.10)

7.(Jensen’s inequality) Let X € LL(;R™) and ¢ : R™ — R be a convex function such
that p(X) € LL(Q;R™). Then

e (B(X|G) <B(p(X)|G), P-as. (1.11)

In particular, for any p > 1, provided that E|X|” exists, we have

B(X|G)P <E(|X||G), P-as (1.12)

Proof. Proofs of the above results are straightforward by the definitions. m

Proposition 1.2 Let (2, F,P) be a standard probability space and G be a sub-o-field of F.
Then the following hold.

1. There exists a map P : Q x F —1[0,1], called conditional probability given G, such that
P(w,-) is a probability measure on (2, F) for any w € Q, P(-, A) is G-measurable for any
AeF, and

z

E(14]G)(w) = P(A|G)(w) = P(w, A),  Pg—a.swe QVAE F. (1.13)

Moreover, the above P is unique in the following sense : If P is another conditional probability
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given G, then there exists a P-null set N € G such that for any w ¢ N,
P(w,A) =P(w,A), VAeF. (1.14)

2. Let H C G be a countably determined sub-o-field and let P(-, ) be the conditional probability

given G. Then there ezists a P-null set N € G such that for any w ¢ N,

P(w, A) = 14(w), VA€e™M. (1.15)

1.2 Stopping times

In this section we discuss a special class of random variables, which plays an interesting

role in stochastic analysis.

Definition 1.1 (Filtration) Let (2, F) a measurable space. A expanding family (F;)icr, of
sub-o-fields of F. is a filtration on (2, F).ie : for each s,t € Ry such that s < t we have :
Fs C Fy.

It is said that an {Fi}i > o filtration is continuous to the right if Fy = Fi+ = Ngsy for all

t>0.
Remark 1.1 The filtration (Fi+) is always right continuous.
Notation 1 (Q,,F = (Fi)i>0, P) is called filtered probability space.
Let (2, ,F = (Fi)i>0, P) be a filtered probability space satisfying the usual condition.

Definition 1.2 A mapping 7 : Q — [0,00] is called an {F;} -, —stopping time if
(r1<t)2{weQr(w) <t} e F, vt > 0. (1.16)
For any stopping time 7, define

F.2{AcFIAN(r<t)eF,  Vt>0}. (1.17)

6
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It is clear that F, is a sub-o-field of F.

Proposition 1.3 Stopping times have the following properties :

(1) A map 7 : Q — [0,00] is a Stopping times if and only if
(1 <t)eF, vt > 0. (1.18)
(i1) If T is a stopping time, then A € F; if and only if
AN(r <t)eF, vt > 0. (1.19)

Now we give an example

Exemple 1.1 Let X(t) be {F;},5¢-adapted and continuous. Let E C R™. be an open set.

Then the first hitting time of the process X (t) to E,

op =inf {t > 0|X(t,w) € E}, (1.20)
and the first exit time of the process X (t) from E,

e = inf {t > 0|X(t,w) ¢ E}, (1.21)

are both {Fi},~, -stopping times. (Here, inf {¢} £ t+00.) Let us prove these two facts. First

of all, for any s > 0, we claim that

(0 < 8) =Ureqr<s(X(r) € E) € Fs.

1.3 Stochastic process
In this section we recall some results on stochastic processes.

Definition 1.3 Assume that (Q, F,P) is a probability space and that I is nonempty index

7



Chapter 1. Stochastic analysis

set. A stochastic process is a family of random variables {X (t),t € I}, from (2, F, P) to R™.

The map t — X (t,w) is referred to as a sample path for any w € Q.

Definition 1.4 The process X (t) is said to be measurable if the map (t,w) — X(t,w) is
(B[0,T] x F)/B(U)-measurable.

Definition 1.5 If X = (X;)icr and Y = (Y;)ier tow processes defined on a space (2, F,P).

1. X and Y are indistinguishable if : P(X; = Y,,Vt € [) = 1.

2. Y is a modification of X if : V¢ > 0, the variables X; and Y; are equal P — p.s.that is
tosay : V; > 0, P(X; =Y;) = 1.
3. X and Y are equivalent if they have even the same law write : X =Y.
— If X and Y are indistingushable then they are modification, the reciprocal is false.

— indistingushable = modification = equivalent.

Definition 1.6 Natural filtration of X, process is given by FF = 0(Xs,0 < s <t),t €T,

this is the smallest o—field compared to which X, is measurable for all 0 < s < t,

1. If the map w —— X;(t,w) is valid for every ¢ € [0,7] then the process X (¢) is said to
be {F;}-adapted F;/B(U)-measurable.

2. If the map (s,w) — X(s,w) is B[0,t] x F,/B(U) measurable for any ¢ € [0,7] the

process X; is J; progressively measurable.

1.4 Brownian motions

We can now define the most important process in stochastic calculus, namely the Brow-
nian motion is the most popular process and is of very deep interest in many branches of

mathematics.

Definition 1.7 Be a filtered probability space (2, F,{Fi}t > 0,P) .An {Fi}+ > o-adapted R -

valued process X (.) is called an m-dimensional {F;}+ > o-Brownian motion over [0, 00).
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— For all t > 0, X, is F;- measurable.
— Independent of increments : if s < t, X; — X independent of F; = o(X,,u < s).
For any 0 < s <t
E(X(t) — X(s)| Fs) =0 P—a.s, (1.22)
E(X(t) — X(s))(X(¢) —X(s))T‘FS) =(t—s)l, P —a.s.
Additionally, then X(.) is called an m—dimensional standard {F;}; > o -Brownian motion
over [0,00) if P(X(0) =0) =1
Remember that a Brownian motion W (.) can be defined naturally across any time range
[a,b] or [a,b) for any 0 < a < b < +oo. W(.) is said to be standard over [a, b] in particular
if W(a) = 0, that if W(t),t > 0, and W(t + a) — W(a) (a > 0), and A"'W (N\*)(\ # 0), are
both standard {F;}; > (Brownian motion.
Next, we creat a Brownian motion.
If X(.) is a Brownian motion defined on a filtered probability space (2, F,{F:}: >0, P) we
may define

FX=0{X(s),0<s <t} C F. (1.23)

Generally, the filtration {F;}; > ¢ is left-continuous, but not necessarily right-continuous.
Nevertheless, the augmentation {F,}; > oof {F;}+ > o by adding all P-null sets is continuous,
and X () is still a Brownian motion on the filtered probability space(2, F,{F, }; > o, P). In
the sequel, by saying that F is the natural filtration generated by X, we mean that F is

generated as in (|1.23)), and hence in this case F is continuous.

1.5 Martingales

In this section we will briefly recall some results on martingales, which form a special

class of stochastic processes.

Let (2, F,{F:}+ > 0, P) be a filtered probability space.

Definition 1.8 If a real-valued process X = {X(t)}er is {Fi}t > 0 adapted, then it is a

9
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(continuous) {Fi}+ > o-martingal (resp submartingale, supermartingale).

For allt,s € I with s <t, and B(X(t)| Fs) = X(s), (resp. >, <), P—a.s.
Remark 1.2 Any martingale must obviously be both a sub- and a supermartingale.

Proposition 1.4 The first relation in says that any Brownian motion X (t) is a martingale

2.

1.6 Stochastic integral (Itd’s integral)

In this section we are going to define the integral of type

/0 " A, (1.24)

where f is some stochastic process and W(t) is a Brownian motion. Such an integral will
play an essential role in the rest of this book. Note that if for w € €2, the map t — W (t,w)
was of bounded variation, then a natural definition of would be a Lebesgue-Sticltjes-
type integral, regarding w as a parameter. Unfortunately, we will see below that the map
t — W(t,w) is not of bounded variation for almost all w € €2. Thus one needs to define (|1.24])

in a different way. A proper definition for such an integral is due to Kiyoshi Ito.

1.6.1 Definition of Itd’s integral and basic properties

In this subsection we give the definition of the It6 integral as well as some basic properties
of such an integral. We shall describe the basic idea of defining the It6 integral.

We first introduce the function space consisting of all possible integrands. Let (2, F, {F:}+ > 0, P)
be a fixed filtered probability space satisfying the usual condition. Let T" > 0 and recall that

L2.(0,T;R) is the set of all measurable processes f(t,w) adapted to {F;}; > ¢ such that,

i1 5] [ i < oo (1.25)

It is seen that L% (0, T;R) is a Hilbert space.

10
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Next, we introduce the following sets, which are related to the integrals, we are going to

define :
)
2 . . . . .
M2 [0.7] = X € L%(0,T;R)| X is a right-continuous {F;}: > ¢ martingale |
with X(0) =0,  P—as.
’
2 _ : . .
MZ[0,T] = X € L%(0,T;R)| X is a continuous {F;}; > o martingale
with X(0) =0, P —a.s.
\

We identify X, Y € M?[0,T] if there exists a set N € F with P(N) = 0 such that
X(t,w) =Y (t,w), for all t > 0 and w ¢ N. Define

1X|, = (B (X*(T))Y%, VX e M?2[0,T]. (1.26)

We can show by the martingale property that is a norm under which M? [0, T is
a Hilbert space. Moreover, M2 [0, T is a closed subspace of M? [0, T]. We should distinguish
the norms ||| and ||, It is important to note that any Brownian motion W (-) is in M2 [0, T
with [W|2 = T.
Now we are ready to itemize the steps in defining the It6 integral for a given one-dimensional
Brownian motion W (t) defined on the filtered probability space (Q2, F, {F:}+ > 0, P).
Step 1 : Consider a subset Lo [0,7] C L%(0,T;R) consisting of all real processes f(t,w) of

the following form (called simple processes) :

f(t,w) = folw)li=oy(t) + Zfz W) gt 1013 (t), te 0,7, (1.27)

>0

where 0 =ty < t; < -+ <t; <T and f;(w) is F;,-measurable with sup, sup,, |f;(w)| < occ.
One can show that the set £ [0, 7] is dense in L%(0, T; R).
Step 2 : Define an integral for any simple process f € L [0, T| of the form ((1.27) : For

11
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any te [tj;thrl] (] 2 O>7
I(f) 2 filw) W (tiga,w) = W(ts, w)] + fi(w) W (tip1,w) = Wt w)]. (1.28)

=0

Equivalently, we have the following :

I(F)(tw) =D filw) [W(E A, w) = W(EAt,w)],  te[0,T]. (1.29)

1>0

It is seen that I is a linear operator from Lo [0,T] to M2 [0, T]. Moreover, I has the property

that

([ =712, vr e Lolo. ). (1:30)

Step 3 : For any f € L%(0,7;R), by Step 1 there are f € Ly[0,7] such that
\f = fill; — 0 as j — oo. From , {I(f)} is Cauchy in M?2[0,T]. Thus, it has a
unique limit in M2 [0, 7], denoted by I(f). It is seen from that this limit depends
only on f and is independent of the choice of the sequence f;. Hence I (f) is well-defined on

L%(0,T;R) and is called the Ito integral, denoted by

/ " F(s)AW (s) £ 1)), (1.31)

Further, for any f € L%(0,T;R) and any two stopping times o and 7 with 0 < o <7 < T,

P —a.s. , we define

/ " H(8)dW(s) 2 1)) — 1(f)(0). (1.32)

Now let us collect some fundamental properties of the It integral.
Proposition 1.5 The It6 integral has the following properties :

1.For any f,g € L%(0,T;R) and stopping times ¢ and 7 with o < 7 (P — a.s),
tAT
E (/ f(r)dW(r)|fo) —0, P-as (1.33)
tAo

12
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and

([ o] [ s -5([ somom). -

In particular, for 0 < s <t < T,

E </t f(r)dW(r)|fS) ~0, P-as

and

E(U:f(r)dvv(r)] U g(r)d (r } ) (/f dr|]—"> P—as.

2.For any stopping time o and f € L%(0,T;R) let f(t,w) = f(t,w)I(s(w>t). Then

(/ f(s)dW (s |}"> /f )dW (s (1.34)

See[[11]] for a proof.

Properties of the Stochastic integral

The most imprtant properties on the integral Stochastic :
a-Linearity :

t t t
[ (aot vy, = [ staw,+b [ gzaw,
0 0 0

b-Additivity : for 0 < s <u <t <T

t u t
/ ¢vde :/ ¢vdWs +/ gbvdW’w

c-Martingale properties : we have

/ PsdWs = ZQSJ ]+1 (tj))'

13
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for any process ¢ the processes :

Fo MU(0) et t— My()? — /0 ' s

are (F}V)—martingales continue.

d- If (X;)o < s <+ is a process F;— adapted and E <fOT ]Xs|2ds> < oo we have inégalité :

T
T 2
E [ SUDse(0.7] |f0 | X [2dW, |2 ] < 4E (/0 | X ds) )

()] 5[ 2]

e- Isométrie :

1.6.2 1Ito6’s process

Definition 1.9 ( It6 Process) Let (2, F,{Fi}t>0,P) a probability space equipped with a
filtration and (W) > o a Fi-(M.B).we call Ité6 Process, a Process (Xi)o <+ < 7 with values in
R such that
T T
P —p.s, Vth:Xt:x—i—/ <p3d5+/ 0,dW,.
0 0

where o is a Process F}V -adapted such that fOT psds < 00 p.s.

It can be written in the following form :

dX (1) = p(t)dt + 0(t)dW (1),
X() =,

where the coffcient ¢ is the derivative of the Process, 0 s its diffusion coeffcient.

1.6.3 It6 formula

Ito’s first formula

Theorem 1.1 Let f be a function from R into R, of class C? has derived bounded and (X;);

14
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a martingale continues, then :

f(Xe) = f (Xo) /f

where, by definition

dX+/f" X)s,

d (X, X), = dX,dX,; = o}dt,

with the multiplication table :

X dt dBt
dt | 0 0
dB, | 0 | dt

Then the formula can be written in differential form :

df (Xy) = f(Xp)d X, +

1
§f ”(Xt)O'tht,

= (f"(X)be + %f "(Xy)od)dt + f (X))o dW,.

It6’s second formula

(1.35)

Theorem 1.2 Let f be a function of Rx R, of class C with respect to t, of class C* relative

to x of bounded derivatives we have :

F(t, X,) = £(0, Xo) /ftster/stdXvL/

We can write this formula in differential form

(1, X0) = (/(,50) + S LA Xod)de + (6 X)X,

= f,/(t, Xy)dt + f,/(t, X¢)d X, + fx;fn(t Xp)d(X),,

!/ ! 1 " /
= (ft (t, Xt) + fx (t, Xt)bt + §f1‘a)(t7 Xt)o-t )dt + fx (t, Xt)o'tdBt.

15
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Ito’s third formula

Theorem 1.3 Let X and Y be two Ité processes,and f a function of R? in R class C? with

bounded derivatives we have :

; t t 1 t
£V = F )+ [ 06+ [ g5 [ R,
0
/ (X, Ye)d / W (X, Y)d (XY, .
Integration by parts formula

Proposition 1.6 Let X; and Y; be two Ito processes :

t t t t
X, =X+ / byds +/ osdB; and Y, =Y, + / b.ds +/ olds.
0 0 0 0

So :
T T
XY= XoYo+ [ X.dv, +/ Y,dX, + (X,Y),,
0 0

with

T
(X,Y>t—/ os0.ds.
0

We can written :

d(X V), = X;dY, + YidX, + d (X,Y),.

Exemple 1.2 Calculet X,Y;. For the Itdé’s first formula, we have

F(X) = f(Xo) + /f $)dX, + = /f” )oldt.

And if we put :
f(Xy) = XP = f(Xy) =2X, = /(X)) = 2.

So :
t t
(X, +Y)? = (Xo+Y0)* + 2/ (X, +Y)d( X, +Ys) + / (00%)%ds.
0 0

16
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t t
X} =X+ / X dX, + / os2ds.
0 0
t t
YE_YOM/ YSdXSJr/ ol2ds.
0 0

Hence :

1
XY= (X +¥)? = X7 =V,

1 t t
=§{<Xo+%>2—X§—Y5+2/(X8+Y5)d<XS+YS)—2/ X,dX,
0 0

t t t t
- 2/ Y,dY; + / (o5 + 0l)?ds — / olds — / ol2ds},
0 0 0 0

1 t t t
=3 (QXOYO + 2/ X,dY, + 2/ Y,dX, + 2/ asa;%zs) ,
0 0 0

t t t
= XoYp + / X, dY, + / Y. dX, + / Jsogzds.
0 0 0
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Chapitre 2

Stochastic Differential Equations

2.1 The construction of SDEs

In this section we are going to study stochastic differential equations (SDEs, for short),
which can be regarded as a generalization of ordinary differential equations (ODEs, for short).
Since the It6 integral will be involved, the situation is much more complicated than that of
ODEs, and the corresponding theory is very rich.

Let us first recall the space W™ = ([0, occ]; R™) and its metricp. Let U be a Polish
space and A™(U) the set of all progressively measurable processes 1.

Next, let b € A"(R") and o € A"(R"*™). Consider the following equation :

dX(t) = b(t, X)dt + o(t, X)dW (), (2.1)

X(0) =¢.
In the above equation, X is the unknown. Such an equation is called a stochastic diffe-
rential equation. There are different notions of solutions to ([2.1)) depending on different roles
that the underlying filtered probability space (2, F,{F:}: > 0, P) and the Brownian motion

W(-) are playing. Let us introduce them in the following subsections.
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2.2 Strong and weak solutions of non linear SDEs

2.2.1 Strong solutions

Definition 2.1 Let (Q,F,{F:}i >0, P) be given, W (t) be a given mdimensional standard
{Fi}+ > o-Brownian motion, and § Fo-measurable. {Fi}+ > o-adapted continuous process X (t),t >

0, is called a strong solution of if

X(0) =¢, P — a.s, (2.2)
/t{|b(s,X)]—|—‘J(S,X)Z‘}ds<oo, vt > 0, P — a.s, (2.3)
X(t) = X(0)+ /t b(s, X) + o(s, X)dW (s), t>0, P—a.s. (2.4)

If for any two strong solutions X and Y of defined on any given (Q, F,{Fi}+> 0, P)

along with any given standard {F;}+ > o-Brownian motion, we have
P(X(t) =Y(t), 0<t<oo)=1, (2.5)

then we say that the strong solution is unique or that strong uniqueness holds.

In the above , the first integral on the right is a usual Lebesgue integral (regarding
w € ) as a parameter), and the second is the It6 integral defined in the previous section.
If 1) holds, then these two integrals are well-defined. We refer to fot b(s, X)ds as the drift
term and fot o(s, X)dW (s) as the diffusion term.

One should pay particular attention to the notion of strong uniqueness. It requires
to hold for any two solutions X,Y associated with every given filtered probability space
(Q, F,{Fi}+ > 0, P) and m-dimensional standard {F;}; > o-Brownian motion, rather than par-
ticular ones. So it may be more appropriate to talk about strong uniqueness for the pair
(b, o), which are the coefficients of(2.1]). See [[L1]] for a discussion on this point.

Next we give conditions that ensure the existence and uniqueness of strong solutions.

Let (Q,F,{Fi}t+>0,P) be a filtered probability space satisfying the usual condition,
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W (t) an m-dimensional standard {F;}; > o-Brownian motion, and £ an Fy-measurable random
variable.

Next, we introduce a special case of SDEs. Let b : [0, 00) xR™ — R™ and o : [0, 00) xR" —
R™™ Then the maps (t,w) — b(t,w(t)) and (t,w) — o(t,w(t)) are progressively measurable
when regarded as maps from [0, 00) x W™ to R™and R™ ™ respectively. In this case,

becomes
dX(t) =b(t, X (t))dt + o(t, X (t))dW (t),

X(0) = €.

(2.6)

Such an SDE is said to be of Markovian type. If in addition, b and ¢ are time-invariant, then
(2.6) is said to be of time homogeneous Markovian type. Note that in the case 0 = 0, is
reduced to a functional differential equation and is reduced to an ordinary differential
equation.

Now let us present an existence and uniqueness result for . First we introduce the
following assumption :
(H) The maps b : [0,00) xR" — R™ and 0 : [0,00) Xx R" — R™ " are measurable in ¢ € [0, c0)
and there exists a constant
L > 0, such that

|b(t,x) = b(t, z)| + |o(t,z) —o(t,2)| < Lz — 2|, Vt € [0,00), 2,2 € R",

(2.7)
Ib(-,0) + o(-,0)| € L2(0,T,R), VT > 0.

Theorem 2.1 Let assumptions (H) hold. Then (2.6) admits a unique strong solution.

2.2.2 Weak solutions

Definition 2.2 A 6-tuple (Q, F,{Fi}+ > 0, P, W, X) is called a weak solution of if

(1) (0 F,{Fi}+ > 0,P) is a filtered probability space satisfying the usual condition ;

(i1) W is an m-dimensional standard {F;}; > o -Brownian motion and X is {F;}+ > o-adapted
and continuous ;

(i1i) X (0) and & have the same distribution ;
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(w) (2.3)-(2.4) hold.

The essential difference between the strong and weak solutions is the following :
For the former, the filtered probability space (2, F, {F:}+ > 0, P) and the {F;}; > o-Brownian
motion W on it are fixed a priori, while for the latter (2, F,{F:}+ > 0,P) and W are parts of

the solution.

Definition 2.3 If for any two weak solutions (0, F,{Fi}1 > 0, P, W, X) and (0, F, {F.}s > 0, P, W, X)
of wz’th

P(X(0)eB) =P(X(0)eB),  VBe BR"), (2.8)

we have

P(X € A)=P(X € A), VBe B(W"), (2.9)

then we say that the weak solution of is unique (in the sense of probability law), or that

weak uniqueness holds.

Definition 2.4 If
P(X(t) = X(t),0<t < o00) =1, (2.10)

for any two weak solutions (Q, F,{Fi}¢ > 0,P,W,X) and (0, F,{F:}+>0, P, X, X) of
with

P(X(0) = X(0)) = 1, (2.11)
then we say that the weak solutions have pathwise uniqueness.

Note that in the definition of pathwise uniqueness, 2, 7, P, and W are the same for the

two solutions under comparison.

Remark 2.1 FEuzistence of weak solutions does not imply that of strong solutions, and weak

uniqueness does not imply pathwise uniqueness nor strong uniqueness.

Relations between the strong and weak solutions are presented in the following two theorems.
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Theorem 2.2 Let b € A*(R") and 0 € A"(R™™). Then admits a unique strong
solution if and only if for any probability measure p on (R™, B(R™)), admits a weak

solution with the initial distribution p and pathwise uniqueness holds for .

Remark 2.2 tells that strong existence and uniqueness is equivalent to weak existence

plus pathwise uniqueness.

2.3 Existence and uniqueness of a solution for non li-

near SDEs

Let (Q2, F,P) be a complete probability space, (W (t)):>o denote a Brownian motion with
value in R? and z a random variable with value in R”.
Let n and m a random variable with value in b and o two functions of R” x R, with

value in R given by :
b:R" xR, — R" et o:R" xRy — M™™,

where M"*™ denotes the set of matrices n x m

Our goal in this section is to solve the following stochastic differential equation :

dX (t) = b(t, X ())dt + o(t, X(£))dW (t), 0<t<T, (2.12)
X(0) = z.

The solution of Equation (2.12) is a F;-adapted continuous process X such than the

following two integrals :fot b(s, X (s))ds, and fot o(s, X (s))dW (s) have a meaning and equality
¢ t
X(t)==x +/ b(s, X(s))ds +/ o(s, X(s))dW(s), 0<t<T.
0 0

is satisfied Vt P.p.s.

What conditions should be applied to the drift b and the diffusiono to find a solution of
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Equation (2.12]) and moreover this solution is unique.
Now we give the theorem which allows to have existence and uniqueness from a solution

of(2.12) .

2.3.1 Theorem of existence and uniqueness

Hypothesis : We assum the following assumptions
(H;) Both functions b and o are continuous.

(Hy) There exists a strictly positive constant C' such that V¢ € [0, 7] and (z,y) € R* x R

(i) [b(t, ) = b(t,y)| +|o(t,x) —o(t,y)| < Clor —yl,
(i) |b(t,z)]? + |o(t, 2)|> < C(1 + |z|?).

(Hj3) the initial condition X (0) = x is independent of (W (t)):>o and of integrable square i.e:
E[X?(0)] < +oo.

Theorem 2.3 Under the hypothesis (Hy), (Hy) et (Hj), the equatios (2.12) has a unique
continuous trajectory solution for allt < T In addition this solution verifier B(supy<,< | X (t)]?) <
+00. Existence : To obtain the existence of solution there are two methods (Picart iteration

and fixed point theorem,)

Proof. Existence : To obtain the existence of solution there are two methods (Picart
iteration and fixed point fi theorem)

We decided to use Picard’s approximation method in the proof.

Defining the sequence (X"), ., such that X° = z and (X™*') ., is the solution of the

following system of stochastic differential equations :
t t
X" () = x + / b(s, X" (s))ds +/ (s, X" (s))dW (s). (2.13)
0 0
Checking first by recurrence on n that there exists a constant C, such that for all ¢t € [0,77] :

E X" ()] < C,.
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Suppose that E [| X" (t)|2] < C,.and we show that E| X" (¢)° < C,1.We have.

2

| X" (t)|2: x+/0 b(s,X"(s))ds—l—/o o (s, X" (s))dW(s)

By the inequality (¢ 4 b+ ¢)* < 3 (a? + b? 4 ¢2), we find the following estimate :

)

2

!X"*l(t)‘2§3<]x|2—l— /0 b(s, X" (s))ds| + /0 o (s, X" (s))dW(s)

By passing to the mathematical expectancy, we get :

([ p.x o) 43)2

B|X" (1) <3 <E|x|2 +E

(

/0 o (s, X" (s))dW(s)

)+

)]

(2.14)
By It6 isometry and hypothesis (Hy) (ii), we have :
B (/Ota(&X”( ) dW (s) ) [/ o (5, X7 () ds},
< C’E UO (1+X”())d], (2.15)
=(C? /Ot (L+E[X"(s)]]) ds.
And by the Cauchy-Schwarz, inequality, we obtain :
E (/Utb(s,X"( s) K ds) </t|b(s,X” (s))|2ds)} :
<1 [ b ],
< TC? [/0 (1+E[X"(s)]%) ds} . (2.16)

Return to equation (2.14) and substituting the two estimates ) and (2.16)) in , and
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since x is an integrable square random variable then we find the following estimate :

t t
E [|X”+1 (t)ﬂ <3 <E]a:|2+T02 V (1+E[X"(s)]) ds] +C2/ (L+E|X"(s)]) ds),
0 0
t
<3 <1[-<:;ygc|2 +C*(T + 1)/ (L+E|X"(s)]) ds) :
0
<3(Elz+C*(T+1)T(1+C,)) =Chr.
Which proves
E| X/ < oo

sup [X" (1) — X" (¢)[°

te(0,¢]

Now we will increase by recurrence the following quantity : &

Using equation ([2.13)) we obtain.

t

X" ) —X"t)= [ (b(s,X"(s))—b(s,X"""(s))) ds

S—

t

+ [ (o(s,X"(s)) =0 (s,X" " (5))) dW (s).

S—

Using Doob inegality, we get :

E {sup X (5) — X7 <s>!2] < 2E [(fg [b(s, X" () = b(s, X" (s))] dﬂ

0<s<t

+2E [f(f o |(s, X" (s)) — o (s, X" (s)) ds] :

The Cauchy-Schwartz inequality gives the following estimate :

E [sup X7+ (5) — X7 (s)|2] < 2TE [fg b (s, X" (5)) — b(s, X" (s>>|2ds}

0<s<t

1R [fg o (5, X7 (5)) — o (5, X! (s))\2d5] ,

After the hypothesis (Hs) (i), we obtain for all s € [0,¢] :

E [Sup | X" (s) — X" (s)ﬂ <2(T+1)C’E [/Ot\xn (s) — Xn! (s)!QdS].

0<s<t
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Consequently we find :

t
Esup | X" (s) — X" (s)|” §2(T+1)02/ E[sup X" (w) = X" (w)[*| ds,  (2.17)
0<s<t T’ 0 0<u<s

We reapply the same technique another time and applying Doob’s inequality, to | X" (u) — X! (u) ]2

to get :

E sup {X” (u) — X1 (u)‘2 < C’/OSE [ sup [ X" (r) — X" (7“)|2} dr. (2.18)

0<u<s 0<r<u

By substituting the estimate (2.17)) for inequality(2.18)), we find

0<s<t 0<u<s

<C /O t (c /O & Liligu | X" () — X2 (r)ﬂ dr) ds,

t s
< C’E { sup [X"7H(r) — X" (r)|2] / (/ dr) ds,
0<r<u o \Jo

02T2
< E {sup ‘X”’l (r) — X" 2 (7’)|2} ,
2 0<r<u

E | sup | X" (s) — X" (s)ﬂ < C/OtE ( sup | X" (u) — X"t (u)|2) ds,

We reapply the same technique several times, we find :

E | sup | X" (s) — X" (s)ﬂ < o sup [|X1 (s) — X° (s)ﬂ,

0<s<t n: o<s<T
nTn
< Ax ¢ .
n!
Applying the Bienaymé-Tchebychev, we have :
1 Ax € 4CT)"
P | sup ’X”“(s)—X”(s)|2> — | < - - :4A><< '> :
2 Z
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It therefore comes that :

n

S 1 — (4CT
ZIP {sup | X" (s) — X7 (s)‘2 > ﬁ] < 4AZ( i ) =4A.exp (4CT) < 0.
n=0

n
0<s<t —t

So using the Borel-Cantelli, we find the following equality :

Vn € N, P[sup ‘X”+1(s)—X"(s)|2> ! ]—0,

0<s<T 2n+1

using the equality P (A°) = 1 — P (A) we obtain the following equality :

Vn €N, P[sup | X" (s) — X" (s)] < L }:1.

0<s<T — 9n+l

Therefore,

sup | X" (s) — X" (s)| < !

S St Vn > nyg, et ng € N.
0<s<T

Noting that the sequence (X™), ., Cauchy sequence in a Banach space, so it converges in the
same Banach space, so it converges in the same Banach space. Then there exists a continuous

process (X (t))g<,<p such that :
sup | X" (t) — X" (t)| — 0, quand  n — oo.

So, P — p.s, (X™),,5, converges to continuous process X (t).
The uniqueness : Suppose that (X(t)),5, et (Y (t)),5, two solutions of equation (2.12) for

all t € 0,77 -

X(t)-Y(t) = /0 [b(s,X(s)) —b(s,Y(s))]ds +/0 [0 (s,X(s)) — o (s,Y(s))]dW(s).
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From the inequality (a + b)* < 2a2 + 2b%, we obtain the following inequality :

BIXO -V OF) <28 || [ 06 () = bls.Y () ds

2] (2.19)

Using the Cauchy-Schwarz’s inequality and the hypothesis (Hs) (i) we find the following

+ 98 /0(U(S,X(s))—U(S,Y(S))dW(s))

estimate :

2

E /O(b(s,X(s))—b(s,Y(s)))ds STE[/O |b(s7X(s))—b(s,Y(s))|2ds}, (2.20)

§T02/0 E (|X (s) — Y (s)[2) ds.

Maintaining by use the It6 isometric property and the condition (Hz) (i), we have the follo-

wing estimate :

2

E / (0(5.X (s)) — 0 (3.Y () dW(s)) SE{ / 0 (5, X (3)) — 0 (5. Y (s)) [ ds]

(2.21)

< 02/0 E[|X(s)—Y (s)|2} ds.

Return to equation (2.19)) and substituting the two estimates (2.20) and (2.21)) in (2.19)), we
find :

E[1X (t) — Y ()[4 < 2Tc2/0 E [1X (s) - Y ()] ds+202/0 E [|X (s) - ¥ ()] ds,

t
<2(TC* + C?) / E[|X (s) - ¥ ()] ds.
0
Finally, using Granwall’s lemma, we find :

B (X (1)~ Y (1)) =0.
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2.4 Linear stochastic differential equations

In this section we mention the linear SDEs ,Due to their importance in stochastic control,
we recall some of the main properties of linear SDEs.
The one domensional case

Consider the linear SDE

dX, = [A(t)X, + b(t)]dt + [C(t) X, + o (1) dW, (2.22)
X(0) ==z,

where W (.) is a one-dimensional standard Brownian motion and
1. A(.),C(.) € L*[0,T] x R™ x R™.
2. b(.),0(.) € L>[0,T] x R™.
Theorem 2.4 For any x € IL%_—O(Q;R"), equation admits a unique strong solution

X(.), which is represented by the following :

Using It6é theorem

t

X =@+ sot/o oo [b(s) + C(s)a(s)]ds + sot/O polo(s)dW,,  te[0,T],  (2.23)

where py 15 the unique solution of the following matriz-value SDFEs

A(t)pidt + C(t)d By, (2.24)
Qot(o) =1,
and p; ' = U, exists and satisfying

0,(0) = 1.
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Proof. By applying Itd’s formula to ¢(t)W¥(t) we get d[p(t)¥(t)] = 0, then @(t)¥(t) = 1.
Therefore ¢t = T,.
Reapplying It0’s formula to ¥, X () , where X (¢) is the solution of (2.22)

yields the following results :

dlp()¥(t)] = W(t)dX (1) + X()d(t) + d (¥, X),,
= W()[AW)X(E) + b(O)]dt + [C)X(E) + o(O)]dW () + X (£)T(t) — [A(t)dt + C(t)]dt
— W) O AW () — CEPT()X ()dt + o (t)C ()T ()dt,

= () (b(t) — C(t)o(t))dt + ()X (£)dW (2).

Then the explicit formula (2.23)) holds by using :¥(t) = ¢~ '(¢). =
The case of a multidimensional Brownian motion

Let X; be the solution of the linear SDE

dX, = [A()X, + b(B)|dt + 3 [CHD)X, + o7 (£)]dWT,
j=1 (2.26)

X(0) ==.

Let ¢; be the solution of the following :

dX; = A(t)pedt + > CI(t)pedWH,
=1

=

wi(0) = 1.

The inverse ¢; ' can be shown to satisfy

4X, = o7 | —A@dt + 3 Co(1)?

7j=1

dt — 3 o, 'Ci(t)%dB;
i=1
e '(0) ==

By using multidomensional It6’s formula we get
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The strong solution X of (2.26) can be represented as

t
0

X = i + g&t/o ot [b(s) — Z CI(t)a?(s)

ds + Z @t/ o tod (s)dWist € [0, T).
j=1

2.5 Some examples of SDEs

By looking at some simple examples. The It6’s formula holds the solution to a large number

of stochastic differential equations.The method is illustrated in the following examples.

Exemple 2.1 The population growth

dN
ar

where a; = r; + oWy, Wy =white noise,oc = constant.
Let’s assume that r; = r = constant. According to the Ito interpretation this equation 1is

equivalent to (here o(t, X;) = ax).

dNt = TNtdt + OZNtth, (227)
or
dN
E = rdt + ath.
Therefore
P dN,
=rt+ oW, (Wo =0). (2.28)
o Ns

Utilizing the Ito formula for the function, we can evaluate the integral on the left side. We
pose

Y; =In N; = h(t, N;), where h(t,z) =Inz, x>0,
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and obtain

dY; = dh(t, Ny)

oh oh 1 9%h 9%h 9%h
— N, + L N2 42— (t, N, N,
at(t a:)dt~|—a (t,z)dN; + at2(tx)dt +82(t z)dN; + 5100 (t, Np)dt dNy| ,
with
oh oh 1 9%h
a(tx) - 07 a_x(t7$> - E? W(tv'%‘) - 0;
9%h 1 0%h 9 9 ~12
@(f,fﬂ) = —;, m(t,Nt) = 0, dNt = d(Nt> = Nt dt.
Hence

1 1] 1
dy, = — | ——5a’N2dt
1= Nt+2[ NZ }

1 1

Nt [r Nedt + aN dW,) — 7« 2dt,
1

= (r— §a2)dt + aN;dW;,

1
th — Yb = (7’ — 50&2)(t — to) + Oé(Wt — Wo)
We take to = 0 and Yy = In Ny, we have the following equality

1
Y, —Yo=(r— §oz2)t + all,
1
Y, =Yy + (r— §a2)t+ont,
1
}/t =In N() + (T - 50&2)t + OéWt,

Ny = exp(V3).

or

1
Ny = Nyexp((r — §a2)t + aWy). (2.29)

Such processes are called geometric Brownian motions. They are important also as models
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for stochastic prices in economics.

Exemple 2.2 FElectric Charge
Consider the 2— dimensional SDE

X(t) :X(0)+/OtAX(s)ds+/0tH(s)ds+/OthB(s).

Where

=IQ

Here, a, C, L and R are positive constants and

G: [0,00) — [0,00)

t — Gt'

If we apply the 2—dimensional It formula with g(t, X1, Xo) = exp(—At)(X1, X2)" and inte-

grate by parts, we get the solution
t
X(t) = exp(At)(X(0) + exp(—At) KB(t) + / exp(—As)(H(s) + AKB(s))ds).
0

where exp(F) = > %_, %{ is the matriz exponential.

The function X; = where By = 0 solves

| |
Xt:—/ Xsds+/ dB;.
o 1+s o 1+s

The function X; = sin B; with By = a € (_7”, g) solves

Bt
1+t?

t 1 t
X; = sin(a) — / §X5ds +/ v 1 — X2dB;.
0 0

for 0 <t <inf{s >0:B, ¢ [5, 7]}
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Chapitre 3

Pontryagin’s maximum principle

In stochastic control theory, there are essentially two major methods for resolving control
issues in cases where determinist or stochastic, the principle of dynamic programming and the
Pontryagin’s maximum principle. This grand theory has many applications in management
and finance.

In this chapter, we will study a stochastic optimal control problem which consists to
minimizing a cost function J(u(.)). Our goal is to establish necessary optimality conditions
for stochastic maximum principle of Pontryagin’s, to minimize a cost function .J(u). This
principle consists to introducing the backward stochastic differential equation is called the

adjoint equation.

3.1 Formulation of problem

Let (2, F, (Fi)o<t<r, P) be a probabilistic space filtered with the filtration (F3)o<t<r
which satisfies the usual conditions and W = {W(t),0 <t < T} a Brownian motions in R?

defined on (2, F, (F)o<t<r, P).

Definition 3.1 (admissible control) An admissible control is a process (ut),c(o ) measu-

rable Fi-adapted to values in a Borelian A C R™. Denoting by U the set of all admissible
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controls
U={u:[0,T] x Q — A, such that u is measurable and F; — adapted}.

We consider the stochastic control problem in the case where the control domain is not
convex and the dynamical system is governed by an stochastic differential equation of the

following type :

dX, = b(t,X(t%u(t))dt + J(t,X(t))dW(t)? (3 1)
X(0) ==. |

with

b:[0, 7] x R" x A — R",

o :[0,T] x R* — M(R™™),

such that M(R?") is a space of matrix of dimesion d x n. In order to define our problem,
we make the following assumptions :

(A1) A being a given separable metric space

(A2) b and o are continuously differentiable in = : The derivatives of b and ¢ are bounded,
i.e : for any C' > 0 such that |v,| < C for v, = b,, b, and o,.

(A3) The coefficients b and o verify the condition of linear growth, i.e :

[b(t, z, u)| < C(1+ [a] + |u)),

b(t, )] < C(1+ |z]|).

Theorem 3.1 Under the above assumptions the SDEs admits a unique solution (X (t))cio.m

for any admissible control u(-) € U.

The objective of our work is to minimize a cost function given by :

J(u(-)) = B(y(X(T)))- (3.2)
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(A4) v is a function such that : v : R® — R™ in class C! in x and
[ < O+ ).

Remark 3.1 The functions v is called the terminal cost.

3.2 The strong perturbation of control

To obtain the stochastic maximum principle (the necessary optimalities conditions), first
we assume that the cost function J(u) is differentiable and admits a minimum denoted by

u* which satisfies :

J(u*) = inf{J(u); Yu € U}.

Now we compare the optimal control u* to other controls that are different from it except
over a fairly small interval of length e.
Let X* be the solution of the stochastic differential equation corresponding to u*(-) (i.e. X*

is an optimal trajectory), we define the following strong perturbation :

ug sit € [r, 7+ ¢,
up =
u*(t) si non,

with u € A, 7 € [0,T]; € quite small.
By deffnition the process u* is an admissible process and the two processes u¢ and u* are

equal only on the very small length interval e.
Remark 3.2 If we take € = 0 we get u(t) = u*(t).

Definition 3.2 We call the process u the perturbed control of u*.
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3.3 Estimation of solution

Lemma 3.1 Let (u(-), X(+)) be a solution of the equation then

E (Sup | X(t) — X*(t)|2> < Oé,

t<T
which implies :

E <sup | X(t) — X*(t)|2) — 0.

t<T e—0

Proof. From equation (3.1)) we find

X*(t):x—l—/o b(s,X*(s),u*(s))ds—l—/ o(s, X*(s))dW(s),

0

X€(t):x—|—/0 b(s,XE(s),US(s))deL/O o(s, X(s))dW (s).

So

t

Xe(t) — X*(t) :/ b(s,Xe(s),ue(s))ds—i-/O o(s, X(s))dW (s)

0

. { /0 b5, X (5), () + /O (s, X ()W (s)]

we add and subtract at the same time the term fot b(s, X<(s),u*(s))ds, we obtain :

X(t) — X*(t) = /Ot [b(s, X(s),u(s)) — b(s, X(s),u"(s))] ds
+/0 [b(s, X(s),u*(s)) — b(s, X*(s),u"(s))] ds
+/0 [0(s, X(s)) — o(s, X*(s))] dW (s).

Using the mathematical expectation and the inequality (a + b+ c)? < 3(a® + b* + ¢2), we get
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the following inequality :

2

E <Sup | X<(t) — X*(t)P) < 3E

t<T

/0 [b(s, X(s),u(s)) — b(s, X(s),u"(s))] ds

2

+3E/O [b(s, X(s),u*(s)) — b(s, X*(s),u"(s))] ds

)

now using the inequality of Burkhléder-Davis-Gandy, we find the following inequality :

/0 o5, X¥(5)) — (s, X*())] W (s)

t<T

+ 3E <sup

2

E (sup |X(t) — X*(t)|2> < 3E /0 [b(s, X(s),u(s)) — b(s, X(s),u"(s))] ds

t<T

+3TE/O b(s, X<(s),u*(s)) — b(s, X*(s),u*(s))|* ds
+ SC'E/O lo(s, X(s)) — o (s, X*(s))|” ds.

From the Lipschitz hypothesis for the drift b and the diffusion coefficient o, we deduce the

following inequality VC' > 0;

B (sup ()~ X (0P ) <38 ([ 06 X(6).0(6) s, X (o) 0)] ds)2

T
4 3TCE / IX<(s) — X (s)|2ds
0

T
+ SC'E/ |X<(s) — X(s)]*ds,
0
using the fact that b is bounded and Fubini’s theorem, we find

E (sup X4(1) - X*<t>|2) |

t<T
2

< (3TC+30) /0 B(1X(s) — X(5)P)ds + 3ME ( / " ds) |
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According to Gronwall’s lemma deduce the following estimate :

E (sup | X(t) — X*(t)\2) < 3Meé* x exp(3TC + 30)T = Cé.

t<T

with C'= 3M x exp(37T'C' + 3C)T, which implies that

lim E <sup | X(t) — X*(t)P) =0.

e—0 t<T

3.4 The linearization of the equation

We use the following notation in this work
0, = b$(t7X*(t>’u*(t))’ 9*(u*) = b<t7X*(t)vu*(t))7 G(ue) :b(t’X€(t)’uE(t))7
Now we introduce the following linear stochastic differential equation :

dD(t) = by(t, X* (), u* (1)) D(t)dt + o, (t, X*(£))D(£)dW (1),
®(0) = b(0, X*(0), u(t)) — b(0, X*(0), u*(¢)),

(3.3)

Remark 3.3 We can find a unique solution ® such that ® € M to the equation
We have the following estimate

Lemma 3.2 Let X* et X€ be two system solutions corresponding respectively to u* and u,

then we have the following estimate :

[ X() = X*(O)F

€

2
E <sup ) — 0, (3.4)
t<T e—0
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Proof. By definition and we add and subtract at the same time, we find :

So

%(Xs(t) — X*(t) — e®(1)),

= bt xa s+ E [ ots Xt

L s @i =+ [t xnawe)

- % /0 | €ba (s, X" (s), u"(5))®(s)ds —% Oteax(s,X*(s))CI)(s)dW(s)

e 2 b 300, s s = [, X00) 4 o), )
# 2 [ o0+ W () = L [ oo X0(5) 4 @ ),

LX)~ X (0) — (1)),
:%A%@X%Mﬂm@—%A%@X%)H@%“@WS
+% /0 ta(s,XE(s))dW(s) - % /0 to—<s,X*(s) + €®(s))dW(s)

# 2 [ 0.+ (o) ()
—éll@@xww+ww»w$w

—l—%/ota(s,X*(S) + €®(s))dW (s) — %/ﬂta(&X*(S))dW@)

2 o) o = [ el X)) (s,
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Using the Taylor’s expansion with integral remainder, we obtain :

SO0 = X7 (1) = (1),

= [l )+ 06 AR = X6) = () (s)
X (X¥(s) — X*(s) — e®(s))d\]ds

#2105, X760 4 006 A 0) — X°(5) - 0(6)
(X(5) = X*(5) — c@(s)) a5

¥z / t [ / (s, X*(5) + AB(s), u(5)) — ebx<s,X*<s>,u*<s>>]¢><s>w] ds

i1 / t { / a5, X*(5) + AB(s)) - eag,;(s,x*(s))]@(s)cu} aW (s),

by simplifying the notation, we get :

(Xa()—X*()—Eq’( ))’

Ads — P 4 4 / B.(s) () = X(1) — e®(t)

Nc\

+ O ds+/D )W (s),

or

I
a
—~
VA
~
I

/0 ba(s, X*(s) + €D(s) + AM(X(s) — X™(s) — eP(s)),u(s))dA,
Bu(s) = /0 0a(5, X*(5) + €®(s) + A(X“(s) — X*(5) — cB(s)))dA,
Ce(s) = E/o [b:(5, X*(s) + AD(s),u(s)) — eby(s — X*(s),u"(s))] — P(s)dA,

Di(s) = + /0 (0 (5, X*(5) -+ ADB(5)) — €0 (s, X*(5))] D (s)dA.

€

Using mathematical expectation and inequality (a + b+ ¢ + d)? < 4(a® + b* + ¢ + d?), the
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isometry property and the Cauchy-Schwartz inequality, we get :

‘IXE - X0

</|A |ds

e{ s
(f e )(/D avis) |

Becauce b, and o, are bounded then we have :

< (JE/Ot
+4E { (/Ot Ce(s)ds>2 + (/Ot De(s)dW(s))2} .

According to Gronwall’s lemma, we find

2 < CE { ( /0 t Cg(s)ds)2 + ( /0 t De(s)dW(s))Q} exp(Ct),

in the end the estimate ([3.4)) is easily obtained, because

B { </Ot Ce(s)ds>2 + (/Ot De(s)dW(s)>2} — 0(e).

— ()

(t) B X*(t)|2 . (I)(t)

€

0= X"WF _ g

€

+ 4E

[ X(t) — X*(1)

€

— ®(t) — ®(t)| ds

€

. ‘ X5(0) = X*(0)P

B | X0 X (1))

€

— (1)

3.5 The derivative of the cost function

We now define the following stochastic differential equation (the resolvent) :

dB(T, 1) = by (£, X*(8), u* (£) (T, £)dt + 0u(t, X*(1)B(T, )W (2)), .
ot t) = 1. ’
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The cost function J(u) given by the following form

J(u()) = B(y(X(T))). (3.6)

Lemma 3.3 The map € — J(u) is differentiable at point e = 0. Moreover, we have :

dJ(u(.))

S B, (X0(T)B(T),

e=0

and moreover this quantity is positive.

dJ(us(.))

u = lim LD g

Proof. By definition we have )
e=0 €—

J(w() = W) _ Bly(X(T))] - Bly.(X*(T))]

€ €

Since the function 7(.) is in class C, so for almost every w there exists A(w) € ]0, T[ such

that :

Y(XE(#) = v (X7 (1) = 7 (X7 () + AX(1) = X7(0)))(X5(t) = X7(1)).

So

€

E <7(XE(T)) —V(X*(T)))7

€

B (X (1) + AKE(T) — Xo(T)) S0 ),

the fact that 7, is bounded i.e : |y, < M and ME(X(T)) —e0 O(T) and X*(T) —
X*(T) e 0 in space L2(2, F, P), we obtain :

i EDOC ()] — Bl (00 (1))

=limB (MX*(T) L axe(r) — x(ry)) ) = X*(T))) |

€

= By, (X*(T))2(T)]. (3.7)
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From the relation (3.7)), we get

dJ(u(.)) )
— | = EOLX(D)e(T). (3.8)
e=0
For proof that w Y > 0; using Taylor expansion. As the map e — J(u) is differentiable
at point € = 0, we have
dJ(uc
J(u) = J(u*) + € () + o(e),
de |,
with o(e€) is a negligible function depends on e. Then
d €
T — Ity = L Lo,
de |._,

3.6 Stochastic maximum principle

Now we can announce the main result of this chapter which is the principle of the
stochastic maximum in the case where the control domain is non convex.
The adjoint equation :
Let u*(t) be optimal control and X*(¢) the corresponding optimal trajectory. We introduce

the following adjoint equation :

dp(t) = —[ba(t; X*(t), u*())p(t) + 0o (t; X7 (1)), q(£)]dt + q(£)dW (1),
p(T) = —7(X(T)).

(3.9)

we call p(t) the adjoint process.

Theorem 3.2 If conditions (A2), (A3) and (A4) hold, then the adjoint equation admits
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a unique solution p(.) € M(R).

Proof. Equation (3.9) is a backward stochastic differential equation, so the existence and
uniqueness of solution is assured by the result of Pardoux & Peng in 1990 [9]. m

Now defines the Hamiltonian function H by :

H(t; X (1), u(t), p(t), q(t)) = b(t; X (1), u(t)), p(t) + o (t, X(1))q(t).

We use the Hamiltonian H to write (3.9)) as follows :

—dpy = H,(t; X*(t),u*(t), p(t), q(t))dt, q(t)dW (),
pr = —7(X(T)).

(3.10)

Theorem 3.3 Let (X*(t),u*(t)) be an optimal solution of (3.1), p(t) the solution correspon-
ding to and under the hypotheses (A2), (A3) and (A4) , then we have the following

mequality :
H(t; X*(t),u"(t),p,q) < H(t; X*(t),u(?),p(t),q(t)), Yu€U,P —p.setdt—pp.

which implies :

H(t; X*,u*,p,q) = mig;H(t;X*,u,p, q).
Uue

Proof. We assume that the cost function J(u(.)) = E(~y(Xr)) admits an optimal value for

the control u*, we obtain

J(u() = J(u*()),

Suppose that H (t; X (t), u(t), p(t)) = b(t; X (t),u(t)), p(t). According to the inequality above,

the study of the derivation of at J(u(.)) in € = 0 is given by the ie:

dJ(u())

de = B(7,(X*(T))®(T)) > 0,

e=0
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where ®(T) = ®(T,t)®(t). Then, we deduce that

SRR B, (X))@ )bt (X (1), u(0)) — blts X (1), (1)) > 0.

we put p(t) = Bly, (X (T))®(T)/F], which is a stochastic process F;—measurable for Vt €
[0, 7).
So

E(p(t)[b(t; (X*(2),u(t)) — b(t; X™(t),w"(1))]) = 0,

so we get the following inequality
E[(p(t)b(t; (X (1), u(t))] = Bl(p()b(t; (X7 (1), u*(1))], VuelU,

hence the desired result. m
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(General conclusion

Jn this work, we have dealt with a stochastic optimal control problem for a system
governed by a stochastic differential equation (SDEs in short) in the case where the control
domain is not convex with the diffusion coefficient does not contain the variable of control.
We are using the strong perturbation method "Spike variation" to derive these conditions

optimality necessary inthe form of a Pontryagin’s maximum principle.
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Annex : Some mathematical tools

Definition 3.3 Young inequality : We say that two numbers p,q > 0, are conjugated in

the sense of Young, if :
1 1
4 s=1
p q
Young inequality says that if p and ¢ are conjugate and if a,a,b > 0,So

ab? b
ab < — + —.
p q

with equality if and only if a a? = b7.

For example ,if p = ¢ = 2 we find the inequality
2ab < a® + .

Holder inequality. Holder inequality says that if p,q > 0 ,are conjugate in the sense of

Young, then

Gronwall lemma

Lemma 3.4 Let T > 0 and ¢ positive function bounded on [0,T]; Your assumes there are

constants o > 0; 8 > 0; such that for all t € [0,T] we have

sy <a+s [ ' 5(s)ds.
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Then
¢
Vt € (0,7 o(t) < a +/ exp(3s)ds
0

Taylor development with remains integral

Definition 3.4 Let f: I — R a function of class C"*' (n € N) and a,z € I, then :

" (p (n) T
flo+a) = £@) + F@@) + L @2 4 Dy
0(|a|™) /f::rl a)"dt.

Burkholder-Davis-Gandy inequality

Theorem 3.4 Ther exists a constant C' such that, for any continuous local martingale

/Ota(s,x(s))dW(s),

null at zero, we have :

2

E | sup

0<t<T

/Oa(s,a:(s))dW(s) SC’IE}/O o (s, 2(s))|* ds.
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4 abstract N

In this work, we study a stochastic control problem optimal, for
systems governed by differential equations stochastic. Our main objective
in this work is to establish the necessary conditions of optimality in the
form of the Pontryagin’s maximum principle for SDEs systems with
uncontrolled diffusions, i.e., the coeffcient of the diffusion does not
contain the control variable, and the control domain is not convex .

Key words : Stochastic differential equations, optimal controéle,

,stochastic process, stochastic maximum principle.

J
4 Resume N

Dans ce travail, nous étudions un probléme de controle optimal

stochastique pour des systémes gouvernés par des équations
différentielles stochastiques. Notre objectif principal dans ce travail est
d’établir les conditions nécessaires d’optimalité sous la forme du
principe maximum de Pontryagin pour I'EDSs dans le cas ou le
coefficient de la diffusion ne contient pas la variable de contréle, et le
domaine de controle n’est pas convexe.

Mots clés : Equations diffrentielles stochastiques, contrble optimal,

K processus stochastique, principe du maximum stochastique. /
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