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Abbreviations and Notations

The various abbreviations and notations used throughout this memo are explained below


 : The possible result set.

F : Tribe on 
:

P : Probability.

Rd : Enclidian real space of dimension d.

B(Rd) : The Borilian tribe on Rd.

(
;F ;P) : Probability space.

(
;F ; fFtgt�0;P) : Filtered probability space.

E[X] : Mathematical expectation or mean of random variable X:

V ar[X] : Variance of random variable X:

Cov : Covariance function.

s ^ t : min(s; t):

p:s : Almost surely.

P� p:s : Almost surely for the probability measure P.

W (t) : Brownian motion.

M(Rd�n) : Is a space of matrices of dimension d� n:

EDS : : Stochastic di¤erential equation.

J(:) : The cost function.

u� : Optimal control.
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u�(t) : Perturbed control:

H(t; x;�; p; q) : Hamiltonian

h:; :i : The scalar product in Rd:
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General introduction

Stochastic di¤erential equations are equations that relate functions and their derivatives

in the course of random action. The history of this type of di¤erential equations dates back to

ancient times, where they were used to solve several problems, the scientist Joseph Lobatal

presented a pioneering report on what is known as the random walk in 1827, and Albert

Einstein developed the theory of Brownian motion in 1905, and Norbert Wiener presented

the theory of thermal vibrations that represent stochastic di¤erential equations in 1944. this

mode of equation are an important �eld in applied mathematics, optimal control, partial

di¤eretial equation, engineering, economics, and many other �elds. There are several types

of stochastic di¤erential equations.

In this work, we are interested in a stochastic optimal control problem which consists

in minimizing a given cost function as follows

J(u(�)) = E(
(X(T )));

where X(�) is a solution of the stochastic di¤erential equation of the following form :

8><>: dXt = b(t; x(t); u(t))dt+ �(t; x(t))dW (t);

X(0) = x;

where b is called the drift and � is called the di¤usion coe¢ cient andW (t) a Brownian motion.

Within the framework of stochastic optimal control theory, our objective is to obtain the

necessary conditions of optimality, these conditions are known as the stochastic maximum

principle for a stochastic di¤erential system with the drifte b controlled and the di¤usion
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General introduction

coe¢ cient � does not contain the control variable. The proof of this result is based on the

strong perturbation and Itô�s formula. This work is organized as follows :

The �rst chapter is consacred to introduces the concepts and results of stochastic analysis

and essential mathematical tools for stochatic calcul. In the second chapter, we are interested

for the weak and strong solution fo stochastic di¤eretial equation and the existence and uni-

queness of solution under Lipschitz condition, also we study the linear stochastic di¤erential

equation. Finaly, in the third chapter, we begin by presenting the main results of stochastic

controls in general ways. This chapter is devoted to the study of the problem of principle

of the stochastic maximum where the di¤erential system is governed by SDEs. For this, we

assume that the optimal control exists and that the cost function J(u(�)), is di¤erentiable

and accepts a minimum in u�(�) which we will call optimal control. The interest of the per-

turbation of the optimal control u�(�) is to introduce a perturbed control u�(�) on which we

can derive the cost function J(u�(�)). The control domain is not assumed to be convex. The

necessary conditions veri�ed by the control u�(�) will call Principle of the maximum.

2



Chapitre 1

Stochastic analysis

In this chapter we introduce some de�nitions and basic notions of stochastic calcul,

we start by de�ning a conditional expectation, stopping times, stochastic process, Brownian

motions, martingales, then we recall stochastic integral (Itô integral, Itô Process, Itô formula).

1.1 Conditional expectation

Let X 2 L1F(
;Rm) and let G be a sub-�-�eld of F . De�ne a function � : G ! Rm as

follows :

�(A) , E(X1A) =
Z
A

X(!)dP(!); 8A 2 G: (1.1)

Then � is a vector-valued measure on G with a bounded total variation

k�k ,
Z



jX(!)j dP(!) � E jXj :

Moreover, � is absolutely continuous with respect to �PG, the restriction of P on G. Thus, by

the Radon-Nikodým theorem, there exists a unique f 2 L1G(
;Rm) � L1(
;G;�P;Rm) (called

the Radon-Nikodým derivative of � with respect to �PG) such that

�(A) =

Z
A

f(!)d�PG(!) �
Z
A

f(!)dP(!); 8A 2 G: (1.2)

3



Chapter 1. Stochastic analysis

Here, note that P is an extension of �PG. The function f is called the conditional expectation

of X given G, denoted by E( Xj G). Using this notation, we may rewrite (1.2) as follows :

Z
A

X(!)dP(!) =
Z
A

E( Xj G)(!)dP(!); 8A 2 G; (1.3)

or

E( X1Aj G) = E( E( Xj G)j 1A); 8A 2 G: (1.4)

Indeed, we can alternatively de�ne E( Xj G) to be the unique G-random variable satisfying

(1.4).

Let us collect some basic properties of the conditional expectation.

Proposition 1.1 Let G be a sub-�-�eld of F . Then

1.Map E( �j G) : L1F(
;Rm)! L1G(
;Rm) is linear and bounded.

2.E( aj G) =a; P� a:s; 8a 2 R:

3.If X; Y 2 L1F(
;Rm) with X � Y , then

E( Xj G) � E( Y jG) P� a:s: (1.5)

In particular,

X � 0; P � a:s:) E( Xj G)�0 P� a:s: (1.6)

4.Let X 2 L1F(
;Rm); Y 2 L1G(
;Rm) and Z 2 L1F(
;Rm) with XZT ; Y ZT 2 L1F(
;Rm�k):

Then

E( Y ZT
��G) =Y E( Zj G)>; P� a:s: (1.7)

In particular

8><>: E(E( Xj G)ZT=G) = E( Xj G)E( ZT
��G)

E( Y j G) =Y
; P� a:s: (1.8)

5. A random variable X is independent of G if and only if for any Borel measurable function

4



Chapter 1. Stochastic analysis

f such that E (f(X)) exists, it holds

E( f(X)j G) = E (f(X)) ; P� a:s: (1.9)

In particular, if X is independent of G, then E(Xj G) =E(X); P� a:s:

6.Let G1 � G2 � F . Then

E( E( Xj G1)j G2) = E( E( Xj G1)j G2) = E( Xj G1); P� a:s: (1.10)

7.(Jensen�s inequality) Let X 2 L1F(
;Rm) and ' : Rm ! R be a convex function such

that '(X) 2 L1F(
;Rm). Then

' (E( Xj G))� E( '(X)j G); P� a:s: (1.11)

In particular, for any p � 1, provided that E jXjp exists, we have

jE( Xj G)jp � E( jXjj G); P� a:s: (1.12)

Proof. Proofs of the above results are straightforward by the de�nitions.

Proposition 1.2 Let (
;F ;P) be a standard probability space and G be a sub-�-�eld of F .

Then the following hold.

1. There exists a map P : 
 � F ! [0; 1], called conditional probability given G, such that

P(!; �) is a probability measure on (
;F) for any ! 2 
, P(�; A) is G-measurable for any

A 2 F , and

E( 1Aj G)(!) � P(Aj G)(!) = P(!;A); �PG � a:s:! 2 
;8A 2 F : (1.13)

Moreover, the above P is unique in the following sense : If �P is another conditional probability

5



Chapter 1. Stochastic analysis

given G, then there exists a P-null set N 2 G such that for any ! =2 N;

P(!;A) = P(!;A); 8A 2 F : (1.14)

2. Let H � G be a countably determined sub-�-�eld and let P(�; �) be the conditional probability

given G. Then there exists a P-null set N 2 G such that for any ! =2 N;

P(!;A) = 1A(!); 8A 2 H: (1.15)

1.2 Stopping times

In this section we discuss a special class of random variables, which plays an interesting

role in stochastic analysis.

De�nition 1.1 (Filtration) Let (
;F) a measurable space. A expanding family (Ft)t2R+of

sub-�-�elds of F . is a �ltration on (
;F).ie : for each s,t 2 R+ such that s � t we have :

Fs � Ft.

�It is said that an fFtgt � 0 �ltration is continuous to the right if Ft = Ft+ = \s>t for all

t � 0:

Remark 1.1 The �ltration (Ft+) is always right continuous.

Notation 1 (
; ;F = (Ft)t�0; P ) is called �ltered probability space.

Let (
; ;F = (Ft)t�0; P ) be a �ltered probability space satisfying the usual condition.

De�nition 1.2 A mapping � : 
! [0;1] is called an fFtgt�0�stopping time if

(� � t) , f! 2 
j�(!) � tg 2 Ft; 8t � 0: (1.16)

For any stopping time � , de�ne

F� , fA 2 FjA \ (� � t) 2 Ft; 8t � 0g : (1.17)

6



Chapter 1. Stochastic analysis

It is clear that F� is a sub-�-�eld of F .

Proposition 1.3 Stopping times have the following properties :

(i) A map � : 
! [0;1] is a Stopping times if and only if

(� < t) 2 Ft; 8t > 0: (1.18)

(ii) If � is a stopping time, then A 2 Ft if and only if

A \ (� < t) 2 Ft; 8t > 0: (1.19)

Now we give an example

Exemple 1.1 Let X(t) be fFtgt�0-adapted and continuous. Let E � Rm. be an open set.

Then the �rst hitting time of the process X(t) to E;

�E , inf ft � 0jX(t; !) 2 Eg ; (1.20)

and the �rst exit time of the process X(t) from E,

�E , inf ft � 0jX(t; !) =2 Eg ; (1.21)

are both fFtgt�0 -stopping times. (Here, inf f�g , +1.) Let us prove these two facts. First

of all, for any s > 0, we claim that

(�E < s) = [r2Q;r<s(X(r) 2 E) 2 Fs:

1.3 Stochastic process

In this section we recall some results on stochastic processes.

De�nition 1.3 Assume that (
;F ;P) is a probability space and that I is nonempty index

7



Chapter 1. Stochastic analysis

set. A stochastic process is a family of random variables fX(t); t 2 Ig; from (
;F ; P ) to Rm:

The map t 7! X(t; !) is referred to as a sample path for any ! 2 
:

De�nition 1.4 The process X(t) is said to be measurable if the map (t; !) 7! X(t; !) is

(B[0; T ]�F)=B(U)-measurable.

De�nition 1.5 If X = (Xt)t2I and Y = (Yt)t2I tow processes de�ned on a space (
;F ;P).

1. X and Y are indistinguishable if : P(Xt = Yt;8t 2 I) = 1:

2. Y is a modi�cation of X if : 8t � 0, the variables Xt and Yt are equal P � p:s:that is

to say : 8t � 0; P(Xt = Yt) = 1:

3. X and Y are equivalent if they have even the same law write : X = Y:

� If X and Y are indistingushable then they are modi�cation, the reciprocal is false.

� indistingushable =) modi�cation =) equivalent.

De�nition 1.6 Natural �ltration of Xt process is given by Fx
t = �(Xs; 0 � s � t), t 2 T ,

this is the smallest ���eld compared to which Xs is measurable for all 0 � s � t;

1. If the map ! 7�! Xt(t; !) is valid for every t 2 [0; T ] then the process X(t) is said to

be fFtg-adapted Ft=B(U)-measurable.

2. If the map (s; !) 7! X(s; !) is B[0; t]�F t=B(U) measurable for any t 2 [0; T ] the

process Xt is Ft progressively measurable.

1.4 Brownian motions

We can now de�ne the most important process in stochastic calculus, namely the Brow-

nian motion is the most popular process and is of very deep interest in many branches of

mathematics.

De�nition 1.7 Be a �ltered probability space (
;F ; fFtgt � 0;P) .An fFtgt � 0-adapted Rm-

valued process X(:) is called an m-dimensional fFtgt � 0-Brownian motion over [0;1):

8



Chapter 1. Stochastic analysis

� For all t � 0; Xt is Ft- measurable.

� Independent of increments : if s � t, Xt �Xs independent of Fs = �(Xu; u � s).

For any 0 � s � t

8><>: E(X(t)�X(s)j Fs) = 0 P� a:s;

E(X(t)�X(s))(X(t)�X(s))T
��Fs) = (t� s)I; P� a:s:

(1.22)

Additionally, then X(:) is called an m�dimensional standard fFtgt � 0 -Brownian motion

over [0;1) if P(X(0) = 0) = 1

Remember that a Brownian motion W (:) can be de�ned naturally across any time range

[a; b] or [a; b) for any 0 � a < b � +1. W (:) is said to be standard over [a; b] in particular

if W (a) = 0, that if W (t); t � 0, and W (t + a)�W (a) (a > 0); and ��1W (�2t)(� 6= 0); are

both standard fFtgt � 0Brownian motion.

Next, we creat a Brownian motion.

If X(:) is a Brownian motion de�ned on a �ltered probability space (
;F ; fFtgt � 0;P) we

may de�ne

FX
t = �fX(s); 0 � s � tg � Ft: (1.23)

Generally, the �ltration fFtgt � 0 is left-continuous, but not necessarily right-continuous.

Nevertheless, the augmentation fF̂ tgt � 0of fFtgt � 0 by adding all P-null sets is continuous,

and X(t) is still a Brownian motion on the �ltered probability space(
;F ; fF^
t gt � 0;P). In

the sequel, by saying that F is the natural �ltration generated by X, we mean that F is

generated as in (1.23), and hence in this case F is continuous.

1.5 Martingales

In this section we will brie�y recall some results on martingales, which form a special

class of stochastic processes.

Let (
;F ; fFtgt � 0;P) be a �ltered probability space.

De�nition 1.8 If a real-valued process X = fX(t)gt2I is fFtgt � 0 adapted, then it is a

9



Chapter 1. Stochastic analysis

(continuous) fFtgt � 0-martingal (resp submartingale, supermartingale).

For all t; s 2 I with s < t, and E(X(t)j Fs) = X(s), (resp. �, �), P� a:s.

Remark 1.2 Any martingale must obviously be both a sub- and a supermartingale.

Proposition 1.4 The �rst relation in says that any Brownian motion X(t) is a martingale

(1.22).

1.6 Stochastic integral (Itô�s integral)

In this section we are going to de�ne the integral of type

Z T

0

f(t)dW (t); (1.24)

where f is some stochastic process and W (t) is a Brownian motion. Such an integral will

play an essential role in the rest of this book. Note that if for ! 2 
, the map t ! W (t; !)

was of bounded variation, then a natural de�nition of (1.24) would be a Lebesgue-Sticltjes-

type integral, regarding ! as a parameter. Unfortunately, we will see below that the map

t! W (t; !) is not of bounded variation for almost all ! 2 
. Thus one needs to de�ne (1.24)

in a di¤erent way. A proper de�nition for such an integral is due to Kiyoshi Itô.

1.6.1 De�nition of Itô�s integral and basic properties

In this subsection we give the de�nition of the Itô integral as well as some basic properties

of such an integral. We shall describe the basic idea of de�ning the Itô integral.

We �rst introduce the function space consisting of all possible integrands. Let (
;F ; fFtgt � 0;P)

be a �xed �ltered probability space satisfying the usual condition. Let T > 0 and recall that

L2F(0; T ;R) is the set of all measurable processes f(t; !) adapted to fFtgt � 0 such that,

kfk2T , E
�Z T

0

f(t; !)2dt

�
<1: (1.25)

It is seen that L2F(0; T ;R) is a Hilbert space.

10



Chapter 1. Stochastic analysis

Next, we introduce the following sets, which are related to the integrals, we are going to

de�ne :

M2 [0; T ] =

8><>: X 2 L2F(0; T ;R)j X is a right-continuous fFtgt � 0 martingale

with X(0) = 0; P� a:s:

9>=>; ;
M2

c [0; T ] =

8><>: X 2 L2F(0; T ;R)j X is a continuous fFtgt � 0 martingale

with X(0) = 0; P� a:s:

9>=>; :
We identify X; Y 2 M2 [0; T ] if there exists a set N 2 F with P(N) = 0 such that

X(t; !) = Y (t; !), for all t � 0 and ! =2 N . De�ne

jXjT = (E
�
X2(T )

�
)1=2; 8X 2M2 [0; T ] : (1.26)

We can show by the martingale property that (1.26) is a norm under whichM2 [0; T ] is

a Hilbert space. Moreover,M2
c [0; T ] is a closed subspace ofM2 [0; T ]. We should distinguish

the norms k�kT and j�jT . It is important to note that any Brownian motionW (�) is inM2
c [0; T ]

with jW j2T = T:

Now we are ready to itemize the steps in de�ning the Itô integral for a given one-dimensional

Brownian motion W (t) de�ned on the �ltered probability space (
;F ; fFtgt � 0;P).

Step 1 : Consider a subset L0 [0; T ] � L2F(0; T ;R) consisting of all real processes f(t; !) of

the following form (called simple processes) :

f(t; !) = f0(!)1ft=0g(t) +
X
i�0
fi(!)1fti;ti+1g(t); t 2 [0; T ] ; (1.27)

where 0 = t0 < t1 < � � � < ti � T and fi(!) is Fti-measurable with supi sup! jfi(!)j < 1.

One can show that the set L0 [0; T ] is dense in L2F(0; T ;R):

Step 2 : De�ne an integral for any simple process f 2 L0 [0; T ] of the form (1.27) : For

11



Chapter 1. Stochastic analysis

any t 2 [tj; tj+1] (j � 0),

Î(f) ,
j�1X
i=0

fi(!) [W (ti+1; !)�W (ti; !)] + fi(!) [W (tj+1; !)�W (tj; !)] : (1.28)

Equivalently, we have the following :

Î(f)(t; !) =
X
i�0
fi(!) [W (t ^ ti+1; !)�W (t ^ ti; !)] ; t 2 [0; T ] : (1.29)

It is seen that Î is a linear operator from L0 [0; T ] toM2
c [0; T ]. Moreover, Î has the property

that ���Î(f)���2
T
= kfk2T ; 8f 2 L0 [0; T ] : (1.30)

Step 3 : For any f 2 L2F(0; T ;R), by Step 1 there are f 2 L0 [0; T ] such that

kf � fikT ! 0 as j ! 1. From (1.30), fÎ(f)g is Cauchy in M2
c [0; T ]. Thus, it has a

unique limit in M2
c [0; T ], denoted by Î(f). It is seen from (1.30) that this limit depends

only on f and is independent of the choice of the sequence fj. Hence Î(f) is well-de�ned on

L2F(0; T ;R) and is called the Itô integral, denoted by

Z �

�

f(s)dW (s) , Î(f)(t); (1.31)

Further, for any f 2 L2F(0; T ;R) and any two stopping times � and � with 0 � � � � � T ,

P � a:s. , we de�ne Z �

�

f(s)dW (s) , Î(f)(�)� Î(f)(�): (1.32)

Now let us collect some fundamental properties of the Itô integral.

Proposition 1.5 The Itô integral has the following properties :

1.For any f; g 2 L2F(0; T ;R) and stopping times � and � with � � � (P� a:s),

E
�Z t^�

t^�
f(r)dW (r)jF�

�
= 0; P� a:s; (1.33)

12



Chapter 1. Stochastic analysis

and

E
��Z t^�

t^�
f(r)dW (r)

� �Z t^�

t^�
g(r)dW (r)

�
jF�
�
= E

�Z t^�

t^�
f(r)g(r)drjF�

�
; P� a:s:

In particular, for 0 � s � t � T;

E
�Z t

s

f(r)dW (r)jFs
�
= 0; P� a:s;

and

E
��Z t

s

f(r)dW (r)

� �Z t

s

g(r)dW (r)

�
jFs
�
= E

�Z t

s

f(r)g(r)drjFs
�
; P� a:s:

2.For any stopping time � and f 2 L2F(0; T ;R) let ~f(t; !) = f(t; !)I(�(!�t). Then

E
�Z t^�

0

f(s)dW (s)jFs
�
=

Z t

0

f(s)dW (s): (1.34)

See[[11]] for a proof.

Properties of the Stochastic integral

The most imprtant properties on the integral Stochastic :

a-Linearity : Z t

0

(a�1s + b�
2
s)dWs = a

Z t

0

�1sdWs + b

Z t

0

�2sdWs:

b-Additivity : for 0 � s � u � t � T

Z t

s

�vdWv =

Z u

s

�vdWs +

Z t

u

�vdWv:

c-Martingale properties : we have

Mt(�) =

Z t

0

�sdWs =
n�1X
j=0

�j(W (tj+1)�W (tj)):

13



Chapter 1. Stochastic analysis

for any process � the processes :

t!Mt(�) et t!Mt(�)
2 �

Z t

0

�2sds:

are (FW
t )�martingales continue.

d- If (Xt)0 � s � t is a process Ft� adapted and E
�R T

0
jXsj2ds

�
<1 we have inégalité :

E
�
supt2[0;T ] j

R T
0
jXsj2dWsj2

�
� 4E

�Z T

0

jXsj2ds
�
:

e- Isométrie :

E
��Z t

0

�dWs

��2
= E

�Z t

0

�2ds

�
:

1.6.2 Itô�s process

De�nition 1.9 ( Itô Process) Let (
;F ; fFtgt � 0;P) a probability space equipped with a

�ltration and (Wt)t � 0 a Ft-(M.B).we call Itô Process, a Process (Xt)0 � t � T with values in

R such that

P� p:s; 8t � T : Xt = x+

Z T

0

'sds+

Z T

0

�sdWs:

where ' is a Process FW
t -adapted such that

R T
0
'sds < 1 p:s.

It can be written in the following form :

8><>: dX(t) = '(t)dt+ �(t)dW (t);

X0 = x;

where the co¤cient ' is the derivative of the Process, � is its di¤usion coe¤cient.

1.6.3 Itô formula

Itô�s �rst formula

Theorem 1.1 Let f be a function from R into R+ of class C2 has derived bounded and (Xt)t

14



Chapter 1. Stochastic analysis

a martingale continues, then :

f(Xt) = f (X0) +

Z t

0

f 0(Xs)dXs +
1

2

Z t

0

f 00(Xs)d hX;Xis ; (1.35)

where, by de�nition

d hX;Xit = dXtdXt = �2t dt;

with the multiplication table :

� dt dBt

dt 0 0

dBt 0 dt

Then the formula (1.35) can be written in di¤erential form :

df(Xt) = f
0(Xt)dXt +

1

2
f 00(Xt)�

2
t dt;

= (f 0(Xt)bt +
1

2
f 00(Xt)�

2
t )dt+ f

0(Xt)�tdWt:

Itô�s second formula

Theorem 1.2 Let f be a function of R�R+ of class C1 with respect to t; of class C2 relative

to x of bounded derivatives we have :

f(t;Xt) = f(0; X0) +

Z t

0

f 0
t (s;Xs)ds+

Z t

0

f 0
x (s;Xs)dXs +

1

2

Z t

0

f 00
xx(s;Xs)d hX;Xis :

We can write this formula in di¤erential form

df(t;Xt) = (f
0
t (t;Xt) +

1

2
f 00
xx(t;Xt)�

2
t )dt+ f

0
x (t;Xt)dXt;

= f 0
t (t;Xt)dt+ f

0
x (t;Xt)dXt +

1

2
f 00
xx(t;Xt)d hXit ;

= (f 0
t (t;Xt) + f

0
x (t;Xt)bt +

1

2
f 00
xx(t;Xt)�

2
t )dt+ f

0
x (t;Xt)�tdBt:

15



Chapter 1. Stochastic analysis

Itô�s third formula

Theorem 1.3 Let X and Y be two Itô processes,and f a function of R2 in R class C2 with

bounded derivatives we have :

f (Xt; Yt) = f
�(x; y) +

Z t

0

f 0
x (Xs; Ys)dXs +

Z t

0

f 0
y (Xs; Ys)dYs +

1

2

Z t

0

f 00
xx(Xs; Ys)d hXis ;

+
1

2

Z t

0

f 00yy(Xs; Ys)d hY is +
1

2

Z t

0

f 00
xy(Xs; Ys)d hX; Y is :

Integration by parts formula

Proposition 1.6 Let Xt and Yt be two Itô processes :

Xt = X0 +

Z t

0

bsds+

Z t

0

�sdBs and Yt = Y0 +

Z t

0

b0sds+

Z t

0

�0sds:

So :

XtYt = X0Y0 +

Z T

0

XsdYs +

Z T

0

YsdXs + hX; Y it ;

with

hX; Y it =
Z T

0

�s�
0
sds:

We can written :

d(X Y )t = XtdYt + YtdXt + d hX; Y it :

Exemple 1.2 Calculet XtYt: For the Itô�s �rst formula, we have

f(Xt) = f(X0) +

Z t

0

f 0(Xs)dXs +
1

2

Z t

0

f 00(Xs)�
2
t dt:

And if we put :

f(Xt) = X
2
t ) f 0(Xt) = 2Xt ) f 00(Xt) = 2:

So :

(Xt + Yt)
2 = (X0 + Y0)

2 + 2

Z t

0

(Xs + Ys)d(Xs + Ys) +

Z t

0

(�s�
0
s)
2ds:

16
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X2
t = X

2
0 +

Z t

0

XsdXs +

Z t

0

�s
2ds:

Y 2t = Y
2
0 +

Z t

0

YsdXs +

Z t

0

�0s
2ds:

Hence :

XtYt =
1

2
((Xt + Yt)

2 �X2
t � Y 2t );

=
1

2
f(X0 + Y0)

2 �X2
0 � Y 20 + 2

Z t

0

(Xs + Ys)d(Xs + Ys)� 2
Z t

0

XsdXs

� 2
Z t

0

YsdYs +

Z t

0

(�s + �
0
s)
2ds�

Z t

0

�s
2ds�

Z t

0

�0s
2dsg;

=
1

2

�
2X0Y0 + 2

Z t

0

XsdYs + 2

Z t

0

YsdXs + 2

Z t

0

�s�
0
s
2ds

�
;

= X0Y0 +

Z t

0

XsdYs +

Z t

0

YsdXs +

Z t

0

�s�
0
s
2ds:

17



Chapitre 2

Stochastic Di¤erential Equations

2.1 The construction of SDEs

In this section we are going to study stochastic di¤erential equations (SDEs, for short),

which can be regarded as a generalization of ordinary di¤erential equations (ODEs, for short).

Since the Itô integral will be involved, the situation is much more complicated than that of

ODEs, and the corresponding theory is very rich.

Let us �rst recall the space Wn � C([0;1];Rm) and its metric�̂. Let U be a Polish

space and An(U) the set of all progressively measurable processes �:

Next, let b 2 An(Rn) and � 2 An(Rn�m). Consider the following equation :

8><>: dX(t) = b(t;X)dt+ �(t;X)dW (t);

X(0) = �:
(2.1)

In the above equation, X is the unknown. Such an equation is called a stochastic di¤e-

rential equation. There are di¤erent notions of solutions to (2.1) depending on di¤erent roles

that the underlying �ltered probability space (
;F ; fFtgt � 0;P) and the Brownian motion

W(�) are playing. Let us introduce them in the following subsections.

18



Chaptre 2. Stochastic Di¤erential Equations

2.2 Strong and weak solutions of non linear SDEs

2.2.1 Strong solutions

De�nition 2.1 Let (
;F ; fFtgt � 0;P) be given, W (t) be a given mdimensional standard

fFtgt � 0-Brownian motion, and � F0-measurable. fFtgt � 0-adapted continuous processX(t); t �

0, is called a strong solution of(2.1) if

X(0) = �; P� a:s; (2.2)

Z t

0

�
jb(s;X)j+

���(s;X)2��	 ds <1; 8t � 0; P� a:s; (2.3)

X(t) = X(0) +

Z t

0

b(s;X) + �(s;X)dW (s); t � 0; P� a:s: (2.4)

If for any two strong solutions X and Y of (2.1) de�ned on any given (
;F ; fFtgt � 0;P)

along with any given standard fFtgt � 0-Brownian motion, we have

P(X(t) = Y (t); 0 � t <1) = 1; (2.5)

then we say that the strong solution is unique or that strong uniqueness holds.

In the above (2.4), the �rst integral on the right is a usual Lebesgue integral (regarding

! 2 
 as a parameter), and the second is the Itô integral de�ned in the previous section.

If (2.3) holds, then these two integrals are well-de�ned. We refer to
R t
0
b(s;X)ds as the drift

term and
R t
0
�(s;X)dW (s) as the di¤usion term.

One should pay particular attention to the notion of strong uniqueness. It requires (2.5)

to hold for any two solutions X; Y associated with every given �ltered probability space

(
;F ; fFtgt � 0;P) and m-dimensional standard fFtgt � 0-Brownian motion, rather than par-

ticular ones. So it may be more appropriate to talk about strong uniqueness for the pair

(b; �), which are the coe¢ cients of(2.1). See [[11]] for a discussion on this point.

Next we give conditions that ensure the existence and uniqueness of strong solutions.

Let (
;F ; fFtgt � 0;P) be a �ltered probability space satisfying the usual condition,
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Chaptre 2. Stochastic Di¤erential Equations

W (t) an m-dimensional standard fFtgt � 0-Brownian motion, and � anF0-measurable random

variable.

Next, we introduce a special case of SDEs. Let b : [0;1)�Rn ! Rn and � : [0;1)�Rn !

Rn�m Then the maps (t; !)! b(t; !(t)) and (t; !)! �(t; !(t)) are progressively measurable

when regarded as maps from [0;1) �Wn to Rnand Rn�m, respectively. In this case, (2.1)

becomes 8><>: dX(t) = b(t;X(t))dt+ �(t;X(t))dW (t);

X(0) = �:
(2.6)

Such an SDE is said to be of Markovian type. If in addition, b and � are time-invariant, then

(2.6) is said to be of time homogeneous Markovian type. Note that in the case � � 0, (2.1) is

reduced to a functional di¤erential equation and (2.6) is reduced to an ordinary di¤erential

equation.

Now let us present an existence and uniqueness result for (2.6). First we introduce the

following assumption :

(H) The maps b : [0;1)�Rn ! Rn and � : [0;1)�Rn ! Rn�m are measurable in t 2 [0;1)

and there exists a constant

L > 0, such that

8><>: jb(t; x)� b(t; x̂)j+ j�(t; x)� �(t; x̂)j � Ljx� x̂j; 8t 2 [0;1); x; x̂ 2 Rn;

jb(�; 0) + �(�; 0)j 2 L2(0; T;R); 8T > 0:
(2.7)

Theorem 2.1 Let assumptions (H) hold. Then (2.6) admits a unique strong solution.

2.2.2 Weak solutions

De�nition 2.2 A 6-tuple (
;F ; fFtgt � 0;P;W;X) is called a weak solution of (2.1) if

(i) (
;F ; fFtgt � 0;P) is a �ltered probability space satisfying the usual condition ;

(ii) W is an m-dimensional standard fFtgt � 0 -Brownian motion and X is fFtgt � 0-adapted

and continuous ;

(iii) X(0) and � have the same distribution ;
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Chaptre 2. Stochastic Di¤erential Equations

(iv) (2.3)-(2.4) hold.

The essential di¤erence between the strong and weak solutions is the following :

For the former, the �ltered probability space (
;F ; fFtgt � 0;P) and the fFtgt � 0-Brownian

motion W on it are �xed a priori, while for the latter (
;F ; fFtgt � 0;P) and W are parts of

the solution.

De�nition 2.3 If for any two weak solutions (
;F ; fFtgt � 0;P;W;X) and (~
; ~F ; f ~F tgt � 0; ~P; ~W; ~X)

of (2.1)with

P(X(0)2B) = ~P( ~X(0)2B); 8B 2 B(Rn); (2.8)

we have

P(X 2 A) = ~P( ~X 2 A); 8B 2 B(Wn); (2.9)

then we say that the weak solution of (2.1) is unique (in the sense of probability law), or that

weak uniqueness holds.

De�nition 2.4 If

P(X(t) = ~X(t); 0 � t <1) = 1; (2.10)

for any two weak solutions (
;F ; fFtgt � 0;P;W;X) and (
;F ; f ~F tgt � 0;P; X; ~X) of (2.1)

with

P(X(0) = ~X(0)) = 1; (2.11)

then we say that the weak solutions have pathwise uniqueness.

Note that in the de�nition of pathwise uniqueness, 
;F ;P; and W are the same for the

two solutions under comparison.

Remark 2.1 Existence of weak solutions does not imply that of strong solutions, and weak

uniqueness does not imply pathwise uniqueness nor strong uniqueness.

Relations between the strong and weak solutions are presented in the following two theorems.

21
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Theorem 2.2 Let b 2 An(Rn) and � 2 An(Rn�m). Then (2.1) admits a unique strong

solution if and only if for any probability measure � on (Rn;B(Rn)), (2.1) admits a weak

solution with the initial distribution � and pathwise uniqueness holds for (2.1).

Remark 2.2 2.2 tells that strong existence and uniqueness is equivalent to weak existence

plus pathwise uniqueness.

2.3 Existence and uniqueness of a solution for non li-

near SDEs

Let (
;F ;P) be a complete probability space, (W (t))t�0 denote a Brownian motion with

value in Rd and x a random variable with value in Rn.

Let n and m a random variable with value in b and � two functions of Rn � R+ with

value in R given by :

b : Rn � R+ ! Rn et � : Rn � R+ !Mn�m;

where Mn�m denotes the set of matrices n�m

Our goal in this section is to solve the following stochastic di¤erential equation :

8><>: dX(t) = b(t;X(t))dt+ �(t;X(t))dW (t); 0 � t � T;

X(0) = x:
(2.12)

The solution of Equation (2:12) is a Ft-adapted continuous process X such than the

following two integrals :
R t
0
b(s;X(s))ds; and

R t
0
�(s;X(s))dW (s) have a meaning and equality

X(t) = x+

Z t

0

b(s;X(s))ds+

Z t

0

�(s;X(s))dW (s); 0 � t � T:

is satis�ed 8t P:p:s:

What conditions should be applied to the drift b and the di¤usion� to �nd a solution of
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Equation (2:12) and moreover this solution is unique.

Now we give the theorem which allows to have existence and uniqueness from a solution

of(2:12) :

2.3.1 Theorem of existence and uniqueness

Hypothesis : We assum the following assumptions

(H1) Both functions b and � are continuous.

(H2) There exists a strictly positive constant C such that 8t 2 [0; T ] and (x; y) 2 Rn � Rn8><>: (i) jb(t; x)� b(t; y)j+ j�(t; x)� �(t; y)j � Cjx� yj;

(ii) jb(t; x)j2 + j�(t; x)j2 � C(1 + jxj2):

(H3) the initial condition X (0) = x is independent of (W (t))t�0 and of integrable square i.e:

E [X2(0)] < +1:

Theorem 2.3 Under the hypothesis (H1), (H2) et (H3), the equatios (2:12) has a unique

continuous trajectory solution for all t � T: In addition this solution veri�er E(sup0�t�T jX(t)j2) <

+1:Existence : To obtain the existence of solution there are two methods (Picart iteration

and �xed point theorem)

Proof. Existence : To obtain the existence of solution there are two methods (Picart

iteration and �xed point � theorem)

We decided to use Picard�s approximation method in the proof.

De�ning the sequence (Xn)n�0 such that X
0 = x and (Xn+1)n�0 is the solution of the

following system of stochastic di¤erential equations :

Xn+1 (t) = x+

Z t

0

b(s;Xn (s))ds+

Z t

0

�(s;Xn (s))dW (s): (2.13)

Checking �rst by recurrence on n that there exists a constant Cn such that for all t 2 [0; T ] :

E jXn (t)j2 � Cn:

23



Chaptre 2. Stochastic Di¤erential Equations

Suppose that E
�
jXn (t)j2

�
� Cn:and we show that E jXn+1 (t)j2 � Cn+1:We have.

��Xn+1 (t)
��2 = ����x+ Z t

0

b (s;Xn (s)) ds+

Z t

0

� (s;Xn (s)) dW (s)

����2 :
By the inequality (a+ b+ c)2 � 3 (a2 + b2 + c2) ; we �nd the following estimate :

��Xn+1 (t)
��2 � 3 jxj2 + ����Z t

0

b (s;Xn (s)) ds

����2 + ����Z t

0

� (s;Xn (s)) dW (s)

����2
!
:

By passing to the mathematical expectancy, we get :

E
��Xn+1 (t)

��2 � 3 E jxj2 + E"�Z t

0

jb (s;Xn (s))j ds
�2#!

+E

"�����Z t

0

� (s;Xn (s)) dW (s)

�����2
#
:

(2.14)

By Itô isometry and hypothesis (H2) (ii), we have :

E

"�����Z t

0

� (s;Xn (s)) dW (s)

�����2
#
= E

�Z t

0

j� (s;Xn (s))j2 ds
�
;

� C2E
�Z t

0

(1 +Xn (s)) ds

�
; (2.15)

= C2
Z t

0

�
1 + E

�
jXn (s)j2

��
ds:

And by the Cauchy-Schwarz, inequality, we obtain :

E

"�Z t

0

b (s;Xn (s)) ds

�2#
� E

��Z t

0

ds

��Z t

0

jb (s;Xn (s))j2 ds
��
;

� TE
�Z t

0

jb (s;Xn (s))j2 ds
�
;

� TC2
�Z t

0

�
1 + E jXn (s)j2

�
ds

�
: (2.16)

Return to equation (2:14) and substituting the two estimates (2:15) and (2:16) in (2:14), and
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since x is an integrable square random variable then we �nd the following estimate :

E
h��Xn+1 (t)

��2i � 3�E jxj2 + TC2 �Z t

0

�
1 + E jXn (s)j2

�
ds

�
+ C2

Z t

0

�
1 + E jXn (s)j2

�
ds

�
;

� 3
�
E jxj2 + C2 (T + 1)

Z t

0

�
1 + E jXn (s)j2

�
ds

�
;

� 3
�
E jxj2 + C2 (T + 1)T (1 + Cn)

�
= Cn+1:

Which proves

E
��Xn+1

t

��2 <1:
Now we will increase by recurrence the following quantity : E

"
sup
t2[0;t]

jXn+1 (t)�Xn (t)j2
#
:

Using equation (2:13) we obtain.

Xn+1 (t)�Xn (t) =

Z t

0

�
b (s;Xn (s))� b

�
s;Xn�1 (s)

��
ds

+

Z t

0

�
� (s;Xn (s))� �

�
s;Xn�1 (s)

��
dW (s):

Using Doob inegality, we get :

E
�
sup
0�s�t

jXn+1 (s)�Xn (s)j2
�

� 2E
��R t

0
jb (s;Xn (s))� b (s;Xn�1 (s))j ds

�2�
+2E

hR t
0
� j(s;Xn (s))� � (s;Xn�1 (s))j2 ds

i
:

The Cauchy-Schwartz inequality gives the following estimate :

E
�
sup
0�s�t

jXn+1 (s)�Xn (s)j2
�

� 2TE
hR t
0
jb (s;Xn (s))� b (s;Xn�1 (s))j2 ds

i
+2E

hR t
0
j� (s;Xn (s))� � (s;Xn�1 (s))j2 ds

i
;

After the hypothesis (H2) (i), we obtain for all s 2 [0; t] :

E
�
sup
0�s�t

��Xn+1 (s)�Xn (s)
��2� � 2 (T + 1)C2E �Z t

0

��Xn (s)�Xn�1 (s)
��2 ds� :
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Consequently we �nd :

E sup
0�s�t

��Xn+1 (s)�Xn (s)
��2 � 2 (T + 1)C2| {z }

=C

Z t

0

E
�
sup
0�u�s

��Xn (u)�Xn�1 (u)
��2� ds; (2.17)

We reapply the same technique another time and applying Doob�s inequality, to jXn (u)�Xn�1 (u)j2

to get :

E sup
0�u�s

��Xn (u)�Xn�1 (u)
��2 � C Z s

0

E
�
sup
0�r�u

��Xn�1 (r)�Xn�2 (r)
��2� dr: (2.18)

By substituting the estimate (2.17) for inequality(2.18), we �nd

E
�
sup
0�s�t

��Xn+1 (s)�Xn (s)
��2� � C Z t

0

E
�
sup
0�u�s

��Xn (u)�Xn�1 (u)
��2� ds;

� C
Z t

0

�
C

Z s

0

E
�
sup
0�r�u

��Xn�1 (r)�Xn�2 (r)
��2� dr� ds;

� C2E
�
sup
0�r�u

��Xn�1 (r)�Xn�2 (r)
��2� Z t

0

�Z s

0

dr

�
ds;

� C2T 2

2
E
�
sup
0�r�u

��Xn�1 (r)�Xn�2 (r)
��2� ;

We reapply the same technique several times, we �nd :

E
�
sup
0�s�t

��Xn+1 (s)�Xn (s)
��2� � CnT n

n!
sup
0�s�T

h��X1 (s)�X0 (s)
��2i ;

� A� C
nT n

n!
:

Applying the Bienaymé-Tchebychev, we have :

P
�
sup
0�s�t

��Xn+1 (s)�Xn (s)
��2 > 1

2n+1

�
�
A� (CT )n

n!�
1

2n+1

�2 = 4A� (4CT )
n

n!
:
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It therefore comes that :

1X
P

n=0

�
sup
0�s�t

��Xn+1 (s)�Xn (s)
��2 > 1

2n+1

�
� 4A

1X
n=0

(4CT )n

n!
= 4A: exp (4CT ) <1:

So using the Borel-Cantelli, we �nd the following equality :

8n 2 N; P
�
sup
0�s�T

��Xn+1 (s)�Xn (s)
��2 > 1

2n+1

�
= 0;

using the equality P (Ac) = 1� P (A) we obtain the following equality :

8n 2 N; P
�
sup
0�s�T

��Xn+1 (s)�Xn (s)
�� � 1

2n+1

�
= 1:

Therefore,

sup
0�s�T

��Xn+1 (s)�Xn (s)
�� � 1

2n+1
; 8n � n0; et n0 2 N:

Noting that the sequence (Xn)n�0 Cauchy sequence in a Banach space, so it converges in the

same Banach space, so it converges in the same Banach space. Then there exists a continuous

process (X (t))0�t�T such that :

sup
0�t�T

��Xn+1 (t)�Xn (t)
�� �! 0; quand n �!1.

So, P� p:s; (Xn)n�0 converges to continuous process X (t).

The uniqueness : Suppose that (X(t))t�0 et (Y (t))t�0 two solutions of equation (2:12) for

all t 2 [0; T ] :

X(t)� Y (t) =
Z t

0

[b (s;X(s))� b (s; Y (s))] ds+
Z t

0

[� (s;X(s))� � (s; Y (s))] dW (s):
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From the inequality (a+ b)2 � 2a2 + 2b2, we obtain the following inequality :

E
�
jX(t)� Y (t)j2

�
� 2E

"����Z t

0

(b (s;X (s))� b (s; Y (s))) ds
����2
#

(2.19)

+ 2E

"����Z t

0

(� (s;X (s))� � (s; Y (s)) dW (s))
����2
#
:

Using the Cauchy-Schwarz�s inequality and the hypothesis (H2) (i) we �nd the following

estimate :

E

"����Z t

0

(b (s;X (s))� b (s; Y (s))) ds
����2
#
� TE

�Z t

0

jb (s;X (s))� b (s; Y (s))j2 ds
�
; (2.20)

� TC2
Z t

0

E
�
jX (s)� Y (s)j2

�
ds:

Maintaining by use the Itô isometric property and the condition (H2) (i), we have the follo-

wing estimate :

E

"����Z t

0

(� (s;X (s))� � (s; Y (s)) dW (s))
����2
#
� E

�Z t

0

j� (s;X (s))� � (s; Y (s))j2 ds
�
;

(2.21)

� C2
Z t

0

E
�
jX (s)� Y (s)j2

�
ds:

Return to equation (2:19) and substituting the two estimates (2:20) and (2:21) in (2:19), we

�nd :

E
�
jX (t)� Y (t)j2

�
� 2TC2

Z t

0

E
�
jX (s)� Y (s)j2

�
ds+ 2C2

Z t

0

E
�
jX (s)� Y (s)j2

�
ds;

� 2
�
TC2 + C2

� Z t

0

E
�
jX (s)� Y (s)j2

�
ds:

Finally, using Granwall�s lemma, we �nd :

E
�
jX (t)� Y (t)j2

�
= 0:
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Chaptre 2. Stochastic Di¤erential Equations

2.4 Linear stochastic di¤erential equations

In this section we mention the linear SDEs ,Due to their importance in stochastic control,

we recall some of the main properties of linear SDEs.

The one domensional case

Consider the linear SDE8><>: dXt = [A(t)Xt + b(t)]dt+ [C(t)Xt + �(t)]dWt;

X(0) = x;
(2.22)

where W (:) is a one-dimensional standard Brownian motion and

1. A(:); C(:) 2 L1[0; T ]� Rn � Rn:

2. b(:); �(:) 2 L1[0; T ]� Rn:

Theorem 2.4 For any x 2 L2F0(
;R
n), equation (2.22) admits a unique strong solution

X(:), which is represented by the following :

Using Itô theorem

Xt = 'tx+ 't

Z t

0

'�1s [b(s) + C(s)�(s)]ds+ 't

Z t

0

'�1s �(s)dWs; t 2 [0; T ]; (2.23)

where 't is the unique solution of the following matrix-value SDEs8><>: A(t)'tdt+ C(t)'tdBt;

't(0) = I;
(2.24)

and '�1t = 	t exists and satisfying8><>: d	t = 	t[�A(t)dt+ C(t)2dt�	tC(t)dBt];

	t(0) = I:
(2.25)
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Proof. By applying Itô�s formula to '(t)	(t) we get d['(t)	(t)] = 0, then '(t)	(t) = I.

Therefore '�1s = 	t:

Reapplying Itô�s formula to 	tX(t) , where X(t) is the solution of (2.22)

yields the following results :

d['(t)	(t)] = 	(t)dX(t) +X(t)d(t) + d h	; Xit ;

= 	(t)[A(t)X(t) + b(t)]dt+ [C(t)X(t) + �(t)]dW (t) +X(t)	(t)� [A(t)dt+ C(t)2]dt

�	(t)C(t)dW (t)� C(t)2	(t)X(t)dt+ �(t)C(t)	(t)dt;

= 	(t)(b(t)� C(t)�(t))dt+	(t)X(t)dW (t):

Then the explicit formula (2.23) holds by using :	(t) = '�1(t):

The case of a multidimensional Brownian motion

Let Xt be the solution of the linear SDE

8><>:
dXt = [A(t)Xt + b(t)]dt+

mP
j=1

[Cj(t)Xt + �
j(t)]dW j

t ;

X(0) = x:

(2.26)

Let 't be the solution of the following :

8><>:
dXt = A(t)'tdt+

mP
j=1

Cj(t)'tdW
j
s ;

't(0) = I:

The inverse '�1t can be shown to satisfy

8>><>>:
dXt = '

�1
t

"
�A(t)dt+

mP
j=1

Cj(t)2

#
dt�

mP
j=1

'�1t C
j(t)2dBit

'�1t (0) = x

By using multidomensional Itô�s formula we get
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The strong solution X of (2.26) can be represented as

Xt = 'tx+ 't

Z t

0

'�1s

"
b(s)�

mX
j=1

Cj(t)�j(s)

#
ds+

mX
j=1

't

Z t

0

'�1s �
j(s)dW i

s ; t 2 [0; T ]:

2.5 Some examples of SDEs

By looking at some simple examples. The Itô�s formula holds the solution to a large number

of stochastic di¤erential equations.The method is illustrated in the following examples.

Exemple 2.1 The population growth

dN

dt
= atNt

where at = rt + �Wt;Wt �white noise,� = constant.

Let�s assume that rt = r � constant: According to the Itô interpretation this equation is

equivalent to (here �(t;Xt) = �x).

dNt = rNtdt+ �NtdWt; (2.27)

or
dN

dt
= rdt+ �dWt:

Therefore Z t

0

dNs
Ns

= rt+ �Wt, (W0 = 0): (2.28)

Utilizing the Itô formula for the function, we can evaluate the integral on the left side. We

pose

Yt = lnNt = h(t; Nt); where h(t; x) = lnx, x > 0;
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and obtain

dYt = dh(t; Nt)

=
@h

@t
(t; x)dt+

@h

@x
(t; x)dNt +

1

2

�
@2h

@t2
(t; x)dt2 +

@2h

@x2
(t; x)dN2

t + 2
@2h

@t@x
(t; Nt)dt dNt

�
;

with

@h

@t
(t; x) = 0;

@h

@x
(t; x) =

1

x
;
@2h

@t2
(t; x) = 0;

@2h

@x2
(t; x) = � 1

x2
;
@2h

@t@x
(t; Nt) = 0; dN

2
t = d hNti = �2N2

t dt:

Hence

dYt =
1

Nt
+
1

2

�
� 1

N2
t

�2N2
t dt

�
;

=
1

Nt
[rNtdt+ �NtdWt]�

1

2
�2dt;

= (r � 1
2
�2)dt+ �NtdWt;

Yt � Y0 = (r �
1

2
�2)(t� t0) + �(Wt �W0):

We take t0 = 0 and Y0 = lnN0, we have the following equality

Yt � Y0 = (r �
1

2
�2)t+ �Wt;

Yt = Y0 + (r �
1

2
�2)t+ �Wt;

Yt = lnN0 + (r �
1

2
�2)t+ �Wt;

Nt = exp(Yt):

or

Nt = N0 exp((r �
1

2
�2)t+ �Wt): (2.29)

Such processes are called geometric Brownian motions. They are important also as models
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for stochastic prices in economics.

Exemple 2.2 Electric Charge

Consider the 2�dimensional SDE

X(t) = X(0) +

Z t

0

AX(s)ds+

Z t

0

H(s)ds+

Z t

0

KdB(s):

Where

A =

0B@ 0 1

� 1
CL

�R
L

1CA ; H(t) =

0B@ 0

1
L
Gt

1CA and K =

0B@ 0

�
L

1CA :
Here, �, C, L and R are positive constants and

G : [0;1) ! [0;1)

t ! Gt:

If we apply the 2�dimensional Itô formula with g(t;X1; X2) = exp(�At)(X1; X2)
> and inte-

grate by parts, we get the solution

X(t) = exp(At)(X(0) + exp(�At)KB(t) +
Z t

0

exp(�As)(H(s) + AKB(s))ds):

where exp(F ) =
P1

K=0
FK

K!
is the matrix exponential.

The function Xt =
Bt
1+t
; where B0 = 0 solves

Xt = �
Z t

0

1

1 + s
Xsds+

Z t

0

1

1 + s
dBs:

The function Xt = sinBt with B0 = a 2
���
2
; �
2

�
solves

Xt = sin(a)�
Z t

0

1

2
Xsds+

Z t

0

p
1�X2

sdBs:

for 0 � t < inffs > 0 : Bs =2 [��2 ;
�
2
]g:
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Chapitre 3

Pontryagin�s maximum principle

In stochastic control theory, there are essentially two major methods for resolving control

issues in cases where determinist or stochastic, the principle of dynamic programming and the

Pontryagin�s maximum principle. This grand theory has many applications in management

and �nance.

In this chapter, we will study a stochastic optimal control problem which consists to

minimizing a cost function J(u(:)). Our goal is to establish necessary optimality conditions

for stochastic maximum principle of Pontryagin�s, to minimize a cost function J(u). This

principle consists to introducing the backward stochastic di¤erential equation is called the

adjoint equation.

3.1 Formulation of problem

Let (
;F ; (Ft)0�t�T ; P ) be a probabilistic space �ltered with the �ltration (Ft)0�t�T

which satis�es the usual conditions and W = fW (t); 0 � t � Tg a Brownian motions in Rd

de�ned on (
;F ; (Ft)0�t�T ; P ).

De�nition 3.1 (admissible control) An admissible control is a process (ut)t2[0;T ] measu-

rable Ft-adapted to values in a Borelian A � Rn. Denoting by U the set of all admissible
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Chapitre 3. Pontryagin�s maximum principle

controls

U = fu : [0; T ]� 
 �! A; such that u is measurable and Ft � adaptedg:

We consider the stochastic control problem in the case where the control domain is not

convex and the dynamical system is governed by an stochastic di¤erential equation of the

following type : 8><>: dXt = b(t;X(t); u(t))dt+ �(t;X(t))dW (t);

X(0) = x:
(3.1)

with

b : [0; T ]� Rn � A! Rn;

� : [0; T ]� Rn !M(Rd�n);

such thatM(Rd�n) is a space of matrix of dimesion d � n: In order to de�ne our problem,

we make the following assumptions :

(A1) A being a given separable metric space

(A2) b and � are continuously di¤erentiable in x : The derivatives of b and � are bounded,

i.e : for any C > 0 such that jvxj � C for vx = bx; bu and �x:

(A3) The coe¢ cients b and � verify the condition of linear growth, i.e :

jb(t; x; u)j � C(1 + jxj+ juj);

jb(t; x)j � C(1 + jxj):

Theorem 3.1 Under the above assumptions the SDEs (3.1) admits a unique solution (X(t))t2[0;T ]

for any admissible control u(�) 2 U .

The objective of our work is to minimize a cost function given by :

J(u(�)) = E(
(X(T ))): (3.2)
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(A4) 
 is a function such that : 
 : Rn ! Rn in class C1 in x and

j
j � C(1 + jxj):

Remark 3.1 The functions 
 is called the terminal cost.

3.2 The strong perturbation of control

To obtain the stochastic maximum principle (the necessary optimalities conditions), �rst

we assume that the cost function J(u) is di¤erentiable and admits a minimum denoted by

u� which satis�es :

J(u�) = inffJ(u); 8u 2 Ug:

Now we compare the optimal control u� to other controls that are di¤erent from it except

over a fairly small interval of length �.

Let X� be the solution of the stochastic di¤erential equation corresponding to u�(�) (i.e. X�

is an optimal trajectory), we de�ne the following strong perturbation :

u�t =

8><>: ut si t 2 [�; � + �];

u�(t) si non;

with u 2 A; � 2 [0; T ] ; � quite small.

By de¤nition the process u� is an admissible process and the two processes u� and u� are

equal only on the very small length interval �:

Remark 3.2 If we take � = 0 we get u�(t) = u�(t):

De�nition 3.2 We call the process u� the perturbed control of u�.
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3.3 Estimation of solution

Lemma 3.1 Let (u�(�); X�(�)) be a solution of the equation (3.1) then

E
�
sup
t�T

jX�(t)�X�(t)j2
�
� C�2;

which implies :

E
�
sup
t�T

jX�(t)�X�(t)j2
�
!
�!0

0:

Proof. From equation (3.1) we �nd

X�(t) = x+

Z t

0

b(s;X�(s); u�(s))ds+

Z t

0

�(s;X�(s))dW (s);

X�(t) = x+

Z t

0

b(s;X�(s); u�(s))ds+

Z t

0

�(s;X�(s))dW (s):

So

X�(t)�X�(t) =

Z t

0

b(s;X�(s); u�(s))ds+

Z t

0

�(s;X�(s))dW (s)

�
�Z t

0

b(s;X�(s); u�(s))ds+

Z t

0

�(s;X�(s))dW (s)

�
;

we add and subtract at the same time the term
R t
0
b(s;X�(s); u�(s))ds, we obtain :

X�(t)�X�(t) =

Z t

0

[b(s;X�(s); u�(s))� b(s;X�(s); u�(s))] ds

+

Z t

0

[b(s;X�(s); u�(s))� b(s;X�(s); u�(s))] ds

+

Z t

0

[�(s;X�(s))� �(s;X�(s))] dW (s):

Using the mathematical expectation and the inequality (a+ b+ c)2 � 3(a2+ b2+ c2); we get
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the following inequality :

E
�
sup
t�T

jX�(t)�X�(t)j2
�
� 3E

����Z T

0

[b(s;X�(s); u�(s))� b(s;X�(s); u�(s))] ds

����2
+ 3E

����Z T

0

[b(s;X�(s); u�(s))� b(s;X�(s); u�(s))] ds

����2
+ 3E

 
sup
t�T

����Z t

0

[�(s;X�(s))� �(s;X�(s))] dW (s)

����2
!
;

now using the inequality of Burkhlöder-Davis-Gandy, we �nd the following inequality :

E
�
sup
t�T

jX�(t)�X�(t)j2
�
� 3E

����Z T

0

[b(s;X�(s); u�(s))� b(s;X�(s); u�(s))] ds

����2
+ 3TE

Z T

0

jb(s;X�(s); u�(s))� b(s;X�(s); u�(s))j2 ds

+ 3CE
Z T

0

j�(s;X�(s))� �(s;X�(s))j2 ds:

From the Lipschitz hypothesis for the drift b and the di¤usion coe¢ cient �; we deduce the

following inequality 8C > 0;

E
�
sup
t�T

jX�(t)�X�(t)j2
�
� 3E

�Z �+�

�

[b(s;X�(s); u�(s))� b(s;X�(s); u�(s))] ds

�2
+ 3TCE

Z T

0

jX�(s)�X(s)j2ds

+ 3CE
Z T

0

jX�(s)�X(s)j2ds;

using the fact that b is bounded and Fubini�s theorem, we �nd

E
�
sup
t�T

jX�(t)�X�(t)j2
�
;

� (3TC+3C)
Z T

0

E(jX�(s)�X(s)j2)ds+ 3ME
�Z �+�

�

ds

�2
:
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According to Gronwall�s lemma deduce the following estimate :

E
�
sup
t�T

jX�(t)�X�(t)j2
�
� 3M�2 � exp(3TC + 3C)T = C�2:

with C = 3M � exp(3TC + 3C)T; which implies that

lim
�!0

E
�
sup
t�T

jX�(t)�X�(t)j2
�
= 0:

3.4 The linearization of the equation

We use the following notation in this work

��x = bx(t;X
�(t); u�(t)); ��(u�) = b(t;X�(t); u�(t)); �(u�) = b(t;X�(t); u�(t));

Now we introduce the following linear stochastic di¤erential equation :

8><>: d�(t) = bx(t;X
�(t); u�(t))�(t)dt+ �x(t;X

�(t))�(t)dW (t);

�(0) = b(0; X�(0); u(t))� b(0; X�(0); u�(t));
(3.3)

Remark 3.3 We can �nd a unique solution � such that � 2M to the equation (3.3)

We have the following estimate

Lemma 3.2 Let X� et X� be two system solutions corresponding respectively to u� and u�,

then we have the following estimate :

E

 
sup
t�T

���� jX�(t)�X�(t)j2
�

� �(t)
����2
!
!
�!0

0; (3.4)
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Proof. By de�nition and we add and subtract at the same time, we �nd :

1

�
(X"(t)�X�(t)� ��(t));

=
1

�

Z t

0

b(s;X�(s); u�(s))ds+
1

�

Z t

0

�(s;X�(s))dW (s)

� 1
�

Z t

0

b(s;X�(s); u�(s))ds� 1
�

Z t

0

�(s;X�(s))dW (s)

� 1
�

Z t

0

�bx(s;X
�(s); u�(s))�(s)ds� 1

�

Z t

0

��x(s;X
�(s))�(s)dW (s)

+
1

�

Z t

0

b(s;X�(s); ��(s); u�(s))ds� 1
�

Z t

0

b(s;X�(s) + ��(s); u�(s))ds

+
1

�

Z t

0

�(s;X�(s) + ��(s))dW (s)� 1
�

Z t

0

�x(s;X
�(s) + ��(s)dW (s):

So

1

�
(X"(t)�X�(t)� ��(t));

=
1

�

Z t

0

b(s;X�(s); u�(s))ds� 1
�

Z t

0

b(s;X�(s) + ��(s); u�(s))ds

+
1

�

Z t

0

�(s;X�(s))dW (s)� 1
�

Z t

0

�(s;X�(s) + ��(s))dW (s)

+
1

�

Z t

0

b(s;X�(s) + ��(s); u�(s))ds

� 1
�

Z t

0

�bx(s;X
�(s) + u�(s))�(s)ds

+
1

�

Z t

0

�(s;X�(s) + ��(s))dW (s)� 1
�

Z t

0

�(s;X�(s))dW (s)

� 1
�

Z t

0

b(s;X�(s) + u�(s))ds� 1
�

Z t

0

��x(s;X
�(s) + �(s))dW (s):
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Using the Taylor�s expansion with integral remainder, we obtain :

1

�
(X"(t)�X�(t)� ��(t));

=
1

�

Z t

0

[

Z 1

0

bx(s;X
�(s) + ��(s) + �(X�(t)�X�(s)� ��(s)); u�(s))

� (X�(s)�X�(s)� ��(s))d�]ds

+
1

�

Z t

0

[

Z 1

0

�x(s;X
�(s) + ��(s) + �(X�(t)�X�(s)� ��(s)))

(X�(s)�X�(s)� ��(s))d�]dW (s)

+
1

�

Z t

0

�Z 1

0

[bx(s;X
�(s) + ��(s); u�(s))� �bx(s;X�(s); u�(s))]�(s)d�

�
ds

+
1

�

Z t

0

�Z 1

0

[�x(s;X
�(s) + ��(s))� ��x(s;X�(s))]�(s)d�

�
dW (s);

by simplifying the notation, we get :

(X"(t)�X�(t)� ��(t))
�

;

=

Z t

0

A�(s)
X"(t)�X�(t)� ��(t)

�
ds+

Z t

0

B�(s)
X"(t)�X�(t)� ��(t)

�
dW (s)

+

Z t

0

C�(s)ds+

Z t

0

D�(s)dW (s);

or

A�(s) =

Z 1

0

bx(s;X
�(s) + ��(s) + �(X�(s)�X�(s)� ��(s)); u�(s))d�;

B�(s) =

Z 1

0

�x(s;X
�(s) + ��(s) + �(X�(s)�X�(s)� ��(s)))d�;

C�(s) =
1

�

Z 1

0

[bx(s;X
�(s) + ��(s); u�(s))� �bx(s�X�(s); u�(s))]� �(s)d�;

D�(s) =
1

�

Z 1

0

[�x(s;X
�(s) + ��(s))� ��x(s;X�(s))]�(s)d�:

Using mathematical expectation and inequality (a + b + c + d)2 � 4(a2 + b2 + c2 + d2); the
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isometry property and the Cauchy-Schwartz inequality, we get :

E
���� jX"(t)�X�(t)j2

�
� �(t)

����2
� 4E

 Z t

0

jA�(s)j2 ds
Z t

0

���� jX"(t)�X�(t)j2
�

� �(t)
����2 ds

!

+ 4E

 Z t

0

jB�(s)j2 ds
Z t

0

���� jX"(t)�X�(t)j2
�

� �(t)
����2 ds

!

+ 4E

"�Z t

0

C�(s)ds

�2
+

�Z t

0

D�(s)dW (s)

�2#
:

Becauce bx and �x are bounded then we have :

E
���� jX"(t)�X�(t)j2

�
� �(t)

����2 � CEZ t

0

���� jX"(t)�X�(t)j2
�

� �(t)
����2 ds

+ 4E

(�Z t

0

C�(s)ds

�2
+

�Z t

0

D�(s)dW (s)

�2)
:

According to Gronwall�s lemma, we �nd

E
���� jX"(t)�X�(t)j2

�
� �(t)

����2 � CE
(�Z t

0

C�(s)ds

�2
+

�Z t

0

D�(s)dW (s)

�2)
exp(Ct);

in the end the estimate (3.4) is easily obtained, because

E

(�Z t

0

C�(s)ds

�2
+

�Z t

0

D�(s)dW (s)

�2)
= 0(�2):

3.5 The derivative of the cost function

We now de�ne the following stochastic di¤erential equation (the resolvent) :

8><>: d�(T; t) = bx(t;X
�(t); u�(t))�(T; t)dt+ �x(t;X

�(t)�(T; t)dW (t));

�(t; t) = Id:
(3.5)
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The cost function J(u) given by the following form

J(u(:)) = E(
(X(T ))): (3.6)

Lemma 3.3 The map �! J(u) is di¤erentiable at point � = 0. Moreover, we have :

dJ(u�(:))

d�

����
�=0

= E(
x(X
�(T ))�(T ));

and moreover this quantity is positive.

Proof. By de�nition we have dJ(u�(:))
d�

���
�=0

= lim
�!0

J(u�(:))�J(u�(:))
�

; with

J(u�(:))� J(u�(:))
�

=
E[
x(X"(T ))]� E[
x(X�(T ))]

�
:

Since the function 
(:) is in class C1; so for almost every ! there exists �(!) 2 ]0; T [ such

that :


(X"(t))� 
(X�(t)) = 
x(X
�(t) + �(X"(t)�X�(t)))(X"(t)�X�(t)):

So

E
�

(X"(T ))� 
(X�(T ))

�

�
;

E
�

x(X

�(T ) + �(X"(T )�X�(T ))) (X
"(T )�X�(T ))

�

�
;

the fact that 
x is bounded i.e : j
xj � M and (X"(T ))�(X�(T ))
�

!�!0 �(T ) and X"(T ) �

X�(T ) !
�!0

0 in space L2(
;F ; P ); we obtain :

lim
�!0

E[
(X"(T ))]� E[
x(X�(T ))]

�
;

= lim
�!0

E
�

x(X

�(T ) + �(X"(T )�X�(T )))
(X"(T )�X�(T ))

�

�
;

= E[
x(X�(T ))�(T )]: (3.7)
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From the relation (3.7), we get

dJ(u�(:))

d�

����
�=0

= E(
x(X
�(T ))�(T )): (3.8)

For proof that dJ(u
�(:))
d�

���
�=0

� 0 ; using Taylor expansion. As the map �! J(u�) is di¤erentiable

at point � = 0, we have

J(u�) = J(u�) + �
dJ(u�)

d�

����
�=0

+ �(�);

with �(�) is a negligible function depends on �. Then

J(u�)� J(u�) = � dJ(u
�)

d�

����
�=0

+ �(�);

and as u� is optimal then J(u�)� J(u�) � 0 for all � 2 [0; T ] which gives

dJ(u�)

d�

����
�=0

� 0:

3.6 Stochastic maximum principle

Now we can announce the main result of this chapter which is the principle of the

stochastic maximum in the case where the control domain is non convex.

The adjoint equation :

Let u�(t) be optimal control and X�(t) the corresponding optimal trajectory. We introduce

the following adjoint equation :

8><>: dp(t) = �[bx(t;X�(t); u�(t))p(t) + �x(t;X
�(t)); q(t)]dt+ q(t)dW (t);

p(T ) = �
x(X(T )):
(3.9)

we call p(t) the adjoint process.

Theorem 3.2 If conditions (A2), (A3) and (A4) hold, then the adjoint equation (3.9) admits
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Chapitre 3. Pontryagin�s maximum principle

a unique solution p(:) 2M(R).

Proof. Equation (3.9) is a backward stochastic di¤erential equation, so the existence and

uniqueness of solution is assured by the result of Pardoux & Peng in 1990 [9].

Now de�nes the Hamiltonian function H by :

H(t;X(t); u(t); p(t); q(t)) = b(t;X(t); u(t)); p(t) + �(t;X(t))q(t):

We use the Hamiltonian H to write (3.9) as follows :

8><>: �dpt = Hx(t;X�(t); u�(t); p(t); q(t))dt; q(t)dW (t);

pT = �
x(X(T )):
(3.10)

Theorem 3.3 Let (X�(t); u�(t)) be an optimal solution of (3.1), p(t) the solution correspon-

ding to (3.10) and under the hypotheses (A2), (A3) and (A4) , then we have the following

inequality :

H(t;X�(t); u�(t); p; q) � H(t;X�(t); u(t); p(t); q(t)); 8u 2 U ; P � p:s et dt� p:p:

which implies :

H(t;X�; u�; p; q) = min
u2U

H(t;X�; u; p; q):

Proof. We assume that the cost function J(u(:)) = E(
(XT )) admits an optimal value for

the control u�, we obtain

J(u�(:)) � J(u�(:));

Suppose that H(t;X(t); u(t); p(t)) = b(t;X(t); u(t)); p(t). According to the inequality above,

the study of the derivation of at J(u�(:)) in � = 0 is given by the 3.3, i.e :

dJ(u�(:))

d�

����
�=0

= E(
x(X
�(T ))�(T )) � 0;
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Chapitre 3. Pontryagin�s maximum principle

where �(T ) = �(T; t)�(t): Then, we deduce that

dJ(u�(:))

d�

����
�=0

= E(
x(X(T ))�(T; t)[b(t; (X
�(t); u(t))� b(t;X�(t); u�(t))]) � 0:

we put p(t) = E[
x(X(T ))�(T )=Ft]; which is a stochastic process Ft�measurable for 8t 2

[0; T ]:

So

E(p(t)[b(t; (X�(t); u(t))� b(t;X�(t); u�(t))]) � 0;

so we get the following inequality

E[(p(t)b(t; (X�(t); u(t))] � E[(p(t)b(t; (X�(t); u�(t))]; 8u 2 U ;

hence the desired result.
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General conclusion

In this work, we have dealt with a stochastic optimal control problem for a system

governed by a stochastic di¤erential equation (SDEs in short) in the case where the control

domain is not convex with the di¤usion coe¢ cient does not contain the variable of control.

We are using the strong perturbation method "Spike variation" to derive these conditions

optimality necessary inthe form of a Pontryagin�s maximum principle.
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Annex : Some mathematical tools

De�nition 3.3 Young inequality : We say that two numbers p; q > 0, are conjugated in

the sense of Young, if :
1

p
+
1

q
= 1:

Young inequality says that if p and q are conjugate and if a,a; b � 0,So

ab � ap

p
+
bq

q
:

with equality if and only if a ap = bq:

For example ,if p = q = 2 we �nd the inequality

2ab � a2 + b2:

Holder inequality. Holder inequality says that if p; q > 0 ,are conjugate in the sense of

Young, then

Z
D

(f(x)g(x))d�(x) �
�Z

D

jf(x)jpd�(x)
�1=p

:

�Z
D

jg(x)jpd�(x)
�1=p

Gronwall lemma

Lemma 3.4 Let T > 0 and � positive function bounded on [0; T ] ; Your assumes there are

constants � > 0; � > 0 ; such that for all t 2 [0; T ] we have

�(t) � �+ �
Z t

0

�(s)ds:
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Then

8t 2 [0; T ] �(t) � �+
Z t

0

exp(�s)ds:

Taylor development with remains integral

De�nition 3.4 Let f : I ! R a function of class Cn+1; (n 2 N) and a; x 2 I; then :

f(x+ a) = f(x) + f 0(x)(a) +
f"(x)

2!
(a)2 + :::+

f (n)(x)

n!
(a)n

+ 0(jajn) +
Z t

0

f (n+1)(x)

(n+ 1)!
(a)n+1dt:

Burkholder-Davis-Gandy inequality

Theorem 3.4 Ther exists a constant C such that, for any continuous local martingale

Z t

0

�(s; x(s))dW (s);

null at zero, we have :

E

"
sup
0�t�T

����Z t

0

�(s; x(s))dW (s)

����2
#
� CE

Z T

0

j�(s; x(s))j2 ds:
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Abstract     

In this work, we study a stochastic control problem optimal, for       

systems governed by differential equations stochastic. Our main objective 

in this work is to establish the necessary conditions of optimality in the     

form of the Pontryagin’s maximum principle for SDEs systems with 

uncontrolled diffusions, i.e., the coeffcient of the diffusion  does not 

contain the control  variable, and the control domain is not convex .                                         

         Key words : Stochastic differential equations, optimal contrôle, 

,stochastic process, stochastic maximum principle.     
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للأنظمة التي تحكمها المعادلات  الأمثل، العشوائيةندرس مشكلة التحكم  العمل،في هذا 

ـ الحد الأقصى ل مبدأالشروط اللازمة  يجادهدفنا الرئيسي في هذا العمل هو إ  لعشوائية.ا التفاضلية

Pontryagin’s أي ،فيهمتحكم الانتشار غير العلم ان معامل  مع لعشوائيةا معادلات التفاضليةلل 

 .دبومجال التحكم ليس مح التحكم،متغير  معامل الانتشار لا يحتوي على

  

مبدأ  ،ئيةوالعشا لعمليةا، للأمثا ملتحكا، لعشوائيةا المعادلات التفاضلية : لمفتاحيةا تلكلماا 
 الحد الأعظمي.

 
 

 

 

 
 
 

Résumé 

Dans ce travail, nous étudions un probléme de controle optimal 

stochastique pour des systémes gouvernés par des équations 

différentielles stochastiques. Notre objectif principal dans ce travail est 

d’établir les conditions nécessaires d’optimalité sous la forme du 

principe maximum de Pontryagin pour l’EDSs dans le cas où le 

coefficient de la diffusion ne contient pas la variable de contrôle, et le 

domaine de contrôle n’est pas convexe. 

Mots clés : Equations diffrentielles stochastiques, contrôle optimal, 

processus stochastique, principe du maximum stochastique. 
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